SEIBERG-WITTEN EQUATIONS ON \mathbb{R}^{6}

NEDIM DEǦIRMENCI and ŞENAY KARAPAZAR

Department of Mathematics, University of Anadolu
Eskisehir 26470, Turkey

Abstract

It is known that Seiberg-Witten equations are defined on smooth four dimensional manifolds. In the present work we write down a six dimensional analogue of these equations on \mathbb{R}^{6}. To express the first equation, the Dirac equation, we use a unitary representation of complex Clifford algebra $\mathbb{C l}_{2 n}$. For the second equation, a kind of self-duality concept of a two-form is needed, we make use of the decomposition $\Lambda^{2}\left(\mathbb{R}^{6}\right)=$ $\Lambda_{1}^{2}\left(\mathbb{R}^{6}\right) \oplus \Lambda_{6}^{2}\left(\mathbb{R}^{6}\right) \oplus \Lambda_{8}^{2}\left(\mathbb{R}^{6}\right)$. We consider the eight-dimensional part $\Lambda_{8}^{2}\left(\mathbb{R}^{6}\right)$ as the space of self-dual two-forms.

1. Introduction

The Seiberg-Witten equations defined on four-dimensional manifolds yield some invariants for the underlying manifold. There are some generalizations of these equation to higher dimensionsinal manifolds. In [2,7] some eight-dimensional analogies were given and a seven-dimensional analog was presented in [5]. In this work we write down similar equations to Seiberg-Witten equations on \mathbb{R}^{6}.

2. spin ${ }^{c}$-structure and Dirac Operator on $\mathbb{R}^{2 n}$

Definition 1. A spin c-structure on the Euclidian space $\mathbb{R}^{2 n}$ is a pair (S, Γ) where S is a 2^{n}-dimensional complex Hermitian vector space and $\Gamma: \mathbb{R}^{2 n} \rightarrow \operatorname{End}(S)$ is a linear map which satisfies

$$
\Gamma(v)^{*}+\Gamma(v)=0, \quad \Gamma(v)^{*} \Gamma(v)=|v|^{2} 1
$$

for every $v \in \mathbb{R}^{2 n}$.
The 2^{n}-dimensional complex vector space S is called spinor space over $\mathbb{R}^{2 n}$.
From the universal property of the complex Clifford algebra $\mathbb{C l}_{2 n}$ the map Γ can be extended to an algebra isomorphism $\Gamma: \mathbb{C l}_{2 n} \rightarrow \operatorname{End}(S)$ which satisfies $\Gamma(\tilde{x})=$
$\Gamma(x)^{*}$, where \tilde{x} is conjugate of x in $\mathbb{C l}_{2 n}$ and $\Gamma(x)^{*}$ denotes the Hermitian conjugate of $\Gamma(x)$.
If (S, Γ) is a spin^{c}-structure on $\mathbb{R}^{2 n}$, then there is a natural splitting of the spinor space S. Let $e_{1}, e_{2}, \ldots, e_{2 n}$ be the standard basis of $\mathbb{R}^{2 n}$, define a special element ε of $\mathbb{C l}_{2 n}$ by

$$
\varepsilon=e_{2 n} \ldots e_{2} e_{1}
$$

Note that $\varepsilon^{2}=(-1)^{n}$, so we can decompose S as follows

$$
S=S^{+} \oplus S^{-}
$$

where $S^{ \pm}$are the eigenspaces of $\Gamma(\varepsilon)$ by

$$
S^{ \pm}=\left\{\phi \in S ; \Gamma(\varepsilon) \phi= \pm \mathrm{i}^{n} \phi\right\}
$$

The space S^{+}is called positive spinor space and the space S^{-}is called negative spinor space. The map $\Gamma(v)$ interchanges these subspaces that is, $\Gamma(v) S^{+} \subset S^{-}$ and $\Gamma(v) S^{-} \subset S^{+}$for each $v \in \mathbb{R}^{2 n}$. The restrictions of $\Gamma(v)$ to S^{+}for $v \in \mathbb{R}^{2 n}$ determine a linear map $\gamma: \mathbb{R}^{2 n} \rightarrow \operatorname{Hom}\left(S^{+}, S^{-}\right)$which satisfies

$$
\gamma(v)^{*} \gamma(v)=|v|^{2} 1
$$

for every $v \in \mathbb{R}^{2 n}$. On the other hand the map $\Gamma: \mathbb{R}^{2 n} \rightarrow \operatorname{End}(S)$ can be recovered from γ via $S=S^{+} \oplus S^{-}$and

$$
\Gamma(v)=\left(\begin{array}{cc}
0 & \gamma(v) \\
-\gamma(v)^{*} & 0
\end{array}\right)
$$

If (S, Γ) is a spin ${ }^{c}$ structure on $\mathbb{R}^{2 n}$, we can define an action of the space of twoforms $\Lambda^{2}\left(\mathbb{R}^{2 n}\right)$ on S as follows
First let us identify $\Lambda^{2}\left(\mathbb{R}^{2 n}\right)$ with the spaces of second order elements of Clifford algebra $C_{2}\left(\mathbb{R}^{2 n}\right)$ via the map

$$
\Lambda^{2}\left(\mathbb{R}^{2 n}\right) \rightarrow C_{2}\left(\mathbb{R}^{2 n}\right), \quad \eta=\sum_{i<j} \eta_{i j} e_{i}^{*} \wedge e_{j}^{*} \mapsto \sum_{i<j} \eta_{i j} e_{i} e_{j}
$$

Then we compose this map with Γ to obtain a map $\rho: \Lambda^{2}\left(\mathbb{R}^{2 n}\right) \rightarrow \operatorname{End}(S)$

$$
\rho\left(\sum_{i<j} \eta_{i j} e_{i}^{*} \wedge e_{j}^{*}\right)=\sum_{i<j} \eta_{i j} \Gamma\left(e_{i}\right) \Gamma\left(e_{j}\right)
$$

The map $\rho(\eta)$ respects the decomposition $S^{+} \oplus S^{-}$for each $\eta \in \Lambda^{2}\left(\mathbb{R}^{2 n}\right)$ so we can define new maps by restriction

$$
\rho^{ \pm}(\eta)=\left.\rho(\eta)\right|_{S^{ \pm}}
$$

The map ρ extends to a map

$$
\rho: \Lambda^{2}\left(\mathbb{R}^{2 n}\right) \otimes \mathbb{C} \rightarrow \operatorname{End}(S)
$$

on the space of complex valued two-forms.

By using an \mathbb{R}-valued one-form $A \in \Omega^{1}\left(\mathbb{R}^{2 n}, \mathbb{R}\right)$ and the Levi-Civita connection ∇ on $\mathbb{R}^{2 n}$ we can obtain a connection ∇^{A} on S which is called spinor covariant derivative operator that satisfies the relation

$$
\nabla_{V}^{A}(\Gamma(W) \Psi)=\Gamma(W) \nabla_{V}^{A} \Psi+\Gamma\left(\nabla_{V} W\right) \Psi
$$

in which Ψ is spinor, (a section of S) and V, W are vector fields on $\mathbb{R}^{2 n}$. The spinor covariant derivative ∇^{A} respects the decomposition $S=S^{+} \oplus S^{-}$. At this point we can define Dirac operator $D_{A}: C^{\infty}\left(\mathbb{R}^{2 n}, S^{+}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{2 n}, S^{-}\right)$by the formula

$$
D_{A}(\Psi)=\sum_{i=1}^{2 n} \Gamma\left(e_{i}\right) \nabla_{e_{i}}^{A}(\Psi) .
$$

3. Seiberg-Witten Equations on \mathbb{R}^{4}

The Seiberg-Witten equations constitute of two equations. The first equation is the harmonicity of the spinor with respect to the Dirac operator, that is

$$
\begin{equation*}
D_{A}(\Psi)=0 . \tag{1}
\end{equation*}
$$

The second equation couples the self-dual part of the curvature two-form F_{A}^{+}of the connection one-form A with the traceless endomorphism $\left(\Psi \Psi^{*}\right)_{0}$ associated to the spinor field Ψ. And it is expressed as

$$
\begin{equation*}
\rho^{+}\left(F_{A}^{+}\right)=\left(\Psi \Psi^{*}\right)_{0} . \tag{2}
\end{equation*}
$$

Let us write these equations on \mathbb{R}^{4}. The following form of these equations can be found in many books and papers $[8,10]$. The spin^{c} connection $\nabla=\nabla^{A}$ on \mathbb{R}^{4} is given by

$$
\nabla_{j} \Psi=\frac{\partial \Psi}{\partial x_{j}}+A_{j} \Psi
$$

where $A_{j}: \mathbb{R}^{4} \longrightarrow \mathbb{R}$ and $\Psi: \mathbb{R}^{4} \longrightarrow \mathbb{C}^{2}$. Then the associated connection on the line bundle $L_{\Gamma}=\mathbb{R}^{4} \times \mathbb{C}$ is the connection one-form

$$
A=\sum_{i=1}^{4} A_{i} \mathrm{~d} x_{i} \in \Omega^{1}\left(\mathbb{R}^{4}, i \mathbb{R}\right)
$$

and its curvature two-form is given by

$$
F_{A}=\mathrm{d} A=\sum_{i<j} F_{i j} \mathrm{~d} x_{i} \wedge \mathrm{~d} x_{j} \in \Omega^{2}\left(\mathbb{R}^{4}, \mathfrak{i}\right)
$$

where $F_{i j}=\frac{\partial A_{j}}{\partial x_{i}}-\frac{\partial A_{i}}{\partial x_{j}}$ for $i, j=1, \ldots, 4$.

Let $\Gamma: \mathbb{R}^{4} \longrightarrow \operatorname{End}\left(\mathbb{C}^{4}\right)$ be the classical spin ${ }^{c}$ structure which is given by the map

$$
\Gamma(w)=\left[\begin{array}{cc}
0 & \gamma(w) \\
-\gamma(w)^{*} & 0
\end{array}\right]
$$

where $\gamma: \mathbb{R}^{4} \longrightarrow \operatorname{End}\left(\mathbb{C}^{2}\right)$ is defined on the generators $e_{1}, e_{2}, e_{3}, e_{4}$ by the following rule

$$
\gamma\left(e_{1}\right)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \gamma\left(e_{2}\right)=\left[\begin{array}{rr}
\mathrm{i} & 0 \\
0 & -\mathrm{i}
\end{array}\right], \quad \gamma\left(e_{3}\right)=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right], \quad \gamma\left(e_{4}\right)=\left[\begin{array}{ll}
0 & \mathrm{i} \\
\mathrm{i} & 0
\end{array}\right] .
$$

Note that in the definition of γ, the 2×2 identity matrix and i multiplies the wellknown Pauli matrices $\sigma_{1}=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right], \sigma_{2}=\left[\begin{array}{rr}0 & \mathrm{i} \\ -\mathrm{i} & 0\end{array}\right]$ and $\sigma_{3}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. The classical spin c-structure has been used, in many works (see for instance [8-10]).
Note that $\Gamma\left(e_{4} e_{3} e_{2} e_{1}\right)=\left[\begin{array}{rrrr}-1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ and the eigenspaces of $\Gamma\left(e_{4} e_{3} e_{2} e_{1}\right)$ are

$$
\begin{aligned}
S^{+} & =\left\{\left(\psi_{1}, \psi_{2}, 0,0\right) ; \psi_{1}, \psi_{2} \in \mathbb{C}\right\} \\
S^{-} & =\left\{\left(0,0, \psi_{3}, \psi_{4}\right) ; \psi_{3}, \psi_{4} \in \mathbb{C}\right\}
\end{aligned}
$$

The corresponding vector bundles which are called half spinor bundles on the manifold \mathbb{R}^{4} are $\mathbb{S}^{+}=\mathbb{R}^{4} \times S^{+}$and $\mathbb{S}^{-}=\mathbb{R}^{4} \times S^{-}$. The sections of these bundles are called spinor fields on \mathbb{R}^{4} and we will denote them by

$$
\begin{aligned}
& \Gamma\left(\mathbb{S}^{+}\right)=\left\{\left(\psi_{1}, \psi_{2}, 0,0\right) ; \psi_{1}, \psi_{2} \in C^{\infty}\left(\mathbb{R}^{4}, \mathbb{C}\right)\right\} \\
& \Gamma\left(\mathbb{S}^{-}\right)=\left\{\left(0,0, \psi_{3}, \psi_{4}\right) ; \psi_{3}, \psi_{4} \in C^{\infty}\left(\mathbb{R}^{4}, \mathbb{C}\right)\right\}
\end{aligned}
$$

According to the above data Seiberg-Witten equations on \mathbb{R}^{4}, i.e., equations (1) and (2), are as follows (see $[9,10]$)
The first of these equations, $D_{A} \Psi=0$, can be expressed as

$$
-\nabla_{1} \Psi+\mathrm{i} \sigma_{1} \nabla_{2} \Psi+\mathrm{i} \sigma_{2} \nabla_{3} \Psi+\mathrm{i} \sigma_{3} \nabla_{4} \Psi=0
$$

or more explicitly

$$
\begin{align*}
& \frac{\partial \psi_{1}}{\partial x_{1}}+A_{1} \psi_{1}=\mathrm{i}\left(\frac{\partial \psi_{1}}{\partial x_{2}}+A_{2} \psi_{1}\right)+\left(\frac{\partial \psi_{2}}{\partial x_{3}}+A_{3} \psi_{2}\right)+\mathrm{i}\left(\frac{\partial \psi_{2}}{\partial x_{4}}+A_{4} \psi_{2}\right) \tag{3}\\
& \frac{\partial \psi_{2}}{\partial x_{1}}+A_{1} \psi_{2}=-\mathrm{i}\left(\frac{\partial \psi_{2}}{\partial x_{2}}+A_{2} \psi_{2}\right)-\left(\frac{\partial \psi_{1}}{\partial x_{3}}+A_{3} \psi_{1}\right)+\mathrm{i}\left(\frac{\partial \psi_{1}}{\partial x_{4}}+A_{4} \psi_{1}\right)
\end{align*}
$$

where $\Psi=\left(\psi_{1}, \psi_{2}, 0,0\right)$. The second one is

$$
\rho^{+}\left(F_{A}^{+}\right)=\left(\Psi \Psi^{*}\right)_{0}
$$

which can be expressed explicitly as

$$
\begin{align*}
& F_{12}+F_{34}=-\frac{i}{2}\left(\psi_{1} \bar{\psi}_{1}-\psi_{2} \bar{\psi}_{2}\right) \\
& F_{13}-F_{24}=\frac{1}{2}\left(\psi_{1} \bar{\psi}_{2}-\psi_{2} \bar{\psi}_{1}\right) \tag{4}\\
& F_{14}+F_{23}=-\frac{i}{2}\left(\psi_{1} \bar{\psi}_{2}+\psi_{2} \bar{\psi}_{1}\right)
\end{align*}
$$

where $F_{A}=\mathrm{d} A$.

4. Seiberg-Witten Equations on \mathbb{R}^{6}

The first one in Seiberg-Witten equations can be written on any $2 n$ - dimensional spin^{c} manifold. But the second one is meaningful in four-dimensional cases. Because the self duality of a two-form in Hodge sense is meaningful in fourdimension. On the other hand there are some various generalizations of self-duality concept of a two-form to higher dimensions (see [3, 4]).

4.1. The First Equation: Dirac Equation

The main objective of the present work is to write down Seiberg-Witten like equations on \mathbb{R}^{6}. In order to achieve this we consider the following spin ${ }^{c}$-structure Γ on \mathbb{R}^{6} which is coming from the representation of the complex Clifford algebra $\mathbb{C l}_{6}$. Let $\Gamma: \mathbb{R}^{6} \longrightarrow \operatorname{End}\left(\mathbb{C}^{8}\right)$ be the spin ${ }^{c}$ structure which is given by

$$
\Gamma(w)=\left[\begin{array}{cc}
0 & \gamma(w) \\
-\gamma(w)^{*} & 0
\end{array}\right]
$$

where $\gamma: \mathbb{R}^{6} \longrightarrow \operatorname{End}\left(\mathbb{C}^{4}\right)$ is defined on generators $e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}$ as follow

$$
\begin{aligned}
& \gamma\left(e_{1}\right)=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad \gamma\left(e_{2}\right)=\left[\begin{array}{rrrr}
\mathrm{i} & 0 & 0 & 0 \\
0 & -\mathrm{i} & 0 & 0 \\
0 & 0 & \mathrm{i} & 0 \\
0 & 0 & 0 & -\mathrm{i}
\end{array}\right], \quad \gamma\left(e_{3}\right)=\left[\begin{array}{llll}
0 & \mathrm{i} & 0 & 0 \\
\mathrm{i} & 0 & 0 & 0 \\
0 & 0 & 0 & \mathrm{i} \\
0 & 0 & \mathrm{i} & 0
\end{array}\right] \\
& \gamma\left(e_{4}\right)=\left[\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right], \gamma\left(e_{5}\right)=\left[\begin{array}{rrrr}
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right], \gamma\left(e_{6}\right)=\left[\begin{array}{rrrr}
0 & 0 & 0 & \mathrm{i} \\
0 & 0 & -\mathrm{i} & 0 \\
0 & -\mathrm{i} & 0 & 0 \\
\mathrm{i} & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

Then the special element $\varepsilon=e_{6} \ldots e_{2} e_{1}$ in $\mathbb{C l}_{6}$ satisfies $\varepsilon^{2}=-1$ and its image under Γ is

$$
\Gamma(\varepsilon)=\left[\begin{array}{rrrrrrrr}
-\mathrm{i} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\mathrm{i} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -\mathrm{i} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\mathrm{i} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \mathrm{i} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \mathrm{i} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \mathrm{i} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \mathrm{i}
\end{array}\right]
$$

The decomposition $S=\mathbb{C}^{8}=S^{+} \oplus S^{-}$with respect to $\Gamma(\varepsilon)$ is given by

$$
S^{+}=\left\{\left(\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}, 0,0,0,0\right) ; \psi_{1}, \psi_{2}, \psi_{3}, \psi_{4} \in \mathbb{C}\right\}
$$

and

$$
S^{-}=\left\{\left(0,0,0,0, \psi_{5}, \psi_{6}, \psi_{7}, \psi_{8}\right) ; \psi_{5}, \psi_{6}, \psi_{7}, \psi_{8} \in \mathbb{C}\right\}
$$

These spaces give the following vector bundles on the manifold \mathbb{R}^{6}

$$
\mathbb{S}^{+}=\mathbb{R}^{6} \times S^{+} \quad \text { and } \quad \mathbb{S}^{-}=\mathbb{R}^{6} \times S^{-}
$$

The sections of these bundles can be interpreted as follows

$$
\Gamma\left(\mathbb{S}^{+}\right)=\left\{\left(\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}, 0,0,0,0\right) \mid \psi_{1}, \psi_{2}, \psi_{3}, \psi_{4} \in C^{\infty}\left(\mathbb{R}^{6}, \mathbb{C}\right)\right\}
$$

and

$$
\Gamma\left(\mathbb{S}^{-}\right)=\left\{\left(0,0,0,0, \psi_{5}, \psi_{6}, \psi_{7}, \psi_{8}\right) \mid \psi_{5}, \psi_{6}, \psi_{7}, \psi_{8} \in C^{\infty}\left(\mathbb{R}^{6}, \mathbb{C}\right)\right\}
$$

The spin ${ }^{c}$ connection ∇^{A} on \mathbb{R}^{6} is given by

$$
\nabla_{j}^{A} \Psi=\frac{\partial \Psi}{\partial x_{j}}+A_{j} \Psi
$$

where $A_{j}: \mathbb{R}^{6} \longrightarrow i \mathbb{R}$ and $\Psi: \mathbb{R}^{6} \longrightarrow \mathbb{C}^{4}$ are smooth maps. Then the associated connection on the line bundle $L_{\Gamma}=\mathbb{R}^{6} \times \mathbb{C}$ is the connection one-form

$$
A=\sum_{i=1}^{4} A_{i} \mathrm{~d} x_{i} \in \Omega^{1}\left(\mathbb{R}^{6}, \mathrm{i} \mathbb{R}\right)
$$

and its curvature two-form is given by

$$
F_{A}=\mathrm{d} A=\sum_{i<j} F_{i j} \mathrm{~d} x_{i} \wedge \mathrm{~d} x_{j} \in \Omega^{2}\left(\mathbb{R}^{6}, \mathrm{i}\right)
$$

where $F_{i j}=\frac{\partial A_{j}}{\partial x_{i}}-\frac{\partial A_{i}}{\partial x_{j}}$ for $i, j=1, \ldots, 6$. Now we can write the Dirac operator $D_{A}: \Gamma\left(\mathbb{S}^{+}\right) \rightarrow \Gamma\left(\mathbb{S}^{-}\right)$on \mathbb{R}^{6} with respect to given spin ${ }^{c}$-structure Γ and spin^{c} connection ∇^{A} as follows

$$
D_{A} \Psi=\sum_{i=1}^{6} e_{i} \cdot \nabla_{e_{i}}^{A} \Psi=\sum_{i=1}^{6} \Gamma\left(e_{i}\right)\left(\nabla_{e_{i}}^{A} \Psi\right)=\sum_{i=1}^{6} \Gamma\left(e_{i}\right)\left(\begin{array}{c}
\frac{\partial \psi_{1}}{\partial x_{i}}+A_{i} \psi_{1} \\
\frac{\partial \psi_{2}}{\partial x_{i}}+A_{i} \psi_{2} \\
\vdots \\
\frac{\partial \psi_{4}}{\partial x_{i}}+A_{i} \psi_{4}
\end{array}\right)
$$

Introducing the notation $\nabla_{i}=\partial_{i}+A_{i}, i=1, \ldots, 6$ the equation $D_{A} \Psi=0$ can be expressed as

$$
\begin{aligned}
& \nabla_{1} \psi_{1}=\mathrm{i} \nabla_{2} \psi_{1}+\mathrm{i} \nabla_{3} \psi_{2}+\nabla_{4} \psi_{2}+\nabla_{5} \psi_{4}+\mathrm{i} \nabla_{6} \psi_{4} \\
& \nabla_{1} \psi_{2}=\mathrm{i} \nabla_{3} \psi_{1}-\mathrm{i} \nabla_{2} \psi_{2}-\nabla_{4} \psi_{1}-\nabla_{5} \psi_{3}-\mathrm{i} \nabla_{6} \psi_{3} \\
& \nabla_{1} \psi_{3}=\mathrm{i} \nabla_{2} \psi_{3}+\mathrm{i} \nabla_{3} \psi_{4}-\nabla_{4} \psi_{4}+\nabla_{5} \psi_{2}-\mathrm{i} \nabla_{6} \psi_{2} \\
& \nabla_{1} \psi_{4}=\mathrm{i} \nabla_{3} \psi_{3}-\mathrm{i} \nabla_{2} \psi_{4}+\nabla_{4} \psi_{3}-\nabla_{5} \psi_{1}+\mathrm{i} \nabla_{6} \psi_{1}
\end{aligned}
$$

4.2. The Second Equation: Curvature Equation

Now we want to define the second Seiberg-Witten equation on \mathbb{R}^{6}. To achieve this we need a kind of self-duality notion for two-forms on \mathbb{R}^{6}. Let us consider the following decompositions of two-forms on \mathbb{R}^{6}. We denote by $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\}$ the standard basis of \mathbb{R}^{6} and by $\left\{\mathrm{d} x_{1}, \mathrm{~d} x_{2}, \mathrm{~d} x_{3}, \mathrm{~d} x_{4}, \mathrm{~d} x_{5}, \mathrm{~d} x_{6}\right\}$ the dual one. Fix the standard symplectic form

$$
\omega_{0}=\mathrm{d} x_{1} \wedge \mathrm{~d} x_{2}+\mathrm{d} x_{3} \wedge \mathrm{~d} x_{4}+\mathrm{d} x_{5} \wedge \mathrm{~d} x_{6}
$$

and the standard complex volume form

$$
\varphi_{0}=\left(\mathrm{d} x_{1}+\mathrm{id} x_{2}\right) \wedge\left(\mathrm{d} x_{3}+\mathrm{id} x_{4}\right) \wedge\left(\mathrm{d} x_{5}+\mathrm{id} x_{6}\right)
$$

the complex structure J_{0} give by

$$
J_{0}\left(e_{1}\right)=e_{2}, \quad J_{0}\left(e_{3}\right)=e_{4}, \quad J_{0}\left(e_{5}\right)=e_{6}
$$

on \mathbb{R}^{6}. The space of two-forms $\Lambda^{2}\left(\mathbb{R}^{6}\right)$ decomposes as follows

$$
\Lambda^{2}\left(\mathbb{R}^{6}\right)=\Lambda_{1}^{2}\left(\mathbb{R}^{6}\right) \oplus \Lambda_{6}^{2}\left(\mathbb{R}^{6}\right) \oplus \Lambda_{8}^{2}\left(\mathbb{R}^{6}\right)
$$

where

$$
\begin{aligned}
& \Lambda_{1}^{2}\left(\mathbb{R}^{6}\right)=\left\{r \omega_{0} ; r \in \mathbb{R}\right\}, \quad \Lambda_{6}^{2}\left(\mathbb{R}^{6}\right)=\left\{F \in \Lambda^{2}\left(\mathbb{R}^{6} ; J_{0}(F)=-F\right\}\right. \\
& \Lambda_{8}^{2}\left(\mathbb{R}^{6}\right)=\left\{F \in \Lambda^{2}\left(\mathbb{R}^{6}\right) ; J_{0}(F)=F \text { and } F \wedge \omega_{0} \wedge \omega_{0}=0\right\}
\end{aligned}
$$

For more details see [1]. Then any two-form $F=\sum_{i<j} F_{i j} \mathrm{~d} x_{i} \wedge \mathrm{~d} x_{j} \in \Lambda^{2}\left(\mathbb{R}^{6}\right)$ can be decomposed into three parts, we call the one belonging to $\Lambda_{8}^{2}\left(\mathbb{R}^{6}\right)$ is the
self-dual part of F and we denote it by F^{+}. Such a self-duality definition of twoforms in six-dimension is consistent with the widely accepted self-duality notion given in [4]. In their work Corrigan et al. consider the eight-dimensional subspace of $\Lambda^{2}\left(\mathbb{R}^{6}\right)$, given by the following set of equations, as the space of self-dual twoforms on \mathbb{R}^{6}

$$
\begin{aligned}
F_{12}+F_{14}+F_{15} & =0, \quad F_{13}-F_{24}=0, \quad F_{14}+F_{23}=0 \\
F_{15}-F_{26} & =0, \quad F_{16}+F_{25} 7=0, \quad F_{35}-F_{46}=0, \quad F_{36}+F_{45}=0 .
\end{aligned}
$$

This eight-dimensional subspace exactly corresponds to $\Lambda_{8}^{2}\left(\mathbb{R}^{6}\right)$, because following linearly independent set of vectors belong to both of them

$$
\begin{array}{ll}
f_{1}=e_{1} \wedge e_{3}+e_{2} \wedge e_{4}, & f_{5}=e_{3} \wedge e_{5}+e_{4} \wedge e_{6} \\
f_{2}=e_{1} \wedge e_{4}-e_{2} \wedge e_{3}, & f_{6}=e_{3} \wedge e_{6}-e_{4} \wedge e_{5} \\
f_{3}=e_{1} \wedge e_{5}+e_{2} \wedge e_{6}, & f_{7}=e_{1} \wedge e_{2}-e_{3} \wedge e_{4} \\
f_{4}=e_{1} \wedge e_{6}-e_{2} \wedge e_{5}, & f_{8}=e_{3} \wedge e_{4}-e_{5} \wedge e_{6}
\end{array}
$$

Now let us consider the complexified space $\Lambda_{8}^{2}\left(\mathbb{R}^{6}\right) \otimes \mathbb{C}$ and F_{A} be the curvature form of the imaginary valued connection one-form A and F_{A}^{+}be the self-dual part of F_{A}. Then

$$
\begin{aligned}
F_{A}^{+}=\frac{1}{2} \sum_{i=1}^{8}<F_{A}, f_{i}>f_{i}= & \frac{1}{2}\left[\left(F_{13}+F_{24}\right) f_{1}+\left(F_{14}-F_{23}\right) f_{2}+\left(F_{15}+F_{26}\right) f_{3}\right. \\
& +\left(F_{16}-F_{25}\right) f_{4}+\left(F_{35}+F_{46}\right) f_{5}+\left(F_{36}-F_{45}\right) f_{6} \\
& \left.+\left(F_{12}-F_{34}\right) f_{7}+\left(F_{34}-F_{56}\right) f_{8}\right]
\end{aligned}
$$

The image of F_{A}^{+}under ρ^{+}is

$$
\begin{aligned}
\rho^{+}\left(F_{A}^{+}\right)= & \frac{1}{2}\left[\left(F_{13}+F_{24}\right) \rho^{+}\left(f_{1}\right)+\left(F_{14}-F_{23}\right) \rho^{+}\left(f_{2}\right)+\left(F_{15}+F_{26}\right) \rho^{+}\left(f_{3}\right)\right. \\
& +\left(F_{16}-F_{25}\right) \rho^{+}\left(f_{4}\right)+\left(F_{35}+F_{46}\right) \rho^{+}\left(f_{5}\right)+\left(F_{36}-F_{45} \rho^{+}\left(f_{6}\right)\right. \\
& \left.+\left(F_{12}-F_{34}\right) \rho^{+}\left(f_{7}\right)+\left(F_{34}-F_{56}\right) \rho^{+}\left(f_{8}\right)\right]
\end{aligned}
$$

where

$$
\rho^{+}\left(f_{1}\right)=\left(\begin{array}{rrrr}
0 & 2 \mathrm{i} & 0 & 0 \\
2 \mathrm{i} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad \rho^{+}\left(f_{2}\right)=\left(\begin{array}{rrrr}
0 & 2 & 0 & 0 \\
-2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\begin{array}{ll}
\rho^{+}\left(f_{3}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & -2 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), & \rho^{+}\left(f_{4}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & -2 \mathrm{i} & 0 \\
0 & -2 \mathrm{i} & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
\rho^{+}\left(f_{5}\right)=\left(\begin{array}{cccc}
0 & 0 & -2 \mathrm{i} & 0 \\
0 & 0 & 0 & 0 \\
-2 \mathrm{i} & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), & \rho^{+}\left(f_{6}\right)=\left(\begin{array}{cccc}
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 \\
-2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
\rho^{+}\left(f_{7}\right)=\left(\begin{array}{cccc}
2 \mathrm{i} & 0 & 0 & 0 \\
0-2 \mathrm{i} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), & \rho^{+}\left(f_{8}\right)=\left(\begin{array}{cccc}
-2 \mathrm{i} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 2 \mathrm{i} & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
\end{array}
$$

Then the second equation on \mathbb{R}^{6} is

$$
\begin{equation*}
\rho^{+}\left(F_{A}^{+}\right)=\left(\Psi \Psi^{*}\right)_{0} . \tag{5}
\end{equation*}
$$

The last equation is rather different from the second Seiberg-Witten equation on \mathbb{R}^{4} and we state it as a theorem:

Theorem 1. If the pair (A, Ψ) is a solution to (5) then $\Psi=0$.

Proof: The left hand side of (5) is

$$
\left(\begin{array}{cccc}
\mathrm{i}\left(F_{12}-F_{34}\right)-\mathrm{i}\left(F_{34}-F_{56}\right) & \mathrm{i}\left(F_{13}+F_{24}\right)+\left(F_{14}-F_{23}\right) & -\mathrm{i}\left(F_{35}+F_{46}\right)+\left(F_{36}-F_{45}\right) & 0 \\
\mathrm{i}\left(F_{13}+F_{24}\right)-\left(F_{14}-F_{23}\right) & -\mathrm{i}\left(F_{12}-F_{34}\right) & -\left(F_{15}+F_{26}\right)-\mathrm{i}\left(F_{16}-F_{25}\right) & 0 \\
-\mathrm{i}\left(F_{35}+F_{46}\right)-\left(F_{36}-F_{45}\right) & \left(F_{15}+F_{26}\right)-\mathrm{i}\left(F_{16}-F_{25}\right) & \mathrm{i}\left(F_{34}-F_{56}\right) & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

and the endomorphism $\Psi \Psi^{*}$ of \mathbb{C}^{4} is given by

$$
\Psi \Psi^{*}=\left(\begin{array}{c}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right)\left(\begin{array}{llllll}
\bar{\psi}_{1} & \bar{\psi}_{2} & \bar{\psi}_{3} & \bar{\psi}_{4}
\end{array}\right)=\left(\begin{array}{cccc}
\psi_{1} \bar{\psi}_{1} & \psi_{1} \bar{\psi}_{2} & \psi_{1} \bar{\psi}_{3} & \psi_{1} \bar{\psi}_{4} \\
\psi_{2} \bar{\psi}_{1} & \psi_{2} \bar{\psi}_{2} & \psi_{2} \bar{\psi}_{3} & \psi_{2} \bar{\psi}_{4} \\
\psi_{3} \bar{\psi}_{1} & \psi_{3} \bar{\psi}_{2} & \psi_{3} \bar{\psi}_{3} & \psi_{3} \bar{\psi}_{4} \\
\psi_{4} \bar{\psi}_{1} & \psi_{4} \bar{\psi}_{2} & \psi_{4} \bar{\psi}_{3} & \psi_{4} \bar{\psi}_{4}
\end{array}\right)
$$

The trace free part of $\Psi \Psi^{*}$ is

$$
\begin{aligned}
\left(\Psi \Psi^{*}\right)_{0} & =\left(\begin{array}{llll}
\psi_{1} \bar{\psi}_{1} & \psi_{1} \bar{\psi}_{2} & \psi_{1} \bar{\psi}_{3} & \psi_{1} \bar{\psi}_{4} \\
\psi_{2} \bar{\psi}_{1} & \psi_{2} \bar{\psi}_{2} & \psi_{2} \bar{\psi}_{3} & \psi_{2} \bar{\psi}_{4} \\
\psi_{3} \bar{\psi}_{1} & \psi_{3} \bar{\psi}_{2} & \psi_{3} \bar{\psi}_{3} & \psi_{3} \bar{\psi}_{4} \\
\psi_{4} \bar{\psi}_{1} & \psi_{4} \bar{\psi}_{2} & \psi_{4} \bar{\psi}_{3} & \psi_{4} \bar{\psi}_{4}
\end{array}\right)-\frac{1}{4}|\psi|^{2}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\psi_{1} \bar{\psi}_{1}-\frac{1}{4}|\psi|^{2} & \psi_{1} \bar{\psi}_{2} & \psi_{1} \bar{\psi}_{3} & \psi_{1} \bar{\psi}_{4} \\
\psi_{2} \bar{\psi}_{1} & \psi_{2} \bar{\psi}_{2}-\frac{1}{4}|\psi|^{2} & \psi_{2} \bar{\psi}_{3} & \psi_{2} \bar{\psi}_{4} \\
\psi_{3} \bar{\psi}_{1} & \psi_{3} \bar{\psi}_{2} & \psi_{3} \bar{\psi}_{3}-\frac{1}{4}|\psi|^{2} & \psi_{3} \bar{\psi}_{4} \\
\psi_{4} \psi_{1} & \psi_{4} \bar{\psi}_{2} & \psi_{4} \psi_{3} & \psi_{4} \bar{\psi}_{4}-\frac{1}{4}|\psi|^{2}
\end{array}\right) .
\end{aligned}
$$

Then the equation (5) turns to the following set of equations

$$
\begin{aligned}
& \left(F_{12}-F_{34}\right)=\mathrm{i}\left(\frac{3}{4}\left|\psi_{2}\right|^{2}-\left|\psi_{1}\right|^{2}-\left|\psi_{3}\right|^{2}-\left|\psi_{4}\right|^{2}\right) \\
& \left(F_{34}-F_{56}\right)=-\mathrm{i}\left(\frac{3}{4}\left|\psi_{3}\right|^{2}-\left|\psi_{1}\right|^{2}-\left|\psi_{2}\right|^{2}-\left|\psi_{4}\right|^{2}\right) \\
& \left(F_{13}+F_{24}\right)=-\frac{i}{2}\left(\psi_{1} \bar{\psi}_{2}+\psi_{2} \bar{\psi}_{1}\right) \\
& \left(F_{14}-F_{23}\right)=\frac{1}{2}\left(\psi_{1} \bar{\psi}_{2}-\psi_{2} \bar{\psi}_{1}\right) \\
& \left(F_{35}+F_{46}\right)=\frac{i}{2}\left(\psi_{1} \bar{\psi}_{3}+\psi_{3} \bar{\psi}_{1}\right) \\
& \left(F_{36}-F_{45}\right)=\frac{1}{2}\left(\psi_{1} \bar{\psi}_{3}-\psi_{3} \bar{\psi}_{1}\right) \\
& \left(F_{16}-F_{25}\right)=\frac{i}{2}\left(\psi_{2} \bar{\psi}_{3}+\psi_{3} \bar{\psi}_{2}\right) \\
& \left(F_{15}+F_{26}\right)=\frac{1}{2}\left(-\psi_{2} \bar{\psi}_{3}+\psi_{3} \bar{\psi}_{2}\right) \\
& \frac{3}{4}\left|\psi_{4}\right|^{2}-\left|\psi_{1}\right|^{2}-\left|\psi_{2}\right|^{2}-\left|\psi_{3}\right|^{2}=0 \\
& \psi_{4}=0
\end{aligned}
$$

From these equations it is clear that $\Psi \equiv 0$.
Due to the above theorem the equation (5) needs some modification. To do this we follow the method given in [2]. Firstly we consider the space of self-dual complex valued two-forms $\Lambda_{8}^{2}\left(\mathbb{R}^{6}\right) \otimes \mathbb{C}$. The image of this space under the map ρ^{+}is a subspace of $\operatorname{End}\left(S^{+}\right)$and denote it by W i.e.,

$$
W=\rho^{+}\left(\Lambda_{8}^{2}\left(\mathbb{R}^{6}\right) \otimes \mathbb{C}\right)
$$

The set of endomorphisms $\left\{\rho^{+}\left(f_{1}\right), \rho^{+}\left(f_{2}\right), \ldots, \rho^{+}\left(f_{8}\right)\right\}$ is a basis for the subspace W. Project the endomorphism $\Psi \Psi^{*}$ onto the subspace W and denote it by $\left(\Psi \Psi^{*}\right)^{+}$. Then we can explain the second equation

$$
\rho^{+}\left(F_{A}^{+}\right)=\left(\Psi \Psi^{*}\right)^{+}
$$

Let us obtain the explicit form of last equation. The projection of the endomorphism $\Psi \Psi^{*}$ onto the subspace W is given by

$$
\left(\Psi \Psi^{*}\right)^{+}=\sum_{i=1}^{8}<\rho^{+}\left(f_{i}\right), \Psi \Psi^{*}>\frac{\rho^{+}\left(f_{i}\right)}{\left|\rho^{+}\left(f_{i}\right)\right|^{2}}
$$

Then the equation $\rho^{+}\left(F_{A}^{+}\right)=\left(\Psi \Psi^{*}\right)^{+}$turns to the following set of equations

$$
\begin{aligned}
& F_{12}-F_{34}=\frac{i}{2}\left(\psi_{1} \bar{\psi}_{1}-\psi_{2} \bar{\psi}_{2}\right) \\
& F_{34}-F_{56}=-\frac{i}{2}\left(\psi_{1} \bar{\psi}_{1}-\psi_{3} \bar{\psi}_{3}\right) \\
& F_{13}+F_{24}=-\frac{i}{2}\left(\psi_{2} \bar{\psi}_{1}+\psi_{1} \bar{\psi}_{2}\right) \\
& F_{14}-F_{23}=\frac{1}{2}\left(\psi_{1} \bar{\psi}_{2}-\psi_{2} \bar{\psi}_{1}\right) \\
& F_{35}+F_{46}=-\frac{i}{2}\left(\psi_{3} \bar{\psi}_{1}+\psi_{1} \bar{\psi}_{3}\right) \\
& F_{36}-F_{45}=\frac{1}{2}\left(\psi_{1} \psi_{3}-\psi_{3} \bar{\psi}_{1}\right) \\
& F_{16}-F_{25}=-\frac{i}{2}\left(\psi_{3} \bar{\psi}_{2}+\psi_{2} \bar{\psi}_{3}\right) \\
& F_{15}+F_{26}=\frac{1}{2}\left(\psi_{3} \bar{\psi}_{2}-\psi_{2} \bar{\psi}_{3}\right)
\end{aligned}
$$

and they are very similar to the set of equations in (4).
Remark 1. We have written down Seiberg-Witten like equations on \mathbb{R}^{6} and we observed that these equations are similar to the Seiberg-Witten equations on \mathbb{R}^{4}. For the expression of the first equation on \mathbb{R}^{6} we used the spin ${ }^{c}$-structure on \mathbb{R}^{6} and for the second equation we used the decomposition of the space of two-forms $\Lambda^{2}\left(\mathbb{R}^{6}\right)$. Such equations can be also defined on six-dimensional manifolds with $\mathrm{SU}(3)$ structure and it is a subject of a subsequence work [6].

References

[1] Bedulli L. and Vezzoni L., The Ricci Tensor of $S U(3)$ Manifolds, J. of Geom. and Phys. 57 (2007) 1125-1146.
[2] Bilge A., Dereli T and Koçak S., Monopole Equations on 8 -manifolds with $\operatorname{Spin}(7)$ Holonomy, Comm. Math. Phys. 203 (1999) 21-30.
[3] Bilge A., Dereli T. and Koçak S., The Geometry of Self-dual 2-forms, J. Math. Phys. 38 (1997) 4804-4814.
[4] Corrigan E., Devchand C., Fairlie D. and Nuyts J., First-order Equations for Gauge Fields in Spaces of Dimension Greater Than Four, Nucl. Phys. B214 (1983) 452-464.
[5] Değirmenci N. and Özdemir N., Seiberg-Witten Like Equations on 7-Manifolds with $G_{2^{-}}$Structures, J. Nonlinear Math. Phys. 12 (2005) 457-461.
[6] Deǧirmenci N. and Karapazar Ş., Seiberg-Witten Equations on 6-Manifolds with $S U(3)$-Structure, Preprint.
[7] Gao Y.-H. and Tian G., Instantons and the Monopole-like Equations in Eight Dimensions, J. High Energy Phys. 5 (2000) 036.
[8] Jost J., Riemannian Geometry and Geometric Analysis, Springer, Berlin, 2005.
[9] Naber G., Topology, Geometry and Physics: Background for the Witten Conjecture II, JGSP 3 (2005) 1-83.
[10] Salamon D., Spin Geometry and Seiberg-Witten Invariants, Preprint 1996.

