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Abstract. In this paper we consider relativistic models that contain in their
spectra of solutions extended topological defects. We find the geometri-
cal constrains that describe deformed vortices and domain walls of constant
width. Analytical form of these solutions in co-moving coordinates is iden-
tical with analytical form of the appropriate static solutions in the laboratory
Cartesian coordinates. The geometrical constrains presented in this report
describe fully the shape and the evolution of the vortices and domain walls
of constant width.

1. Introduction

In many branches of physics significant part of the physical phenomena are de-
scribed by topological solitons of varied types. The most important, in the midst of
topological defects, are extended topological configurations. There are two types
of these configurations: vortices and domain walls.
The vortices appear in the description of many low energy systems. The most
important examples of condensed matter systems that contain vortices are super-
conductors of second type where vortices have a form of magnetic flux tubes that
puncture the bulk of the superconducting material [16]. In liquid crystals vortices
have a form of optical fibres [8], [6]. Vortices of topological origin were also mea-
sured in superfluid Helium [11]. It seems that vortices may also play some role in
the modern cosmology [22], [18], [14]. Finally, there is hypothesis that quarks in
barions and mesons are connected by vortices that have a form of color flux tubes
[7], [15], [8], [20].
On the other hand, domain walls are usually observed in ferromagnetic and ferro-
electric materials.
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The typical model that contain vortices is an Abelian Higgs model. This model
describes a charged complex scalar field interacting with a vector potential (an
electromagnetic potential)

L = −1

4
FµνF

µν + (Dµϕ)∗(Dµϕ) +
1

4
λ(ϕϕ∗ − a)2 (1)

whereDµϕ = ∂µϕ+iqAµϕ and Fµν = ∂µAν−∂νAµ is the electromagnetic field
strength tensor. The equations of motion in this system are the following

DµD
µϕ+

1

2
λϕ(ϕϕ∗ − a) = 0

and

∂µFµν = iq(ϕ∗Dνϕ− ϕDνϕ
∗).

It was proved that in this model there exists cylindrically symmetric static solutions
(with finite energy per unit length) of the form [1], [19]

ϕ = ϕV (r, φ) = F (r)einφ (2)

Aµ = (0,−yA(r), xA(r), 0) (3)

where F and A are well defined functions of radial variable. The typical profile
of the function F is presented in Figure 1. In the same figure one can find the “z”
component of the magnetic field. Unfortunately, the analytical form of functions
F and A for arbitrary parameters of the model are not known. The particular form
of the solution (2) follows from general considerations. First, the scalar field dis-
appears on “Z” axis and therefore F (r) → 0 for r → 0. This condition guarantees
non-singularity of the scalar field. Second, uniqueness of the scalar field is guar-
anteed by the choice of the phase factor nφ. On the other hand the energy per unit
length is finite if F (r) →

√
a for r → ∞ and vector potential is a pure gauge field.

The equation (2) for r → ∞ can be understood as a mapping from a circle located
at spatial infinity S1r→∞ to a vacuum manifold S1√

a
. The index of this mapping

n indicates how many times the second circle is surrounded if the first one is sur-
rounded only once. This index (called a winding number or a topological charge)
divides vortex solutions on non equivalent classes. Each class consists of the static
solution of given topological charge n and other excited vortices characterized by
the same winding number. These excited solutions, in general depend on other
variables, are non-static and does not posses cylindrical symmetry

ϕ = ϕV (r, φ) = F (r, φ, z, t)einφ. (4)

The solutions of this type are studied in the framework of the perturbation scheme
[3] (a similar studies were performed in a case of domain walls [3],[4]). The classes
are separated from each other by infinite energy barrier and therefore the solutions
(that minimalize the energy per unit length) are stable [17]. In the present report we
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Figure 1. The scalar field drops to zero on the “Z” axis. The third
component of the magnetic field is substantially different from zero in
the vicinity of the “Z” axis.

reduce the dynamics of the vortex to the dynamics of the line of zeros of the scalar
field. This line can be considered as a string that represents a vortex [12], [13]. In
order to have direct correspondence between vortices and strings we restrict our
considerations only to vortices of constant width. The same approach can be used
in order to describe the domain walls. The only difference is that in case of domain
walls the zeros of the scalar field lie on the two dimensional surface.

2. Co-moving Coordinates.

2.1. Coordinates in the Vicinity of the String

In the previous section we identified the vortex with the string. In case of the
straight string its points can be indicated, for example, by “z” variable. If the
string is curved then we use the space-like parameter σ. During its evolution the
string leaves a trail in the space-time that has a form of the 1 + 1 dimensional
manifold Σ called the word-sheet. For convenience we introduce more compact
notation: (σa) = (σ0, σ3) = (τ, σ). The position (in the Cartesian laboratory
frame) of the point on the word-sheet can be uniquely defined by the radius vector
field Xµ(σa). Near the world-sheet one can introduce the co-moving coordinates
(ζα) = (σa, ρi). The additional coordinates (ρi) = (ρ1, ρ2) are normal to the
world-sheet and they describe how far is a point from the surface Σ. There exists
simple relation between co-moving and laboratory Cartesian coordinates

xµ = Xµ(σa) + ρinµi (σ
a) (5)
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where nµi (σ
a) are two vectors (i = 1, 2) normal to the surface Σ at each point

Xµ(σa). Additionally we assume that they are orthonormal and space-like four-
vectors

nµi njµ = −δij , niµX
µ
,a = 0. (6)

The minus sign in the first relation of the equation (6) is consistent with metric
convention (+,−,−,−). The Cartesian coordinates in the laboratory frame are
denoted in standard way, i.e., xµ. In the paper we also use the metric induced on
the surface Σ

Xµ
,aXµ,b ≡ gab

whereXµ
,a is tangent vector to Σ in the direction of the σa variable. The embedding

of the world-surface is described by the extrinsic curvature coefficientsKi
ab and the

torsion coefficients ωa that follows from the Gauss-Weingarten formulas

∂aX
µ
,b = Xµ

,ab = Γc
abX

µ
,c +Ki

abn
µ
i

∂an
µ
i = nµi,a = Ki

abg
bcXµ

,c + ϵikωan
µ
k

where ϵij is Levi-Civita symbol. In the description of the string we have addition-
ally a freedom of rotation of the normal frame nµi to the word-sheet. This symme-
try is taken into account by introducing the covariant derivatives with respect to σa

variables

∂̂af ≡ ∂af − ωa∂φf.

2.2. Coordinates in the Neighborhood of the Domain Wall

A similar construction can be performed in the case of the domain wall. In this
particular case the surface is parameterized by two space-like variables (σ1, σ2).
During its evolution the domain wall leaves in the space-time a trail in the form of
2+1 dimensional manifold Σ̃ parameterized by parameters (σa) = (σ0, σ1, σ2) =
(τ, σ1, σ2). This manifold is called word-hypersurface.
Similarly like in the string case, near the hypersurface Σ̃ we introduce the co-
moving coordinates (ζα) = (σa, ξ)

xµ = Xµ(σa) + ξnµ(σa) (7)
where the vector nµ is normal to the membrane and ξ is a coordinate in the direc-
tion of the vector nµ. By definition the space-like four-vector nµ is normalized to
unity and is orthogonal to the vectors Xµ

,a - tangent to the world-hypersurface Σ̃

nµnµ = −1, nµX
µ
,a = 0. (8)

The minus sign in the first relation of the equation (8) is consistent with metric con-
vention (+,−,−,−). The embedding of the world-hypersurface is described by
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the extrinsic curvature coefficientsKab and they follows from the Gauss-Weingarten
formulas

∂aX
µ
,b = Xµ

,ab = Γc
abX

µ
,c +Kabn

µ, ∂an
µ = nµ,a = Kc

aX
µ
,c.

In this description we have only one normal dimension and therefore we have no
torsion and no complication connected to rotation of normal frame.

3. Method of Construction of the Cured Vortex or Domain Wall

The method used in order to find the geometry of constant width vortices and
domain walls can be explained on a simple example. Let us consider some partial
differential equation

Ôx,yϕ(x, y) = 0.

Let us also presume that we know exact (although particular) solution of this equa-
tion

ϕ0(x, y). (9)
This equation can be transformed into arbitrary coordinates

x′ = f(x, y), y′ = g(x, y). (10)

In these coordinates the equation usually changes its form

Ôx′,y′ϕ(x
′, y′) = 0.

The solution (9) in new coordinates usually also changes its form

ϕ̃0(x
′, y′).

A simple example of such equation is the following

(∂2x + ∂y)ϕ(x, y) = 0

with particular solution of the form

ϕ0(x, y) = ex−y. (11)

After transformation

x′ = x, y′ = x+ y

the equation
(∂2x′ + 2∂x′∂y′ + ∂2y′ + ∂y′)ϕ(x

′, y′) = 0 (12)
and the solution change their form

ϕ̃0(x
′, y′) = e2x

′−y′ .

Let us notice that the analytical form of the solution differs from the solution given
by the formula (11). On the other hand one can check that the function ϕ0(x′, y′)
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which has identical analytical form as the solution of the original equation but
written in new coordinates (x′, y′)

ϕ0(x
′, y′) = ex

′−y′

is not a solution of the equation (12) in these coordinates.
In fact we post the inverse problem: we will look for transformations (10) that
does not change the analytical form of the solution (9). Moreover, we will con-
centrate only on transformations to co-moving coordinates. The special status of
these coordinates follows from the fact that they directly describe the shape and
the evolution of the vortex (or domain wall).
Actually, if we have defined the co-moving coordinates we can make the step back
(using relations (5) or (7)) and find analytical form of the solutions in the laboratory
frame or use the equations that define the geometry of the surface Σ (or hyper-
surface Σ̃) in order to define perturbational scheme for vortices with changeable
with.

4. Evolution of the Constant Width Defects

4.1. Geometry of the Vortex World Surface

The simplest models that contain vortex solutions are defined by the lagrangian
density

L = ∂µϕ∂
µϕ∗ − V (ϕ∗ϕ) (13)

where ϕ is a complex scalar field. An example of this kind of model is the Gold-
stone model defined by the potential V (ϕ∗ϕ) = λ

4 (ϕϕ
∗ − a)2, where λ and a are

positive constants. The corresponding Euler - Lagrange equation have the form

∂µ∂
µϕ+

δV

δϕ∗
= 0.

We presume that in the considered model the equation of motion has static, cylin-
drically symmetric vortex solutions (2). Although, analytical form of the function
F is not known explicitly, we presume that it is defined by the expansion in the
radial variable. The equation of motion in the co-moving coordinates has the form

∂̂a(
√
−g G Gab∂̂bϕ)− ∂r(

√
−g G ∂rϕ)−

1

r

√
−g G ∂rϕ

− 1

r2
∂φ(

√
−g G ∂φϕ) +

√
−g G δV

δϕ∗
= 0 (14)

where r =
√
(ρ1)2 + (ρ2)2. Here g = det[gab] is determinant of the metric in-

duced on the world-sheet

G = 1 + rKra
a +

1

2
r2[Kra

a K
rb
b −Kra

b K
rb
a ]
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and

Kr
ab = K1

ab cosφ+K2
ab sinφ.

In the equation (14) we also use the components of the inverse metric tensor in the
co-moving coordinates

Gab = G−2
[
gab(1 + rKrc

c )2 − 2rKrab(1 + rKrc
c ) + r2Kra

c K
rbc

]
.

We assume that equation (14) in the co-moving coordinates posses vortex solu-
tion with the analytical form identical to the form defined by the Euler-Lagrange
equation in the laboratory frame, i.e.,

−∂2rϕV − 1

r
∂rϕV − 1

r2
∂2φϕV +

δV

δϕ∗
|ϕ=ϕV

= 0 (15)

where r =
√
x2 + y2 and ϕV (r, φ) = F (r)einφ. In particular the last equation

(15) defines expansion of function F in the radial variable r. If we use an in-
formation contained in the equation (15) then we can remove the nonlinear term
from equation of motion in co-moving coordinates (14) and separate this complex
equation on imaginary and real part

1√
−g

∂a(
√
−g G Gabωb)− ∂φ( G Gab)ωaωb +

1

r2
∂φ G = 0 (16)

n2 G GabωaωbF + ∂r G ∂rF = 0. (17)

Next, we expand the equations (16), (17) in the radial variable and obtain from the
subsequent orders of this expansion the finite number of conditions that define the
geometry of the world-sheet of the string

ωa = 0, Kia
a = 0, Kib

a K
ja
b = 0, i, j = 1, 2. (18)

The above conditions describe the Nambu-Goto string with some additional con-
strains. First, let us notice that the number of independent conditions obtained in
this way is finite - although the number of orders of expansion is unfine. Sec-
ond, although the above constrains (18) are quite restrictive they allow existence
of nontrivial solutions. An example of such solution is a surface of the form

Xµ = [τ, ψ1(σ ± τ), ψ2(σ ± τ), σ] (19)

where ψ1(σ ± τ) and ψ2(σ ± τ) are almost arbitrary functions of the light-cone
coordinates. In fact we presumed that ψi are three times integrable functions of its
arguments (here c = 1). Having the solution (19) one can use relation (5) in order
to transform the vortex solution ϕ(ρ1, ρ2) into laboratory coordinates. The final
outcome of this calculus is a solution in the form of Vachaspati wave [21]

ϕV (x− ψ1(z ± t), y − ψ2(z ± t)) .
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This solution is represented by the threefold in Figure 2 (as a deformed world-
sheet, as an evolved string and as an evolved vortex). Let us notice that for the
obtained string conditions (18) the co-moving coordinates are defined globally.
The last observation is visible from the determinant of the metric in the co-moving
coordinates

√
−G =

√
−g

[
1 + rKra

a +
1

2
r2[Kra

a K
rb
b −Kra

b K
rb
a

]
=

√
−g ̸= 0.

During considerations of the vortex evolution we assumed also that the world-
surface is integrable and therefore satisfies Peterson-Codazzi, Ricci and Gauss in-
tegrability conditions. The last of these conditions establishes explicit connection
between external and internal geometry of the manifold Σ described by the com-
ponents of the Riemann curvature tensor

Rabcd = Ki
adK

i
bc −Ki

acK
i
bd.

Immediate consequence of the equations (18) and the Gauss integrability condition
is triviality of the internal geometry of the world-sheet of the considered string.
One can see that the Riemann curvature scalar is zero for surfaces defined by the
string equations

R = Kib
a K

ia
b −Kia

a K
ib
b = 0.

This result means that the world-surface of the vortex has geometry similar to the
geometry of the sheet of paper embedded nontrivially in the three dimensional
Euclidean space. Finally, it is worth to mention that identical set of equations, i.e.,
(18) was obtained for the Abelian Higgs model (1), however in this case the result
was obtained under assumption of triviality of the torsion, i.e., ωa = ∂aχ (where
χ is an arbitrary function).

4.2. Geometry of the Domain Wall World Hyper-surface

The simplest models that contain in the spectra of solutions domain walls are built
of real scalar field ϕ

L =
1

2
∂µϕ∂µϕ− V (ϕ).

In the typical example of the ϕ4 model the domain walls are given by hyperbolic
tangent function. The corresponding Euler - Lagrange equation have the form

∂µ∂
µϕ+

δV

δϕ
= 0. (20)

The same equation in the co-moving coordinates reads
1√
−G

∂a(
√
−GGab∂bϕ)−

1√
−G

∂ξ(
√
−G∂ξϕ) +

δV

δϕ
= 0 (21)
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world-sheet string vortex

Figure 2. The solution (19) presented i the form of the world-sheet,
line of zeros of the scalar field and a vortex.

where components of the inverse metric in the co-moving coordinates have the
form

Gab = (S−1)ac (S
−1)bc

and (S−1)ab are inverse to Sab ≡ gab + ξKab. Moreover G is determinant of the
metric tensor in the co-moving coordinates

√
−G =

√
g G (22)

where

G = 1 + ξKa
a +

1

2
ξ2[Ka

aK
b
b −Ka

bK
b
a]

+
1

6
ξ3[Ka

aK
b
bK

c
c − 3Ka

aK
b
cK

c
b + 2Ka

bK
b
cK

c
a].

We assume that the equation of motion have static solution in the form of domain
wall ϕW = ϕW (z). In this article we look for possible deformations of the domain
wall solution and therefore we assume that the analytical form of the function
ϕ = ϕW (ξ) is identical with the solution of the equation (20), i.e.,

−∂2ξϕW +
δV

δϕ
|ϕ=ϕW

= 0.

The natural consequence of the adopted form of the field ϕ is lack of its dependence
on the variables σa, i.e., ∂aϕW = 0. The equation of motion (21) for function ϕW
reduces substantially

− 1

G
∂ξ(G)∂ξϕW = 0. (23)



Geometry of Vortices and Domain Walls 195

In the last equation the function ϕW has fixed shape and the only unknown are
coefficients of the external curvature Kab. In the next step we expand equation
(23) with respect to the normal coordinate ξ

[−Ka
a + ξKa

bK
b
a − ξ2Ka

bK
b
cK

c
a + ... ]∂ξϕW (ξ) = 0. (24)

Moreover, expanding ϕW (ξ) and then separating coefficients of subsequent orders
of expansion of the whole equation (24) we obtain the finite set of independent
conditions

Ka
a = 0, Kb

aK
a
b = 0, Ka

bK
b
cK

c
a = 0. (25)

In addition, let us notice that from equation (22) it follows that conditions (25)
guarantee global existence of the used by us curvilinear coordinates

√
−G =

√
g ̸= 0.

Summing up, we have found that the shape of the domain wall and its evolution is
exactly and globally described by the set of geometrical equations (25). Similarly,
like in the case of the vortex solution we can indicate nontrivial solutions of the
membrane equations (25)

Xµ =
[
τ, σ1, σ2, ψ(τ − v1σ1 − v2σ2)

]
where c = 1 and ψ is three times integrable function of its arguments. We also
assume that constants v1 and v2 are not independent and they satisfy relation
(v1)2 + (v2)2 = 1. The proposed hypersurface describes deformed membrane
with a deformation of arbitrary shape ψ propagating along the membrane with the
speed of light.
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