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APPENDIX B

Lie’s Third Theorem

Abstract. A finite-dimensional real Lie algebra is the semidirect product of a semi-
simple subalgebra and the solvable radical, according to the Levi decomposition. As
a consequence of this theorem and the correspondence between semidirect products of
Lie algebras and semidirect products of simply connected analytic groups, every finite-
dimensional real Lie algebra is the Lie algebra of an analytic group. This is Lie’s Third
Theorem.

Ado’s Theorem says that every finite-dimensional real Lie algebra admits a one-one
finite-dimensional representation on a complex vector space. This result sharpens Lie’s
Third Theorem, saying that every real Lie algebra is the Lie algebra of an analytic group of
matrices.

The Campbell-Baker—Hausdorff Formula expresses the multiplication rule near the
identity in an analytic group in terms of the linear operations and bracket multiplication
within the Lie algebra. Thusittells constructively how to pass from afinite-dimensional real
Lie algebrato the multiplication rule for the corresponding analytic group in a neighborhood
of the identity.

1. Levi Decomposition

Chapter | omits several important theorems about general finite-
dimensional Lie algebras ovRirelated to the realization of Lie groups, and
those results appear in this appendix. They were omitted from Chapter |
partly because in this treatment they use a result about semisimple Lie
algebras that was not proved until Chapter V. One of the results in this
appendix uses also some material from Chapter Ill.

Lemma B.1. Let ¢ be anR linear representation of the real semisim-
ple Lie algebrag on a finite-dimensional real vector spa¢e ThenV
is completely reducible in the sense that there exist invariant subspaces
U4, ..., U, of Vsuchthal =U; & .- - @ U, and such that the restriction
of the representation to eath is irreducible.

PROOF. It is enough to prove that any invariant subspbicef V has
an invariant complemend/. By Theorem 5.29, there exists an invariant
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660 B. Lie's Third Theorem

complex subspace/’ of VC such thatv® = U @ W'. Let P be theR
linear projection oV onV alongiV, and put

W=PWnail)).

SinceP commutes withp(g), we see thap(g)(W) € W. To complete the
proof, we show that¥ = U @ W.

LetabeinU NW. Thena+ibisinW NV @iU) forsomeb e V.
The elemenb must be inJ, and we know thadisinU. Hencea+ibis
inUC. Butthena+ibisinU NW’ = 0, anda = 0. HencdJ NW = 0.

Next letv € V be given. Since/® = U® + W', we can writev =
@a+ib)y+ x+iy)ywitha e U,b e U, andx +iy € W'. Sincev
isinV,y = —b. Thereforex +iyisinV @ iU, as well asW’. Since
P(x+iy) = x,xisinW. Thenv = a+ x witha € U andx € W, and
V=U-+W.

Theorem B.2 (Levi decomposition). [fg is a finite-dimensional Lie
algebra oveRR, then there exists a semisimple subalgeboég such that
g is the semidirect produgt= s &, (radg) for a suitable homomorphism
7w . s — Der(radg).

PROOF. Lett = radg. We begin with two preliminary reductions. The
first reduction will enable us to assume that there is no nonzerodaeal
properly contained in. In fact, an argument by induction on the dimension
would handle such a situation: Proposition 1.11 shows that the radical of
g/aist/a. Hence induction giveg/a = s/a @ t/a with s/a semisimple.
Sinces/a is semisimplea = rads. Then induction gives = s’ @ a with s’
semisimple. Consequenily= s’ @t, ands’ is the required complementary
subalgebra.

As a consequencejs abelian. In fact, otherwise Proposition 1.7 shows
that [r, t] is an ideal ing, necessarily nonzero and properly contained in
So the first reduction eliminates this case.

The second reduction will enable us to assume thaf [= ¢. In fact,

[g, t] is an ideal ofg contained ir. The first reduction shows that we may
assume itis 0 ot. If [g, t] = O, then the real representation adgodn

g descends to a real representatioof ong. Sinceg/t is semisimple,
Lemma B.1 shows that the action is completely reducible. Thudich

is an invariant subspace i has an invariant complement, and we may
take this complement as

As a consequence,

(B.3) tNZ, =0.
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In fact v N Z; is an ideal ofg. It is properly contained in: since
tN Z; = vimplies that f, ] = 0, in contradiction with the second
reduction. Therefore the first reduction implies (B.3).

With the reductions in place, we imitate some of the proof of Theorem
5.29. That is, we put

V ={y e Endg | y(g) C vandy|, is scalaf
and define a representatiorof g on Endg by
o(X)y = (@dX)y — y(@adX) fory € Endg andX e g.
The subspac¥ is an invariant subspace underand
U={yeV]y=0ont}

is an invariant subspace of codimension Mrsuch thatr (X)(V) C U
for X € g. Let
T={adY |Y et}

This is a subspace &f sincer is an abelian Lie subalgebra. X isin g
andy = adY isinT, theno(X)y = ad[X, Y] with [ X, Y] € t. HenceT
is an invariant subspace under

FromV 2 U 2 T, we can form the quotient representatidhsT and
V/U. The natural map o/ /T ontoV /U respects thg actions, and the
g action ofV/U is 0 sinces (X)(V) C U for X € g. If Xisintvandy is
in 'V, then

o (X)y = (@dX)y — y(@dX) = —y(adX)

since image’ C t andt is abelian. Since is a scalai.(y) ont, we can
rewrite this formula as

(B.4) o (X)y = ad—A(y)X).

Equation (B.4) exhibiter (X)y asinT. Thuso|, mapsV into T, ando
descends to representationgigt onV/T andV/U. The natural map of
V/T ontoV /U respects thesg/r actions.

Since dimvV/U = 1, the kernel ofV/T — V/U is ag/t invariant
subspace oV /T of codimension 1, necessarily of the fovid/ T with
W C V. Sinceg/t is semisimple, Lemma B.1 allows us to write

(B.5) V/IT=W/T® Ry+T)/T
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for a 1-dimensional invariant subspa@), + T)/T. The directness of
this sum means tha is not inU. Soy, is not 0 ont. Normalizing, we
may assume thag acts by the scalar1 ont. In view of (B.4), we have

(B.6) o(X)yo =adX for X e t.

Since(Ryy + T)/T is invariant in (B.5), we have (X)y, € T for each
X € g. Thus we can writer (X)), = adp(X) for somegp(X) € «.
The elemenip(X) is unique by (B.3), and thereforeis a linear function
¢ . g — t. By (B.6), ¢ is a projection. If we put = kerg, then we
haveg = s @ v as vector spaces, and we have only to showdhs Lie
subalgebra. The subspace- kerg is the set of allX such that (X)y, =

0. This is the set of alK such thatadX)y, = yo(adX). Actually if y is
any element of Eng, then the set oK € g such thatadX)y = y (adX)

is always a Lie subalgebra. Hengés a Lie subalgebra, and the proof is
complete.

2. Lie’s Third Theorem

Lie’s Third Theorem, which Lie proved as a result about vector fields
and local Lie groups, has come to refer to the following improved theorem
due to Cartan.

Theorem B.7. Every finite-dimensional Lie algebra ov&ris isomor-
phic to the Lie algebra of an analytic group.

PROOF. Let g be given, and writgy = s @, v as in Theorem B.2, with
s semisimple and solvable. Corollary 1.126 shows that there is a simply
connected Lie grouR with Lie algebra isomorphic ta The group Int is
an analytic group with Lie algebra adsomorphic tos sinces has center
0. Let Sbe the universal covering group of ltBy Theorem 1.125 there
exists a unigue action of Son R by automorphisms such thdf = r,
andG = S x, Ris a simply connected analytic group with Lie algebra
isomorphic tog = s @, t.

3. Ado’s Theorem

Roughly speaking, Ado’s Theorem is the assertion that every Lie algebra
overR has a one-one representation on some finite-dimensional complex
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vector space. This theorem can be regarded as sharpening Lie’s Third
Theorem: Each real Lie algebrais not merely the Lie algebra of an analytic
group; it is the Lie algebra of an analytic group of complex matrices.

Throughout this sectiorg, will denote a finite-dimensional Lie algebra
overR, andU (g©) will be the universal enveloping algebra of its complex-
ification.

Theorem B.8 (Ado’'s Theorem). Letg be a finite-dimensional Lie
algebra overR, let radg be its radical, and let be its unique largest
nilpotent ideal given as in Corollary 1.41. Then there exists a one-one
finite-dimensional representatignof g on a complex vector space such
thate(Y) is nilpotent for everyy inn. If g is complex, therp can be taken
to be complex linear.

The proof of the theorem will be preceded by two lemmas. The second
lemma is the heart of the matter, using the left Noetherian property of
universal enveloping algebras (Proposition 3.27) to prove that a certain
natural representation is finite dimensional.

The last statement of the theorem is something that we shall dispose
of now. Proving this extension of the theorem amounts to going over
the entire argument to see that, in every case, real vector spaces and Lie
algebras can be replaced by complex vector spaces and Lie algebras and
that Lie algebras that get complexified whgiis real do not need to be
complexified whery is complex. In Theorem B.2 the representation ad is
complex linear, and no new analog of Lemma B.1 is needed; Theorem 5.29
is enough by itself. In the proof of Theorem B.2 and the argument that is
about to come, wheg is complex, so is rag and so is the unique largest
nilpotent ideal. In Lemmas B.9 and B.12(g®) andT (g°) are simply to
be replaced by (g) andT (g), and Deg g and Eng g are to be replaced
by Der: g and End g. The details are all routine, and we omit them.

As in Appendix A, aderivation D : A — A of an associative algebra
Awith identity is a linear mapping such thAttuv) = (Du)v + u(Dv) for
all u andv in A. A derivation automatically haB (1) = O.

Lemma B.9. Any derivationd of a real Lie algebrg extends uniquely
to a derivatiord of U (g°) to itself.

PROOF. Uniqueness is clear since monomials spp®) and since the
assumptions determirtkon monomials.

For existence we use Proposition A.16 to construct a derivabiaf
T(g%) extendingd. To getD to descend to a derivatiah of U (g%), we
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need to see thdd carries

(B.10) kexT (g%) — U (g%))

to itself, i.e., that

(B.11) DUX®Y—-Y®X—[X,Y])v) isin(B.10)

for all monomialsu andv in T (g©) and for allX andY in g. The derivation
D acts on one factor of a product at a time. If it acts in a facton of
v, thenthe factokX ® Y — Y ® X —[X, Y]) is left alone byD, and the
corresponding term of (B.11) is in (B.10). Next suppose it acts on the
middle factor, leavingi andv alone. Sincel is a derivation ofj, we have

DIX®Y -Y®X—[X,Y])
—@AX®Y+X®dY)—dY®X+Y®dX)
— ([dX, Y] +[X, dY])
=@dX®Y-Y®dX —[dX,Y])
+(X®dY —dY ® X — [X, dY]).

The right side is the sum of two members of (B.10), and thus the remaining

terms of (B.11) are in (B.10). Thu® descends to give a definition df
onU(g%).

Lemma B.12. Let g be a real solvable Lie subalgebragsfN, C), let
0 be the Lie subalgebra Deg of End: g, and letr be the natural action
of 0 on g. Suppose that all members of the largest nilpotent idezl g
are nilpotent matrices. Then there exists a one-one representatiche
semidirect product &, g such thaip(d + Y) is nilpotent wheneveY is
in n and the membed of o is nilpotent as a member of End.

PROOF. LetG be the complex associative algebra of matrices generated
by g and 1. By Proposition 3.3 the inclusion gfinto G extends to an
associative algebra homomorphigm U (g¢) — G sending 1 into 1. Let
I be the kernel op. Sinceg is finite dimensional) is a two-sided ideal
of finite codimension irJ (g©). _

Using Lemma B.9, we extend each derivatibof g to a derivationd
of U (g®). LetD be the complex associative algebra of linear mappings of
U (g%) into itself generated by 1 and all the extensidns
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Let o € | be the subset of all € | such thatDu is in | for all
D € D. We prove thatly is an ideal inU (g®). It is certainly a vector
subspace. 'Ip segthat it is a left ideal, debe inU (g©), letu be in |,
and letD = d, - - - dx be a monomial iD. When we applyD to au, we
obtain a sum of 2terms; each term is of the forD,a)(D,u), with D,
equal to the product of a subset of ttheand D, equal to the product of
the complementary subset. Singés in Iy, eachD,u is in |, and hence
(D;a)(D,u) isiin . ConsequenthD(au) isin | for all D € D, andu is
in lo. Thuslg is a left ideal, and a similar argument shows that it is a right
ideal.

Recall that the members gfare N-by-N matrices. We are going to
obtain the space of the desired representati@s U (g)/1o. The finite
dimensionality of this space will follow from Corollary 3.28 (a consequence
of the left Noetherian property &f (g©)) once we prove that

(B.13) INC I, CI.

By Lie’s Theorem (Corollary 1.29) we may regard tieby-N matrices
in g as upper triangular. By assumption the matrices gre nilpotent.
Since the latter matrices are simultaneously upper triangular and nilpotent,

we see that; - - - Yy is the O matrix for anyyy, ..., Yy in n. Lifting this
result back vig to a statement about(g®), we conclude that
(B.14) Yi---Yy isin |

whenever ally; lieinn € U (g%).
Let J be the two-sided ideal ib (g©) generated by the membersof
Toward proving (B.13), we first show that (B.14) implies

(B.15) N,

Letus begin by showing thatinductively sthatifY isinnandX., ..., X
are ing, then

(B.16) Xi--- XY isin nU(g%).
This is trivial fors = 0. If sis > 1 and if (B.16) holds fos — 1, then
Xy o XY = Xg o+ Xeo1Y X+ Xp -+ Xe_1[Xs, Y.

Since [Xs, Y] is in n, the inductive hypothesis shows that both terms on
the right side are imU (g©). Thus (B.16) follows fos. Consequently we
obtain

(B.17) U (g%n S nU(g").



666 B. Lie's Third Theorem

From (B.17) it follows thatu, Y;u}) (U, Y2U5) is a sum of terms of the form
u,Y1Y;u;. Thus we can argue inductively orthat

(B.18) (U1 Y1u}) (Uz2YaUy) - - - (U YeUy)

is a sum of terms of the form,Y1Y; - - - Y/u’. Forr = N, the latter terms
are inl by (B.14). Every member of" is a sum of terms (B.18) with
r = N, and thus (B.15) follows.

From Proposition 1.40 we know thetX) is in n for anyd € 0 and
X € g. If d denotes the extension dfto U (g%), then it follows from the
derivation property ofl that

(B.19) dUg%) < J.

From another application of the derivation property, we obthiaN) <
JN. Taking products of such derivations and using (B.15), we see that
DNy c JN c | forall D € D. Therefore

(B.20) INC .

Now we can finish the proof of (B.13), showing tHat C 1,. Certainly
IN C I. Letus,...,uy beinl, and letD be a monomial inD. By
the derivation propertyD(u;---uy) is a linear combination of terms
(Dyuy) - - - (Dyuy) with D; a monomial inD. If some D; has degree
0, thenD,u; isin |, and the corresponding terf®,u;) - - - (Dyuy) isin |
sincel is a two-sided ideal. If alD; have degree- O, then (B.19) shows
that all D;u; are inJ. The corresponding tergD,u,) - - - (Dyuy) is then
in JN and is inl by (B.15). Thus all terms ob(u; - - -uy) are inl, and
U;--- Uy isin lq. This proves (B.13).

As was mentioned earlier, it follows from Corollary 3.28 thizt =
U (g% /I, is finite dimensional. Leti — u* be the quotient map. Thejt
is a unitalU (g*) module, and we obtain a representatioof g on it by
the definition

(B.21a) e(X)(U*) = (Xu)*.

Sincely is stable undeb, eachd in o induces a derivation(d) of G* given
by

(B.21b) p(d)u* = (du)*.
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Formula (B.21b) defines a representation et Derg g on G* because the
uniqueness in Lemma B.9 implies that

~ ~

[0y, dy] = di 0 — Oodh.

Proposition 1.22 observes thath, g becomes a semidirect-product Lie
algebra, ang, as defined in (B.21), is a representation @, g because

[o(d), e(X)]u* = @(d)e(X)u* — p(X)p(d)u*
= p(d)(Xu)* — p(X)(du)*
= (d(Xu))* — (Xdu)*
= ((dX)u + Xdu)* — (Xdu)*
= p(dX)u*
= ¢([d, XPu".

Now let us show thap is one-one as a representationoof,, g. If
¢(d + X) =0, then

0=g(d+ X)1* = [@d1)* + (XD* = X*.

ThenXisinly C I, andX = 0 as a member af. Sop(d) = 0. EveryX’
in g therefore has

0= @(d)(X)* = (dX)* = (dX)*.

HencedX' isin Iy € |, anddX’ = 0 as a member of. Sod is the 0
derivation. We conclude thatis one-one.

To complete the proof, we show thatd + Y) is nilpotent whenevey
is in n andd is nilpotent as a member of Egpg. To begin with,p(Y) is
nilpotent because (B.14) gives

(eY)Nu* = (YNuy* =0

for everyu. Next, let us see that(d) is nilpotent. In fact, leg,, = U,(g"),
sothay; is the subspadé, (g©)+ 1o 0f G*. If dP = 0, we show by induction
onn>1 thatanp(gn) = 0. Itis enough to handle monomialsdy. For
n=1,G isjustC + g, and we havel’(1) = 0 andd?X = dPX = O for
X in g¢. For generah, suppose thadl™Y?(G,_;) = 0. Any monomial of
G, is of the formXu with X € g© andu € G,_;. Powers of a derivation
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satisfy the Leibniz rule, and therefafe?(Xu) = S0 (7P) (d“X)(d"™*u).
The Lactorakx is 0 fork > p, and the fagtoﬁ“p*"u is 0 fork < p;
thusd™(Xu) = 0, and we have proved thdt’(G,) = 0. Then we have
e(d)"P(G) = (d™Gy)* = 0. SinceG* isfinite dimensional and) G = G*,
@(d)"™(G*) = 0 for n large enough. Henag(d) is nilpotent.

Now that we knowp(d) ande(Y) to be nilpotent, let us form the solvable
Lie subalgebr®d &, n of » @, g. Itis a Lie subalgebra sinaf(g) C n,
and it is solvable sincRd is abelian. By Lie's Theorem (Corollary 1.29),
we may choose a basis ¢f such that the matrix of every member of
¢(Rd + n) is upper triangular. Since(d) and¢(Y) are nilpotent, their
matrices are strictly upper triangular and hence the sum of the matrices is
strictly upper triangular. Consequentiyd + Y) is nilpotent.

PROOF OFTHEOREM B.8. We begin with the special case in whigls
solvable, so thayy = radg © n. We proceed by induction on dig If
dimg = 1, theng = R, andg; () = (8 ;) is the required representation.

Suppose thag is solvable with ding = n > 1, that the theorem has
been proved for solvable Lie algebras of dimension, and that is the
largest nilpotent ideal ig. By Proposition 1.23g contains an elementary
sequence—a sequence of subalgebras going frong @be dimension at
atime such that each is an ideal in the next. Moreover, the last members of
this sequence can be taken to be any subspaces betwegmifd g that
go up one dimension at atime. Proposition 1.39 shows ghat [< n, and
we may thus take to be one of the members of the elementary sequence.

Let h be the member of the elementary sequence of codimension 1 in
g, let ny be its largest nilpotent ideal, and 1&t be a member ofj not
in h. By inductive hypothesis we can find a one-one finite-dimensional
representatio, of h such thaipy(Y) is nilpotent for allY € n,. There
are now two cases.

Case 1: adX = 0. Then adX is nilpotent andX lies inn. Our
construction forces = g. Henceb is nilpotent andy must be the direct
sum of RX andh. Let us write members aof as pairs(t, Y) witht € R
andY € . Thenp(t, Y) = ¢1(t) ® ¢o(Y) is the required representation.

Case 2: adX # 0. We apply Lemma B.12 to the solvable Lie algebra
vo(h). Letd = Der h. The lemma gives us a one-one finite-dimensional
representatiorp of the semidirect produat & h such thatp(d + Y) is
nilpotent for allY € n, and all nilpotentd € 0. We restrict this to the
Lie subalgebraR(adX) & h, which is isomorphic withg. We consider
separately the subcases thas nilpotent andy is not nilpotent.
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Subcase 2a: g is nilpotent. Then the member &dof o is nilpotent
by (1.31), and thus every member@fR(adX) & b) is nilpotent. Sap,
interpreted as a representationgofs the required representation.

Subcase 2b: g is not nilpotent. Them is a nilpotent ideal ofy and we
must haven C n,. Again ¢, interpreted as a representationgofis the
required representation: Singeis not inn, adX is not nilpotent, and no
nonzero derivation ifR(ad X) is nilpotent. We know that every member
of ¢ (ny) is nilpotent, and thus every memberg(n) is nilpotent.

This completes the induction, and the theorem has now been proved for
g solvable.

Now we consider the general case in whighdoes not need to be
solvable. Let ragd be the largest solvable ideal @f and letn be the
largest nilpotent ideal. By the special case we can find a one-one finite-
dimensional representatiah of radg such that every member gf(n) is
nilpotent. Leto = Derg(radg). We apply Lemma B.12 to the solvable Lie
algebray (radg), obtaining a one-one finite-dimensional representagion
of 0 @ y(radg) such thatp; (d + ¥ (Y)) is nilpotent wheneveY isinn and
d is a nilpotent member af.

We apply the Levi decomposition of Theorem B.2 to wijtes a semidi-
rect produck @ radg with s semisimple. FoS € s and X € radg, define
©2(S+ X) = adSas a representation gfons©. Then we put

9(S+ X) = p1(adS+ ¥ (X)) & ¢2(S+ X)

as a representation gfon the direct sum of the spaces tarandgs,.

If (S+ X) = 0, theng,(S+ X) = 0 and ads = 0. Sinces is
semisimple,S = 0. Thereforep(X) = 0 andg(y¥ (X)) = 0. Sincey
if one-one on rag@ andg; is one-one ony (radg), we obtainX = 0. We
conclude thap is one-one.

Finally if Y is in n, theng.(¥(Y)) is nilpotent by construction, and
@2(Y) is 0 sinceY has nos term. Thereforep(Y) is nilpotent for everyy
inn.

4. Campbell-Baker—Hausdorff Formula

The theorem to be proved in this section is the following.

Theorem B.22 (Campbell-Baker—Hausdorff Formula). L&t be an
analytic group with Lie algebrg. Then for all A and B sufficiently close
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toOing, expAexpB = expC, where
(B.23) C=A+B+H,+---+Hy+---

is a convergent series in whidH, = %[A, B] and H, is a finite linear
combination of expressionadX,) - - - (adX,_1) X, with eachX; equal to
either A or B. The particular linear combinations that occur may be taken
to be independent @&, as well as ofA andB.

A way of getting at the formula explicitly comes by thinking Gf as
GL(N, C) and using the formula from complex-variable theory

z=loge* =log(l+ (¢ — 1)) = —1"*1—< —z”),
g g(1+ (& — 1)) k;k) k;m

valid for |z| < log2 sincele* — 1] < €7 — 1. Because the sum of a
convergent power series determines its coefficients, an identity of this
kind forces identities on the coefficients; for example, the sum of the
contributions from the right side to the coefficientofs 1, the sum of
the contributions from the right side to the coefficienzdis 0, etc. Hence
the identity has to be correct in a ring of formal power series. Then we can
substitute a matri, and we still have an identity if we have convergence.
Thus we obtain

(B.24)
_ N _ k+11' C _ 1\k
C= E: (=1 k(e 1)

k=1
= 1

=) (=D D (e"e® — ¥
k=

1 k
+§(A3+3AZB+3ABZ+83)+---> :

and H, will have to be the sum of the terms on the right side that are
homogeneous of degreerewritten in terms of brackets. For example, the
quadratic term is

L(A24+2AB + B? — 1{(A+ B)2= 1(2AB — AB — BA) = }[A, B],
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as stated in the theorem. Similar computation shows that

These formulas are valid as long Asand B are matrices that are not
too large: The first line of (B.24) is valid ifC|| < log2. The entire
computation is valid if als¢l A|| + || B|| < log 2 since

le”e® — 1) < e* — 1|l1le®|| + [e® — 1
< (&M — 1)elBl 4 (elBl _ 1)
_ lAI+IBI _ 1

This calculation indicates two important difficulties in the proof of The-
orem B.22. First, although the final formula (B.23) makes sense for any
G, the intermediate formula (B.24) and its terms likéB do not make
sense in general. We were able to use such expressions by using the matrix
product operation within the associative algedfaof all N-by-N complex
matrices. Thus (B.24) is a formula that may help wah (N, C), but it
has no meaning for genet@l To bypass this difficulty, we shall use Ado’s
Theorem, Theorem B.8. We formalize matters as in the first reduction
below.

A second important difficulty is that it is not obvious everG@h (N, C)
that the homogeneous terms of (B.24) can be rewritten as linear combina-
tions of iterated brackets. Handling this step requires a number of additional
ideas, and we return to this matter shortly.

FIRST REDUCTION In order to prove Theorem B.22, it is enough to
prove, within the associative algebra of Bltby-N complex matrices, that
the sum of the terms of

s 1 1
Y (—pet <(A+ B) + — (A% + 2AB + B?)
- K 2!
1 k
+ 5 (A +3A°B + 3AB? + B%) + - )

that are homogeneous of degmefor n > 2, is a linear combination
of expressiongadX;) - - - (adX,_1) X, with eachX; equal toA or B, the
particular combination being independentf
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PROOF OF FIRST REDUCTION The hypothesis is enough to imply the
theorem forGL (N, C). In fact, choose an open neighborhdddabout
C = 0in gl(N, C) where the exponential map is a diffeomorphism, then
choose neighborhoods éf = 0 andB = 0 such that”e® lies in expU,
and then cut down the neighborhoodsfot= 0 andB = O further so that
the computation (B.24) is valid. The hypothesis then allows us to rewrite
the homogeneous terms of (B.24) as iterated brackets, and the theorem
follows.

Let G be a general analytic group, and use Theorem B.8 to embed
its Lie algebrag in somegl(N, C). Let G; be the analytic subgroup of
GL(N, C) with Lie algebrag, so thatG andG; are locally isomorphic and
itis enough to prove the theorem 1@r. Choose an open neighborhddd
aboutC = 0 in g where exp ;g — G; is a diffeomorphism, then choose
open neighborhoods oA = 0 andB = 0 in g such that exAexpB
lies in expU;, and then, by continuity of the inclusiorgs C gl(N, C)
andG; € GL(N, ©), cut down these neighborhoods so that they lie in
the neighborhoods constructed 8L (N, C) in the previous paragraph.
The partial sums in (B.23) lie ig, and they converge igl(N, C). Thus
they converge ig. Since the exponential maps @, andGL (N, C) are
continuous and are consistent with each other, formula (B.Z3)i(N, C)
implies validity of (B.23) inG;.

Let A and B denote distinct elements of some set, and define a
2-dimensional complex vector space Yy= CA @ CB. LetT(V) be
the corresponding tensor algebra. We shall omit the tensor signs in writing
outproductsim (V). ForuinV andvin T (V), define(adu)v and [u, v]to
mearuv—vu. By Proposition A.14, the linear map ad¥into End- T (V)
extends to an algebra homomorphism ad 6¥) into End- T (V) sending
1to 1. For this extension, &ahu,)v is (adu;)(adu,)v, hotu,U,v — vU4Us.

SECOND REDUCTION In order to prove Theorem B.22, it is enough to
prove, within the tensor algebfa(V), that the sum of the terms of the
formal sum
c k+1 1 1 2 2
3 (-1 - <(A+ B) + 5 (A’ + 2AB + B?)

(B.25) k=1 '

1 k
+ 5 (A +3A°B + 3AB + B%) + )

that are homogeneous of degredor n > 2, is a finite linear combination
of expressiongadX,) - - - (ad X_1) X, with eachX; equal toA or B.
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PROOF OF SECOND REDUCTION Let 4y be the associative algebra of
all N-by-N complex matrices, and leA and B be given inAy. The
linear mapping ofV into 4y that sends the abstract elemeitsand B
into the matrices with the same names extends to an associative algebra
homomorphism off (V) into Ay. If the asserted expansion in terms of
brackets inT (V) is valid, then it is valid inAy as well, and the first
reduction shows that Theorem B.22 follows.

Now we come to the proof that the expression in (B.25) may be written
as asserted in the second reduction. We isolate three steps as lemmas and
then proceed with the proof.

Lemma B.26.For anyX in T (V) and form > 1,
XB™ ! 4+ BXB™ 24 ... + B™1X

_(m m—1 m m-2
_(1)XB +(2>((adB)X)B

m 2 m—-3 m m—-1
+(3>((ad8> X)B +~-+<m>(adB) X.

ProoF. If X is a polynomialP(B) in B, then the identity reduces to
mP(B)B™ ! = mP(B)B™1, and there is nothing to prove. Thus we may
assume thax is not such a polynomial.

Write L(B) and R(B) for the operators oit (V) of left and right mul-
tiplication by B. These commute, and(B) = R(B) + adB shows that
R(B) and adB commute. Therefore the binomial theorem may be used to
compute powers oR(B) 4+ adB, and we obtain

(adB)(L(B)™* + L(B)™?R(B) +--- + R(B)™ ™)

= (L(B) — R(B))(L(B)™™* + L(B)"™?R(B) +--- + R(B)™™)
=L(B)" — R(B)"

= (R(B) +adB)™ — R(B)™

_ m m-1 m m-—2 2 . m m
- (1> R(B)™'(adB) + (2> R(B)™%@dB)? + - - - + (m)(adB)

_ m (M o o (m 1
- (adB)((l)R(B) +<2>R(B) (adB)+ +(m>(adB) )

We apply both sides of this identity t%§. If H denotes the difference of
the left and right sides in the statement of the lemma, what we have just
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showed is thatadB)H = 0. A look atH shows thaH is of the form
CoB™ X 4+ ¢ B™2XB + - - - 4+ 1 XB™ 1,

and adB of this is

CoB™X + (C1 — Co)B™ ' XB + -+ + (Cn_1 — Cn_2) BXB™ ! — ¢ 1 XB™.

To obtain the conclusioil = 0, which proves the lemma, it is therefore
enough to show that the eleme®8X, B™"1XB, ..., XB™ are linearly
independent i (V).

SinceX is not a polynomial irB, we can writeX = (c+ PA+ QB) Bk
withk > 0,ce C, P e T(V), Q € T(V), andP # 0. Assume a linear
relation among3™X, B™1XB, ..., XB™, and substitute foX in it. The
resulting monomials withA as close as possible to the right end force
all coefficients in the linear relation to be 0, and the linear independence
follows. This proves the lemma.

It will be handy to express the above lemma in a slightly different
language. FoX in T(V), letdy be the linear map o¥ into T (V) given
by
dx(&A‘f’ bB) =bX,

and extendly to a derivationDy of T (V) by means of Proposition A.16.

If P(2) = ap+ &z + @22 + - -- + ayz" is any ordinary polynomial,
we defineP(B) = ay + ;B + a,B% + --- 4+ ayBM. The derivatives
P'(2), P"(2), ... are polynomials as well, and thus it is meaningful to
speak ofP’'(B), P"(B), ....

LemmaB.27.If P(2) = ag+ a1z + a,2% + - - - +ayzV is a polynomial
of degreeM, then

P'(B P"(B

Dx(P(B)) = X 1(| ) 4 ((adB)X) 2(| )
" PM (B
+ ((@dB)?X) PS('B) + -+ (@dB)M1X) M(I )

PrROOF. The special case of this result whé{z) = z™ is exactly
Lemma B.26. In factDyx(P(B)) is the left side of the expression in that
lemma, and the right side here is the right side of the expression in that
lemma. Thus Lemma B.27 follows by taking linear combinations.
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Let T=M(V) = @L,T"(V) and T-M(V) = @72y, T™(V). The
spacel M (V) is atwo-sided ideal iff (V), butT=M(V) is just a subspace.
We haveT (V) = T=M(V) @ T>M(V) as vector spaces. Because" (V)
is an ideal, the projectiomy of T(V) onT=M(V) alongT>M (V) satisfies

(B.28) v (UV) = v ((TmU) (Twv)) = v (UM Y))

foralluandv in T(V).

Again let X be a member of (V). From now on, we assume has
no constant term. Sincé has no constant term, the derivatibr carries
T"(V) to T>"-1(V) for all n. Then it follows that

(829) Twm Dx =T\ DXR—M-
Since T=M(V) is finite dimensional, the exponential of a member of

End-(T=M(V)) is well defined. Forz in C, we apply this observation
to zry Dxrm. We shall work with

(830) v eXp(zry Dymm) = exp(zrm Dyxmym)mm.
Put
(B.31) C(2) = Cu(2) = m exp(z Dy7r) (B).

For eachz € C, this is a member of (V) without constant term. For
z=0, we haveC(0) = Bforall M > 0.

Lemma B.32. For any integek > 0,
7w (C(2)) = i exp(zry Dyt ) (BY).

PrOOF. Without loss of generality we may assuke 1. Then

dCqt d
% = ET[M exatTFM Dx]TM)(B)
d
=T\ a exp(try Dxmm)(B) sincemy, is linear

= (ty Dxmry) expltry Dxrw)(B) by Proposition 0.11d
= (mm Dx)C(1),
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and hence

d d
F(CO 4 = tC(t))

e (dcdt( ) eyt 4+ oy €0 ( ) COF2 4 -+ Ct)<? d(;t(t))
= m((TuDxC()CH)*t + C(t)(ﬂM DxC(t))C(t)*?

+ -+ Ct) (muDXC(1)))
= mm((DXxC(1))C (1) ™ + C(t)(DxC(t))C(t) 2

+ -+ CHYDKC(1))) by (B.28) and (B.29)
= (mm Dx)(C(1)").

Therefore, using (B.29), we find

d m
(a) T (CMOF) = (1 Dx)™(C(®)).

Sincez — my (C(2)X) is analytic,

(€@ = Y o (8) |
m=0 """ -

o0 m

=TTm Z— (rm Dx)™ (C(O) )
m=0

o0 m

=nMZ ; (7uDxmw)™(C(0)) by (B.29)

mO

= 1w eXP(zry Dyrm) (C(0)9),

and the lemma follows.

PrROOF OF THEOREM B.22. According to the statement of the second
reduction, what needs proof is that, in the formal expression (B.25), the
sum of the terms homogeneous of each particular degree greater than 1 is
a finite linear combination of iterated brackets involviAgindB. Let M
be an odd integer greater than the degree of homogeneity to be addressed.

Let X be an element iff (V) without constant termX will be specified
shortly.
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DefineEy(2) = 1+2z2+72/2'+ - - - + 2z /M! to be theM™ partial sum
of the power series foe?. ThenEy (B) is in T=M(V). The derivatives
of this particular polynomial have the property thau_k(Eﬁ,lk)(B)) =
am_k(Em(B)) for 0 < k < M. If Y is in T=*%(V), then it follows
that

i (YKEy (B)) = 7 (YeEm(B)).

Applying Lemma B.27 withP = E, and takingY, = (adB)**X for
1 <k < M, we obtain

7m (Dx(Em(B)))
= m((x + (ad;)x + (ang!)ZX +--- 4 %)EM(B))
= g (1 B2 @IBY L @I ) Eue)
by (B.28).
From complex-variable theory we have
whereb; = % b, = —slo, ... are Bernoulli numbers apart from signs.

Remembering tha¥l is odd, we can finally defini:

X = (1—%+—( dB)>2 + " (@dB)*+-- +(?;|M_”S, (adB)"~ 1)

The elemeniX is in T=M(V). Substituting forX in the expression

O )

above, we find that
(B.33) m(Dx(Ew(B))) = nm (AEW(B)).
We shall now prove by induction fon > 1 that

(B.34) (v Dxtm)™(Em(B)) = 7tm (A"Em(B)).
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The result fom = 1 is just (B.33). Assuming the result for— 1, we use
(B.28), (B.29), and (B.33) repeatedly to write

(7rm Dx7tm) ™ (En(B)) = (7tm Dt ) (rm Dxtn) ™ (Em (B))
= (7mDxtm) (Tm (A" " En(B)))
= 7tm Dxtm (A" "En(B))
=y Dx (A" En(B))
= 7w (A" Dy (En(B))) sinceDx(A) =0
= tm (A" 'y Dx (Em(B)))
= m (A" 'y (AEM(B)))
= 7 (ATEn(B)).

This completes the induction and proves (B.34).
Next we shall prove that

(B.35) mwDxmy  is nilpotenton T=M(V).

To do so, we shall exhibit a basis M (V) with respect to which the
matrix of ryy Dy Ty is strictly lower triangular. The basis begins with

1, B, A, B%, BA, AB, A?,

and it continues with bases af(V), T4(V), and so on. The basis of
T™(V) begins withB™, then contains all monomials iA and B with 1
factor Aandm — 1 factorsB, then contains all monomials i andB with
2 factorsA andm— 2 factorsB, and so on. Take a member of this basis, say
amonomial inT™(V) with k factors ofA andm— k factors ofB. When we
apply my Dxmy, the right-handry changes nothing, and thH2y acts on
the monomial as a derivation. Sinbg A = 0, we getm — k terms, each
obtained by replacing one instance®by X. The definition ofX shows
that X is the sum ofA and higher-order terms. When we substituteXor
the A gives us a monomial ifi "(V) with one moreA and one les8, and
the higher-order terms give us membersTof"(V). Application of the
final r\y merely throws away some of the terms. The surviving terms are
linear combinations of members of the basis farther along than our initial
monomial, and (B.35) follows.

Because of (B.35), we may assume tha} Dxmy)™ = 0, whereM’
is > M. Multiplying (B.34) by I/m! and summing up td/’, we obtain

(B.36) v €XP(rw Dxtw) (Em(B)) = am (Em (A Em(B)).
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Meanwhile if we multiply the formula of Lemma B.32 by &' and sum
for0 < k < M, we have

(B.37) m(Em(C(2))) = mm exp(zrm Dxrm) (Ev (B)).
PutC = C(1). Forz = 1, equations (B.36) and (B.37) together give
(B.38) m(Em(C)) = mm(Em (A En(B)).

We can recoveC from this formula by using the power series for (&g- 2)

in the same way as in the first line of (B.24), and we see from (B.38) that

C is the member oT (V) whose expression in terms of brackets we seek.
To obtain a formula foC, we use (B.31) witlz = 1 to write

C= TMm eXFXT[M ijTM)(B)

— (14 G Dy + T DRIy
=B+ <1+ Sl ZT”M) Y DXMJT/:\A)M%)(JTM Dx7mm)(B)
=B+ <1+ (tw ZTEM) g Do) T D)I\(Ajf!“")w_l)

x (1 - (aOZIB) + % (@adB)*+ - - +% (adB)M‘l)(A)
A4 B+(1+ (7w ZTW) o (w DXMn,;\/I)M/l)

< (- B 2 @B N (adB) ) (A,

the last step holding sindey (A) = 0. The right side is the sum &+ B,
a linear combination of various bracket tertasiB)™(A) withm > 1, and
terms(my Dxrw)*((@dB)™(A)) with k > 1 andm > 1.

To complete the proof, we are to show that each of the terms

(B.39) (7rm Dxrw)“((@dB)™(A))

with k > 1 andm > 1 is a linear combination of iterated brackets. It is
enough to prove that if

(B.40) (adXjp)(adXy)--- (adX,_1)X,, with eachX; equal toA or B,
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is given, thenryy Dxmry) Of itis a linear combination of other terms of the
same general form as (B.40) with variauis.

Let us prove inductively ok that ad(adB)*A) is a linear combination
of terms

(B.41) (adB)! (adA)(adB)*), 0<j <k
This is trivial fork = 0. If it is true fork — 1, then
ad((adB)“A) = ad((adB)((adB)*1A))
= ad(B((adB)**A) — ((adB)**A)B)
= (adB)(ad((adB)""'A)) — (ad((adB)*"'A))(adB),

and substitution of the result fér— 1 yields the result fok.
Since X is a linear combination of term@dB)*A, we see from the
above conclusion that ad is a linear combination of terms (B.41).
Next we observe the formula

(B.42) Dy ((adu)v) = (@adDxu))v + (adu)(Dyv).

In fact,
Dy ((adu)v) = Dx(uv — vu)
= (DxU)U + U(DxU) — (D)(U)U — U(DxU)
= (ad(Dxu))v + (adu)(Dxv).

Now suppose that (B.40) is given. In applying Dxmy, we may
disregard the occurrences of; at the ends. Formula (B.42) allows us
to compute the effect dby on (B.40). We get the sum ofterms. In the
firstn— 1 terms the factofad X;) gets replaced bgad X) if X; = Borby 0
if Xj = A; we have seen thaadX) is alinear combination of terms (B.41),
and thus substitution in these— 1 terms give terms of the same general
form as (B.40). In the last term that we obtain by applyibg to (B.40),
the factorX, gets replaced by if X, = B or by 0 if X, = A; sinceX
is a linear combination of term@dB)* A, substitution yields terms of the
same general form as (B.40). This proves that applicatiar@Dxmy)
to (B.40) yields terms of the same general form. The theorem follows.

Using the same notatioi = CA @ CB as in the last part of the proof
of Theorem B.22, we can derive an explicit formula for how (B.25) may
be expressed as the sumAf+ B and explicit iterated brackets. Being an
associative algebrd,(V) is also a Lie algebra under the bracket operation
[u, v] = uv — vu. LetL (V) be the Lie subalgebra df(V) generated by
the elements 0¥ . This consists of linear combinations of iterated brackets
of elements o
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Proposition B.43. The unique linear map : T(V) — T (V) such that
p(l) =0, p(v) =vforvinV, and

P(v1---vy) = N"H(@dvy) - - - (@dvn_1)vn

whenevem > 1 andv, ..., v, are all inV has the property of being a
projection of T (V) ontoL (V).

REMARKS. Since we know from Theorem B.22 that the sum of all terms
in (B.25) with a given homogeneity is in(V), we can apply the map to
such a sum to get an expression in terms of iterated brackets. For example,
consider the cubic terms. Many terms, lik&8? and (A + B)3, map to 0
underp. For the totality of cubic terms,

P(2(A®+ 3A’B + 3AB? + B®) — 1(3(A*+ 2AB + B?)(A+ B))
— 2((A+ B)3(A*+2AB + B?) + 1 ((A+ B)%)

= 1{3(adA)’B — 1 ((adA)’B + 2(adA)(adB) A + (adB)*A)
— 2(2(adA)’B + 2(adB)(adA) B)}

= 5((@dA)’B + (adB)*A).

PROOF. The mapp is unigue since the monomialshgeneratel (V).
For existence, we readily defiqeon eachl (V) by means of the universal
mapping property ofi-fold tensor products. It is clear thatcarriesT (V)
into L (V). To complete the proof, we show thais the identity onL (V).

Recall that ad has been extended frgno T (V) as a homomorphism,

so that adAB) A, for example, isadA)(adB)A = 2ABA — A’B — BA?,
not (AB)A — A(AB). However, we shall prove that

(B.44) (adx)u = xu —ux forx e L(V).

It is enough, for eaclm, to consider elements that aren-fold iterated
brackets of members &f, and we proceed inductively an For degree
n = 1, (B.44) is the definition. Assuming (B.44) for degreen, we

suppose thax andy are iterated brackets of members\ofand that the
sum of their degrees is. Then

(ad[x, yhu = ad(xy — yx)u
= (adx ady — ady adx)u
= X(Yu — uy) — (YU — uy)X — y(Xu — ux) + (Xu — ux)y
=[x, ylu —u[x, y],
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and the induction is complete.

To prove thatp is the identity onL(V), we introduce an auxiliary
mappingp* : T(V) — L(V) defined in the same way @sexcept that the
coefficientn=! is dropped in the definition om, - - - v,. The mapp* has
the property that

(B.45) p*(uv) = (adu) p*(v)

foralluandvin T (V) aslong a® has no constantterm. Infact, itis enough
to consider the case of monomials, say= u;--- Uy, andv = vy --- v,
withn > 1. Then

p*(Uv) = (aduy) - - - (@dup)(@dvy) - - - (@dvy_1) vy
= (adu)(adv;) - - - (@dvn_1) vy
= (adu) p*(v),

and (B.45) is proved.
Next let us see that

(B.46) p* restricted toL (V) is a derivation ofL (V).

In fact, if x andy are inL (V), (B.44) and (B.45) yield

P*[X, y] = p*(xy — yx) = (adx) p*(y) — (ady) p*(x)
=[x, "] = [y, pP*X)] =[x, p*N] + [p*(X), VI

and (B.46) is proved.

Using (B.46), we prove inductively on the degree of the bracket that if
x € L(V) is an iterated bracket involving elements o/, thenp*(x) =
nx. This is true by definition op* for n = 1. Suppose it is true for all
degrees less than Letx andy be members oE (V) given asd-fold and
(n — d)-fold iterated brackets of memberséf Then

P [X, ¥yl =[x, p*y] + [p*X, y] = (n — d)[x, y] +d[X, y] = n[x, y],

and the induction goes through. Thpsacts onL (V) as asserted, angl
acts onL (V) as the identity. Thug is indeed a projection of (V) onto
L(V).





