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Abstract. In this paper we will report on some of our recent results 
about compact spacelike hypersurfaces with spherical boundary in the 
Lorentz-Minkowski space Ln+1. In particular we will prove that the 
only compact spacelike hypersurfaces in Ln+1 with constant mean cur
vature and spherical boundary are the hyperplanar balls and the hyper
bolic caps. As for the case of the scalar curvature, we will prove that 
the only compact spacelike hypersurfaces in Ln+1 with nonzero con
stant scalar curvature and spherical boundary are the hyperbolic caps. 
Our approach is based on the use of several integral formulas, among 
them there are a volume formula and a flux formula.

1. Introduction and Statement of the Main Results

The study of spacelike hypersurfaces in the Lorentz-Minkowski space has 
been of increasing interest in recent years from both physical and mathematical 
points of view. From a physical point of view, that interest is motivated by 
the role that spacelike hypersurfaces in Lorentzian spacetimes play in different 
problems of general relativity. For instance, Lichnerowicz [10] showed that 
maximal hypersurfaces (that is, zero mean curvature spacelike hypersurfaces) 
are convenient as initial data for solving the Cauchy problem of the Einstein 
equations. Other reasons justifying their importance in general relativity can 
be found in [4,7,11] and [12], and references therein.
On the other hand, their mathematical interest is also motivated by the fact 
that spacelike hypersurfaces in the Lorentz-Minkowski space exhibit nice 
Bernstein-type properties. Let us recall that the Bernstein problem for max
imal hypersurfaces in the Lorentz-Minkowski space Ln+1 was introduced by 
Calabi [5], who proposed the study of the maximal hypersurface equation in
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Ln+1. For n < 4, Calabi found that the only entire solutions to that equation 
are affine functions. Later on, Cheng and Yau [6] extended this result to the 
general n -dimensional case and gave its parametric version, proving that the 
only complete maximal hypersurfaces in Ln+1 are the spacelike hyperplanes. 
As for the case of nonzero constant mean curvature, some other authors such 
us Treibergs [13], Hano and Nomizu [8], and Ishihara and Hara [9] constructed 
many nonlinear examples of complete spacelike hypersurfaces with nonzero 
constant mean curvature.
In this paper we will report on some of our recent results about the study of 
compact spacelike hypersurfaces with spherical boundary in Ln+1. In particular 
we will prove the following Bernstein-type result (Theorem in [2]).

Theorem 1. The only compact spacelike hypersurfaces in the Lorentz- 
Minkowski space with constant mean curvature and spherical boundary are 
the hyperplanar balls and the hyperbolic caps.

The corresponding problem for hypersurfaces in Euclidean space concerning 
hyperplanar balls and hyperspherical caps remains open even in the two- 
dimensional case. Some partial results have recently been obtained by different 
authors, but it is still unkown if planar discs and spherical caps are the only 
embedded compact surfaces with circular boundary. The first named author 
jointly with Lopez and Palmer [1] recently showed that the only stable con
stant mean curvature discs which are bounded by a circle are flat discs and 
spherical caps.
As for the case of the scalar curvature, we will prove the following uniqueness 
result (Theorem in [3]).

Theorem 2. The only compact spacelike hypersurfaces in the Lorentz- 
Minkowski space with nonzero constant scalar curvature and spherical bound
ary are the hyperbolic caps.

Our approach is based on the use of several integral formulas, among them 
we would like to emphasize a volume formula (Lemma 5) and a flux formula 
(Lemma 7). We also derive some further consequences for the general case 
where the boundary is an (n — 1)-dimensional hyperplanar closed submanifold 
embedded in Ln+1.

2. Preliminaries

Let Ln+1 denote the (n +  1)-dimensional Lorentz-Minkowski space, that is, 
the real vector space Rn+1 endowed with the Lorentzian metric

(=, Qdxi)2 H-------b (dxnf  -  (dxn+1f  ,
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where ( x i , . . .  , æn+1 ) are the canonical coordinates in Rn+1. A smooth im
mersion ip: M  —*• l..:" ' 1 of an n-dimensional connected manifold M  is said to 
be a spacelike hypersurface if the induced metric via ip is a Riemannian metric 
on M , which, as usual, is also denoted by (, ).
Let us first remark that every spacelike hypersurface in Ln+1 is orientable. Ac
tually, observe that (0 ,... ,0,1) is a unit timelike vector field globally defined 
on Ln+1, which determines a time-orientation on Ln+1. Thus, there exists a 
unique timelike unit normal field N  on M  which is future-directed in Ln+1, 
and hence we may assume that M  is oriented by N. This future-directed nor
mal field N  can be regarded as a map N  : M  — H". where HI” denotes the 
n-dimensional hyperbolic space, that is

HI” =  {x G Lra+1 : (x, x) =  —1, x n+i > 1} .

We will refer to N  as the future-directed Gauss map of the hypersurface M . 
The image N ( M )  c  HI” will be called the hyperbolic image of M .
A second basic remark about spacelike hypersurfaces in Ln+1 is that they 
cannot be closed (compact without boundary). In other words, every compact 
spacelike hypersurface M  in Lra+1 necessarily has nonempty boundary. This 
follows easily from the fact that if a G Ln+1 is a fixed arbitrary vector, then 
the gradient of the height function (a, on M  satisfies

V(a, ip) =  aT =  a +  (a, N )N  , 

where aT G X{M)  is tangent to M, and

I V(a, t/j) |2 =  (a, a) +  (a, N }2 > (a, a) .

In particular, if a is chosen to be spacelike then the corresponding height 
function has no critical points in M, so that M  necessarily has nonempty 
boundary dM.  As usual, if E is an (n — 1)-dimensional closed submanifold 
in Ln+1, a spacelike hypersurface M  —> Ln+1 is said to be a hypersurface
with boundary E if the restriction of î/j to dM  is a diffeomorphism onto E. 
The orientation of M  induces a natural orientation on dM  as follows: 
a basis ,vn_ 1 } for Tp(dM)  is positively oriented if and only if
{u, u i , . . .  , vn_ 1 } is a positively oriented basis for TPM , whenever u G TPM  
is outward pointing. We will denote by z/ the outward pointing unit conormal 
vector along dM .
In what follows, we will assume that if \ M  ^  Ln+1 is a compact spacelike 
hypersurface bounded by an (n — 1)-dimensional closed submanifold E =  
i f (dM),  and we will assume that E is contained in a hyperplane II of Ln+1. 
We will refer to it saying that M  has hyperplanar boundary. In that case, it 
is not difficult to see that the hyperplane II is necessarily spacelike. We may
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assume without loss of generality that II passes through the origin and II =  a2-, 
for a unit future-directed timelike vector a G L'"+1.

3. Basic Formulas and Examples

In order to set up the notation to be used later, let us denote by V° the flat Levi- 
Civita connection of Ln+1 and by V the Levi-Civita connection of M . Then 
the Gauss and Weingarten formulas for M  in Ln+1 are written respectively as

X°x Y  = Xx Y  -  (AX,  Y ) N , 

and

A(X)  = -X°x N ,

for all tangent vector fields X ,Y  X(M) .  Here A : X ( M)  — X (M ) defines 
the shape operator of M  with respect to the future-directed Gauss map N. 
Associated to the shape operator of M  there is the mean curvature of the 
hypersurface, which is the main extrinsic curvature of M , and it is given by

1 i n
H  = ---- trace(A) = -----nt ,

n n r-t1=1

where ,Kn are the principal curvatures of the hypersurface. On the
other hand, the (intrinsic) Ricci curvature of M  is written in terms of the 
shape operator A  as follows

Ric(X, Y )  =  n H { A X , Y)  +  (.A X , A Y ) ,

so that the scalar curvature S  of the hypersurface is given by

n / n

S  — trace(Ric) =  trace(A2) — n2H 2 — ^  k2 — I Kj
i = 1 \i=l

Before proving the main results, we will briefly study two particularly simple 
and illustrative examples of compact spacelike hypersurfaces in L '"+1 with 
spherical boundary.

Example 3. (Hyperplanar balls) Let a G Ln+1 be a unit future-directed timelike 
vector. For each r > 0, let Br be the hyperplanar ball given by

Br =  {x G Ln+1 ; (a, x) =  0, (x, x) < r2} ,

which is a compact embedded spacelike hypersurface in L”+1 bounded by an 
(n — 1)-sphere of radius r,

dMr =  {x G Br ; (x, x) =  r 2} =  §ra_1( r ) .
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The future-directed Gauss map of Br is the constant map N(p) = a, p G Br, so 
that its hyperbolic image reduces to the single point a, and Br has zero mean 
curvature H  = 0 and zero scalar curvature S  = 0.

Example 4. (Hyperbolic caps) Let a G Ln+1 be a unit future-directed timelike 
vector. For each r, R  > 0, let us consider Hr5Ä the hyperbolic cap given by

Is future-directed Gauss map is given by N(p)  =  —p/R,  p G and
its hyperbolic image is the geodesic ball in Hn centered at a of radius
arccosh^/l +  r2/ R 2. Hr5Ä is an example of a spacelike hypersurface with
nonzero constant mean curvature H  = 1 /R  and negative constant scalar cur
vature S  =  —n{n — 1 )/R.

4. An Integral Formula

In this section we will state an integral formula for the n-dimensional volume 
of f l , the domain in II bounded by E. We refer the reader to Lemma 1 in [3] 
for a detailed proof.

Lemma 5. (Volume formula) Let M  ^  Ln+1 be a compact spacelike hy
persurface with hyperplanar boundary E =  ip(dM), and assume that E is 
contained in a hyperplane II =  cr1, a being the unit future-directed timelike 
vector normal to II. Then the n-dimensional volume of Q, the domain in II 
bounded by E, is given by

where du is the n-dimensional volume element of M  with respect to the in
duced metric and the chosen orientation.

=  {x G Ln+1 ; (x , x) =  — i?2, —s/r2 +  R 2 < (a , x) < —R}  ,

which is a compact embedded spacelike hypersurface in Ln+1 bounded by an 
{n — 1)-sphere of radius r,

ö l r ,ß  =  {x G Hr,Ä; (a,x) = - s / r 2 +  R 2} =  S^ ( r ) .

(2)
M

The integral formula (2) will be essential for deriving our main results. More
over, a first interesting application of this formula is the following result on the 
volume of the hypersurface M  (Theorem 2 in [3]).
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Proposition 6. Let ïp: M  —» Ln+1 be a compact spacelike hypersurface with 
hyperplanar boundary E =  ip(dM), and assume that E is contained in a 
hyperplane II of Ln+1. Let a G W 1 be the unit future-directed timelike vector 
in Ln+1 such that II =  ax. Then the n-dimensional volume of M  satisfies the 
following inequalities,

< vol(M) < vol(fi), (3)
cosh(^)

where Ll is the n-dimensional domain in II bounded by E and q > 0 is the 
radius of a geodesic ball in Hn centered at a and containing the hyperbolic 
image of M. Moreover; each equality holds if and only if M  is the hyperplanar 
domain Q.

Hyperbolic caps in example 4 show that inequalities (3) are sharp. Actually, 
choosing r  =  1 the hyperbolic cap Hi # is bounded by an (n — l)-sphere of 
radius one and its volume is given by

V O m  R) = U n-xR1 [  Sm
v ’ J J cosn(9)0

where uon_ 1 is the (n — 1)-dimensional volume of Sn_1. From here it follows 
that the volume of is an increasing function on R  with

lim vo1(Hi jjR) =  0 (4)R—>0
and

lim vol(e! R) = = voKBi), (5)
R  ôo ’ n

where M1 = Q is the unitary n-dimensional round ball.
Equation (5) means that the second inequality in (3) is sharp. On the other 
hand, equation (4) implies that it is not possible to find a positive lower bound 
for the volume of all compact spacelike hypersurfaces with a fixed boundary. 
This justifies the necessity of including some additional geometric quantity (in 
our case, the radius of the geodesic ball containing the hyperbolic image of the 
hypersurface) in order to find an appropriate lower estimation for the volume 
of the hypersurfaces. Moreover, the first inequality in (3) is also sharp because

lim cosh(^Ä)vol(IH[i5jR) =  vol(Bi),

where qr =  arccosh f  + l/R ?  is the radius of the geodesic ball in H" cen
tered at a and containing the hyperbolic image of H-|
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5. Proof of Theorem 1

The proof of our first main result is based on the two following results, whose 
proofs can be found in [2] (Proposition 2 and Proposition 3 in [2]).

Lemma 7. (Flux formula) Let if\ M —> Ln+1 be a compact spacelike hy
persurface with hyperplanar boundary E =  ip(dM), and assume that E is 
contained in a hyperplane II of Ln+1. Let a be the unit future-directed timelike 
vector in Ln+1 such that II =  a±. I f  the mean curvature H  is constant, then 
the flux is given by

6 (v,a)ds = —nH  vol(fi), (6)
d M

where v is the outward pointing unit conormal and ds is the induced (n — 1)- 
dimensional volume element on DM. In particular; the flux does not depend 
on the hypersurface, but only on the value of H  and E.

Propositions. (An integral inequality) Let if\ M —> Ln+1 be a compact 
spacelike hypersurface with hyperplanar boundary E =  and assume
that E is contained in a hyperplane II of Ln+1. Let a be the unit future-directed 
timelike vector in Ln+1 such that II =  ax. I f  the mean curvature H  is constant, 
then

— J) a)2ds < n H 2 vol(fi), (7)
d M

where H s stands for the mean curvature of E in II with respect to the outward 
pointing unitary normal. Moreover; the equality holds if and only if M is totally 
umbilical.

Proof: Since the boundary E = if(dM) is a round sphere §n-1(r) of radius 
r  > 0, then HE =  — 1/r, and vol(fi) =  rcjn_ i(r)/n , where cjn_i(r) stands for 
the (n — 1)-dimensional volume of §n-1(r). From inequality (7) we know that

£  (u, a)2ds < H 2r2u n- i ( r ) , (8)
d M

with equality if and only if M  is either a hyperplanar ball or a hyperbolic cap. 
On the other hand, from flux formula (6) we also know that
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and the Cauchy-Schwarz inequality yields

Therefore, we have the equality in (8) and M  must be either a hyperplanar ball 
(when H  =  0) or a hyperbolic cap (when H  /  0).

6. Proof of Theorem 2

The proof of our second main result is based on the following integral formula, 
whose proof can be found in [3] (Proposition 4 in [3]).

Proposition 9. (An integral formula) Let ÿ  : M  —> Ln+1 be a compact space
like hypersurface with hyperplanar boundary E =  ip(dM), and assume that E 
is contained in a hyperplane II of Ln+1. Let a be the unit future-directed time
like vector in Ln+1 such that II =  aE  I f  the scalar curvature S  is constant,

where H s stands for the mean curvature of E in II with respect to the outward 
pointing unitary normal.

Proof: Let us assume that the boundary E =  i f (dM)  is a round sphere §n-1(r) 
of radius r  > 0. In that case, =  — 1/r, voZ(fi) =  rcjn_ i(r)/n , and the 
integral formula (9) becomes

then

(9)
dM

In particular, S < 0 and by the Cauchy-Schwarz inequality we obtain that

f ,  ^  /  V - S(p (z/, a)ds < . =
>m  \ / n ( n - l )

rLOn- i { r ) . ( 10)

On the other hand, from equation (I) we know that

S  = =  trace(A2) — [trace(A)]2 . (II)
i= 1

n
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The Cauchy-Schwarz inequality applied to the vectors (fti , . . .  ,Kn) and 
(1, . . .  , 1) G Mn yields

1 n 1 /  n \ 2 
trace(A2) ---- [trace(A)]2 = ^  ft2 ------( ^  j > 0 ,

the equality holding only at umbilical points, which jointly with (11) implies 
that

H2 > > 0 ,n(n — 1)
the equality holding only at umbilical points. In particular, the mean curvature 
H  does not vanish on M  and

f n { n ^ 1)
( 12)

with equality if and only if M  is a hyperbolic cap. Integrating (12) on M , and 
using our volume formula in Lemma 5, we have that

r(jjn- i ( r ) ,i  (v,a)ds = n f  \H\(—(a, N))dv > . ^  ^
dM m  y  n ( n  — 1)

with equality if and only if M  is a hyperbolic cap. Therefore, by equation (10) 
we have the equality above and the result.
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