TWISTOR INTEGRAL REPRESENTATIONS OF SOLUTIONS OF THE SUB-LAPLACIAN

YOSHINORI MACHIDA

Numazu College of Technology
3600 Ooka, Numazu-shi
Shizuoka 410-8501, Japan

Abstract

The twistor integral representations of solutions of the Laplacian on the complex space are well-known. The purpose of this article is to generalize the results above to that of the sub-Laplacian on the odd-dimensional complex space with the standard contact structure.

Introduction

The twistor integral representations of solutions of the complex Laplacian on the complex space $\mathbb{C}^{2 n}$ of even dimension $2 n$ are well-known. We also showed them on $\mathbb{C}^{2 n-1}$ of odd dimension $2 n-1$ before. The purpose of this article is to generalize the results above to that of the complex sub-Laplacian on $\mathbb{C}^{2 n-1}$ with the standard contact structure. The details and further discussion will appear elswhere.
Let $\left(x_{i}, y_{i}, z\right) i=1, \ldots, n-1$ be the standard coordinate system of $\mathbb{M}=\mathbb{C}^{2 n-1}$. We give \mathbb{M} a contact structure defind by

$$
\theta=\mathrm{d} z-\sum_{i=1}^{n-1}\left(y_{i} \mathrm{~d} x_{i}-x_{i} \mathrm{~d} y_{i}\right)
$$

called a contact form. The contact distribution D on \mathbb{M} is defined by $\theta=0$. The vector fields

$$
X_{i}=\frac{\partial}{\partial x_{i}}+y_{i} \frac{\partial}{\partial z}, \quad Y_{i}=\frac{\partial}{\partial y_{i}}-x_{i} \frac{\partial}{\partial z}, \quad i=1, \ldots, n-1
$$

furnish a basis of D. Let us join $Z=\frac{\partial}{\partial z}$ to them. By $\left[Y_{i}, X_{i}\right]=2 Z ; i=$ $1, \ldots, n-1$ they form a basis of the Heisenberg algebra.

Let g be a complex sub-Riemannian metric on D such that

$$
\begin{aligned}
g\left(X_{i}, Y_{j}\right) & =\delta_{i j} \\
g\left(X_{i}, X_{j}\right) & =0, \quad g\left(Y_{i}, Y_{j}\right)=0
\end{aligned}
$$

Let \mathbb{P} be the set of all totally null affine $(n-1)$-planes in \mathbb{M} in the sense of the Heisenberg group. The space \mathbb{P} is called the twistor space of \mathbb{M}. Either of the folloing equations represents a generic element belonging to \mathbb{P} :

$$
\begin{aligned}
& \mathbb{P}_{1}:\left\{\begin{aligned}
y_{i} & =\sum_{j=1}^{n-1} a_{i j} x_{j}+b_{i}, \quad a_{i j}=-a_{j i} \quad i=1, \ldots, n-1 \\
z & =\sum_{j=1}^{n-1} b_{j} x_{j}+c \\
& =\sum_{j=1}^{n-1} x_{j} y_{j}+c
\end{aligned}\right. \\
& \mathbb{P}_{2}:\left\{\begin{aligned}
y_{i} & =\sum_{j=1}^{n-1} a_{i j} x_{j}+b_{i}, \quad a_{i j}=-a_{j i} \quad i=1, \ldots, n-1 \\
z & =-\sum_{j=1}^{n-1} b_{j} x_{j}+c \\
& =-\sum_{j=1}^{n-1} x_{j} y_{j}+c
\end{aligned}\right.
\end{aligned}
$$

Remark that each totally null affine ($n-1$)-plane is not tangent to D, but the projection to the $\left(x_{i}, y_{i}\right)$-space is totally null affine $(n-1)$-plane in the usual sense. We can take $\left(a_{i j}, b_{i}, c\right)$ as generic parameters of \mathbb{P}. Therefore the dimension of \mathbb{P} is $\frac{n^{2}-n+2}{2}$. By the natural projection $\left(a_{i j}, b_{i}, c\right) \longmapsto\left(a_{i j}\right)$, the $\left(a_{i j}\right)$-space is of $\frac{(n-1)(n-2)}{2}$ dimension.
Let \square_{R}, \square_{L} and \square be complex sub-Laplacians associated with g as follows:

$$
\begin{aligned}
\square_{R} \phi & =\left(\sum_{i=1}^{n-1} Y_{i} X_{i}\right) \phi \\
\square_{L} \phi & =\left(\sum_{i=1}^{n-1} X_{i} Y_{i}\right) \phi \\
\square \phi & =\left(\square_{L}+\square_{R}\right) \phi=\sum_{i=1}^{n-1}\left(X_{i} Y_{i}+Y_{i} X_{i}\right) \phi
\end{aligned}
$$

Let $f=f\left(a_{i j}, b_{i}, c\right)$ be a suitable analytic function on \mathbb{P}. Then we can define a function

$$
\phi\left(x_{i}, y_{i}, z\right)=\int_{\Delta} f\left(a_{i j}, y_{i}-\sum_{j=1}^{n-1} a_{i j} x_{j}, z \mp \sum_{j=1}^{n-1} x_{j} y_{j}\right) \wedge \mathrm{d} a_{i j}
$$

where $b_{i}=y_{i}-\sum_{j=1}^{n-1} a_{i j} x_{j}, c=z \mp \sum_{j=1}^{n-1} x_{j} y_{j}$, and $\wedge \mathrm{d} a_{i j}$ is an exterior k-form by any of $\mathrm{d} a_{i j}$ while Δ is a k-chain. The function ϕ on \mathbb{M} is not necessarily a solution of \square_{R}, \square_{L}, \square for any f.
First, we have the following.
Proposition 1. Take a form $f=f\left(a_{i j}, b_{i}\right)=f\left(a_{i j}, b_{i}, \gamma\right)$, where γ is a constant. We have $\phi\left(x_{i}, y_{i}, z\right)=\varphi\left(x_{i}, y_{i}\right)$. Then we have

$$
\square_{R} \phi=0, \quad \square_{L} \phi=0
$$

These are nothing but the twistor integral representations of solutions of the complex Laplacian on $\mathbb{C}^{2 n-2}$. We call them type 1 and write them as f_{1} and ϕ_{1}. Next, we have the following.

Proposition 2. Take a form $f=f(c)=f\left(\alpha_{i j}, \beta_{i}, c\right)$, where $\alpha_{i j}$ and β_{i} are constants. We have $\phi\left(x_{i}, y_{i}, z\right)=\varphi\left(z \mp \sum_{j=1}^{n-1} x_{j} y_{j}\right)$. Then we have
i) for $\phi=\varphi\left(z-\sum_{j=1}^{n-1} x_{j} y_{j}\right)$

$$
X_{i} \phi=0(i=1, \ldots, n-1), \quad \text { ie. } \square_{R} \phi=0
$$

ii) for $\phi=\varphi\left(z+\sum_{j=1}^{n-1} x_{j} y_{j}\right)$

$$
Y_{i} \phi=0(i=1, \ldots, n-1), \quad \text { ie. } \square_{L} \phi=0
$$

We call them type 2 and write them as f_{2} and ϕ_{2}.
Combining the above two propositions, we have the following.
Theorem 1. Take a form

$$
f=f\left(a_{i j}, b_{i}, c\right)=f_{1}\left(a_{i j}, b_{i}\right)+f_{2}(c)=f_{1}+f_{2}
$$

on \mathbb{P}_{1}. We have

$$
\phi\left(x_{i}, y_{i}, z\right)=\phi_{1}\left(x_{i}, y_{i}\right)+\phi_{2}\left(z-\sum_{j=1}^{n-1} x_{j} y_{j}\right)=\phi_{1}+\phi_{2}
$$

on \mathbb{M}. Then we have

$$
\square_{R} \phi=0 .
$$

Conversely, a solution ϕ of $\square_{R} \phi=0$ is represented by $\phi=\phi_{1}+\phi_{2}$ by some $f=f_{1}+f_{2}$. Similarly, from $f=f_{1}+f_{2}$ on $\mathbb{P}_{2}, \phi=\phi_{1}+\phi_{2}$ satisfies $\square_{L} \phi=0$.

We embed $\left(a_{i j}, b_{i}, c, c^{\prime}\right) \in \mathbb{P}_{0}$ into $\mathbb{P}_{1} \times \mathbb{P}_{2}$ as $\left(a_{i j}, b_{i}, c\right) \times\left(a_{i j}, b_{i}, c^{\prime}\right)$. Taking a function

$$
F=F\left(a_{i j}, b_{i}, c, c^{\prime}\right)=F\left(c, c^{\prime}\right)=\left(c c^{\prime}\right)^{-\frac{n-1}{2}}
$$

on $\mathbb{P}_{1} \times \mathbb{P}_{2}$, we have

$$
\Phi\left(x_{i}, y_{i}, z\right)=\mathrm{const}\left(\left(\sum_{i=1}^{n-1} x_{i} y_{i}\right)^{2}-z^{2}\right)^{-\frac{n-1}{2}}
$$

This is the (complex) fundamental solution of \square.

References

[1] Aomoto K. and Machida Y., Twistor Integral Representations of Fundamental Solutions of Massless Field Equations, J. Geom. Phys. 32 (1999) 189-210.

