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DEFORMATIONS OF MINIMAL SURFACES

IVAÏLO M. MLADENOV and BORISLAV ANGELOV

Institute of Biophysics, Bulgarian Academy of Sciences,
Acad. G. Bonchev Street, Block 21, 1113 Sofia, Bulgaria

Abstract. Here we combine group-theoretical and differential- 
geometric techniques for considerations of minimal surface deforma­
tions in the ordinary three-dimensional space. This approach allows a 
consideration of a novel family of transformations generated by com­
plex rotations. The resulting generalized deformations are compared 
with the well-known Bonnet and Goursat transformations and illus­
trated via Schwarz skew quadrilateral to provide a clarification of their 
geometrical origin.

1. Introduction

The most fundamental quantities of the theory of smooth surfaces in ordinary 
three-dimensional space are the Gaussian, respectively the mean curvature of 
the surface. The vanishing of the first quantity selects the class of the so- 
called flat surfaces while the vanishing of the later distinguishes the class of 
really remarkable surfaces known as “minimal”. The term “flat” is coined 
here because the prime example of a flat surface is the plane. The history of 
the minimal surfaces began more than two centuries ago with answering the 
following question (raised by Lagrange in connection with his studies of the 
variational problems): “What does the surface bounded by a given contour look 
like when it has the smallest surface area?”. This variational problem leads to 
a partial differential equation which turns out to be just the minimal surface 
equation (for more details cf. Darboux 1914; Osserman 1986; Karcher 1989; 
lost 1994 and Oprea 1997).
In view of the fundamental observation in the minimal surface theory that every 
minimal surface belongs to one-parameter family of minimal surfaces, the so- 
called Bonnet family, the situation with the other quite interesting transforma­
tion discovered by Goursat is a little strange. While Bonnet transformation have
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found a great many applications, both in mathematics (Bonnet 1853; Große- 
Brauckmann & Wohlgemuth 1996) and other sciences (Andersson et al. 1984; 
Seddon & Templer 1993; Charvolin & Sadoc 1996), Goursat transformation is 
less known and according to the authors knowledge no concrete investigation 
or application have been published (cf. Andersson et al. 1988; Terrones & 
Mackay 1997 and references therein). This can be explained up to some extent 
by the fact that despite the family to which it belongs is still conformal the 
distances are not preserved in the process of deformations. Actually, as we 
shall see later on, the class of these transformations is much larger than the one 
which Goursat himself had in mind. It is the aim of the present paper to sup­
ply the missing part of the most general three-parameter family of homotopy 
transformations in the Goursat class, to provide illustrative examples and to 
clarify the geometrical manifestation of these parameters. The real importance 
of the possibility to control (locally!) the curvature of the surfaces is that it 
is responsible for interfacial morphology and eventually the morphogenesis as 
discussed in Klinowski et al. 1996 and in more details by Hyde et al. 1997.

2. Conformal Transformations in the Plane

For the purposes of the exposition to follow we will need the fundamental notion 
of Gauss map and stereographic projection. Let us recall that the Gauss map 
of the surface M  equipped with the local coordinates a, t  is a mapping from 
the surface M  to the two-dimensional sphere S 2, denoted by G : M  — ,S'2 
and given by G(m) = N m, where N m is the unit normal to M  at m.  In terms 
of the chosen parameterization, one may write G(x(a,  r)) =  N(a, r)  and, for 
a small patch of M,  think of N(<j , t ) as a parameterization of the sphere S 2. 
The stereographic projection from the north pole of the Riemann sphere

The following set of (generally complex) coordinates have been proven to be 
useful alternative of the Cartesian coordinates (£, 77, £) on the sphere

e  +  ri2 +  C2 =  l , (2.1)

to the equatorial plane is given by

(2.2)

£ +  iv 1 +  C
1 -  C £ -  i v  ’

£  _  Ç — i y  _  1 +  C 
v 1 — C (; T  if]

(2.3)
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These formulae can be easily inverted and give

l — uv
u — V

1 + uv
rj =  l ---------

u — v c = u + v
u — V

(2.4)

Another calculation provides a proof that any rotational motion around the 
center of the sphere results in a linear fractional transformation

u =
au + b 
eu T d

v =
av +  b
cv +  d ’

(2.5)

of the complex plane with ad —be = 1. It should be mentioned that the set of 
all such linear fractional transformations form the Lie group SL(2,  C) which 
consists of the 2 x 2 matrices with complex entries and determinant one, i. e.

SL(2,  C) := I g = ^  ; det g = ad — be = 1, a, b, c, d G C j  . (2.6)

A straightforward but tedious calculation gives that the linear fractional trans­
formation (2.5) generated by the group element g G S L ( 2, C) produces the 
following (generally complex) rotation in M3

/  (a2 — b2 — c2 +  d2) / 2 i(a2 +  b2 — c2 — d2) / 2 cd — ab \
A (g) = |i(—a2 +  b2 — c2 +  d2)/2 [a2 + b2 + c2 + d2) / 2 i{ab +  cd) J. (2.7) 

\  bd — ac — i(ac +  bd) ad + bc /

The form of this matrix makes obvious the fact that the real rotations are 
carrying out by a special kind of SL(2,  C) group elements which generate the 
Lie subgroup S U (2) inside SL ( 2, C)

det h = \a\2 +  \ß\2 =  1, a, ß  G C (2.8)

More precisely, we have

m a 2 -  ß 2) - Q ( a 2 +  ß 2)
A(h) = 9 ( a 2 -  § 2) 3?(a2 + / f )

\  2$l(ot ß) — 2cA{a ß)

- 2 ^ ( a ß )  
-2  9 ( q ß) 
aä  — ßß

(2.9)

The bar here means a complex conjugation while and A denote the operations 
of taking the real, respectively the imaginary part of complex quantities.
From the group-theoretical point of view any matrix g G S L ( 2, C) can be 
represented in the form

9 = kh, h <E K, h <E SU(2 ), (2.10)
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where the set of 2 x 2 matrices K
- l

K := [ k  = ( A0 ; A G R =  M \{0}, fi £ c |  , (2.11)

form another subgroup of SL ( 2 , C). In explicit form the decomposition (2 .10) 
can be rewritten as

a b 
c d

A 1 ii\ f  a ß'
0 A/ \ —ß ä j  ’

(2.12)

and therefore, for its fulfillment it is necessary and sufficient that

a = A-1 a — ß ß , b = \ ~ 1ß + j/,ä, c = —Xß,  d = Xä . (2.13) 

Taking into account the defining condition

\a\2 + \ß\2 = l ,  (2.14)

we get

a  =  JA“ 1 , ß = —cA_ 1 , A2 =  |c |2 +  |d |2 , (2.15)

(Xb +  X~1c)/d f o r d ^ O ,
ß = Xa/c for d = 0 .

(2.16)

It is clear that a, ß, X and /j are defined unambiguously by the above relations, 
i. e. given a, b, c, d one can find them in an unique way. It is worth to point 
out also that the decomposition (2 .10) makes obvious the fact that the linear 
fractional transformations (2 .6) belong to the class of conformal mappings.

3. Complex Rotations and Minimal Surfaces

One can ask the question: what is the relation between minimal surfaces and 
the matrix groups listed above? The answer is as follows: all minimal surfaces 
in M3 can be identified with the real parts of the holomorphic null curves in 
C3. By definition T =  (A(w), B (w ) , C(w))  is such a curve if

[A!(w)}2 +  [B'{w)f  +  [C'{w)]2 = 0 , (3.1)

and

\A'(w)\2 + \B'(w)\2 + \C'(w)\2 Ï  0 . (3.2)

Here (A(w), B(w), C(w)) are holomorphic functions of the complex variable 
w = a  +  i t  defined in terms of the conformal coordinates (a, r), and the 
respective minimal surface M  is given by the formulae

x(w, w) = 9L4(rc), y(w,w) = $lB(w), z(w,w) = ?R.C(w). (3.3)
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By its very definition, the group of conformal motions in the three-dimensional 
complex vector space C3, i. e. the set of invertible linear homogeneous maps 
which preserve the quadric in the left hand side of (3.1) up to a multiplicative 
factor, are the most general transformations in the class of the minimal surfaces. 
The matrices in (2.7) belong obviously to this class and supply us directly with 
a six-dimensional family of such transformations. As we shall see later on, just 
three are essential and among them one can recognize the parameter in Goursat 
transformation.
An important step in passing from (3.1) to (3.3) is that we are able to describe 
explicitly all solutions of the former equation. They can be represented in the 
form

A'(w)  =  (1 — w 2)R(w ) ,
B \ w )  =  i( l  + w2) R ( w ), (3.4)
C'(w) =  2wR( w ) ,

where R(w)  is an arbitrary holomorphic function. Therefore, we immediately 
obtain the Weierstrass-Enneper representation of the minimal surfaces in the 
form

x(cr, r) =  3ft /  (1 — w2)R(w)  dw + x 0 ,

y(cr, r) =  3ft J i ( l  +  w2)R{w) dw +  y0 , (3.5)

z(o , r) =  3ft j  2wR{w) dw +  z0 ,

where w = a +  i f  and (x0, yo? zo) are the integration constants.
If we exchange in the above formulae the Weierstrass function R{w)  with 
R{w) =  el6R(w)  where 9 is a real parameter and perform the integration we 
still have a minimal surface S  called associated to the initial surface S  specified 
by (3.5). Traditionally, the transition

S  — ► S(0) , (3.6)

is called Bonnet transformation since the time he had introduced it in the differ­
ential geometry (Bonnet 1853), while 9 is referred as the angle of association. 
The surface obtained for 9 =  7r/2  is called “adjoint” and will be denoted further 
on as S*. It is interesting to point out that the Bonnet transformation does not 
change the Gaussian curvature as well. This can be seen by realizing that this 
transformation can be succinctly written into the form

(x(d), y(9), z(6)) = (x , y, z)cosd + (x*, y*, z*)sin6,  (3.7)

which also makes obvious that Bonnet related points trace out ellipses in the 
space.
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Going back to our considerations of the rotational motions induced by the 
linear fractional transformations of the complex plane, let us look closer to the 
decomposion (2 .10).
We already know that the second factor on the right produces the SO(3,  R) 
group (2.9). Using the relativistic terminology we can say that we have de­
composed the general Lorentz transformation into a real rotation and a “boost” 
transformation (cf. Crampin & Pirani 1986 for more details). This later can be 
represented as a complex rotation in the form

A (*) =  -
(A -2 - fi2 +  A2)/2 i(A“ 2 +  g2 -  A2)/2 - ß \

- i(A - 2 -  k 2 ~  A2)/2 (A“ 2 +  g2 +  A2)/2 i/iA-1 (3.8)
A/i —iA/r 1 )

Besides, any element k € K  can be factorized as follows:

k = r n , / A “ 1 / A  (g - 1 0 \
V o \ )  V o  q )

where g =  A and % =  A/x.

1 X 
0 1 (3.9)

As a Lie group the first factor is isomorphic with the group R =  R\{0} of non­
zero real numbers under multiplication and the second one with the group of 
complex numbers C under addition. Their images in the group of the (complex) 
rotations are respectively:

/  ( p - 2 +  g2) / 2 i(ß~2 ~ Q2) / 2 ° \A (f) = i to 1 to (£ -2 +  Q2) / 2 °  ’
(3.10)

V o 0 1/

/ ( 2  -  X 2) / 2 i x 2/ 2  - x ' \
A (n) =  iX2/2 (2  +  X 2) / 2  ix • (3.11)

V x -iX  1 ,/

Let us note that the matrix A (f) represents a complex rotation around the third 
coordinate axis while the complex rotation generated by A (n) is around the 
complex axis defined by the vector (i, 1,0). Summarizing, we can say that 
any rotation in three-dimensional complex vector space can be decomposed 
as a product of a real rotation followed by a complex rotation around a real 
axis and one more complex rotation around a complex axis. This should be 
compared with the analogical statement about the group SO  (3, C) in Goursat 
paper (cf. p. 139 in Goursat 1888). There the third rotation is recognized again 
as a real one and therefore neglected further on as inessential!
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However we know that the non-trivial part of the deformations in which we are 
interested is generated by the whole group K.  This group acts on the complex 
plane producing transformation of the form

ü =  Uu +  V , U =  À- 2 , V  =  /iA_ 1 , [ / G l + , l / G C .  (3.12)

In his paper Goursat (1888), by the reasons explained above, had restricted 
himself just to the stretching from the origin in the complex plane

and determined the complex rotation corresponding to that part of the boost 
transformation in the form

We immediately recognize in the above formulae our matrix (3.10) which can be 
obtained directly by setting here K =  Q2. Properly speaking the generalization 
of the Goursat transformation is encoded in the matrix (3.11) which produces

Ü =  K U  , K  £  M + , K  7^ 1 , (3.13)

~ 1 +  K2 . K2 — 1
S =  —s----s -  i — -̂----V,

. K2 — 1 1 +  K2
V = i —s----s H------ s ^

(3.14)

C =  C-

2
+  w2)R(w) drù — 2x wR(w) dtD ,

/
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and after some simplifications

x{v, T,x) = ^  / [ ! - ( *  +  x f ]R{w)  dw , 

T, x)  =  3? J i[l + (w + x ) 2]R(w) dw

z(a, t , x) = [  2 [w) +  x\R(ü)  d w .

(3.15)

4. Examples and Comments

It is a trivial observation that the multiplication with a non-zero complex num­
ber £ of the null curve (3.4) produces a new minimal surface. The modulus 
of this complex number is responsible for dilation or contraction of the min­
imal surface in the space while its argument is already associated with the 
Bonnet transformation. It seems appropriate to refer to these transformations 
as “external” and to consider the proper complex rotations (2.7) as “internal” 
transformations. This situation hints also for their unification in the form

in which the last two factors represent Bonnet and generalized Goursat transfor­
mations. One should note as well the commutativity of these transformations. 
As our main concern here are the generalized Goursat transformations of the 
minimal surfaces they will be illustrated by their action on “Flachenstück” 
surface element of D infinite periodic minimal surface (IPMS). D  IPMS was 
described by Schwarz in the last century, but recent years reveal that this surface 
is closely related with the structure of solid and liquid crystals and interfaces 
(cf. Andersson etal.  1988). Remarkable particular cases are the structures of 
diamond, cubic ice and monoolein-water system. In Fig. 1 an original surface 
element is presented.
It was drawn using Weierstrass-Enneper representation (3.5) with the function

Defining area for the complex variable w = u + iv has as boundary the arcs of 
the circles of radius \ / 2, centered at the four points w±^± =  ± l / \ / 2  ±  i/ \ / 2  in 
the complex plane. This is our initial surface that shall be subjected to various 
transformations.
Figure 2 represent the surface which is obtained by varying g in (3.10) and 
fixing x  to be zero. These are just Goursat transformations of the D  surface 
element. It is possible to take instead a real a complex number g. The integral

W(e,g) = eA(g) = \e\eldA(g) , d = arg(e) , (4.1)
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Figure 1. The surface element (Flachenstück) of the D IPMS

Figure 2. Goursat transformation of the D surface element at g = (1.2,1,0.8,0.6), 
and x =  0. The images of the 1st and 2nd quadrant are shown

0.5 

s* 0 

- 0.5

Figure 3. Same as Fig. 2.
View from the top of the z axis

__L_

0.5
x

__L_

0.5
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effect of such change would be a rotation of the figure around the 2 axis. 
Another useful observations is that g enters into transformation matrix in second 
power, which reduces the range of this variable to the interval (0, 00). In this 
interval g = 1 is a point corresponding to identity transformation. For g >  1, 
Goursat transformations correspond to stretching and increasing the distances 
in x - y  plane, while for g <  1, the resulting transformations are bending. In the 
bending interval two points are quite interesting from geometrical viewpoint. 
The first one is when the vertices A  and B  of the Schwarz skew quadrilateral 
A B C D  coincide respectively with C and D. To some extent this situation is 
illustrated in Fig. 2. The next one appears when A  and B  replace their positions 
respectively with C and D. The precise values of the deforming parameter g 
can be written in terms of the complete elliptic integrals of first and second 
kind but the corresponding expressions are too complicated to be reproduced 
here. The significant digits in these two cases are 0.59 and 0.35. When g 
approaches the zero the distances between vertices become infinite and the D 
surface element looks like the plane.
In Figure 3 boundaries of D  surface element are presented for the same values 
of g as in Fig. 2. The viewpoint is chosen to be from the top of z axis. While 
the boundaries of the original surface are straight lines, any non-trivial Goursat 
transformation make them curved.

Figure 4. Generalized Goursat trans­
formation of the D surface element 
at g =  1, and x  =  (0,0.3). Shown 
are the images of the 1st and 2nd 
quadrant

Figure 4 represent the deformed surface obtained for g =  1, x  = 0.3 along an 
initial one for comparison. By its definition x  is a complex number. In order 
to simplify the systematization, \  is taken in a polar form. When varying its 
modulus an asymmetric deformations appear. In the direction of deformation
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defined by its argument the surface is stretched, but in the opposite direction 
it is compressed. This directional asymmetry is the main difference with the 
Goursat transformation. This allows us to consider x  as a plane vector of 
deformation. The modulus will corresponds to the amplitude of the vector, 
and the argument to its direction in the real space. This transformation do not 
preserve heights and it involves changes not only of x  and y, but also of z 
coordinates.

In Figure 5 a view of boundaries as they are seen from the top of the z axis 
is presented. Straight line boundaries of the original surface become curved 
because stretching make them concave, while compressing result in convexity 
of the adjacent to the direction of the deformation boundaries.

Figure 5. Same as Fig. 4.
View from the top of the z axis

Surely, the above transformations can be combined in arbitrary order. This 
process increase tremendously the family of transformed surfaces that can be 
generated from the original one. In addition to Goursat and generalized Gour­
sat transformations, a Bonnet transformations can be also executed following 
prescription in (4.1).

Some differential-geometric remarks at the end of this paper are in order as well. 
First of all, while bending the surface, the generalized Goursat transformations 
stretches it directionally. So, they change the metric and curvature but since any 
linear fractional transformation and the stereographic projection are conformal 
mappings their composition preserves angles. This means that such things like 
lines of curvature and asymptotic lines are also preserved.

Finally, it is obvious that this larger family of transformations of the minimal 
surfaces is a challenging one and deserves further systematic studies.
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