Thirteenth International Conference on
Geometry, Integrability and Quantization
June 3-8, 2011, Varna, Bulgaria (Seometry,

Ivailo M Mladelnov, Angrei Ludu |ntegm£i\i£q
and Akira Yoshioka, Editors

Avangard Prima, Sofia 2012, pp 252-262 “é @
doi: 10.7546/gig-12-2011-252-262 vantization

MOTION OF CHARGED PARTICLES IN TWO-STEP
NILPOTENT LIE GROUPS*

OSAMU IKAWA

Department of General Education, Fukushima National College of Technology
Iwaki, Fukushima, 970-8034 JAPAN

Abstract. We formulate the equation of motion of a charged particle in a
Riemannian manifold with a closed two form. Since a two-step nilpotent Lie
group has natural left-invariant closed two forms, it is natural to consider the
motion of a charged particle in a simply connected two-step nilpotent Lie
groups with a left invariant metric. We study the behavior of the motion of a
charged particle in the above spaces.

1. Introduction

Let Q be a closed two-form on a connected Riemannian manifold (M, ( , )),
where (,) is a Riemannian metric on M. We denote by A™(M) the space of m-
forms on M. We denote by t(X) : A™(M) — A™ (M) the interior product
operator induced from a vector field X on M, and by £ : T(M) — T*(M), the
Legendre transformation from the tangent bundle T(M ) over M onto the cotangent
bundle T*(M) over M, which is defined by

L:TM) =T (M), um L(uw), L) =v), uwuveT(M). (1)

A curve x(t) in M is referred as a motion of a charged particle under electromag-
netic field Q, if it satisfies the following second order differential equation

Vix = —L7 1 (1(x)Q) 2)

where V is the Levi-Civita connection of M. Here ViXx means the acceleration
of the charged particle. Since —L£~'(1(%)Q) is perpendicular to the direction x
of the movement, —£~'(1(x)Q) means the Lorentz force. The speed || is a
conservative constant for a charged particle. When (O = 0, then the motion of a

*Reprinted from J. Geom. Symmetry Phys. 20 (2010) 57-67.
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charged particle is nothing but a geodesic. The equation (2) originated in the theory
of relativity (see [2] for details).

In this paper, we deal with the motion of a charged particles in a simply con-
nected two-step nilpotent Lie group N with a left invariant Riemannian metric.
Since a two-step nilpotent Lie group has a non-trivial center Z, we can construct
a left-invariant closed two form Q. from an element ay € Z specified below
and consider the motion of a charged particle under the electromagnetic field ().
H. Naitoh and Y. Sakane proved that there are no closed geodesics in a simply
connected nilpotent Lie group. In contrast with geodesics, there exist motions of
charged particles which are periodic. Kaplan defined a H-type Lie group, which is
a kind of two-step nilpotent Lie groups. We study the motion of a charged parti-
cle in a H-type Lie group more explicitly than in a general two-step nilpotent Lie

group.
2. Charged Particles in Two-step Nilpotent Lie Groups

Let N be a simply connected two-step nilpotent Lie group with a left-invariant
Riemannian metric (, ). Denote by n the vector space consisting of all left-invariant
vector fields on N. Since n is two-step nilpotent, n has a non-trivial center 3. Let
n = 3® 3" be an orthogonal direct sum decomposition of n, then [31, 3] C 3. For
aop € 3, we define a linear transformation ¢, on 3+ by

(dao(X),Y) = (a0, X, Y]), X, Yest.
We extend ¢, to a linear transformation on n by ¢ = 0 on 3, which is also
denoted by ¢o,. We can regard ¢, as a left-invariant (1, 1)-tensor on N. Then

bq, is skew-symmetric with respect to the left-invariant Riemannian metric ()
since

(bao (X),Y) + (X, by (Y)) = (a0, [X, Y]) + (a0, [V, X]) = 0
for any left invariant vector fields X, Y € n. If we define a left-invariant two-form
Qg4, on N by
Qo (X, Y) = (X, bg, (Y)), X, Yen
then a simple calculation implies that (), is closed. In fact, for any Xj, X; and X3
in n we have
31(dQqy ) (X1, X2, X3) = =6 Qq, (X3, X2}, X3)
= —6 ([X1,X2], dq, (X3)) =0
where we denote by & the cyclic sum, and the last equality follows from the fact

that [Xq, X5] € 3 and ¢(X3) € 31. The equation of motion of the charged particle
under the electromagnetic field Q4 is

Vikx = bg,(%). 3)
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Here a curve in a manifold is simple if it is a simply closed periodic curve, or
if it does not intersect itself. Since N is simply connected, the one dimensional
de-Rham cohomology group vanishes. Hence we get the following theorem using
Theorem 9 in [2].

Theorem 1. The motion of a charged particle (3) in a simply connected two-step
nilpotent Lie group is simple.

Now we will construct explicitly a simply connected two step nilpotent Lie group
with a left-invariant Riemannian metric from an (abstract) two-step nilpotent Lie
algebra n with an inner product (,). In order to do this, we recall a Hausdorff
formula for a Lie group (see [1, p. 106]), which states that

2

If the Lie group is two-step nilpotent, then the higher terms + - - - on the right hand
side vanish. Based on the Hausdorff formula, we define a Lie group structure on n
itself by

1
expXexpY = exp <X+Y+[X’Y] _|_> .

1
X-Y=X+Y+3XY, XYen

The identity element in this group is 0, and the inverse element of x € n is equal
to —x. We denote by N = (n,-) the so obtained Lie group. The center of N
coincides with 3. Denote by Lie(N) the Lie algebra consisting of all left-invariant
vector fields on N. Then Lie(N) is identified with n as a Lie algebra as mentioned
below. Since N is a Euclidean space as a manifold, we can identify Ty(N) with
n as vector spaces. The identification induces a Lie algebra structure on To(N).
For X € To(N), we denote by X € Lie(N) the left-invariant vector field on N
such that X, = X. The mapping defined by n = Ty(N) — Lie(N), X — X
gives an isomorphism as Lie algebras. Hence N is a simply connected two-step
nilpotent Lie group whose Lie algebra is n. The inner product (,) on n induces a
left-invariant Riemannian metric (, ) on N. Using this notation, we have
Qﬂo (X>Y) = <X> ¢Y> = <€103 [Y> X]> = <C10, [Y’ X]>

The exponential mapping exp : n — N is equal to identity mapping. Hence for
X € To(N), we have

- d d t

Xy = a(x . tX)\t:O & <X +tX + z[X, X]) o € Ty(N).

Since the Riemannian metric on N is left-invariant, the left action of N on N itself
is isometric. Hence X € Ty(N) induces a Killing vector field X* on N by

X: = a(ethX)Xu:o — a(tX +x+ 2[X,><])|t:0 € Tu(N).
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The Killing vector field X* is right-invariant.

Lemma 1. The mapping defined by
1
n—n, Xn—>X+§[X,x]
is a linear isomorphism.

Proof: Since the mapping is clearly linear, it is sufficient to prove that it is injec-
tive. In order to do this, we study the kernel of the mapping. Suppose that X € n
satisfy the condition X + %[X, x] = 0. Decompose X as X = X; + X, where
X; € 3+ and X; € 3, then X7 + (X5 + %[th]) = 0. This implies X; = 0 and
X5 + %[X1 ,x] = 0. Hence we have X, = 0, hence, X = 0. [ |

By the lemma above, we have T,(N) = span{X} ; X € n} for any x in N. The
Killing vector field X* is an infinitesimal automorphism of ¢.

Lemma 2. Let X be in To(N) = n. For a fixed x € N, we have X} = Wy, where
we set W = X + [X, x].

Proof: Since

~ d t
W, = — [ x + tX+tIX,x] + =[x, X + [X, x]]
dt 2 =0
d t .
= a <X+tX+Z[X,X])|t_0:XX
we have the assertion. |

Lemma 3. Define a one-form g, on N by
Nao (X5) = (Ix, X], ap), X € n.

Then (X*)Qq, = d(Mq, (X*)) for any X in n.

Proof: Let X and Y be in n. By Lemma 2, we have

(LX) Qa0 ) (Yy) =
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Using the above equation, we have also

d(Mae (X)) (a) = Valnao (X))
d ..

= dtn ao ( XY+ [x,Y] )It:O

= i([x Y 4 S, Y, X, ao)

dt 2
= <[Y> XI, a0> = (L(X;)an)(?x)-
Hence we get d(1q, (X*)) = ((X*)Qq,. |

Denote by Ty (N) — To(N); v — v, the usual parallel translation in the Euclidean
space n: Take a curve c(t) in N such that ¢(0) = x,¢(0) = v. Then v, =
d%(c(t) — XJjt=0- The following lemma gives a relation between the two linear
isomorphisms L;1 : Te(N) = To(N) and Ty (N) — To(N),v = v,.

Lemmad. [['v=v, — %[X)Vn] Jor v e T(N).

Proof: Take a curve c(t) in N such that ¢(0) = x, ¢(0) = v. Then

1, _d(_ _]
Lv=L,v= it < x +c(t) 2[x,c(tﬂ)|t_0

-9 (e(t) - Telt —x])t_o — vy~ 2wl

Hence we have the assertion. |

Similarly we define Ty(37) — To(31),u — u,w and T,(3) — To(3),w — w;.
Since 3 is abelian, we have L;]w = w; for w € T,(3). Hence we can write
w = w;. Letx € nandv € Ty (n). Expressing x and v as x = y + z and
v =v; +Vv,, wherey € 35,z € 3,v1 € Ty(g,L) and v, € T,(3) we obtain

1
L,j]v =) + <Vz - E[ y (V1 )f]) : @

Proposition 1. Let x(t) = y(t) + z(t) be a curve in n, where y(t) € 3+ and
z(t) € 3. Assume that y(0) = 0. Then x(t) describes the motion of a charged
particle (3) if and only if

. . . 1 . .
Ylthr = D204y (t) =1(0),  2(t) = 5ly(t),y(t);] = 2(0). (5
Proof: Taking the inner product of (3) and the Killing vector field X* for X € n,

we have

A i At o1 IO (<
5 X = QX %) = (LX) Q) (%),
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Using Lemma 3 we find

d, . o, NN d .
S00X) = (@O = 210G ).
Since Ty (N) = span{X3}; X € n}, the equation (3) is equivalent to
d

a((*(t)» Xiw) — (X)) =0.
By the definition of 1, we have
X ) = (x(6), X, a0) = (o (y (1)), X).
Since () is left invariant

<X) Xi(t)) = <L;]X> L;]XD
1
_ <gf + (2= 5y, 0,0, X + [X,x]>

= <ggi)x> + <Z_ %[y»QZ,L],X-i— [X>X]>

where we have used Lemma 2 and equation (4). Hence the equation (3) is equiva-
lent to

d
dt
Taking X € 3, we have

1
<<Q<~,L — oo (Y), X) + (2 — E[y,g#],x + [x’y]>> —0.

1

z(t) — E[U(t)»y(t);,l] =2(0)

where we have used the initial condition y(0) = 0. Next, taking X € 3+, we have

(85— Baoly) X) + (200}, X, y]) = 0.
Taking into account the initial condition y(0) = 0, we finally have
Y(t)r — dz0)+a,y(t) =Y(0).
|
Proposition 2. The motion of a charged particle (3) with y(0) = O is given by the
equations

t
y(t) = exptdz0)+a, Jo exp(—tdz(0)4q,)y(0)dt

1 t
2() = 2(0) + 12(0) + 5 L [y (t), (exp tbz(o)-a )Y (O]t
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Proof: Using the first equation of (5) with y(0) = 0, we have

t
y(t) = exptdz0)1a, Jo exp(—tds(0)+q,)y(0)dt.

Hence
$200)+a,Y(t) = (exptdz0)1a, — 1)Y(0)
which implies that
P20)4+a,Y(t) +Y(0) = (exp tdz0)1a,)U(0).

Using the second and the first equation from (5)

rt
2(1) = 2(0) +12(0) + & | (1), Y(0) .t
JO
1
= z(0) +12(0) + 5 O[y(t), $2(0)+a,Y(t) +y(0)]1dt
1 t
= 2(0) +2(0) + 5 | [y(1), (exp ts(0)10 ) (O)dt.
Hence we get the assertion. |

When ¢;(0)1q, = 0, then, using the above Proposition, we get y(t) = ty(0) and

t
z(t) = z(0) + tz(0) + ;L [ty(0),y(0)]dt = z(0) + tz(0).

Lemma 5. The equation of motion (3) implies the following relation

d . 1 . . . 1.

- ((2(1),200) + ao) + 5 (y(1), 5(0))) = [Z(O) + (2(0), ao) + 5y,
Proof: Taking the inner product of the second equation of (5) with z(0) + ag, we
have

(2,2(0) 4 ag) — %@,gal],zm) + ag) = |2(0)* + (2(0), ay).

Using equation (5) again produces
([, 9;11,2(0) + ao) = (P2(0)+aoY> Yst)
= <93J- —Q(O),93L>

=l P — (9,1, 1(0)) = [y, I — —(y(t),1(0)).

Hence

S (2(t),2(0) + o) + 5 (y(6),(0))) = (O + (2(0), ao) + 31y -
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Applying the lemma above for geodesics, we can re-demonstrate the following
theorem of Naitoh-Sakane.

Theorem 2. (Naitoh-Sakane [4, Corrolary 3.3]) Every geodesic in any simply con-
nected two-step nilpotent Lie group with a left-invariant Riemannian metric does
not intersect itself.

Proof: Let x(t) = y(t) + z(t) € N be a geodesic with y(0) = 0. Applying
Lemma 5 with ap =0
d
dt

((e10),2000) + 59(6),9(0)) ) = IO+ 3lgy0 0.

Hence (z(t),z(0)) + %(y(t),g(OD is monotone increasing. Thus x(t) is not peri-
odic. Since we have already proved that x(t) is simple by Theorem 1, we get the
assertion. [

The author thinks that the above proof is easier than the original proof of Naitoh-
Sakane.

3. Charged Particles in H-type Lie Groups

In this section, we study the motion of a charged particle in a simply connected
H-type Lie group. First we review the definition of H-type Lie algebra according
to Kaplan. Let (U, (,)) and (V, (,)) be finite-dimensional real vector spaces with
inner products (,). Denote by End(V) the vector space consisting of all linear
transformations on V. We assume that there exists a linear mapping j : U —
End(V) such that

j(@?=—a’L,  fi(a)x=lallx, a€l, xeV. (©6)
In other words, V is a Clifford module over the Clifford algebra generated by UL.
By (6) we have

(ila)x,j(b)x) = <a,b>l><\2 (ila)x,j(a)y) = laf*(x,y)
(jla)x,y) + (x,j(a)y) = a,bel, xyeV.
Define a bi-linear mapping [,] : V x V — U via the formula
(0,06 y]) = (la)x,y),  ael, xyeV. (7

Then [,] is alternative. Substituting j(b)x into y, we have

(a, [, j(b)x]) = (j(a)x,j(b)x) = (a, b)x[*.
Hence
x,jb)x] = xI*b,  bel, xecV. (8)
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We denote by n = U & V the orthogonal direct sum of U and V, and define a Lie
algebra structure on n by

[a+x,b+yl =[xyl el a,bel, xycV.

Then the Lie algebra n is called H-type. Since the H-type Lie algebra n is a kind
of two-step nilpotent Lie algebra with an inner product, we can define a Lie group
structure on n with a left-invariant Riemannian metric, whose Lie algebra is n itself
as we mentioned in the previous section. For ay € U, we consider the equation

Vix =jlag)x )

of motion of a charged particle. If we express its trajectory as x(t) = y(t) + z(t)
where y(t) € V,z(t) € U, then (9) is equivalent to

y(t)vy —ij(2(0) + ao)y(t) = y(0) (10)

where Ty (V) — V,w — wy denotes the usual parallel translation in V. Here we
have used equation (5).

Theorem 3. Let x(t) = y(t) + z(t) € N (wherey(t) € V,z(t) € U) is a motion
of a charged particle (9) with x(0) = 0.

1) When z(0) + ag = 0, then x(t) = tx(0).

2) When z(0) + ag # 0, then

 sin(t[2(0) + aol) .

y(t= 4(0) + 1 —cos(t|z(0) + ag)

j(2(0) 4 ao)y(0)

2(0) + aql 2(0) + aoP
a0y . HUOP sin(t12(0)+ aol) |
2(U)=t2(0) + o (200) + ag) —>5 T SR O)P (2(0) + ag).

The curve y(t) is a circle in V. The motion of a charged particle is periodic if and

ey [y(0)?
__ (M ;
ap = <2|i(0)|2 + 1) 2(0).

In this case x(t) is an elliptic motion.

Remark 1. When x(t) is a geodesic, the condition ay = 0 implies the theorem of
Kaplan [3].

Proof: 1) is clear from (10). We will show 2). Using the first equation of (10), we
have

~ sin(t12(0) + aol) .
YO = e VO

which implies that

1 —cos(t|z(0) + apl)
12(0) + aol?

j(2(0) + ao)y(0)

sin(t|z(0) + agl)
2(0) + aol

Y(t)y = cos(t|z(0) + aol)y(0) + j(2(0) + ao)y(0).
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Using the equation above, we have

1 — cos(t|z(0) + apl)

12(0) + agl? [Y(0),j(2(0) + ao)y(0)].

y(tv,y(t)] =

Further the second equation of (10) gives

1 —cos(t|z(0) + apl)

0 =20 gy MO0 TeOl
. 1 —cos(t|z(0) + apl)
= 2(0 0
£0) + 301 o (2(0) + a)g(0)P
where we have used the equation (8). Since
1 . 2(0) + ap ) _ sin(]2(0) 4+ aplt) .
t) — 0) = 0
90~ o a? (aior a) 9= g0 s e VO
~cos(|2(0) + aolt) ( 2(0) + ao > 1(0)
12(0) + aol 12(0) + aol
the curve y(t) is a circle in V whose center is B Lao‘) < Z(O;iaoo y(0) and the
radius is B (Ig)( L. The periodic condition is as follows
x(t) is periodic & 2(0) + &( (0)+ap) =0
2[2(0) + apl?
[y(0)I*

& ao=—<2| 07 —|—1>Z(O).

In this case, since
2600, [ 20) . .. 20) [
"“”9(0)|2]<|z(0)|>”(°)‘m(on( <2|z )

YOR\ . [ 20) .
oo <2| )] )] <|z( )|)“(°)>

the curve x(t) is an elliptic such that the ratio of the long axis to the short axis is

equal to \/[y(0)2 + [2(0)|2/ly (0 [ |
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