Geometry, Integrability and Quantization September 1–10, 1999, Varna, Bulgaria Ivaïlo M. Mladenov and Gregory L. Naber, Editors **Coral Press**, Sofia 2000, pp **159-16**2

TWISTOR INTEGRAL REPRESENTATIONS OF SOLUTIONS OF THE SUB-LAPLACIAN

YOSHINORI MACHIDA

Numazu College of Technology 3600 Ooka, Numazu-shi Shizuoka 410-8501, Japan

Abstract. The twistor integral representations of solutions of the Laplacian on the complex space are well-known. The purpose of this article is to generalize the results above to that of the sub-Laplacian on the odd-dimensional complex space with the standard contact structure.

Introduction

The twistor integral representations of solutions of the complex Laplacian on the complex space \mathbb{C}^{2n} of even dimension 2n are well-known. We also showed them on \mathbb{C}^{2n-1} of odd dimension 2n-1 before. The purpose of this article is to generalize the results above to that of the complex sub-Laplacian on \mathbb{C}^{2n-1} with the standard contact structure. The details and further discussion will appear elswhere.

Let (x_i, y_i, z) i = 1, ..., n-1 be the standard coordinate system of $\mathbb{M} = \mathbb{C}^{2n-1}$. We give \mathbb{M} a contact structure defind by

$$\theta = \mathrm{d}z - \sum_{i=1}^{n-1} (y_i \,\mathrm{d}x_i - x_i \,\mathrm{d}y_i)$$

called a contact form. The contact distribution D on \mathbb{M} is defined by $\theta = 0$. The vector fields

$$X_i = \frac{\partial}{\partial x_i} + y_i \frac{\partial}{\partial z}, \quad Y_i = \frac{\partial}{\partial y_i} - x_i \frac{\partial}{\partial z}, \quad i = 1, \dots, n-1$$

furnish a basis of D. Let us join $Z = \frac{\partial}{\partial z}$ to them. By $[Y_i, X_i] = 2Z$; $i = 1, \ldots, n-1$ they form a basis of the Heisenberg algebra.

159

Let g be a complex sub-Riemannian metric on D such that

$$g(X_i, Y_j) = \delta_{ij},$$

$$g(X_i, X_j) = 0, \quad g(Y_i, Y_j) = 0$$

Let \mathbb{P} be the set of all totally null affine (n-1)-planes in \mathbb{M} in the sense of the Heisenberg group. The space \mathbb{P} is called the twistor space of \mathbb{M} . Either of the folloing equations represents a generic element belonging to \mathbb{P} :

$$\mathbb{P}_{1}: \begin{cases} y_{i} = \sum_{\substack{j=1 \ n-1}}^{n-1} a_{ij}x_{j} + b_{i}, & a_{ij} = -a_{ji} \quad i = 1, \dots, n-1 \\ z = \sum_{\substack{j=1 \ n-1}}^{n-1} b_{j}x_{j} + c \\ = \sum_{\substack{j=1 \ j=1}}^{n-1} a_{ij}x_{j} + b_{i}, & a_{ij} = -a_{ji} \quad i = 1, \dots, n-1 \\ z = -\sum_{\substack{j=1 \ n-1}}^{n-1} b_{j}x_{j} + c \\ = -\sum_{\substack{j=1 \ n-1}}^{n-1} x_{j}y_{j} + c \end{cases}$$

Remark that each totally null affine (n-1)-plane is not tangent to D, but the projection to the (x_i, y_i) -space is totally null affine (n-1)-plane in the usual sense. We can take (a_{ij}, b_i, c) as generic parameters of \mathbb{P} . Therefore the dimension of \mathbb{P} is $\frac{n^2 - n + 2}{2}$. By the natural projection $(a_{ij}, b_i, c) \mapsto (a_{ij})$, the (a_{ij}) -space is of $\frac{(n-1)(n-2)}{2}$ dimension.

Let \Box_R , \Box_L and \Box be complex sub-Laplacians associated with g as follows:

$$\Box_R \phi = \left(\sum_{i=1}^{n-1} Y_i X_i\right) \phi$$
$$\Box_L \phi = \left(\sum_{i=1}^{n-1} X_i Y_i\right) \phi$$
$$\Box \phi = (\Box_L + \Box_R) \phi = \sum_{i=1}^{n-1} (X_i Y_i + Y_i X_i) \phi$$

Let $f = f(a_{ij}, b_i, c)$ be a suitable analytic function on \mathbb{P} . Then we can define a function

$$\phi(x_i, y_i, z) = \int_{\Delta} f(a_{ij}, y_i - \sum_{j=1}^{n-1} a_{ij} x_j, z \mp \sum_{j=1}^{n-1} x_j y_j) \wedge da_{ij}$$

where $b_i = y_i - \sum_{j=1}^{n-1} a_{ij} x_j$, $c = z \mp \sum_{j=1}^{n-1} x_j y_j$, and $\wedge da_{ij}$ is an exterior k-form

by any of da_{ij} while Δ is a k-chain. The function ϕ on \mathbb{M} is not necessarily a solution of \Box_R , \Box_L , \Box for any f.

First, we have the following.

Proposition 1. Take a form $f = f(a_{ij}, b_i) = f(a_{ij}, b_i, \gamma)$, where γ is a constant. We have $\phi(x_i, y_i, z) = \varphi(x_i, y_i)$. Then we have

$$\Box_R \phi = 0, \quad \Box_L \phi = 0.$$

These are nothing but the twistor integral representations of solutions of the complex Laplacian on \mathbb{C}^{2n-2} . We call them type 1 and write them as f_1 and ϕ_1 . Next, we have the following.

Proposition 2. Take a form $f = f(c) = f(\alpha_{ij}, \beta_i, c)$, where α_{ij} and β_i are constants. We have $\phi(x_i, y_i, z) = \varphi(z \mp \sum_{j=1}^{n-1} x_j y_j)$. Then we have i) for $\phi = \varphi\left(z - \sum_{j=1}^{n-1} x_j y_j\right)$ $X_i \phi = 0 \ (i = 1, \dots, n-1), \quad i e. \ \Box_R \phi = 0,$ ii) for $\phi = \varphi\left(z + \sum_{j=1}^{n-1} x_j y_j\right)$ $Y_i \phi = 0 \ (i = 1, \dots, n-1), \quad i e. \ \Box_L \phi = 0.$

We call them type 2 and write them as f_2 and ϕ_2 . Combining the above two propositions, we have the following.

Theorem 1. Take a form

$$f = f(a_{ij}, b_i, c) = f_1(a_{ij}, b_i) + f_2(c) = f_1 + f_2$$

on \mathbb{P}_1 . We have

$$\phi(x_i, y_i, z) = \phi_1(x_i, y_i) + \phi_2\left(z - \sum_{j=1}^{n-1} x_j y_j\right) = \phi_1 + \phi_2$$

on \mathbb{M} . Then we have

 $\Box_R \phi = 0.$

Conversely, a solution ϕ of $\Box_R \phi = 0$ is represented by $\phi = \phi_1 + \phi_2$ by some $f = f_1 + f_2$. Similarly, from $f = f_1 + f_2$ on \mathbb{P}_2 , $\phi = \phi_1 + \phi_2$ satisfies $\Box_L \phi = 0$.

We embed $(a_{ij}, b_i, c, c') \in \mathbb{P}_0$ into $\mathbb{P}_1 \times \mathbb{P}_2$ as $(a_{ij}, b_i, c) \times (a_{ij}, b_i, c')$. Taking a function

$$F = F(a_{ij}, b_i, c, c') = F(c, c') = (cc')^{-\frac{n-1}{2}}$$

on $\mathbb{P}_1 \times \mathbb{P}_2$, we have

$$\Phi(x_i, y_i, z) = \operatorname{const}\left(\left(\sum_{i=1}^{n-1} x_i y_i\right)^2 - z^2\right)^{-\frac{n-1}{2}}$$

This is the (complex) fundamental solution of \Box .

References

[1] Aomoto K. and Machida Y., *Twistor Integral Representations of Fundamental Solutions of Massless Field Equations*, J. Geom. Phys. **32** (1999) 189–210.