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CHAPTER II

Metric Spaces

Abstract. This chapter is about metric spaces, an abstract generalization of the real line that allows
discussion of open and closed sets, limits, convergence, continuity, and similar properties. The usual
distance function for the real line becomes an example of a metric. The other notions are defined in
terms of the metric. The advantage of the generalization is that proofs of certain properties of the
real line immediately go over to all other examples.
Section 1 gives the definition of metric space and open set, and it lists a number of important

examples, including Euclidean spaces and certain spaces of functions.
Sections 2 through 4 develop properties of open and closed sets, continuity, and convergence of

sequences that are simple generalizations of known facts about R.
Section 5 shows how a subset of a metric space can be made into a metric space so that the

restriction of a continuous function from the whole space to the subset remains continuous. It also
shows that three natural metrics for the product of two metric spaces lead to the same open sets,
continuous functions, and convergent sequences.
Section 6 shows that any metric space is “Hausdorff,” “regular,” and “normal,” and it goes on to

exhibit three different countability hypotheses about a metric space as equivalent. A metric space
with these properties is called “separable.”
Section 7 concerns compactness and completeness. A metric space is defined to be “compact”

if every open cover has a finite subcover. This property is equivalent to the condition that every
sequence has a convergent subsequence. The Heine–Borel Theorem says that the compact sets of
Rn are exactly the closed bounded sets. A number of the results early in Chapter I that were proved
by the Bolzano–Weierstrass Theorem in the context of the real line are seen to extend to any compact
metric space. A metric space is “complete” if every Cauchy sequence is convergent. A metric space
is compact if and only if it is complete and “totally bounded.”
Section 8 concerns connectedness, which is an abstraction of the property of an interval of the

line that accounts for the Intermediate Value Theorem.
Section 9 proves a fundamental result known as the Baire Category Theorem. A sample con-

sequence of the theorem is that the pointwise limit of a sequence of continuous complex-valued
functions on a complete metric space must have points where it is continuous.
Section 10 studies the spaces of real-valued and complex-valued continuous functions on a

compact metric space. A generalization of Ascoli’s Theorem from the setting of Chapter I provides a
characterizationof compact sets in either of these spaces of continuous functions. A generalizationof
theWeierstrass Approximation Theorem, known as the Stone–Weierstrass Theorem, gives sufficient
conditions for a subalgebra of either of these spaces of continuous functions to be dense. One
consequence is that these spaces of continuous functions are separable.
Section 11 constructs the “completion” of a metric space out of Cauchy sequences in the given

space. The result is a complete metric space and a distance-preservingmap of the given metric space
into the completion such that the image is dense.
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84 II. Metric Spaces

1. Definition and Examples

Let X be a nonempty set. A function d from X × X , the set of ordered pairs of
members of X , to the real numbers is ametric, or distance function, if

(i) d(x, y) ∏ 0 always, with equality if and only if x = y,
(ii) d(x, y) = d(y, x) for all x and y in X ,
(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x , y, and z, the triangle inequality.

In this case the pair (X, d) is called ametric space.
The real line R1 with metric d(x, y) = |x − y| is the motivating example.

Properties (i) and (ii) are apparent, and property (iii) is readily verified one case
at a time according as z is less than both x and y, z is between x and y, or z is
greater than both x and y.
We come to further examples in a moment. Particularly in the case that X is

a space of functions, a space may turn out to be almost a metric space but not to
satisfy the condition that d(x, y) = 0 implies x = y. Accordingly we introduce
a weakened version of (i) as

(i0) d(x, y) ∏ 0 and d(x, x) = 0 always,
and we say that a function d from X × X to the real numbers is a pseudometric
if (i0), (ii), and (iii) hold. In this case, (X, d) is called a pseudometric space.
Let (X, d) be a pseudometric space. If r > 0, the open ball of radius r and

center x , denoted by B(r; x), is the set of points at distance less than r from x ,
namely

B(r; x) = {y ∈ X | d(x, y) < r}.

The name “ball” will be appropriate in Euclidean space in dimension three, which
is part of the Example 1 below, and “ball” is adopted for the corresponding notion
in a general pseudometric space.
A subsetU of X is open if for each x inU and some sufficiently small r > 0,

the open ball B(r; x) is contained in U . For the line the open balls in the above
sense are just the bounded open intervals, and the open sets in the above sense
are the usual open sets in the sense of Chapter I.

Lemma 2.1. In any pseudometric space (X, d), every open ball is an open set.
The open sets are exactly all possible unions of open balls.

PROOF. Let an open ball B(r; x) be given. If y is in B(r; x), then the open ball
B(r − d(x, y), y) has center y and positive radius; we show that it is contained
in B(r; x). In fact, if z is in B(r − d(x, y), y), then the triangle inequality gives

d(x, z) ≤ d(x, y) + d(y, z) < d(x, y) + (r − d(x, y)) = r,

and the containment follows.
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For the second assertion it follows from the definition of open set that every
open set is the union of open balls. In the reverse direction, let U be a union of
open balls. If y is inU , then y lies in one of these balls, say in B(r; x). We have
just shown that some open ball B(s; y) is contained in B(r; x), and B(r; x) is
contained in U . Thus B(s; y) is contained in U , and U is open. §

EXAMPLES.
(1) Euclidean space Rn . Fix an integer n > 0. Let Rn be the space of

all n-tuples of real numbers x = (x1, . . . , xn). We define addition of n-tuples
componentwise, and we define scalar multiplication by cx = (cx1, . . . , cxn) for
real c. Following the normal convention in linear algebra, we identify this space
with the real vector space, also denoted byRn , of all n-component column vectors

of real numbers x =




x1
...
xn



. Generalizing the notion of absolute value when

n = 1, we let |x | =
°Pn

j=1 x2j
¢1/2 for x = (x1, . . . , xn) in Rn . The quantity |x |

is the Euclidean norm of x . The Euclidean norm satisfies the properties
(a) |x | ∏ 0 always, with equality if and only if x equals the zero tuple

0 = (0, . . . , 0),
(b) |cx | = |c||x | for all x and for all real c,
(c) |x + y| ≤ |x | + |y| for all x and y.

Properties (a) and (b) are apparent, but (c) requires proof. The proof makes use
of the familiar dot product, given by x · y =

Pn
j=1 xj yj if x = (x1, . . . , xn)

and y = (y1, . . . , yn). In terms of dot product, the Euclidean norm is nothing
more than |x | = (x · x)1/2. The dot product satisfies the important inequality
|x · y| ≤ |x ||y|, known as the Schwarz inequality and proved for this context in
Section A5 of Appendix A at the end of the book. A more general version of the
Schwarz inequality will be stated and proved in Lemma 2.2 below. The Schwarz
inequality implies (c) above because we then have

|x + y|2 = (x + y) · (x + y) = x · x + 2(x · y) + y · y

= |x |2 + 2(x · y) + |y|2 ≤ |x |2 + 2|x ||y| + |y|2 = (|x | + |y|)2.

We make X = Rn into a metric space (X, d) by defining

d(x, y) = |x − y|.

Properties (i) and (ii) of a metric are immediate from (a) and (b), respectively;
property (iii) follows from (c) in the form |a + b| ≤ |a| + |b| if we substitute
a = x − z and b = z − y. For n = 1, this example reduces to the line as
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discussed above. For n = 2, open balls are geometric open disks, while for
n = 3, open balls are geometric open balls. For any n, the open sets in the metric
space coincide with the open sets as defined in calculus of several variables.
(2) Complex Euclidean space Cn . The space C of complex numbers, with

distance function d(z, w) = |z− w| as in Section I.5, can be seen in two ways to
be a metric space. One way was carried out in Section I.5 and directly uses the
properties of the absolute value function |z| in Section A4 of Appendix A. The
other way is to identify z = x + iy with the member (x, y) of R2, and then the
absolute value |z| equals the Euclidean norm |(x, y)| in the sense of Example 1;
hence the construction of Example 1 makes the set of complex numbers into a
metric space. More generally the complex vector space Cn of n-tuples

z = (z1, . . . , zn) = (x1, . . . , xn) + i(y1, . . . , yn) = x + iy

becomes a metric space in two equivalent ways. One way is to define the norm
|z| =

°Pn
j=1 |zj |2

¢1/2 as a generalization of the Euclidean norm for Rn; then we
put d(z, w) = |z − w|. The argument that d satisfies the triangle inequality is a
variant of the one for Rn: The object for Cn that generalizes the dot product for
Rn is the Hermitian inner product

(z, w) =
°
(z1, . . . , zn), (w1, . . . , wn)

¢
=

nX

j=1
zjwj .

TheEuclideannorm is given in termsof this expressionby |z| = (z, z)1/2, and the
version of the Schwarz inequality in Section A5 of Appendix A is general enough
to show that |(z, w)| ≤ |z||w|. The sameargument as forExample1 shows that the
normsatisfies the triangle inequality, and then it follows thatd satisfies the triangle
inequality. The other way to viewCn as a metric space is to identifyCn withR2n
by (z1, . . . , zn) 7→ (x1, . . . , xn, y1, . . . , yn) and then to use themetric onR2n from
Example 1. This is the same metric, since

Pn
j=1 |zj |2 =

Pn
j=1 x2j +

Pn
j=1 y2j .

We still get the same metric if we instead use the identification (z1, . . . , zn) 7→
(x1, y1, . . . , xn, yn). With either identification the Hermitian inner product (z, w)
for Cn corresponds to the ordinary dot product for R2n .
(3) System R∗ of extended real numbers. The function f (x) = x/(1 + x)

carries [0,+∞) into [0,+1) and has g(y) = y/(1 − y) as a two-sided inverse.
Therefore f is one-one and onto. We can extend f so that it carries (−∞,+∞)
one-one onto (−1,+1) by putting f (x) = x/(1+ |x |). We can extend f further
by putting f (−∞) = −1 and f (+∞) = +1, and then f carries [−∞,+∞],
i.e., all of R∗, one-one onto [−1,+1]. The function f is nondecreasing on
[−∞,+∞]. For x and x 0 in R∗, let

d(x, x 0) = | f (x) − f (x 0)|.
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We shall show that d is a metric. By inspection, d satisfies properties (i) and (ii)
of a metric, and we are to prove the triangle inequality (iii), namely that

d(x, x 0) ≤ d(x, x 00) + d(x 00, x 0).

The critical fact is that f is nondecreasing. Since d satisfies (ii), we may assume
that x ≤ x 0, and then

d(x, x 0) = f (x 0) − f (x).

We divide the proof into three cases, depending on the location of x 00 relative to
x and x 0. The first case is that x 00 ≤ x , and then

d(x, x 00) + d(x 00, x 0) = f (x) − f (x 00) + f (x 0) − f (x 00).

Thus the question is whether

f (x 0) − f (x)
?
≤ f (x) − f (x 00) + f (x 0) − f (x 00),

hence whether
2 f (x 00)

?
≤ 2 f (x).

This inequality holds, since f is nondecreasing. The second case is that x ≤
x 00 ≤ x 0, and then

d(x, x 00) + d(x 00, x 0) = f (x 00) − f (x) + f (x 0) − f (x 00) = f (x 0) − f (x).

Hence equality holds in the triangle inequality. The third case is that x 0 ≤ x 00,
and then

d(x, x 00) + d(x 00, x 0) = f (x 00) − f (x) + f (x 00) − f (x 0).

The triangle inequality comes down to the question whether

2 f (x 0)
?
≤ 2 f (x 00).

This inequality holds, since f is nondecreasing. We conclude that (R∗, d) is a
metric space. It is not hard to see that the open balls in R∗ are all intervals (a, b),
[−∞, b), (a,+∞], and [−∞,+∞] with −∞ ≤ a < b ≤ +∞. Each of these
open balls inR∗ intersectsR in an ordinary open interval, bounded or unbounded.
The open sets in R therefore coincide with the intersections of R with the open
sets of R∗.
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(4) Bounded functions in the uniform metric. Let S be a nonempty set, and
let X = B(S) be the set of all “scalar”-valued functions f on S that are bounded
in the sense that | f (s)| ≤ M for all s ∈ S and for a constant M depending on
f . The scalars are allowed to be the members of R or the members of C, and
it will ordinarily make no difference which one is understood. If it does make a
difference, we shall write B(S, R) or B(S, C) to be explicit about the range. For
f and g in B(S), let

d( f, g) = sup
s∈S

| f (s) − g(s)|.

It is easy to verify that (X, d) is a metric space. Let us not lose sight of the fact
that the members of X are functions. When we discuss convergence of sequences
in a metric space, we shall see that a sequence of functions in this X converges if
and only if the sequence of functions converges uniformly on S.
(5) Generalization of Example 4. We can replace the range R or C of the

functions in Example 4 by any metric space (R, ρ). Fix a point r0 in the range
R. A function f : S → R is bounded if ρ( f (s), r0) ≤ M for all s and for some
M depending on f . This definition is independent of the choice of r0 because ρ
is assumed to satisfy the triangle inequality. If we let X be the space of all such
bounded functions from S to R, we can make X into a metric space by defining
d( f, g) = sups∈S ρ( f (s), g(s)).
(6) Sequence space `2. This is the space of all sequences {cn}∞n=−∞ of scalars

with
P

|cn|2 < ∞. A metric is given by

d({cn}, {dn}) =
≥ ∞X

n=−∞

|cn − dn|2
¥1/2

.

In the case of complex scalars, this example arises as a natural space containing
all systems of Fourier coefficients of Riemann integrable functions on [−π, π],
in the sense of Chapter I. Proving the triangle inequality involves arguing as in
Examples 1 and 2 above and then letting the number of terms tend to infinity.
The role of the dot product is played by ({cn}, {dn}) =

P∞
n=−∞ cndn .

(7) Indiscrete space. If X is any nonempty set and if d(x, y) = 0 for all x
and y, then d is a pseudometric and the only open sets are X and the empty set
∅. If X contains more than one element, then d is not a metric.
(8) Discrete metric. If X is any nonempty set and if

d(x, y) =

Ω 1 if x 6= y,
0 if x = y,

then d is a metric, and every subset of X is open.
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(9) Let S be a nonempty set, fix an integer n > 0, and let X be the set of
n-tuples of members of S. For n-tuples x = (x1, . . . , xn) and y = (y1, . . . , yn),
define

d(x, y) = #{ j | xj 6= yj },
the number of components in which x and y differ. Then (X, d) is a metric space.
The proof of the triangle inequality requires a little argument, but we leave that
for Problem 1 at the end of the chapter. Every subset of X is open, just as with
the discrete metric in Example 8.
(10) Hedgehog space. Let X be R2, and single out the origin for special

attention. Let d be the metric of Euclidean space, and define

ρ(x, y) =

Ω d(x, y) if x and y are on the same ray from 0,
d(x, 0) + d(0, y) otherwise.

Then ρ is a metric. Every open set in (X, d) is open in (X, ρ), but a set like the
one in Figure 2.1 is open in (X, ρ) but not in (X, d).

FIGURE 2.1. An open set centered at the origin in the hedgehog space.

(11)Hilbert cube. Let X be the set of all sequences {xm}m∏1 of real numbers
satisfying 0 ≤ xm ≤ 1 for all m, and put

d({xm}, {ym}) =
∞X

m=1
2−m |xm − ym |.

Then (X, d) is a metric space. To verify the triangle inequality, we can argue as
follows: Let {xm}, {ym}, and {zm} be in X . For each m, we have

2−m |xm − ym | ≤ 2−m |xm − zm | + 2−m |zm − ym |.

Thus
NX

m=1
2−m |xm − ym | ≤

NX

m=1
2−m |xm − zm | +

NX

m=1
2−m |zm − ym |

≤
∞X

m=1
2−m |xm − zm | +

∞X

m=1
2−m |zm − ym |

for each N . Letting N tend to infinity yields the desired inequality.
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(12) L1 metric on Riemann integrable functions. Fix a nontrivial bounded
interval [a, b] of the line, let X be the set of all Riemann integrable complex-
valued functions on [a, b] in the sense of Chapter I, and define

d1( f, g) =
Z b

a
| f (x) − g(x)| dx

for f and g in X . Then (X, d1) is a pseudometric space. It can happen thatR b
a | f (x) − g(x)| dx = 0 without f = g; for example, f could differ from g at
a single point. Therefore d1 is not a metric.
(13) L2 metric on complex-valued R[−π, π]. This example arose in the

discussion of Fourier series in Section I.10, and it was convenient to include a
factor 1

2π in front of integrals. Let X = R[−π, π], and define

d2( f, g) =
≥ 1
2π

Z π

−π

| f (x) − g(x)|2 dx
¥1/2

.

Then (X, d2) is a pseudometric metric space. The triangle inequality was proved
in Lemma 1.64 using the version of the Schwarz inequality in Lemma 1.63; that
version of the Schwarz inequality needed a special argument given in Lemma
1.62 in order to handle functions f whose norm satisfies k f k2 = 0.

The constructions of metric spaces in Examples 1, 2, 6, and 13 are sufficiently
similar to warrant abstracting what was involved. We start with a real or complex
vector space V , possibly infinite-dimensional, and with a generalization ( · , · )
of dot product. This generalization is a function from V × V to R in the case
that V is real, and it is a function from V × V to C in the case that V is complex.
We shall write the scalars as if they are complex, but only real scalars are to be
used if the vector space is real. The function is written ( · , · ) and is assumed to
satisfy the following properties:

(i) it is linear in the first variable, i.e., (x1 + x2, y) = (x1, y) + (x2, y) and
(cx, y) = c(x, y),

(ii) it is conjugate linear in the second variable, i.e., (x, y1 + y2) =
(x, y1) + (x, y2) and (x, cy) = c̄(x, y),

(iii) it is symmetric in the real case andHermitian symmetric in the complex
case, i.e., (y, x) = (x, y),

(iv) it is definite, i.e., (x, x) > 0 if x 6= 0.
The form ( · , · ) is called an inner product if V is real or complex and is often
called also aHermitian inner product if V is complex; in either case, V with the
form is called an inner-product space. Two vectors x and y with (x, y) = 0 are
said to be orthogonal; the notion of orthogonality generalizes perpendicularity
in the case of the dot product.
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For either kind of scalars, we define kxk = (x, x)1/2, and the function k · k
is called the associated norm. We shall see shortly that a version of the Schwarz
inequality is valid in this generality, the proof being no more complicated than
the one in Section A5 of Appendix A.
In many cases in practice, item (iv) is replaced by the weaker condition that
(iv0) ( · , · ) is semidefinite, i.e., (x, x) ∏ 0 if x 6= 0.

This was what happened in Example 13 above. In order to have a name for
this kind of space, let us call V with the semidefinite form ( · , · ) a pseudo
inner-product space. It is still meaningful to speak of orthogonality. It is still
meaningful also to define kxk = (x, x)1/2, and this is called the pseudonorm for
the space. The Schwarz inequality is still valid, but its proof is more complicated
than for an inner-product space. The extra complication was handled by Lemma
1.62 in the case of Example 13 in order to obtain a little extra information; the
general argument proceeds along different lines.

Lemma 2.2 (Schwarz inequality). Let V be a pseudo inner-product space with
form ( · , · ). If x and y are in V , then |(x, y)| ≤ kxkkyk.

PROOF. First suppose that kyk 6= 0. Then

0 ≤
∞
∞x − kyk−2(x, y)y

∞
∞2 =

°
(x − kyk−2(x, y)y), (x − kyk−2(x, y)y)

¢

= kxk2 − 2kyk−2|(x, y)|2 + kyk−4|(x, y)|2kyk2 = kxk2 − kyk−2|(x, y)|2,

and the inequality follows in this case.
Next suppose that kyk = 0. It is enough to prove that (x, y) = 0 for all x . If

c is a real scalar, we have

kx+cyk2=(x+cy, x+cy)=kxk2+2Re(x, cy)+|c|2kyk2=kxk2+2cRe(x, y).

The left side is ∏ 0 as c varies, but the right side can be < 0 unless Re(x, y) =
0. Thus we must have Re(x, y) = 0 for all x . Replacing x by i x gives us
Im(x, y) = −Re i(x, y) = −Re(i x, y), and this we have just shown is 0 for all
x . Thus Re(x, y) = Im(x, y) = 0, and (x, y) = 0. §

Proposition 2.3 (triangle inequality). If V is a pseudo inner-product space
with form ( · , · ) and pseudonorm k · k, then the pseudonorm satisfies

(a) kxk ∏ 0 for all x ∈ V ,
(b) kcxk = |c|kxk for all scalars c and all x ∈ V ,
(c) kx + yk ≤ kxk + kyk for all x and y in V .

Moreover, the definition d(x, y) = kx − ykmakes V into a pseudometric space.
The spaceV is ametric space if the pseudo inner-product space is an inner-product
space.
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PROOF. Properties (a) and (b) of the pseudonormare immediate, and (c) follows
because

kx + yk2 = (x + y, x + y) = (x, x) + 2Re(x, y) + (y, y)

= kxk2 + 2Re(x, y) + kyk2 ≤ kxk2 + 2kxkkyk + kyk2 = (kxk + kyk)2.

Putting x = a − c and y = c − b gives d(a, b) ≤ d(a, c) + d(c, b), and
thus d satisfies the triangle inequality for a pseudometric. The other properties
of a pseudometric are immediate from (a) and (b). If the form is definite and
d( f, g) = 0, then ( f −g, f −g) = 0 and hence the definiteness yields f −g = 0.

§

EXAMPLES, CONTINUED.
14) Let us take double integrals of continuous functions of nice subsets of R2

as known. (The detailed study of general Riemann integrals in several variables
occurs in Chapter III.) Let V be the complex vector space of all power series
F(z) =

P∞
n=0 cnzn with infinite radius of convergence. Since any such F(z)

is bounded on the open unit disk D =
©
z ∈ C

Ø
Ø |z| < 1

™
, the form (F,G) =R

D F(z)G(z) dx dy is meaningful and makes V into an inner-product space. The
proposition shows that V becomes ametric spacewithmetric given by d(F,G) =° R

D |F(z) − G(z)|2 dx dy
¢1/2.

2. Open Sets and Closed Sets

In this section we generalize the Euclidean notions of open set, closed set,
neighborhood, interior, limit point, and closure so that they make sense for all
pseudometric spaces, and we prove elementary properties relating these metric-
space notions. In working with metric spaces and pseudometric spaces, it is often
helpful to draw pictures as if the space in question were R2, even computing
distances that are right for R2. We shall do that in the case of the first lemma but
not afterward in this section. Let (X, d) be a pseudometric space.

Lemma 2.4. If z is in the intersection of open balls B(r; x) and B(s; y),
then there exists some t > 0 such that the open ball B(t; z) is contained in that
intersection. Consequently the intersection of two open balls is open.
REMARK. Figure 2.2 shows what B(t; z) looks like in the metric space R2.
PROOF. Take t = min{r − d(x, z), s − d(y, z)}. If w is in B(t; z), then the

triangle inequality gives

d(x, w) ≤ d(x, z) + d(z, w) < d(x, z) + t ≤ d(x, z) + (r − d(x, z)) = r,

and hence w is in B(r; x). Similarly w is in B(s; y). §
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FIGURE 2.2. Open ball contained in an intersection of two open balls.

Proposition 2.5. The open sets of X have the properties that
(a) X and the empty set ∅ are open,
(b) an arbitrary union of open sets is open,
(c) any finite intersection of open sets is open.

PROOF. We know from Lemma 2.1 that a set is open if and only if it is the
union of open balls. Then (b) is immediate, and (a) follows, since X is the union
of all open balls and∅ is an empty union. For (c), it is enough to prove thatU ∩V
is open if U and V are open. Write U =

S
α Bα and V =

S
β Bβ as unions of

open balls. Then U ∩ V =
S

α,β (Bα ∩ Bβ), and Lemma 2.4 shows that U ∩ V
is exhibited as the union of open balls. Thus U ∩ V is open. §

A neighborhood of a point in X is any set that contains an open set containing
the point. An open neighborhood is a neighborhood that is an open set.1 A
neighborhood of a subset E of X is a set that is a neighborhood of each point
of E . If A is a subset of X , then the set Ao of all points x in A for which A is
a neighborhood of x is called the interior of A. For example, the interior of the
half-open interval [a, b) of the real line is the open interval (a, b).

Proposition 2.6. The interior of a subset A of X is the union of all open sets
contained in A; that is, it is the largest open set contained in A.

PROOF. Suppose that U ⊆ A is open. If x is in U , then U is an open
neighborhood of x , and hence A is a neighborhood of x . Thus x is in Ao, and Ao
contains the union of all open sets contained in A. For the reverse inclusion, let
x be in Ao. Then A is a neighborhood of x , and there exists an open subsetU of
A containing x . So x is contained in the union of all open sets contained in A. §

Corollary 2.7. A subset A of X is open if and only if A = Ao.

A subset F of X is closed if its complement is open. Every closed interval of
the real line is closed. A half-open interval [a, b) on the real line is neither open
nor closed if a and b are both finite.

1Some authors use the term “neighborhood” to mean what is here called “open neighborhood.”
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Proposition 2.8. The closed sets of X have the properties that
(a) X and the empty set ∅ are closed,
(b) an arbitrary intersection of closed sets is closed,
(c) any finite union of closed sets is closed.

PROOF. This result follows from Proposition 2.5 by taking complements. In
(a), the complements of X and∅ are∅ and X , respectively. For (b) and (c), we use
the formulas

°T
α Fα

¢c
=

S
α Fc

α and
°S

α Fα

¢c
=

T
α Fc

α for the complements
of intersections and unions. §

If A is a subset of X , then x in X is a limit point of A if each neighborhood
of x contains a point of A distinct from x . The closure2 Acl of A is the union of
A with the set of all limit points of A. For example, the limit points of the set
[a, b) ∪ {b + 1} on the real line are the points of the closed interval [a, b], and
the closure of the set is [a, b] ∪ {b + 1}.

Proposition 2.9. A subset A of X is closed if and only if it contains all its
limit points.

PROOF. Suppose A is closed, so that Ac is open. If x is in Ac, then Ac is
an open neighborhood of x disjoint from A, so that x cannot be a limit point of
A. Thus all limit points of A lie in A. In the reverse direction suppose that A
contains all its limit points. If x is in Ac, then x is not a limit point of A, and
hence there exists an open neighborhood of x lying completely in Ac. Since x is
arbitrary, Ac is open, and thus A is closed. §

Proposition 2.10. The closure Acl of a subset A of X is closed. The closure
of A is the intersection of all closed sets containing A; that is, it is the smallest
closed set containing A.

PROOF. We shall apply Proposition 2.9. If x is given as a limit point of Acl,
we are to see that x is in Acl. Assume the contrary. Then x is not in A, and x
is not a limit point of A. Because of the latter condition, there exists an open
neighborhood U of x that does not meet A except possibly in x . Because of the
former condition, U does not meet A at all. Since x is a limit point of Acl, U
contains a point y of Acl. Since U does not meet A, y has to be a limit point of
A. Since U is an open neighborhood of y, U has to contain a point of A, and
we have a contradiction. We conclude that x is in Acl, and Proposition 2.9 shows
that Acl is closed.
Any closed set F containing A contains all its limit points, by Proposition

2.9, and hence contains all the limit points of A. Thus F ⊇ Acl. Since Acl

2Some authors write A instead of Acl for the closure of A.
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itself is a closed set containing A, it follows that Acl is the smallest closed set
containing A. §

Corollary2.11. Asubset A of X is closed if andonly if A = Acl. Consequently
(Acl)cl = Acl for any subset A of X .

Two remarks are in order. The first remark is that the proofs of all the results
from Proposition 2.6 through Corollary 2.11 use only that the family of open
subsets of X satisfies properties (a), (b), and (c) in Proposition 2.5 and do not
actually depend on the precise definition of “open set.” This observation will be
of importance to us in Chapter X, when properties (a), (b), and (c) will be taken
as an axiomatic definition of a “topology” of open sets for X , and then all the
results from Proposition 2.6 through Corollary 2.11 will still be valid.
The second remark is that the mathematics of pseudometric spaces can always

be reduced to the mathematics of metric spaces, and we shall normally therefore
work only with metric spaces. The device for this reduction is given in the
next proposition, which uses the notion of an equivalence relation. Equivalence
relations are taken as known but are reviewed in Section A6 of Appendix A.

Proposition 2.12. Let (X, d) be a pseudometric space. If members x and y of
X are called equivalent whenever d(x, y) = 0, then the result is an equivalence
relation. Denote by [x] the equivalence class of x and by X0 the set of all
equivalence classes. The definition d0([x], [y]) = d(x, y) consistently defines a
function d0 : X0× X0 → R, and (X0, d0) is a metric space. A subset A is open in
X if and only if two conditions are satisfied: A is a union of equivalence classes,
and the set A0 of such classes is an open subset of X0.
PROOF. The reflexive, symmetric, and transitive properties of the relation

“equivalent” are immediate from the defining properties of a metric. Let x and
x 0 be equivalent, and let y and y0 be equivalent. Then
d(x, y) ≤ d(x, x 0) + d(x 0, y0) + d(y0, y) = 0+ d(x 0, y0) + 0 = d(x 0, y0),

and similarly
d(x 0, y0) ≤ d(x, y).

Thus d(x, y) = d(x 0, y0), and d0 is well defined. The properties showing that d0
is a metric are immediate from the corresponding properties for d.
Next let x be in an open set A, and let x 0 be equivalent to x . Since A is open,

some open ball B(r; x) is contained in A. Since x 0 has d(x, x 0) = 0, x 0 lies in
B(r; x). Thus x 0 lies in A, and A is the union of equivalence classes.
Finally let A be any union of equivalence classes, and let A0 be the set of those

classes. If x is in A, then the set of points in some equivalence class lying in
B(r; [x]) is just B(r; x), and it follows that A is open in X if and only if A0 is
open in X0. §
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3. Continuous Functions

Before we discuss continuous functions between metric spaces, let us take note
of some properties of inverse images for abstract functions as listed in Section A1
of Appendix A. If f : X → Y is a function between two sets X and Y and E
is a subset of Y , we denote by f −1(E) the inverse image of E under f , i.e.,
{x ∈ X | f (x) ∈ E}. The properties are that inverse images of functions respect
unions, intersections, and complements.
Let (X, d) and (Y, ρ) be metric spaces. A function f : X → Y is continuous

at a point x ∈ X if for each ≤ > 0, there is a δ > 0 such that ρ( f (x), f (y)) < ≤
whenever d(x, y) < δ. This definition is consistent with the definition when
(X, d) and (Y, ρ) are both equal to R with the usual metric.

Proposition 2.13. If (X, d) and (Y, ρ) are metric spaces, then a function
f : X → Y is continuous at the point x ∈ X if and only if for any open
neighborhoodV of f (x) inY , there is a neighborhoodU of x such that f (U) ⊆ V .
PROOF. Let f be continuous at x and let V be given. Choose ≤ > 0 such that

B(≤; f (x)) is contained in V , and choose δ > 0 such that ρ( f (x), f (y)) < ≤
whenever d(x, y) < δ. Then y ∈ B(δ; x) implies f (y) ∈ B(≤; f (x)) ⊆ V .
Thus U = B(δ; x) has f (U) ⊆ V .
Conversely suppose that f satisfies the condition in the statement of the

proposition. Let ≤ > 0 be given, and choose a neighborhood U of x such
that f (U) ⊆ B(≤; f (x)). Since U is a neighborhood of x , we can find an
open ball B(δ; x) lying in U . Then f (B(δ; x)) ⊆ B(≤; f (x)), and hence
ρ( f (x), f (y)) < ≤ whenever d(x, y) < δ. §

Corollary 2.14. Let f : X → Y and g : Y → Z be functions between metric
spaces. If f is continuous at x and g is continuous at f (x), then the composition
g ◦ f , given by (g ◦ f )(y) = g( f (y)), is continuous at x .
PROOF. Let W be an open neighborhood of g( f (x)). By continuity of g at

f (x), we can choose a neighborhood V of f (x) such that g(V ) ⊆ W . Possibly
by passing to a subset of V , we may assume that V is an open neighborhood of
f (x). By continuity of f at x , we can choose a neighborhood U of x such that
f (U) ⊆ V . Then g( f (U)) ⊆ W . Taking Proposition 2.13 into account, we see
that g ◦ f is continuous at x . §

Proposition 2.15. If (X, d) and (Y, ρ) are metric spaces and f is a function
from X into Y , then the following are equivalent:

(a) the function f is continuous at every point of X ,
(b) the inverse image under f of every open set in Y is open in X ,
(c) the inverse image under f of every closed set in Y is closed in X .
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PROOF. Suppose (a) holds. If V is open in Y and x is in f −1(V ), then f (x) is
in V . Since f is continuous at x by (a), Proposition 2.13 gives us a neighborhood
U of x , which we may take to be open, such that f (U) ⊆ V . Then we have
x ∈ U ⊆ f −1(V ). Since x is arbitrary in f −1(V ), f −1(V ) is open. Thus (b)
holds. In the reverse direction, suppose (b) holds. Let x in X be given, and let V
be an open neighborhood of f (x). By (b),U = f −1(V ) is open, andU is then an
open neighborhood of x mapping into V . This proves (a), and thus (a) and (b) are
equivalent. Conditions (b) and (c) are equivalent, since f −1(V )c = f −1(V c). §

A function f : X → Y that is continuous at every point of X , as in Proposition
2.15, will simply be said to be continuous. A function f : X → Y is a homeo-
morphism if f is continuous, if f is one-one and onto, and if f −1 : Y → X
is continuous. The relation “is homeomorphic to” is an equivalence relation.
Namely, the identity function shows that the relation is reflexive, the symmetry of
the relation is built into the definition, and the transitivity follows from Corollary
2.14.
If (X, d) is ametric space and if A is a nonempty subset of X , then the distance

from x to A, denoted by D(x, A), is defined by

D(x, A) = inf
y∈A

d(x, y).

Proposition 2.16. Let A be a fixed nonempty subset of a metric space (X, d).
Then the real-valued function f defined on X by f (x) = D(x, A) is continuous.

PROOF. If x and y are in X and z is in A, then the triangle inequality gives

D(x, A) ≤ d(x, z) ≤ d(x, y) + d(y, z).

Taking the infimum over z gives D(x, A) ≤ d(x, y) + D(y, A). Reversing the
roles of x and y, we obtain D(y, A) ≤ d(x, y) + D(x, A), since d(y, x) =
d(x, y). Therefore

| f (x) − f (y)| = |D(x, A) − D(y, A)| ≤ d(x, y).

Fix x , let ≤ > 0 be given, and take δ = ≤. If d(x, y) < δ = ≤, then our inequality
gives us | f (x) − f (y)| < ≤. Hence f is continuous at x . Since x is arbitrary, f
is continuous. §

Corollary 2.17. If (X, d) is a metric space, then the real-valued function
d(x, y) for fixed y is continuous in x .

PROOF. This is the special case of the proposition in which A is the set {y}. §
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Corollary 2.18. Let (X, d) be a metric space, and let x be in X . Then the
closed ball {y ∈ X | d(x, y) ≤ r} is a closed set.

REMARK. Nevertheless, the closed ball is not necessarily the closure of the
open ball B(r; x) = {y ∈ X | d(x, y) < r}. A counterexample is provided by
any open ball of radius 1 in a space with the discrete metric.

PROOF. If f (y) = d(x, y), the set in question is f −1([0, r]). Corollary 2.17
says that f is continuous, and the equivalence of (a) and (c) in Proposition 2.15
shows that the set in question is closed. §

Proposition 2.19. If A is a nonempty subset of a metric space (X, d), then
Acl = {x | D(x, A) = 0}.

PROOF. The set {x | D(x, A) = 0} is closed by Propositions 2.16 and 2.15,
and it contains A. By Proposition 2.10 it contains Acl. For the reverse inclusion,
suppose x is not in Acl, hence that x is not in A and x is not a limit point of A.
These conditions imply that there is some ≤ > 0 such that B(≤; x) is disjoint
from A, hence that d(x, y) ∏ ≤ for all y in A. Taking the infimum over y gives
D(x, A) ∏ ≤ > 0. Hence D(x, A) 6= 0. §

4. Sequences and Convergence

For a set S, we have already defined in Section I.1 the notion of a sequence in S
as a function from a certain kind of subset of integers into S. In this section we
work with sequences in metric spaces.
A sequence {xn} in a metric space (X, d) is eventually in a subset A of X if

there is an integer N such that xn is in A whenever n ∏ N . The sequence {xn}
converges to a point x in X if the sequence is eventually in each neighborhood
of x . It is apparent that if {xn} converges to x , then so does every subsequence
{xnk }.

Proposition 2.20. If (X, d) is a metric space, then no sequence in X can
converge to more than one point.

PROOF. Suppose on the contrary that {xn} converges to distinct points x and
y. The number m = d(x, y) is then > 0. By the assumed convergence, xn lies
in both open balls B(m2 ; x) and B(m2 ; y) if n is large enough. Thus xn lies in the
intersection of these balls. But this intersection is empty, since the presence of a
point z in both balls would mean that d(x, y) ≤ d(x, z)+d(z, y) < m

2 + m
2 = m,

contradiction. §
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If a sequence {xn} in a metric space (X, d) converges to x , we shall call x the
limit of the sequence and write limn→∞ xn = x or limn xn = x or lim xn = x or
xn → x . A sequence has at most one limit, by Proposition 2.20. If the definition
of convergence is extended to pseudometric spaces, then sequences need not have
unique limits.
Let us identify convergent sequences in some of the examples of metric spaces

in Section 1.

EXAMPLES OF CONVERGENCE IN METRIC SPACES.
(0) The real line. On R with the usual metric, the convergent sequences are

the sequences convergent in the usual sense of Section I.1.
(1) Euclidean space Rn . Here the metric is given by

d(x, y) =
≥ nX

k=1
(xk − yk)2

¥1/2

if x = (x1, . . . , xn) and y = (y1, . . . , yn). Another metric d 0(x, y) is given by

d 0(x, y) = max
1≤k≤n

|xk − yk |,

and we readily check that

d 0(x, y) ≤ d(x, y) ≤
p
n d 0(x, y).

From this inequality it follows that the convergent sequences in (Rn, d) are the
same as the convergent sequences in (Rn, d 0). On the other hand, the definition
of d 0 as a maximum means that we have convergence in (Rn, d 0) if and only if
we have ordinary convergence in each entry. Thus convergence of a sequence of
vectors in (Rn, d) means convergence in the kth entry for all k with 1 ≤ k ≤ n.
(2) Complex Euclidean space Cn . As a metric space, Cn gets identified with

R2n . Thus a sequence of vectors in Cn converges if and only if it converges entry
by entry.
(3) Extended real lineR∗. Here themetric is given by d(x, y) = | f (x)− f (y)|

with f (x) = x/(1 + |x |) if x is in R, f (−∞) = −1, and f (+∞) = +1. We
saw in Section 1 that the intersections with R of the open balls of R∗ are the
open intervals in R. Thus convergence of a sequence in R∗ to a point x in R
means that the sequence is eventually in (−∞,+∞) and thereafter is an ordinary
convergent sequence inR. Convergence to+∞ of a sequence {xn}means that for
each real number M , there is an integer N such that xn ∏ M whenever n ∏ N .
Convergence to −∞ is analogous.



100 II. Metric Spaces

(4) Bounded scalar-valued functions on S in the uniform metric. A sequence
{ fn} in B(S) converges in the uniformmetric on B(S) if and only if { fn} converges
uniformly, in the sense below, to some member f of B(S). The definition of
uniform convergence here is the natural generalization of the one in Section I.3:
{ fn} converges to f uniformly if for each ≤ > 0, there is an integer N such that
n ∏ N implies | fn(s) − f (s)| < ≤ for all s simultaneously. An important fact
in this case is that the sequence { fn} is uniformly bounded, i.e., that there exists
a real number M such that | fn(s)| ≤ M for all n and s. In fact, choose some
integer N for ≤ = 1. Then the triangle inequality gives

| fn(s)| ≤ | fn(s) − f (s)| + | f (s) − fN (s)| + | fN (s)| ≤ 2+ | fN (s)|

for all s if n ∏ N , so that M can be taken to be max1≤n≤N
©
sups∈S | fn(s)|

™
+ 2.

(5) Bounded functions from S into a metric space (R, ρ). Convergence here
is the expected generalization of uniform convergence: { fn} converges to f
uniformly if for each ≤ > 0, there is an integer N such that n ∏ N implies
ρ( fn(s), f (s)) < ≤ for all s simultaneously. As in Example 4, a uniformly
convergent sequence of bounded functions is uniformly bounded in the sense
that ρ( fn(s), r0) ≤ M for all n and s, M being some real number. Here r0 is any
fixed member of R.
(7) Indiscrete space X . The function d(x, y) in this case is a pseudometric, not

a metric, unless X has only one point. Every sequence in X converges to every
point in X .
(8) Discrete metric. Convergence of a sequence {xn} in a space X with the

discrete metric means that {xn} is eventually constant.
(11) Hilbert cube. For each n, let ({xm}∞m=1)n be a member of the Hilbert cube,

and write xmn for the mth term of the nth sequence. As n varies, the sequence of
sequences converges if and only if limn xmn exists for each m.
(12) L1 metric on Riemann integrable functions. The function d( f, g) defined

in this case is a pseudometric, not a metric. Convergence in the corresponding
metric space as in Proposition 2.12 therefore really means a certain kind of con-
vergence of equivalence classes: If { fn} and f are given, the sequence of classes
{[ fn]} converges to the class [ f ] if and only if limn

R b
a | fn(x) − f (x)| dx = 0.

The use of classes in the notation is rather cumbersome and not very helpful, and
consequently it is common practice to treat the L1 space as a metric space and to
work with its members as if they were functions rather than equivalence classes.
We return to this point in Chapter V.

Let us elaborate a little on Examples 4 and 5, concerning the space B(S)
of bounded scalar-valued functions on a set S or, more generally, the space
of bounded functions from S into a metric space (R, ρ). Suppose that S has
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the additional structure of a metric space (S, d). We let C(S) be the subset of
B(S) consisting of bounded continuous functions on S, and we write C(S, R) or
C(S, C) if we want to be explicit about the range. More generally we consider
the space of bounded continuous functions from S into the metric space R. All
of these are metric spaces in their own right.

Proposition 2.21. Let (S, d) and (R, ρ) be metric spaces, let x0 be in S, and
let fn : S → R be a sequence of bounded functions from S into R that converge
uniformly to f : S → R and are continuous at x0. Then f is continuous at x0.
In particular, the uniform limit of continuous functions is continuous.

PROOF. For x in S, we write

ρ( f (x), f (x0)) ≤ ρ( f (x), fn(x)) + ρ( fn(x), fn(x0)) + ρ( fn(x0), f (x0)).

Given ≤ > 0, we choose an integer N by the uniform convergence such that the
first and third terms on the right side are< ≤ for n ∏ N . With N fixed, we choose
δ > 0 by the continuity of fN at x0 such that ρ( fN (x), fN (x0)) < ≤ whenever
d(x, x0) < δ. Then the displayed inequality shows that d(x, x0) < δ implies
ρ( f (x), f (x0)) < 3≤, and the proposition follows. §

We conclude this section with some elementary results involving convergence
of sequences in metric spaces.

Proposition 2.22. If (X, d) is a metric space, then
(a) for any subset A of X and limit point x of A, there exists a sequence in

A − {x} converging to x ,
(b) any convergent sequence in X with limit x ∈ X either has infinite image,

with x as a limit point of the image, or else is eventually constantly equal
to x .

REMARK. This result and the first corollary below are used frequently—and
often without specific reference.

PROOFOF (a). For eachn ∏ 1, the openball B(1/n; x) is an openneighborhood
of x and must contain a point xn of A distinct from the limit point x . Then
d(xn, x) < 1/n, and thus lim xn = x . Hence {xn} is the required sequence. §

PROOF OF (b). Suppose that {xn} converges to x and has infinite image. By
discarding the terms equal to x , we obtain a subsequence {xnk } with limit x . If
U is an open neighborhood of x , then {xnk } is eventually in U , by the assumed
convergence. Since no term of the subsequence equals x , U contains a member
of the image of {xn} different from x . Thus x is a limit point of the image of {xn}.
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Now suppose that {xn} converges to x and has finite image {p1, . . . , pr }. If
xn is equal to some particular pj0 for infinitely many n, then {xn} has an infinite
subsequence converging to pj0 . Since {xn} converges to x , every convergent
subsequence converges to x . Therefore pj0 = x . For j 6= j0, only finitely many
xn can then equal pj , and it follows that {xn} is eventually constantly equal to
pj0 = x . §

Corollary 2.23. If (X, d) is a metric space, then a subset F of X is closed if
and only if every convergent sequence in F has its limit in F .

PROOF. Suppose that F is closed and {xn} is a convergent sequence in F with
limit x . By Proposition 2.22b, either x is in the image of the sequence or x is
a limit point of the sequence. In either case, x is in F ; thus the limit of any
convergent sequence in F is in F .
Conversely suppose every convergent sequence in F has its limit in F . If x

is a limit point of F , then Proposition 2.22a produces a sequence in F − {x}
converging to x . By assumption, the limit x is in F . Therefore F contains all its
limit points and is closed. §

Corollary 2.24. If (S, d) is a metric space, then the set C(S) of bounded
continuous scalar-valued functions on S is a closed subset of the metric space
B(S) of all bounded scalar-valued functions on S.

PROOF. Proposition 2.21 shows for any sequence in C(S) convergent in B(S)
that the limit is actually in C(S). By Corollary 2.23, C(S) is closed in B(S). §

Proposition 2.25. Let f : X → Y be a function between metric spaces. Then
f is continuous at a point x in X if and only if whenever {xn} is a convergent
sequence in X with limit x , then { f (xn)} is convergent in Y with limit f (x).

REMARK. In the special case of domain and rangeR, this result was mentioned
in Section I.1 after the definitionof continuity. Wedeferred the proof of the special
case until now to avoid repetition.

PROOF. Suppose that f is continuousat x and that {xn} is a convergent sequence
in X with limit x . Let V be any open neighborhood of f (x). By continuity, there
exists an open neighborhood U of x such that f (U) ⊆ V . Since xn → x , there
exists N such that xn is in U whenever n ∏ N . Then f (xn) is in f (U) ⊆ V
whenever n ∏ N . Hence { f (xn)} converges to f (x).
Conversely suppose that xn → x always implies f (xn) → f (x). We are to

show that f is continuous. Let V be an open neighborhood of f (x). We are to
show that some open neighborhood of x maps into V under f . Assuming the
contrary, we can find, for each n ∏ 1, some xn in B(1/n; x) such that f (xn) is
not in V . Then xn → x , but the distance of f (xn) from f (x) is bounded away
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from 0. Thus f (xn) cannot converge to f (x). This is a contradiction, and we
conclude that some B(1/n; x) maps into V under f ; since V is arbitrary, f is
continuous. §

5. Subspaces and Products

When working with functions on the real line, one frequently has to address
situations in which the domain of the function is just an open interval or a closed
interval, rather than thewhole line. When one uses the ≤-δ definition of continuity,
the subject does not become much more cumbersome, but it can become more
cumbersome if one uses some other definition, such as one involving limits. The
theory of metric spaces has a device for addressing smaller domains than the
whole space—the notion of a subspace—and then the theory of functions on a
subspace stands on an equal footing with the theory of functions on the whole
space.
Let (X, d) be a metric space, and let A be a nonempty subset of X . There is

a natural way of making A into a metric space, namely by taking the restriction
d
Ø
Ø
A×A as a metric for A. When we do so, we speak of A as a subspace of X .

When there is a need to be more specific, we may say that A is ametric subspace
of X . If A is an open subset of X , we may say that A is an open subspace; if A
is a closed subset of X , we may say that A is a closed subspace.

Proposition 2.26. If A is a subspace of a metric space (X, d), then the open
sets of A are exactly all setsU ∩ A, whereU is open in X , and the closed sets of
A are all sets F ∩ A, where F is closed in X .

PROOF. The open balls in A are the intersections with A of the open balls of
X , and the statement about open sets follows by taking unions. The closed sets
of A are the complements within A of all the open sets of A, thus all sets of the
form A− (U ∩ A)withU open in X . Since A− (U ∩ A) = A∩Uc, the statement
about closed sets follows. §

Corollary 2.27. If A is a subspace of (X, d) and if f : X → Y is continuous
at a point a of A, then the restriction f

Ø
Ø
A, mapping A into Y , is continuous at a.

Also, f is continuous at a if and only if the function f0 : X → f (X) obtained
by redefining the range to be the image is continuous at a.

PROOF. Let V be an open neighborhood of f (a) in Y . By continuity of f at a
as a function on X , choose an open neighborhood U of a in X with f (U) ⊆ V .
ThenU ∩ A is an open neighborhood of a in A, and f (U ∩ A) ⊆ V . Hence f

Ø
Ø
A

is continuous at a.
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Themost general open neighborhood of f (a) in f (X) is of the form V ∩ f (X)

with V an open neighborhood of f (a) in Y . Since f −1(V ) = f −1
0 (V ∩ f (X)),

the condition for continuity of f0 at a is the same as the condition for continuity
of f at a. §

We now turn our attention to product spaces. Product spaces are a convenient
device for considering functions of several variables.
If (X, d) and (Y, d 0) aremetric spaces, there are several naturalways ofmaking

the product set X × Y , the set of ordered pairs with the first member from X and
the second from Y , into a metric space, but all such ways lead to the same class
of open sets and therefore also the same class of convergent sequences. We
discussed an instance of this phenomenon in Example 1 of Section 4. For general
X and Y , three such metrics on X × Y are

ρ1
°
(x1, y1), (x2, y2)

¢
= d(x1, x2) + d 0(y1, y2),

ρ2
°
(x1, y1), (x2, y2)

¢
=

°
d(x1, x2)2 + d 0(y1, y2)2

¢1/2
,

ρ∞
°
(x1, y1), (x2, y2)

¢
= max{d(x1, x2), d 0(y1, y2)}.

Each satisfies the defining properties of a metric. Simple algebra gives

max{a, b} ≤ (a2 + b2)1/2 ≤ a + b ≤ 2max{a, b}

whenever a and b are nonnegative reals, and therefore

ρ∞ ≤ ρ2 ≤ ρ1 ≤ 2ρ∞.

Let us check that this chain of inequalities implies that the neighborhoods of
a point (x0, y0) are the same in all three metrics, hence that the open sets are the
same in all three metrics. For any r > 0, the open balls about (x0, y0) in the three
metrics satisfy

B1(r; (x0, y0)) ⊆ B2(r; (x0, y0)) ⊆ B∞(r; (x0, y0)) ⊆ B1(2r; (x0, y0)).

The first and second inclusions show that open balls about (x0, y0) in the metrics
ρ2 andρ∞ are neighborhoodsof (x0, y0) in themetricρ1. Similarly the second and
third inclusions show that open balls in the metrics ρ∞ and ρ1 are neighborhoods
in the metric ρ2, and the third and first inclusions show that open balls in the
metrics ρ1 and ρ2 are neighborhoods in the metric ρ∞.
We shall refer to the metric ρ∞ as the product metric for X × Y . If X × Y is

being regarded as a metric space and no metric has been mentioned, ρ∞ is to be
understood. But it is worth keeping in mind that ρ1 and ρ2 yield the same open
sets. In the case of Euclidean space, it is the metric ρ2 on Rm × Rn that gives the
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Euclidean metric on Rm+n; thus the product metric and the Euclidean metric are
distinct but yield the same open sets.
A sequence {(xn, yn)} in the product metric converges to (x0, y0) in X × Y if

and only if {xn} converges to x0 and {yn} converges to y0. Since the three metrics
on X × Y yield the same convergent sequences, this statement is valid in the
metrics ρ1 and ρ2 as well.
It is an elementary property of the arithmetic operations in R that if {xn}

converges to x0 and {yn} converges to y0, then {xn + yn} converges to x0 + y0.
Similar statements apply to subtraction,multiplication,maximum, andminimum,
and then to absolute value and to division except where division by 0 is involved.
Further similar statements apply to those operations on vectors that make sense.
Applying Proposition 2.25, we obtain (a) through (e) in the following proposition.
Conclusions (a0) through (e0) are proved similarly.

Proposition 2.28. The following operations are continuous:
(a) addition and subtraction from Rn × Rn into Rn ,
(b) scalar multiplication from R × Rn into Rn ,
(c) the map x 7→ x−1 from R − {0} to R − {0},
(d) the map x 7→ |x | from Rn to R,
(e) the operations from R2 to R of taking the maximum of two real numbers

and taking the minimum of two real numbers,
(a0) addition and subtraction from Cn × Cn into Cn ,
(b0) scalar multiplication from C × Cn into Cn ,
(c0) the map x 7→ x−1 from C − {0} to C − {0},
(d0) the map x 7→ |x | from Cn to R,
(e0) the map x 7→ x̄ from C to C.

Corollary 2.29. Let (X, d) be a metric space, and let f and g be continuous
functions from X intoRn orCn . If c is a scalar, then f +g, c f , f −g, and | f | are
continuous. If n = 1, then the product f g is continuous, and the function 1/ f is
continuous on the set where f is not zero. If n = 1 and the functions take values
in R, then max{ f, g} and min{ f, g} are continuous. If n = 1 and the functions
take values in C, then the complex conjugate f̄ is continuous.
REMARKS. If (S, d) is a metric space, then it follows that the metric space

C(S) of bounded continuous scalar-valued functions on S is a vector space. As
such, it is a vector subspace of the metric space B(S) of bounded scalar-valued
functions on S, and it is a metric subspace as well.3

3The word “subspace” can now be used in two senses, that of a metric subspace of a metric space
and that of a vector subspace of a vector space. The latter kind of subspace we shall always refer to
as a “vector subspace,” retaining the word “vector” for clarity. A “closed vector subspace” of B(S)
then has to mean a closed metric subspace that is also a vector subspace.
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PROOF. The argument for f + g and for functions with values inRn will illus-
trate matters sufficiently. We set up x 7→ f (x) + g(x) as a suitable composition,
expressing the composition in a diagram:

X x 7→(x,x)
−−−−−−→ X × X

(x,y)7→( f (x),g(y))
−−−−−−−−−−−→ Rn × Rn (u,v)7→u+v

−−−−−−−→ Rn.
Each function in the diagram is continuous, the last of them by Proposition 2.28a,
and then the composition is continuous by Corollary 2.14. §

We conclude this section with one further remark. When (X, d) is a metric
space,we saw inCorollary2.17 that x 7→ d(x, y) and y 7→ d(x, y) are continuous
functions from X to R. Actually, (x, y) 7→ d(x, y) is a continuous function
from X × X into R if we use the product metric. In fact, if ρ∞ denotes the
product metric with ρ∞

°
(x, y), (x0, y0)

¢
= max{d(x, x0), d(y, y0)}, then we

have d(x, y) ≤ d(x, x0) + d(x0, y0) + d(y0, y) and therefore
d(x, y) − d(x0, y0) ≤ d(x, x0) + d(y, y0).

Reversing the roles of (x, y) and (x0, y0), we see that
|d(x, y) − d(x0, y0)| ≤ d(x, x0) + d(y, y0)

≤ 2max{d(x, x0), d(y, y0)}
= 2ρ∞

°
(x, y), (x0, y0)

¢
.

From this chain of inequalities, it follows that d is continuous with δ = ≤/2.

6. Properties of Metric Spaces

This section contains two results about metric spaces. One lists a number of
“separation properties” of sets within any metric space. The other concerns the
completely different property of “separability,” which is satisfied by some metric
spaces and not by others, and it says that separability may be defined in any of
three equivalent ways.

Proposition 2.30 (separation properties). Let (X, d) be a metric space. Then
(a) every one-point subset of X is a closed set, i.e., X is T1,
(b) for any two distinct points x and y of X , there are disjoint open sets U

and V with x ∈ U and y ∈ V , i.e., X is Hausdorff,
(c) for any point x ∈ X and any closed set F ⊆ X with x /∈ F , there are

disjoint open sets U and V with x ∈ U and F ⊆ V , i.e., X is regular,
(d) for any two disjoint closed subsets E and F of X , there are disjoint open

sets U and V such that E ⊆ U and F ⊆ V , i.e., X is normal,
(e) for any two disjoint closed subsets E and F of X , there is a continuous

function f : X → [0, 1] such that f is 0 exactly on E and f is 1 exactly
on F .
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PROOF. For (a), the set {x} is the intersection of all closed balls B(r; x) for
r > 0 and hence is closed by Corollary 2.18 and Proposition 2.8b. For (e), the
function f (x) = D(x; E)/(D(x; E) + D(x; F)) is continuous by Proposition
2.16 and Corollary 2.29 and takes on the values 0 and 1 exactly on E and F ,
respectively, by Proposition 2.19.
For (d), weneedonlyapply (e) andProposition2.15bwithU = f −1°(−∞, 12 )

¢

and V = f −1°( 12 ,+∞)
¢
. Conclusions (a) and (d) imply (c), and conclusions (a)

and (c) imply (b). This completes the proof. §

A base B for a metric space (X, d) is a family of open sets such that every
open set is a union of members of B. The family of all open balls is an example
of a base.

Proposition 2.31. If (X, d) is a metric space, then a family B of subsets of X
is a base for (X, d) if and only if

(a) every member of B is open and
(b) for each x ∈ X and open neighborhoodU of x , there is some member B

of B such that x is in B and B is contained in U .

PROOF. If B is a base, then (a) holds by definition of base. If U is open in X ,
then U =

S
α Bα for some members Bα of B, and any such Bα containing x can

be taken as the set B in (b).
Conversely suppose that B satisfies (a) and (b). By (a), each member of B is

open in X . If U is open in X , we are to show thatU is a union of members of B.
For each x ∈ U , choose some set B = Bx as in (b). Then U =

S
x∈U Bx , and

hence each open set in X is a union of members of B. Thus B is a base. §

This book uses the word countable to mean finite or countably infinite. It is
then meaningful to ask whether a particular metric space (X, d) has a countable
base. On the real line R, the open intervals with rational endpoints form a
countable base.
A subset D of X is dense in a subset A of X if Dcl ⊇ A; D is dense, or

everywhere dense, if D is dense in X . A set D is dense if and only if there is
some point of D in each nonempty open set of X .
A family U of open sets is an open cover of X if the union of the sets in U is

X . An open subcover of U is a subfamily of U that is itself an open cover.

Proposition 2.32. The following three conditions are equivalent for a metric
space (X, d):

(a) X has a countable base,
(b) every open cover of X has a countable open subcover,
(c) X has a countable dense subset.
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PROOF. If (a) holds, let B = {Bn}n∏1 be a countable base, and let U be an
open cover of X . Any U ∈ U is the union of the Bn ∈ B with Bn ⊆ U . If B0 =
{Bn ∈ B | Bn ⊆ U for some U ∈ U }, then it follows that

S
Bn∈B0 =

S
U∈U =

X . For each Bn in B0, select some Un in U with Bn ⊆ Un . Then
S

n Un ⊇S
Bn∈B0 = X , and {Un} is a countable open subcover of U. Thus (b) holds.
If (b) holds, form, for each fixed n ∏ 1, the open cover of X consisting of

all open balls B(1/n; x). For that n, let {B(1/n; xmn)}m∏1 be a countable open
subcover. We shall prove that the set D of all xmn , withm and n arbitrary, is dense
in X . It is enough to prove that each nonempty open set in X contains a member
of D, hence to prove, for each n, that each open ball of radius 1/n contains a
member of D. Thus consider B(1/n; x). Since the open balls B(1/n; xmn) with
m ∏ 1 cover X , x is in some B(1/n; xmn). Then that xmn has d(xmn, x) < 1/n,
and hence xmn is in B(1/n; x). Thus D is dense, and (c) holds.
If (c) holds, let {xn}n∏1 be a countable dense set. Form the collection of all open

balls centered at some xn and having rational radius. Let us use Proposition 2.31
to see that this collection of open sets, which is certainly countable, is a base. Let
U be an open neighborhoodof x . We are to see that there is somemember B of our
collection such that x is in B and B is contained inU . SinceU is a neighborhood
of x , we can find an open ball B(r; x) such that B(r; x) ⊆ U ; we may assume
that r is rational. The given set {xn}n∏1 being dense, some xn lies in B(r/2; x).
If y is in B(r/2; xn), then d(x, y) ≤ d(x, xn) + d(xn, y) < r

2 + r
2 = r . Hence

x lies in B(r/2; xn) and B(r/2; xn) ⊆ B(r; x) ⊆ U . Since r/2 is rational, the
open ball B(r/2; xn) is in our countable collection, and our countable collection
is a base. This proves (a). §

A metric space satisfying the equivalent conditions of Proposition 2.32 is
said to be separable. Among the examples of metric spaces in Section 1, the
ones in Examples 1, 2, 3, 6, 8 if X is countable, 9, 11, 12, 13, and 14 are
separable. A countable dense set in Examples 1, 2, and 3 is given by all points
with all coordinates rational. In Example 6, one countable dense set consists
of all sequences with only finitely many nonzero entries, those being rational,
and in Examples 8 and 9, X itself is a countable dense set. In Example 11, the
sequences that are 0 in all but finitely many entries, those being rational, form
a countable dense set. In Example 13, the set of finite linear combinations of
exponentials einx using scalars in Q + iQ is dense as a consequence of Par-
seval’s equality. In Example 12, when [a, b] = [−π, π], the same countable
set as for Example 13 is dense by Proposition 2.25 because the sets of func-
tions in Examples 12 and 13 coincide and the inclusion of R[−π, π] relative
to L2 into R[−π, π] relative to L1 is continuous. In Example 14, the set of
polynomialswith coefficients inQ+iQ is countable and can be shown to be dense.
Example 10 is not separable, and Example 8 is not separable if X is uncount-

able.
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7. Compactness and Completeness

In Section 6 we introduced the notions of open cover and subcover for a metric
space. We call a metric space compact if every open cover of the space has a
finite subcover. A subset E of a metric space (X, d) is compact if it is compact
as a subspace of the whole space, i.e., if every collection of open sets in X whose
union contains E has a finite subcollection whose union contains E .
Historically this notion was embodied in the Heine–Borel Theorem, which

says that any closed bounded subset of Euclidean space has the property that
has just been defined to be compactness. As we shall see in Theorem 2.36 and
Corollary 2.37 below, theHeine–BorelTheoremcan be proved from theBolzano–
WeierstrassTheorem(Theorem1.8) and leads to faster, more transparent proofs of
some of the consequences of the Bolzano–Weierstrass Theorem. Even more im-
portant is that it generalizesbeyondmetric spaces andproducesuseful conclusions
about certain spaces of functions when statements about pointwise convergence
of a sequence of functions are inadequate.
Easily established examples of compact sets are hard to come by. For one

example, consider in a metric space (X, d) a convergent sequence {xn} along
with its limit x . The subset E = {x} ∪

S
n{xn} of X is compact. In fact, if U is

an open cover of E , some member U of U has x as an element, and then all but
finitely many elements of the sequence must be inU as well. Say thatU contains
x and all xn with n ∏ N . For 1 ≤ n < N , let Un be a member of U containing
xn . Then {U,U1, . . . ,UN−1} is a finite subcover of U.
It is easier to exhibit noncompact sets. The open interval (0, 1) is not compact,

as is seen from the open cover {( 1n , 1)}. Nor is an infinite discrete space, since
one-point sets form an open cover. A subtle dramatic example is the closed unit
ballC of the hedgehog space X , Example 10 in Section 1; this set is not compact.
In fact, the open ball of radius 1/2 about the origin is an open set in X , and so
is each open ray from the origin out to infinity. Let U be this collection of open
sets. Then U is an open cover of C . However, no member of U is superfluous,
since for eachU in U, there is some point x in C such that x is in C but x is in no
other member of U. Thus U does not contain even a countable subcover.
Let us now work directly toward a proof of the equivalence of compactness

and the Bolzano–Weierstrass property in a metric space.

Proposition 2.33. A compact metric space is separable.

PROOF. This is immediate from equivalent condition (b) for the definition of
separability in Proposition 2.32. §

Proposition 2.34. In any metric space (X, d),
(a) every compact subset is closed and bounded and
(b) any closed subset of a compact set is compact.
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PROOF. For (a), let E be a compact subset of X , fix x0 in X , and let Un for
n ∏ 1 be the open ball {x ∈ X | d(x0, x) < n}. Then {Un} is an open cover of E .
Since the Un’s are nested, the compactness of E implies that E is contained in a
single UN for some N . Then every member of E is at distance at most N from
x0, and E is bounded.
To see that E is closed, we argue by contradiction. Let x 0

0 be a limit point of E
that is not in E . By the Hausdorff property (Proposition 2.30b), we can find, for
each x ∈ E , open sets Ux and Vx with x ∈ Ux , x 0

0 ∈ Vx , and Ux ∩ Vx = ∅. The
sets Ux form an open cover of E . By compactness let {Ux1, . . . ,Uxn } be a finite
subcover. Then E ⊆ Ux1 ∪ · · · ∪ Uxn , which is disjoint from the neighborhood
Vx1 ∩ · · · ∩ Vxn of x 0

0. Thus x 0
0 cannot be a limit point of E , and we have arrived

at a contradiction. This proves (a).
For (b), let E be compact, and let F be a closed subset of E . Because of (a), F

is a closed subset of X . Let U be an open cover of F . Then U ∪ {Fc} is an open
cover of E . Passing to a finite subcover and discarding Fc, we obtain a finite
subcover of F . Thus F is compact. §

A collection of subsets of a nonempty set is said to have the finite-intersection
property if each intersection of finitely many of the subsets is nonempty.

Proposition 2.35. A metric space (X, d) is compact if and only if each col-
lection of closed subsets of X with the finite-intersection property has nonempty
intersection.

PROOF. Closed sets with the finite-intersection property have complements
that are open sets, no finite subcollection of which is an open cover. §

Theorem 2.36. Ametric space (X, d) is compact if and only if every sequence
has a convergent subsequence.

PROOF. Suppose that X is compact. Arguing by contradiction, suppose that
{xn}n∏1 is a sequence in X with no convergent subsequence. Put F =

S∞
n=1{xn}.

The subset F of X is closed by Corollary 2.23, hence compact by Proposition
2.34b. Since no xn is a limit point of F , there exists an open setUn in X containing
xn but no other member of F . Then {Un}n∏1 is an open cover of F with no finite
subcover, and we have arrived at a contradiction.
Conversely suppose that every sequence has a convergent subsequence. We

first show that X is separable. Fix an integer n. There cannot be infinitely many
disjoint open balls of radius 1/n, since otherwise we could find a sequence from
among their centers with no convergent subsequence. Thuswe can choose a finite
disjoint collection of these open balls that is not contained in a larger such finite
collection. Let their centers be x1, . . . , xN . The claim is that every point of X is
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at distance < 2/n from one of these finitely many centers. In fact, if x ∈ X is
given, form B( 1n ; x). This must meet some B( 1n ; xi ) at a point y, and then

d(x, xi ) ≤ d(x, y) + d(y, xi ) < 1
n + 1

n = 2
n .

Thus x is at distance < 2/n from one of the finitely many centers, as asserted.
Now let n vary, and let D be the set of all these centers for all n. Then every point
of X has members of D arbitrarily close to it, and hence D is a countable dense
set in X . Thus X is separable.
Let U be an open cover of X having no finite subcover. By the separability

and condition (b) in Proposition 2.32, we may assume that U is countable, say
U = {U1,U2, . . . }. Since U1 ∪U2 ∪ · · · ∪Un is not a cover, there exists a point
xn not in the union of the first n sets. By hypothesis the sequence {xn} has a
convergent subsequence {xnk }, say with limit x . Since U is a cover, somemember
UN of U contains x . Then {xnk } is eventually in UN , and some nk with nk > N
has xnk in UN . But xnk is not in U1 ∪ · · · ∪ Unk by construction, and this union
containsUN , since nk > N . We have arrived at a contradiction, and we conclude
that U must have had a finite subcover. §

Corollary 2.37 (Heine–Borel Theorem) In Euclidean space Rn , every closed
bounded set is compact.
REMARK. Conversely we saw in Proposition 2.34a that every compact subset

of any metric space is closed and bounded.

PROOF. LetC be a closed rectangular solid inRn , and let x (k) = (x (k)
1 , . . . , x (k)

n )
be the members of a sequence in C . By the Bolzano–Weierstrass Theorem
(Theorem1.8) forR1, we canfinda subsequenceconvergent in thefirst coordinate,
a subsequence of that convergent in the second coordinate, and so on. Thus {x (k)}
has a subsequence convergent in Rn . By Corollary 2.23 the limit is in C . By
Theorem 2.36,C is compact. Applying Corollary 2.34b, we see that every closed
bounded subset of Rn is compact. §

The next few results will show how the use of compactness both simplifies and
generalizes some of the theorems proved in Section I.1.

Proposition 2.38. Let (X, d) and (Y, ρ) be metric spaces with X compact. If
f : X → Y is continuous, then f (X) is a compact subset of Y .
PROOF. If {Uα} is an open cover of f (X), then { f −1(Uα)} is an open cover of

X . Let { f −1(Uj )}nj=1 be a finite subcover. Then {Uj }nj=1 is a finite subcover of
f (X). §

Corollary 2.39. Let (X, d) be a compact metric space, and let f : X → R be
a continuous function. Then f attains its maximum and minimum values.
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REMARK. Theorem 1.11 was the special case of this result with X = [a, b].
This particular space X is compact by theHeine–Borel Theorem (Corollary 2.37),
and the corollary applies to yield exactly the conclusion of Theorem 1.11.
PROOF. By Proposition 2.38, f (X) is a compact subset of R. By Proposition

2.34a, f (X) is closed and bounded. The supremum and infimum of the members
of f (X) inR∗ lie inR, since f (X) is bounded, and they are limits of sequences in
f (X). Since f (X) is closed, Proposition 2.23 shows that they must lie in f (X).

§

Corollary 2.40. Let (X, d) and (Y, ρ) be metric spaces with X compact. If
f : X → Y is continuous, one-one, and onto, then f is a homeomorphism.
REMARK. In the hypotheses of the change of variables formula for integrals

in R1 (Theorem 1.34), a function ϕ : [A, B] → [a, b] was given as strictly
increasing, continuous, and onto. Another hypothesis of the theorem was that
ϕ−1 was continuous. Corollary2.40 shows that this last hypothesiswas redundant.
PROOF. Let E be a closed subset of X , and consider ( f −1)−1(E) = f (E).

The set E is compact by Proposition 2.34b, f (E) is compact by Proposition 2.38,
and f (E) is closed by Proposition 2.34a. Proposition 2.15b thus shows that f −1

is continuous. §

If (X, d) and (Y, ρ) are metric spaces, a function f : X → Y is uniformly
continuous if for each ≤ > 0, there is some δ > 0 such that d(x1, x2) < δ
implies ρ( f (x1), f (x2)) < ≤. This is the natural generalization of the definition
in Section I.1 for the special case of a real-valued function of a real variable.

Proposition 2.41. Let (X, d) and (Y, ρ) be metric spaces with X compact. If
f : X → Y is continuous, then f is uniformly continuous.
REMARK. This result generalizes Theorem 1.10, which is the special case

X = [a, b] and Y = R.
PROOF. Let ≤ > 0 be given. For each x ∈ X , choose δx > 0 such

that d(x 0, x) < δx implies ρ( f (x 0), f (x)) < ≤/2. The open balls B( 12δx ; x)
cover X ; let the balls with centers x1, . . . , xn be a finite subcover. Put δ =
1
2 min{δx1, . . . , δxn }. Now suppose that d(x 0, x) < δ. The point x is in some ball
in the finite subcover; suppose x is in B( 12δxj ; xj ). Then d(x, xj ) < 1

2δxj , so that

d(x 0, xj ) ≤ d(x 0, x) + d(x, xj ) < δ + 1
2δxj ≤ δxj .

By definition of δxj , ρ( f (x 0), f (xj )) < ≤/2 and ρ( f (xj ), f (x)) < ≤/2. There-
fore

ρ( f (x 0), f (x)) ≤ ρ( f (x 0), f (xj )) + ρ( f (xj ), f (x)) < ≤
2 + ≤

2 = ≤,

and the proof is complete. §
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One final application of compactness is the Fundamental Theorem of Algebra,
which is discussed in Section A8 of Appendix A in the context of properties of
polynomials.

Theorem 2.42 (Fundamental Theorem of Algebra). Every polynomial with
complex coefficients and degree ∏ 1 has a complex root.

PROOF. Let P : C → C be the function P(z) =
Pn

j=0 aj z j , where a0, . . . , an
are in C with an 6= 0 and with n ∏ 1. We may assume that an = 1. Let m =
infz∈C |P(z)|. Since P(z) = zn

°
1+an−1z−1+· · ·+a1z−(n−1) +a0z−n

¢
, we have

limz→∞ P(z)/zn = 1. Thus there exists an R such that |P(z)| ∏ 1
2 |z|

n whenever
|z| ∏ R. Choosing R = R0 such that 12 R

n
0 ∏ 2m, we see that |P(z)| ∏ 2m for

|z| ∏ R0. Consequently m = inf|z|≤R0 |P(z)|. The set S =
©
z ∈ C

Ø
Ø |z| ≤ R0

™

is compact by the Heine–Borel Theorem (Corollary 2.37), and Corollary 2.39
shows that |P(z)| attains its minimum on S at some point z0 in S. Then |P(z)|
attains its minimum on C at z0. We shall show that this minimum value m is 0.
Assuming the contrary, define Q(z) = P(z + z0)/P(z0), so that Q(z) is a

polynomial of degree n ∏ 1 with Q(0) = 1 and |Q(z)| ∏ 1 for all z. Write

Q(z) = 1+ bkzk + bk+1zk+1 + · · · + bnzn with bk 6= 0.

Corollary 1.45 produces a real number θ such that eikθbk = −|bk |. For any r > 0
with rk |bk | < 1, we then have

Ø
Ø1+ bkrkeikθ

Ø
Ø = 1− rk |bk |.

For such r and that θ , this equality implies that

|Q(reiθ )| ≤
Ø
Ø1+ bkrkeikθ

Ø
Ø + rk+1|bk+1| + · · · + rn|bn|

≤ 1− rk
°
|bk | − r |bk+1| − · · · − rn−k |bn|

¢
.

For sufficiently small r > 0, the expression in parentheses on the right side is
positive, and then |Q(reiθ )| < 1, in contradiction to hypothesis. Thus we must
have had m = 0, and we obtain P(z0) = 0. §

Another theme discussed in Section I.1 is that Cauchy sequences in R1 are
convergent. This convergence was proved in Theorem 1.9 as a consequence of
the Bolzano–Weierstrass Theorem. Actually, many sequences in metric spaces of
importance in analysis are shown to converge without one’s knowing the limit in
advance and without using any compactness, and we therefore isolate the forced
convergence of Cauchy sequences as a definition. In a metric space (X, d), a
sequence {xn} is a Cauchy sequence if for any ≤ > 0, there is some integer N
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such that d(xm, xn) < ≤ whenever m and n are ∏ N . A familiar 2≤ argument
shows that convergent sequences are Cauchy. Other familiar arguments show
that any Cauchy sequence with a convergent subsequence is convergent and that
any Cauchy sequence is bounded.
We say that the metric space (X, d) is complete if every Cauchy sequence in

X converges to a point in X . We know that the lineR1 is complete. It follows that
Rn is complete because a Cauchy sequence in Rn is Cauchy in each coordinate.
A nonempty subset E of X is complete if E as a subspace is a complete metric
space. The next two propositions and corollary give three examples of complete
metric spaces.

Proposition 2.43. A subset E of a complete metric space X is complete if and
only if it is closed.
REMARK. In particular every closed subset of Rn is a complete metric space.
PROOF. Suppose E is closed. Let {xn} be a Cauchy sequence in E . Then {xn}

is Cauchy in X , and the completeness of X implies that {xn} converges, say to
some x ∈ X . By Corollary 2.23, x is in E . Thus {xn} is convergent in E . The
converse is immediate from Corollary 2.23. §

Proposition 2.44. If S is a nonempty set, then the vector space B(S) of
bounded scalar-valued functions on S, with the uniform metric, is a complete
metric space.
PROOF. Let { fn} be a Cauchy sequence in B(S). Then { fn(x)} is a Cauchy

sequence in C for each x in S. Define f (x) = limn fn(x). For any ≤ > 0,
we know that there is an integer N such that | fn(x) − fm(x)| < ≤ whenever
n and m are ∏ N . Taking into account the continuity of the distance function
on C, i.e., the continuity of absolute value, we let m tend to infinity and obtain
| fn(x) − f (x)| ≤ ≤ for n ∏ N . Thus { fn} converges to f in B(S). §

Corollary 2.45. Let (S, d) be a metric space. Then the vector space C(S) of
bounded continuous scalar-valued functions on S, with the uniform metric, is a
complete metric space.
REMARK. C(S) was observed to be a vector subspace in the remarks with

Corollary 2.29.
PROOF. The space B(S) is complete by Proposition 2.44, and C(S) is a closed

metric subspace by Corollary 2.24. Then C(S) is complete by Proposition 2.43.
§

Now we shall relate compactness and completeness. A metric space (X, d) is
said to be totally bounded if for any ≤ > 0, finitely many open balls of radius ≤
cover X .
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Theorem 2.46. A metric space (X, d) is compact if and only if it is totally
bounded and complete.

PROOF. Let (X, d) be compact. If ≤ > 0 is given, the open balls B(≤; x)
cover X . By compactness some finite number of the balls cover X . Therefore
X is totally bounded. Next let a Cauchy sequence {xn} be given. By Theorem
2.36, {xn} has a convergent subsequence. A Cauchy sequence with a convergent
subsequence is necessarily convergent, and it follows that X is complete.
In the reverse direction, let X be totally bounded and complete. Theorem 2.36

shows that it is enough to prove that any sequence {xn} in X has a convergent
subsequence. By total boundedness, find finitely many open balls of radius 1
covering X . Then infinitely many of the xn’s have to lie in one of these balls,
and hence there is a subsequence {xnk } that lies in a single one of these balls of
radius 1. Next finitely many open balls of radius 1/2 cover X . In the same way
there is a subsequence {xnkl } of {xnk } that lies in a single one of these balls of
radius 1/2. Continuing in this way, we can find successive subsequences, the mth
of which lies in a single ball of radius 1/m. The Cantor diagonal process, used in
the proof of Theorem 1.22, allows us to form a single subsequence {xji } of {xn}
such that for eachm, {xji } is eventually in a ball of radius 1/m. If ≤ > 0 is given,
find m such that 1/m < ≤, and let cm be the center of the ball of radius 1/m.
Choose an integer N such that xji lies in B(1/m; cm)whenever ji ∏ N . If ji ∏ N
and ji 0 ∏ N , then d(cm, xji ) < ≤ and d(cm, xji 0 ) < ≤, whence d(xji , xji 0 ) < 2≤.
Therefore the subsequence {xji } is Cauchy. By completeness it converges. Hence
{xn} has a convergent subsequence, and the theorem is proved. §

Let (X, d) and (Y, ρ) be metric spaces, and let f : X → Y be uniformly
continuous. Then f carries Cauchy sequences to Cauchy sequences. In fact, if
{xn} is Cauchy in X and if ≤ > 0 is given, choose some δ of uniform continuity
for f and ≤, and find an integer N such that d(xn, xn0) < δ whenever n and n0 are
∏ N . Then ρ( f (xn), f (xn0)) < ≤ for the same n’s and n0’s, and hence { f (xn)}
is Cauchy.

Proposition 2.47. Let (X, d) and (Y, ρ) be metric spaces with Y complete,
let D be a dense subset of X , and let f : D → Y be uniformly continuous. Then
f extends uniquely to a continuous function F : X → Y , and F is uniformly
continuous.

PROOF OF UNIQUENESS. If x is in X , apply Proposition 2.22a to choose a
sequence {xn} in D with xn → x . Continuity of F forces F(xn) → F(x). But
F(xn) = f (xn) for all n. Thus F(x) = limn f (xn) is forced. §

PROOF OF EXISTENCE. If x is in X , choose xn ∈ D with xn → x . Since
{xn} is convergent, it is Cauchy. Since f is uniformly continuous, { f (xn)} is
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Cauchy. The completeness of Y then allows us to define F(x) = lim f (xn), but
we must see that F is well defined. For this purpose, suppose also that {yn} is a
sequence in D that converges to x . Let {zn} be the sequence x1, y1, x2, y2, . . . .
This sequence is Cauchy, and {xn} and {yn} are subsequences of it. Therefore
lim f (yn) = lim f (zn) = lim f (xn), and F(x) is well defined.
For the uniform continuity of F , let ≤ > 0 be given, and choose some δ

of uniform continuity for f and ≤/3. Suppose that x and x 0 are in X with
d(x, x 0) < δ/3. Choose xn in D with d(xn, x) < δ/3 and ρ( f (xn), F(x)) < ≤/3,
and choose x 0

n in D with d(x 0
n, x 0) < δ/3 and ρ( f (x 0

n), F(x 0)) < ≤/3. Then
d(xn, x 0

n) < δ by the triangle inequality, and hence ρ( f (xn), f (x 0
n)) < ≤/3.

Thus ρ(F(x), F(x 0)) < ≤ by the triangle inequality. §

8. Connectedness

Although the Intermediate Value Theorem (Theorem 1.12) in Section I.1 was
derived from the Bolzano–Weierstrass Theorem, the IntermediateValue Theorem
is not to be regarded as a consequence of compactness. Instead, the relevant
property is “connectedness,” which we discuss in this section.
A metric space (X, d) is connected if X cannot be written as X = U ∪ V

with U and V open, disjoint, and nonempty. A subset E of X is connected if E
is connected as a subspace of X , i.e., if E cannot be written as a disjoint union
(E ∩ U) ∪ (E ∩ V ) with U and V open in X and with E ∩ U and E ∩ V both
nonempty. The disjointness in this definition is of E ∩ U and E ∩ V ; the open
sets U and V may have nonempty intersection.

Proposition 2.48. The connected subsets ofR are the intervals—open, closed,
and half open.

PROOF. Let E be a connected subset of R, and suppose that there are real
numbers a, b, c such that a < c < b, a and b are in E , and c is not in E . Forming
the open setsU = (−∞, c) and V = (c,+∞) in R, we see that E is the disjoint
union of E ∩U and E ∩ V and that these two sets are nonempty. Thus E is not
connected.
Conversely suppose that I is an open, closed, or half-open interval of R from

a to b, with a 6= b but with a or b or both allowed to be infinite. Arguing
by contradiction, suppose that I is not connected. Choose open sets U and
V in R such that I is the disjoint union of I ∩ U and I ∩ V and these two
sets are nonempty. Without loss of generality, there exist members c and c0 of
I ∩ U and I ∩ V , respectively, with c < c0. Since U is open and c has to be
< b, all real numbers c + ≤ with ≤ > 0 sufficiently small are in I ∩ U . Let
d = sup

©
x

Ø
Ø [c, x) ⊆ I ∩U

™
, so that d > c.
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If d < b, then the fact that U is open implies that d is not in I ∩U . Thus d is
in I ∩ V . Since V is open and d > a, d − ≤ is in I ∩ V if ≤ > 0 is sufficiently
small. But then d − ≤ is in both I ∩U and I ∩ V for ≤ sufficiently small. This is
a contradiction, and we conclude that d = b.
If d = b is in I ∩ V , then the same argument shows that b− ≤ is in both I ∩U

and I ∩V for ≤ positive and sufficiently small, and we again have a contradiction.
Consequently all points from c to the right end of I are in I ∩U . This is again a
contradiction, since c0 is known to be in I ∩ V . §

Proposition 2.49. The continuous image of a connected metric space is
connected.

PROOF. Let (X, d) and (Y, ρ) be metric spaces with X connected, and let
f : X → Y be continuous. We are to prove that f (X) is connected. Corollary
2.27 shows that there is no loss of generality in assuming that f (X) = Y , i.e.,
f is onto. Arguing by contradiction, suppose that Y is the union Y = U ∪ V
of disjoint nonempty open sets. Then X = f −1(U) ∪ f −1(V ) exhibits X as
the disjoint union of nonempty sets, and these sets are open as a consequence of
Proposition 2.15a. Thus X is not connected. §

Corollary 2.50 (Intermediate Value Theorem). For real-valued functions of a
real variable, the continuous image of any interval is an interval.

PROOF. This is immediate from Propositions 2.48 and 2.49. §

Further connected sets beyond those in R are typically built from other con-
nected sets. One tool is a path in X , which is a continuous function from a closed
bounded interval [a, b] into X . The image of a path is connected by Propositions
2.48 and 2.49. Ametric space (X, d) is pathwise connected if for any two points
x1 and x2 in X , there is some path p from x1 to x2, i.e., if there is some continuous
p : [a, b] → X with p(a) = x1 and p(b) = x2.
A pathwise-connected metric space (X, d) is necessarily connected. In fact,

otherwise we could write X as a disjoint union of two nonempty open setsU and
V . Let x1 be in U and x2 be in V , and let p : [a, b] → X be a path from x1 to
x2. Then p([a, b]) = (p([a, b]) ∩ U) ∪ (p([a, b]) ∩ V ) exhibits p([a, b]) as a
disjoint union of relatively open sets, and these sets are nonempty, since x1 is in
the first set and x2 is in the second set. Consequently p([a, b]) is not connected,
in contradiction to the fact that the image of any path is connected.
We can view a pathwise-connected metric space as the union of images of

paths from a single point to all other points, and such a union is then connected.
The following proposition generalizes this construction.
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Proposition 2.51. If (X, d) is ametric space and {Eα} is a system of connected
subsets of X with a point x0 in common, then

S
α Eα is connected.

PROOF. Assuming the contrary, find open setsU and V in X such that
S

α Eα

is the disjoint union of its intersections withU and V and these two intersections
are both nonempty. Say that x0 is inU . Since Eα is connected and x0 is in Eα ∩U ,
the decomposition Eα = (Eα ∩U) ∪ (Eα ∩ V ) forces Eα ∩ V to be empty. Then°S

α Eα) ∩ V =
S

α (Eα ∩ V ) is empty, and we have arrived at a contradiction.
§

It follows from Proposition 2.51 that the union of all connected subsets of X
that contain x0 is connected. This set is called the connected component of x0
in X . The metric space X is the disjoint union of its connected components. The
next result implies that these connected components are closed sets.

Proposition 2.52. If (X, d) is a metric space and E is a connected subset of
X , then the closure Ecl is connected.

PROOF. Suppose that U and V are open sets in X such that Ecl is contained
in U ∪ V and Ecl ∩U ∩ V is empty. We are to prove that Ecl ∩U and Ecl ∩ V
cannot both be nonempty. Arguing by contradiction, let x be in Ecl∩U and let y
be in Ecl∩V . Since E is connected, E ∩U and E ∩V cannot both be nonempty,
and thus x and y cannot both be in E . Thus at least one of them, say x , is a limit
point of E . Since U is a neighborhood of x , U contains a point e of E different
from x . Thus e is in E ∩U . Since y cannot then be in E ∩ V , y is a limit point
of E . Since V is a neighborhood of y, V contains a point f of E different from
y. Thus f is in E ∩ V , and we have arrived at a contradiction. §

EXAMPLE. The graph in R2 of sin(1/x) for 0 < x ≤ 1 is pathwise connected,
and we have seen that pathwise-connected sets are connected. The closure of this
graph consists of the graph together with all points (0, t) for −1 ≤ t ≤ 1, and
this closure is connected by Proposition 2.52. One can show, however, that this
closure is not pathwise connected. Thus we obtain an example of a connected set
in R2 that is not pathwise connected.

9. Baire Category Theorem

Anumber of deep results in analysis depend critically on the fact that somemetric
space is complete. Already we have seen that the metric space C(S) of bounded
continuous scalar-valued functions on a metric space is complete, and we shall
see as not too hard a consequence in Chapter XII that there exists a continuous
periodic function whose Fourier series diverges at a point. One of the features
of the Lebesgue integral in Chapter V will be that the metric spaces of integrable



9. Baire Category Theorem 119

functions and of square-integrable functions,with their naturalmetrics, are further
examples of complete metric spaces. Thus these spaces too are available for
applications that make use of completeness.
The main device through which completeness is transformed into a powerful

hypothesis is the Baire Category Theorem below. A closed set in a metric space
is nowhere dense if its interior is empty. Its complement is an open dense set,
and conversely the complement of any open dense set is closed nowhere dense.

EXAMPLE. A nontrivial example of a closed nowhere dense set is aCantor set4
in R. This is a set constructed from a closed bounded interval of R by removing
an open interval in the middle of length a fraction r1 of the total length with
0 < r1 < 1, removing from each of the 2 remaining closed subintervals an open
interval in the middle of length a fraction r2 of the total length of the subinterval,
removing from each of the 4 remaining closed subintervals an open interval in
the middle of length a fraction r3 of the total length of the interval, and so on
indefinitely. The Cantor set is obtained as the intersection of the approximating
sets. It is closed, being the intersection of closed sets, and it is nowhere dense
because it contains no interval of more than one point. For the standard Cantor
set, the starting interval is [0, 1], and the fractions are given by r1 = r2 = · · · = 1

3
at every stage. In general, the “length” of the resulting set5 is the product of the
length of the starting interval and

Q∞
n=1 (1− rn).

Theorem 2.53 (Baire Category Theorem). If (X, d) is a complete metric
space, then

(a) the intersection of countably many open dense sets is nonempty,
(b) X is not the union of countably many closed nowhere dense sets.

PROOF. Conclusions (a) and (b) are equivalent by taking complements. Let us
prove (a). Suppose that Un is open and dense for n ∏ 1. Since U1 is nonempty
and open, let E1 be an open ball B(r1; x1)whose closure is inU1 andwhose radius
is r1 ≤ 1. We construct inductively open balls En = B(rn; xn) with rn ≤ 1

n such
that En ⊆ U1 ∩ · · · ∩ Un and Ecln ⊆ En−1. Suppose En with n ∏ 1 has been
constructed. Since Un+1 is dense and En is nonempty and open, Un+1 ∩ En is
not empty. Let xn+1 be a point in Un+1 ∩ En . Since Un+1 ∩ En is open, we can
find an open ball En+1 = B(rn+1; xn+1) with radius rn+1 ≤ 1

n+1 and center a
point xn+1 in Un+1 such that Ecln+1 ⊆ Un+1 ∩ En . Then En+1 has the required
properties, and the inductive construction is complete. The sequence {xn} is

4Often a mathematician who refers to “the” Cantor set is referring to what is called the “standard
Cantor set” later in the present paragraph.

5To be precise, the length is the “Lebesgue measure” of the set in the sense to be defined in
Chapter V.
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Cauchy because whenever n ∏ m, the points xn and xm are both in Em and thus
have d(xn, xm) < 1

m . Since X is by assumption complete, let xn → x . For any
integer N , the inequality n > N implies that xn is in EN+1. Thus the limit x is in
EclN+1 ⊆ EN ⊆ U1 ∩ · · · ∩UN . Since N is arbitrary, x is in

T∞
n=1Un . §

REMARK. In (a), the intersection in question is dense, not merely nonempty.
To see this, we observe in the first part of the proof that sinceU1 is dense, E1 can
be chosen to be arbitrarily close to any member of X and to have arbitrarily small
radius. Following through the construction, we see that x is in E1 and hence can
be arranged to be as close as we want to any member of X . The corresponding
conclusion in (b) is that a nonempty open subset of X is never contained in the
countable union of closed nowhere dense sets.

EXAMPLES.
(1) The subset Q of rationals in R is not the countable intersection of open

sets. In fact, assume the contrary, and write Q =
T∞

n=1Un with Un open. Each
set Un contains Q and hence is dense in R. Also, for q ∈ Q, the set R − {q} is
open and dense. Thus the equality Q =

T∞
n=1Un implies that

≥ ∞\

n=1
Un

¥
∩

≥ \

q∈Q
(R − {q})

¥

is empty, in contradiction to Theorem 2.53.
(2) Let us start with a Cantor set as at the beginning of this section. The total

interval is to be [0, 1], and the set is to be built with middle segments of fractions
r1, r2, . . . . Within the closure of each removed open interval, we insert a Cantor
set for that interval, possibly with different fractions r1, r2, . . . for each inserted
Cantor set. This insertion involves further removed open intervals, and we insert
a Cantor set into each of these. We continue this process indefinitely. The union
of the constructed sets is dense. Can it be the entire interval [0, 1]? The answer
is “no” because each of the Cantor sets is closed nowhere dense and because by
Theorem 2.53, the interval [0, 1] is not the countable union of closed nowhere
dense sets.

A subset E of a metric space is said to be of the first category if it is contained
in the countable union of closed nowhere dense sets. Theorem 2.53 and the
remark after it together imply that no nonempty open set in a complete metric
space is of the first category.

Theorem 2.54. Let (X, d) be a complete metric space, and let U be an open
subset of X . Suppose for n ∏ 1 that fn : U → C is a continuous function and that
fn converges pointwise to a function f : U → C. Then the set of discontinuities
of f is of the first category.
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The proof will make use of the notion of the oscillation of a complex-valued
function on a metric space U . For any function g : U → C, define

oscg(x0) = lim
δ↓0

sup
x∈B(δ;x0)

|g(x) − g(x0)|,

so that g is continuous at x0 if and only if oscg(x0) = 0. At first glance it
might seem that the sets

©
x

Ø
Ø oscg(x) ∏ r

™
are always closed, no matter what

discontinuities g has. Actually, these sets need not be closed. Take, for example,
the function g : R → R that is 1 at every nonzero rational, 0 at every irrational,
and 1/2 at 0. Then oscg(x) is 1 at every x in R except for x = 0, where it is 1/2.
Thus, in this example, the set

©
x

Ø
Ø oscg(x) ∏ 1

™
is R − {0} and is not closed.

Lemma 2.55. Let (U, d) be a metric space. If g : U → C is a function and
≤ > 0 is a positive number, then

©
x ∈ U

Ø
Ø oscg(x) ∏ 2≤

™cl
⊆

©
x ∈ U

Ø
Ø oscg(x) ∏ ≤

2
™
.

PROOF. We need to see that the limit points of the set on the left are in the
set on the right. Thus suppose that oscg(xn) ∏ 2≤ for all n and that xn → x0.
For each n, choose xn,m such that limm xn,m = xn and |g(xn,m) − g(xn)| ∏ ≤ for
all m. Because of the convergence of xn,m to xn , we may choose, for each n, an
integer m = mn such that d(xn,mn , xn) < d(x0, xn), and then limn xn,mn = x0
by the triangle inequality. From |g(xn,mn ) − g(xn)| ∏ ≤, the triangle inequality
forces

|g(xn,mn ) − g(x0)| ∏ ≤
2 or |g(xn) − g(x0)| ∏ ≤

2 . (∗)
Defining yn to be xn,mn or xn according as the first or second inequality is the case
in (∗), we have yn → x0 and |g(yn) − g(x0)| ∏ ≤

2 . This proves the lemma. §

PROOF OF THEOREM 2.54. In view of Lemma 2.55 and the fact thatU is open,
it is enough to prove for each ≤ > 0 that

©
x

Ø
Ø osc f (x) ∏ ≤

™
does not contain a

nonempty open subset of X . Assuming the contrary, suppose that it contains the
nonempty open set V . Define

Amn =
©
x ∈ V

Ø
Ø | fm(x) − fn(x)| ≤ ≤

4
™
.

This is a relatively closed subset of V . Then Am =
T

n∏m Amn is closed in V . If
x is in V , the fact that { fn(x)} is a Cauchy sequence implies that there is some m
such that x is in Amn for all n ∏ m. Hence

S∞
m=1 Am = V . Since V is open in a

complete metric space, Theorem 2.53 and the remark after it show that some Am
has nonempty interior. Fix that m, and let W be its nonempty interior. Since

Am ⊆
©
x ∈ V

Ø
Ø | fm(x) − f (x)| ≤ ≤

4
™
,

every point of W has | fm(x) − f (x)| ≤ ≤
4 and osc f (x) ∏ ≤. Let x0 be in W and

choose xn tending to x0 with | f (xn) − f (x0)| ∏ 3≤
4 . From | fm(xn) − f (xn)| ≤ ≤

4
and | fm(x0)− f (x0)| ≤ ≤

4 , we obtain | fm(xn)− fm(x0)| ∏ ≤
4 . Since xn converges

to x0, this inequality contradicts the continuity of fm at x0. §
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10. Properties of C(S) for Compact Metric S

If (S, d) is a metric space, then we saw in Proposition 2.44 that the vector space
B(S)of bounded scalar-valued functionson S, in the uniformmetric, is a complete
metric space. We saw also in Corollary 2.45 that the vector subspace C(S) of
bounded continuous functions is a complete subspace. In this section we shall
study the spaceC(S) further under the assumption that S is compact. In this case
Propositions 2.38 and 2.34 tell us that every continuous scalar-valued function
on S is automatically bounded and hence is in C(S).
The first result about C(S) for S compact is a generalization of Ascoli’s

Theorem from its setting in Theorem 1.22 for real-valued functions on a bounded
interval [a, b]. The generalized theorem provides an insight that is not so obvious
from the special case that S is a closed bounded interval of R. The insight is a
characterization of the compact subsets of C(S) when S is compact, and it is
stated precisely in Corollary 2.57 below. The relevant definitions for Ascoli’s
Theorem are generalized in the expected way. Let F = { fα | α ∈ A} be a
set of scalar-valued functions on the compact metric space S. We say that F
is equicontinuous at x ∈ S if for each ≤ > 0, there is some δ > 0 such that
d(t, x) < δ implies | f (t) − f (x)| < ≤ for all f ∈ F. The set F of functions
is pointwise bounded if for each t ∈ S, there exists a number Mt such that
| f (t)| ≤ Mt for all f ∈ F. The set is uniformly equicontinuous on S if it is
equicontinuous at each point x ∈ S and if the δ can be taken independent of x .
The set is uniformly bounded on S if it is pointwise bounded at each t ∈ S and
the bound Mt can be taken independent of t ; this last definition is consistent with
the definition of a uniformly bounded sequence of functions given in Section 4.

Theorem 2.56 (Ascoli’s Theorem). Let (S, d) be a compact metric space. If
{ fn} is a sequence of scalar-valued functions on S that is equicontinuous at each
point of S and pointwise bounded on S, then

(a) { fn} is uniformly equicontinuous and uniformly bounded on S,
(b) { fn} has a uniformly convergent subsequence.

REMARKS. The proof involves only notational changes from the special case
Theorem 1.22; there are enough such changes, however, so that it is worth writing
out the details. Inspection of this proof shows also that the range R or C may be
replaced by any compact metric space. We shall see a further generalization of
this theorem in Chapter X, and the proof at that time will look quite different.

PROOF. Since each fn is continuous at each point, we know from Propositions
2.38, 2.34a, and 2.41 that each fn is uniformly continuous and bounded. The
proof of (a) amounts to an argument that the estimates in those theorems can be
arranged to apply simultaneously for all n.
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First consider the question of uniform boundedness. Choose, by Corollary
2.39, some xn in S with | fn(xn)| equal to Kn = supx∈S | fn(x)|. Then choose
a subsequence on which the numbers Kn tend to supn Kn in R∗. There will be
no loss of generality in assuming that this subsequence is our whole sequence.
By compactness of S, apply the Bolzano–Weierstrass property given in Theorem
2.36 to find a convergent subsequence {xnk } of {xn}, and let x0 be the limit of this
subsequence. By pointwise boundedness, find Mx0 with | fn(x0)| ≤ Mx0 for all
n. Then choose some δ of equicontinuity at x0 for ≤ = 1. As soon as k is large
enough so that d(xnk , x0) < δ, we have

Knk = | fnk (xnk )| ≤ | fnk (xnk ) − fnk (x0)| + | fnk (x0)| < 1+ Mx0 .

Thus 1+ Mx0 is a uniform bound for the functions fn .
For the uniform equicontinuity, fix ≤ > 0. The uniform continuity of fn for

each n, as given in Proposition 2.41, means that it makes sense to define

δn(≤) = min
Ω
1, sup

Ω
δ0 > 0

Ø
Ø
Ø
Ø
| fn(x) − fn(y)| < ≤ whenever
d(x, y) < δ0 and x and y are in S

ææ
.

If d(x, y) < δn(≤), then | fn(x) − fn(y)| < ≤. Put δ(≤) = infn δn(≤). Let us see
that it is enough to prove that δ(≤) > 0: If x and y are in S with d(x, y) < δ(≤),
then d(x, y) < δ(≤) ≤ δn(≤). Hence | fn(x) − fn(y)| < ≤ as required.
Thus we are to prove that δ(≤) > 0. If δ(≤) = 0, then we first choose a strictly

increasing sequence {nk} of positive integers such that δnk (≤) < 1
k , and we next

choose xk and yk in S with d(xk, yk) < 1/k and | fnk (xk) − fnk (yk)| ∏ ≤. Using
the Bolzano–Weierstrass property again, we obtain a subsequence {xkl } of {xk}
such that {xkl } converges, say to a limit x0. Then

lim sup
l

d(ykl , x0) ≤ lim sup
l

d(ykl , xkl ) + lim sup
l

d(xkl , x0) = 0+ 0 = 0,

so that {ykl } converges to x0. Now choose, by equicontinuity at x0, a number
δ0 > 0 such that | fn(x) − fn(x0)| < ≤

2 for all n whenever d(x, x0) < δ0. The
convergence of {xkl } and {ykl } to x0 implies that for large enough l, we have
d(xkl , x0) < δ0 and d(ykl , x0) < δ0. Therefore | fnkl (xkl ) − fnkl (x0)| < ≤

2 and
| fnkl (ykl )− fnkl (x0)| < ≤

2 , fromwhichwe conclude that | fnkl (xkl )− fnkl (ykl )| < ≤.
But we saw that | fnk (xk) − fnk (yk)| ∏ ≤ for all k, and thus we have arrived at a
contradiction. This proves the uniform equicontinuity and completes the proof
of (a).
To prove (b), let R be a compact set containing all sets image( fn). Choose

a countable dense set D in S by Proposition 2.33. Using the Cantor diagonal
process and the Bolzano–Weierstrass property of R, we construct a subsequence
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{ fnk } of { fn} that is convergent at every point in D. Let us prove that { fnk }
is uniformly Cauchy. Redefining our indices, we may assume that nk = k for
all k. Let ≤ > 0 be given, and let δ be some corresponding number exhibiting
equicontinuity. The balls B(δ; r) centered at the members r of D cover S, and
the compactness of S gives us finitely many of their centers r1, . . . , rl such that
any member of S is within δ of at least one of r1, . . . , rl . Then choose N with
| fn(rj ) − fm(rj )| < ≤ for 1 ≤ j ≤ l whenever n and m are ∏ N . If x is in S,
let r(x) be an rj with d(x, r(x)) < δ. Whenever n and m are ∏ N , we then have

| fn(x) − fm(x)|
≤ | fn(x) − fn(r(x))| + | fn(r(x)) − fm(r(x))| + | fm(r(x)) − fm(x)|
< ≤ + ≤ + ≤ = 3≤.

Hence { fnk } is uniformly Cauchy, and (b) follows since the metric space C(S) is
complete. §

Corollary 2.57. If (S, d) is a compact metric space, then a subset E of C(S)
in the uniform metric has compact closure if and only if E is uniformly bounded
and uniformly equicontinuous.

PROOF. First let us see that if E is uniformly bounded and uniformly equicon-
tinuous, then so is Ecl. In fact, if | f (x)| ≤ M for f ∈ E , then the same thing is
true of any uniform limit of such functions. Hence Ecl is uniformly bounded. For
the uniformequicontinuity of Ecl, let ≤ be given, and find some δ of equicontinuity
for ≤ and the members of E . If f is a limit point of E , we can find a sequence
{ fn} in E converging uniformly to f . If d(x, y) < δ, then the inequality

| f (x) − f (y)| ≤ | f (x) − fn(x)| + | fn(x) − fn(y)| + | fn(y) − f (y)|

and the uniform convergence show that we obtain | f (x) − f (y)| < 3≤ by fixing
any sufficiently large n. Thus Ecl is uniformly equicontinuous.
Now suppose that E is a closed subset of C(S) that is uniformly bounded

and equicontinuous. Then Theorem 2.56 shows that any sequence in E has
a subsequence that is convergent in C(S). Since E is closed, the sequence is
convergent in E . Theorem 2.36 then shows that E is compact.
Conversely suppose that E is compact in C(S). Distance from 0 in C(S) is a

continuous real-valued function by Corollary 2.17, and this continuous function
has to be bounded on the compact set E . Thus E is uniformly bounded. For the
uniform equicontinuity, let ≤ > 0 be given. Theorem 2.46 shows that E is totally
bounded. Hence we can find a finite set f1, . . . , fl in E such that each member f
of E has supx∈S | f (x) − f j (x)| < ≤ for some j . By uniform continuity of each
fi , choose some number δ > 0 such that d(x, y) < δ implies | fi (x)− fi (y)| < ≤
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for 1 ≤ i ≤ l. If f j is the member of the finite set associated with f , then
d(x, y) < δ implies

| f (x) − f (y)| ≤ | f (x) − f j (x)| + | f j (x) − f j (y)| + | f j (y) − f (y)| < 3≤.

Hence E is uniformly equicontinuous. §

The second result about C(S) when S is compact generalizes the Weierstrass
Approximation Theorem (Theorem 1.52) of Section I.9. We shall make use of a
special case of the Weierstrass theorem in the proof—that |x | is the uniform limit
on [−1, 1] of polynomials Pn(x) with Pn(0) = 0. This special case was proved
also by a direct argument in Section I.8.
Let us distinguish the case of real-valued functions from that of complex-

valued functions, writing C(S, R) and C(S, C) in the two cases. The theorem in
question gives a sufficient condition for a “subalgebra” of C(S, R) or C(S, C) to
be dense in the whole space in the uniform metric. Pointwise addition and scalar
multiplication make C(S, R) into a real vector space and C(S, C) into a complex
vector space, and each space has also the operation of pointwisemultiplication; all
of these operations on functions preserve continuity as a consequenceofCorollary
2.29. By a subalgebraofC(S, R) orC(S, C), wemean any nonempty subset that
is closed under all these operations. The space C(S, C) has also the operation
of complex conjugation; this again preserves continuity by Corollary 2.29.
We shall work with a subalgebra of C(S, R) or of C(S, C), and we shall

assume that the subalgebra is closed under complex conjugation in the case of
complex scalars. The closure of such a subalgebra in the uniform metric is again
a subalgebra. To see that this closure is a subalgebra requires checking each
operation separately, and we confine our attention to pointwise multiplication. If
sequences { fn} and {gn} converge uniformly to f and g, then { fngn} converges
uniformly to f g because

sup
x∈S

| fn(x)gn(x) − f (x)g(x)|

≤ sup
x∈S

| fn(x)(gn(x) − g(x))| + sup
x∈S

|( fn(x) − f (x))g(x)|

≤
≥
sup
x∈S

| fn(x)|
¥≥
sup
x∈S

|gn(x)−g(x)|
¥
+

≥
sup
x∈S

|g(x)|
¥≥
sup
x∈S

| fn(x)− f (x)|
¥

with supx∈S |g(x)| finite and supx∈S | fn(x)| convergent to supx∈S | f (x)|.
We say that a subalgebra of C(S, R) or C(S, C) separates points if for each

pair of distinct points x1 and x2 in S, there is some f in the subalgebra with
f (x1) 6= f (x2).
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Theorem 2.58 (Stone–Weierstrass Theorem). Let (S, d) be a compact metric
space.

(a) If A is a subalgebra of C(S, R) that separates points and contains the
constant functions, then A is dense in C(S, R) in the uniform metric.

(b) IfA is a subalgebra ofC(S, C) that separates points, contains the constant
functions, and is closed under complex conjugation, then A is dense in
C(S, C) in the uniform metric.

PROOF OF (a). Let Acl be the closure of A in the uniform metric. We recalled
above from Chapter I that |t | is the limit of polynomials t 7→ Pn(t) uniformly on
[−1, 1]. It follows that |t | is the limit of polynomials t 7→ Qn(t) = MPn(M−1t)
uniformly on [−M,M]. Taking M = supx∈S | f (x)|, we see that | f | is in Acl
whenever f is in A.
Since Acl is a subalgebra closed under addition and scalar multiplication as

well, the formulas

max{ f, g} = 1
2 ( f + g) + 1

2 | f − g|,

min{ f, g} = 1
2 ( f + g) − 1

2 | f − g|,

show that Acl is closed under pointwise maximum and pointwise minimum for
two functions. Iterating, we see thatAcl is closed under pointwise maximum and
pointwise minimum for n functions for any integer n ∏ 2.
The heart of the proof is an argument that if f ∈ C(S, R), x ∈ S, and ≤ > 0

are given, then there exists gx in Acl such that gx(x) = f (x) and

gx(s) > f (s) − ≤

for all s ∈ S. The argument is as follows: For each y ∈ S other than x , there exists
a function inA taking distinct values at x and y. Some linear combination of this
function and the constant function 1 is a function hy in A with hy(x) = f (x)
and hy(y) = f (y). To complete the definition of hy for all y ∈ S, we set
hx equal to the constant function f (x)1. The continuity of hy and the equality
hy(y) = f (y) imply that there exists an open neighborhood Uy of y such that
hy(s) > f (s) − ≤ for all s ∈ Uy . As y varies, these open neighborhoods cover
S, and by compactness of S, finitely many suffice, say Uy1, . . .Uyk . Then the
function gx = max{hy1, . . . , hyk } has gx(s) > f (s) − ≤ for all s ∈ S. Also, it
has gx(x) = f (x), and it is in Acl, since Acl is closed under pointwise maxima.
To complete the proof of (a), we continue with f ∈ C(S, R) and ≤ > 0 as

above. We shall produce a member h of Acl such that |h(s) − f (s)| < ≤ for all
s ∈ S. For each x , the continuity of gx and the equality gx(x) = f (x) imply
that there is an open neighborhood Vx of x such that gx(s) < f (s) + ≤ for all
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s ∈ Vx . As x varies, these open neighborhoods cover S, and by compactness of
S, finitely many suffice, say Vx1, . . . Vxl . The function h = min{gx1, . . . , gxl } has
h(s) < f (s) + ≤ for all s ∈ S, and it is in (Acl)cl = Acl, since each gxj is in Acl.
Since each gxj has gxj (s) > f (s) − ≤ for all s ∈ S, we have h(s) > f (s) − ≤ as
well. Thus |h(s) − f (s)| < ≤ for all s ∈ S.
Since ≤ is arbitrary, we conclude that f is a limit point of Acl. But Acl is

closed, and hence f is in Acl. ThereforeAcl = C(S, R). §

PROOF OF (b). Let AR be the subset of members of A that take values in R.
Then AR is certainly closed under addition, multiplication by real scalars, and
pointwise multiplication, and the real-valued constant functions are in AR. If
f = u + iv is in A and has real and imaginary parts u and v, then f̄ is in A
by assumption, and hence so are u = 1

2 ( f + f̄ ) and v = 1
2i ( f − f̄ ). We are

given that A separates points of S. If x1 and x2 are distinct points of S with
f (x1) 6= f (x2), then either u(x1) 6= u(x2) or v(x1) 6= v(x2), and it follows that
AR separates points. By (a), AR is dense in C(S, R). Finally let f = u + iv be
in C(S, C), and let {un} and {vn} be sequences in AR converging uniformly to u
and v, respectively. Then {un + ivn} is a sequence inA converging uniformly to
f . Hence A is dense in C(S, C). §

EXAMPLES.
(1) On a closed bounded interval [a, b] of the line, the scalar-valued polyno-

mials form an algebra that separates points, contains the constants, and is closed
under conjugation. The Stone–Weierstrass Theorem in this case reduces to the
Weierstrass Theorem (Theorem 1.52), saying that the polynomials are dense in
C([a, b]).
(2) Consider the algebra of continuous complex-valued periodic functions

on [−π, π] and the subalgebra of complex-valued trigonometric polynomialsPN
n=−N cneinx ; here N depends on the trigonometric polynomial. Neither the

algebra nor the subalgebra separates points, since all functions in question have
f (−π) = f (π). To make the theorem applicable, we consider the domain of
these functions to be the unit circle of C, parametrized by eix ; this parametriza-
tion is permissible by Corollary 1.45, and continuity is preserved. The Stone–
Weierstrass Theorem then applies and gives a new proof that the trigonometric
polynomials are dense in the space of complex-valued continuous periodic func-
tions; our earlier proof was constructive, deducing the result as part of Fejér’s
Theorem (Theorem 1.59).
(3) Let Sn−1 be the unit sphere

©
x ∈ Rn

Ø
Ø |x | = 1

™
in Rn . The restrictions

to Sn−1 of all scalar-valued polynomials P(x1, . . . , xn) in n variables form a
subalgebra of C(Sn−1) that separates points, contains the constants, and is closed
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under conjugation. The Stone–Weierstrass Theorem says that this subalgebra is
dense in C(Sn−1).
(4) Let S be the closed unit disk

©
z
Ø
Ø |z| ≤ 1

™
inC. The setA of restrictions to

S of sums of power series having infinite radius of convergence is a subalgebra of
C(S, C) that separates points and contains the constants. However, the continuous
function z̄ is not in the closure, because it has integral 0 over S with everymember
ofA and also with uniform limits on S of members ofA. This example shows the
need for some hypothesis like “closed under complex conjugation” in Theorem
2.58b.

Corollary 2.59. If (S, d) is a compact metric space, then C(S) is separable as
a metric space.

PROOF. It is enough to consider C(S, C), since C(S, R) is a metric subspace
of C(S, C). Being compact metric, S is separable by Proposition 2.33. Let B be
a countable base of S. The number of pairs (U, V ) of members of B such that
U cl ⊆ V is countable. By Proposition 2.30e, there exists a continuous function
fUV : S → R such that fUV is 1 on U cl and fUV is 0 on V c. Let us show that
the system of functions fUV separates points of S.
If x1 and x2 are given, theT1 property of S (Proposition 2.30a), when combined

with Proposition 2.31, gives us a member V of B such that x1 is in V and V ⊆
{x2}c. Since the set V c is closed and does not contain x1, the property that S is
regular (Proposition 2.30c) gives us disjoint open sets U1 and V1 with x1 ∈ U1
and V c ⊆ V1. The latter condition means that V ⊇ V c

1 . By Proposition 2.31
let U be a basic open set with x1 ∈ U and U ⊆ U1. Then we have x1 ∈ U ⊆
U1 ⊆ U cl

1 ⊆ V c
1 ⊆ V and hence also x1 ∈ U ⊆ U cl ⊆ V . The function fUV is

therefore 1 on x1 and 0 on x2, and the system of functions fUV separates points.
The set of all finite products of functions fUV and the constant function 1

is countable, and so is the set D of linear combinations of all these functions
with coefficients of the form q1 + iq2 with q1 and q2 rational. The claim is that
this countable set D is dense in C(S, C). The closure of D certainly contains the
algebraA of all complex linear combinations of the function 1 and arbitrary finite
products of functions fUV , and A is closed under complex conjugation. By the
Stone–Weierstrass Theorem (Theorem 2.58),Acl = C(S, C). Since Dcl contains
A, we have C(S, C) = Acl ⊆ (Dcl)cl = Dcl. In other words, D is dense. §

11. Completion

If (X, d) and (Y, ρ) are two metric spaces, an isometry of X into Y is a function
ϕ : X → Y that preserves distances: ρ(ϕ(x1), ϕ(x2)) = d(x1, x2) for all x1 and
x2 in X . For example, a rotation (x, y) 7→ (x cos θ − y sin θ, x sin θ + y cos θ) is
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an isometry ofR2 with itself. An isometry is necessarily continuous (with δ = ≤).
However, an isometry need not have the whole range as image. For example, the
map x 7→ (x, 0) of R1 into R2 is an isometry that is not onto R2. In the case that
there exists an isometry of X onto Y , we say that X and Y are isometric.

Theorem 2.60. If (X, d) is a metric space, then there exist a complete metric
space (X∗,1) and an isometry ϕ : X → X∗ such that the image of X in X∗ is
dense.

REMARK. It is observed in Problems 25–26 at the end of the chapter that
(X∗,1) and ϕ : X → X∗ are essentially unique. The metric space (X∗,1) is
called a completion of (X, d), or sometimes “the” completion because of the
essential uniqueness. There is more than one construction of X∗, and the proof
belowwill use a construction by Cauchy sequences that is immediately suggested
if X is the set of rationals and X∗ is the set of reals.

PROOF. Let Cauchy(X) be the set of all Cauchy sequences in X . Define a
relation ∼ on Cauchy(X) as follows: if {pn} and {qn} are in Cauchy(X), then
{pn} ∼ {qn} means lim d(pn, qn) = 0.
Let us prove that ∼ is an equivalence relation. It is reflexive, i.e., has {pn} ∼

{pn}, because d(pn, pn) = 0 for all n. It is symmetric, i.e., has the property that
{pn} ∼ {qn} implies {qn} ∼ {pn}, because d(pn, qn) = d(qn, pn). It is transitive,
i.e., has the property that {pn} ∼ {qn} and {qn} ∼ {rn} together imply {pn} ∼ {rn},
because

0 ≤ d(pn, rn) ≤ d(pn, qn) + d(qn, rn)

and each term on the right side is tending to 0. Thus∼ is an equivalence relation.
Let X∗ be the set of equivalence classes. If P and Q are two equivalence

classes, we set
1(P, Q) = lim d(pn, qn), (∗)

where {pn} is a member of the class P and {qn} is a member of the class Q. We
have to prove that the limit in (∗) exists inR and then that the limit is independent
of the choice of representatives of P and Q.
For the existence of the limit (∗), it is enough to prove that the sequence

{d(pn, qn)} is Cauchy. The triangle inequality gives

d(pn, qn) ≤ d(pn, pm) + d(pm, qm) + d(qm, qn)

and hence d(pn, qn) − d(pm, qm) ≤ d(pn, pm) + d(qm, qn). Reversing the roles
of m and n, we obtain

|d(pn, qn) − d(pm, qm)| ≤ d(pn, pm) + d(qm, qn).
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The two terms on the right side tend to 0, since {pk} and {qk} are Cauchy, and
hence {d(pn, qn)} is Cauchy. Thus the limit (∗) exists.
We have also to show that the limit (∗) is independent of the choice of repre-

sentatives. Let {pn} and {p0
n} be in P , and let {qn} and {q 0

n} be in Q. Then

d(pn, qn) ≤ d(pn, p0
n) + d(p0

n, q
0
n) + d(q 0

n, qn).

Since the first and third terms on the right side tend to 0 and the other terms in
the inequality have limits, we obtain limn d(pn, qn) ≤ limn d(p0

n, q 0
n). Revers-

ing the roles of the primed and unprimed symbols, we obtain lim d(p0
n, q 0

n) ≤
lim d(pn, qn). Therefore lim d(pn, qn) = lim d(p0

n, q 0
n), and 1(P, Q) is well

defined.
Let us see that (X∗,1) is a metric space. Certainly 1(P, P) = 0 and

1(P, Q) = 1(Q, P). To prove the triangle inequality

1(P, Q) ≤ 1(P, R) + 1(R, Q), (∗∗)

let {pn} be in P , {qn} be in Q, and {rn} be in R. Since

d(pn, qn) ≤ d(pn, rn) + d(rn, qn),

we obtain (∗∗) by passing to the limit. Finally if two unequal classes P and Q
are given, and if {pn} and {qn} are representatives, then lim d(pn, qn) 6= 0 by
definition of ∼. Therefore1(P, Q) > 0. Thus (X∗,1) is a metric space.
Now we can define the isometry ϕ : X → X∗. If x is in X , then ϕ(x) is the

equivalence class of the constant sequence {pn} in which pn = x for all n. To
see that ϕ is an isometry, let x and y be in X , let pn = x for all n, and let qn = y
for all n. Then 1(ϕ(x), ϕ(y)) = lim d(pn, qn) = lim d(x, y) = d(x, y), and ϕ
is an isometry.
Let us prove that ϕ(X) is dense in X∗. In fact, if P is in X∗ and {pn} is

a representative, we show that ϕ(pn) → P . If ϕ(pn) = P for all sufficiently
large n, then P is in ϕ(X); otherwise this limit relation will exhibit P as a limit
point of ϕ(X), and we can conclude that P is in ϕ(X)cl in any case. In other
words, ϕ(pn) → P implies that ϕ(X) is dense. To prove that we actually do
have ϕ(pn) → P , let ≤ > 0 be given. Choose N such that k ∏ m ∏ N implies
d(pm, pk) < ≤. Then 1(ϕ(pm), P) = limk d(pm, pk) ≤ ≤ for m ∏ N . Hence
limm 1(ϕ(pm), P) = 0 as required.
Finally let us prove that X∗ is complete by showing directly that any Cauchy

sequence {Pn} converges. Since ϕ(X) is dense in X∗, we can choose xn ∈ X with
1(ϕ(xn), Pn) < 1/n. First let us prove that {xn} is Cauchy in X . Let ≤ > 0 be
given, and choose N large enough so that 1(Pn, Pn0) < ≤/3 when n and n0 are
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∏ N . Possibly by taking N still larger, we may assume that 1/N < ≤/3. Then
whenever n and n0 are ∏ N , we have

d(xn, xn0) = 1(ϕ(xn), ϕ(xn0))

≤ 1(ϕ(xn), Pn) + 1(Pn, Pn0) + 1(Pn0, ϕ(xn0))

≤ 1
n + ≤

3 + 1
n0 ≤ 1

N + ≤
3 + 1

N < ≤
3 + ≤

3 + ≤
3 = ≤.

Thus {xn} is Cauchy in X . Let P ∈ X∗ be the equivalence class to which {xr }
belongs. We prove completeness by showing that Pn → P . Let ≤ > 0 be given,
and choose N large enough so that r ∏ n ∏ N implies d(xn, xr ) < ≤/2. Possibly
by taking N still larger, we may assume that 1N < ≤

2 . Then r ∏ n ∏ N implies

1(Pn, P) ≤ 1(Pn, ϕ(xn)) + 1(ϕ(xn), P) < 1
n + lim

r
d(xn, xr ) < ≤

2 + ≤
2 = ≤.

Thus Pn → P . Hence every Cauchy sequence in X∗ converges, and X∗ is
complete. §

An important application of Theorem 2.60 for algebraic number theory is
to the construction of the p-adic numbers, p being prime. The metric space
that is completed is the set of rationals with a certain nonstandard metric. This
application appears in Problems 27–31 at the end of this chapter.

12. Problems

1. As in Example 9 of Section 1, let S be a nonempty set, fix an integer n > 0, and
let X be the set of n-tuples of members of S. For n-tuples x = (x1, . . . , xn) and
y = (y1, . . . , yn), define d(x, y) = #{ j | xj 6= yj }, the number of components in
which x and y differ. Prove that d satisfies the triangle inequality, so that (X, d)

is a metric space.
2. Prove that a separable metric space is the disjoint union of a countable open set

and a closed set in which every point is a limit point.
3. Give an example of a function f : [0, 1] → R for which the graph of f , given

by
©
(x, f (x))

Ø
Ø 0 ≤ x ≤ 1

™
, is a closed subset ofR2 and yet f is not continuous.

4. If A is a dense subset of a metric space (X, d) and U is open in X , prove that
U ⊆ (A ∩U)cl.

5. Let (X, d) be a metric space, let U be an open set, and let E1 ⊇ E2 ⊇ · · · be a
decreasing sequence of closed bounded sets with

T∞
n=1 En ⊆ U .

(a) For X equal to Rn , show that EN ⊆ U for some N .
(b) For X equal to the subspace Q of rationals in R1, give an example to show

that EN ⊆ U can fail for every N .
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6. Let F : X × Y → Z be a function from the product of two metric spaces into a
metric space.
(a) Suppose that (x, y) 7→ F(x, y) is continuous and that Y is compact. Prove

that F(x, · ) tends to F(x0, · ) uniformly on Y as x tends to x0.
(b) Conversely suppose 7→ F(x, y) is continuous except possibly at points

(x, y) = (x0, y), and suppose that F(x, · ) → F(x0, · ) uniformly. Prove
that F is continuous everywhere.

7. Give an example of a continuous function between two metric spaces that fails
to carry some Cauchy sequence to a Cauchy sequence.

8. (Contraction mapping principle) Let (X, d) be a complete metric space, let
r be a number with 0 ≤ r < 1, and let f : X → X be a contractionmapping,
i.e., a function such that d( f (x), f (y)) ≤ rd(x, y) for all x and y in X . Prove
that there exists a unique x0 in X such that f (x0) = x0.

9. Prove that a countable complete metric space has an isolated point.
10. A metric space (X, d) is called locally connected if each point has arbitrarily

small open neighborhoods that are connected. Let C be a Cantor set in [0, 1], as
described in Section 9, and let X ⊂ R2 be the union of the three sets C × [0, 1],
[0, 1]× {0}, and [0, 1]× {1}. Prove that X is compact and connected but is not
locally connected.

Problems 11–13 concern the relationship between connected and pathwise connected.
It was observed in Section 8 that pathwise connected implies connected. A metric
space is called locally pathwise connected if each point has arbitrarily small open
neighborhoods that are pathwise connected.
11. Prove that a metric space (X, d) that is connected and locally pathwise connected

is pathwise connected.
12. Deduce from the previous problem that for an open subset of Rn , connected

implies pathwise connected.
13. Prove that any open subset ofR1 is uniquely the disjoint union of open intervals.

Problems 14–17 concern almost periodic functions. Let f : R1 → C be a bounded
uniformly continuous function. If ≤ > 0, an ≤ almost period for f is a number t such
that | f (x + t)− f (x)| ≤ ≤ for all real x . A subset E of R1 is called relatively dense
if there is some L > 0 such that any interval of length ∏ L contains a member of E .
The function f is Bohr almost periodic if for every ≤ > 0, its set of ≤ almost periods
is relatively dense. The function f is Bochner almost periodic if every sequence of
translates { ftn }, where ft (x) = f (x + t), has a uniformly convergent subsequence.
Any function x 7→ eicx with c real is an example.
14. As usual, let B(R1, C) be the metric space of bounded complex-valued functions

on R1 in the uniform metric. Show that the subspace of bounded uniformly
continuous functions is closed, hence complete.
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15. Show that a bounded uniformly continuous function f : R1 → C is Bohr almost
periodic if and only if the set

©
ft

Ø
Ø t ∈ R1

™
is totally bounded in B(R1, C).

16. Prove that a bounded uniformly continuous function f : R1 → C is Bohr almost
periodic if and only if it is Bochner almost periodic. Thus the names Bohr and
Bochner can be dropped.

17. Prove that the set of almost periodic functions on R1 is an algebra closed under
complex conjugation and containing the constants. Prove also that it is closed
under uniform limits.

Problems 18–20 concern the special case whose proof precedes that of the Stone–
Weierstrass Theorem (Theorem 2.58). In the text in Section 10, this preliminary
special case was the function |x | on [−1, 1], and it was handled in two ways—in
Section I.8 by the binomial expansion and Abel’s Theorem and in Section I.9 as a
special case of theWeierstrass Approximation Theorem. The problems in the present
group handle an alternative preliminary special case, the function

p
x on [0, 1]. This

is just as good because |x | =
p
x2.

18. (Dini’sTheorem) Let X be a compactmetric space. Suppose that fn : X → R
is continuous, that f1 ≤ f2 ≤ f3 ≤ · · · , and that f (x) = lim fn(x) is
continuous and is nowhere +∞. Use the defining property of compactness
to prove that fn converges to f uniformly on X .

19. Define a sequence of polynomial functions Pn : [0, 1] → R by P0(x) = 0 and
Pn+1(x) = Pn(x) + 1

2 (x − Pn(x)2). Prove that 0 = P0 ≤ P1 ≤ P2 ≤ · · · ≤
p
x ≤ 1 and that limn Pn(x) =

p
x for all x in [0, 1].

20. Combine the previous two problems to prove that
p
x is the uniform limit of

polynomial functions on [0, 1].

Problems 21–24 concern the effect of removing from the Stone–Weierstrass Theorem
(Theorem2.58) the hypothesis that the given algebra contains the constants. Let (S, d)

be a compact metric space, and letA be a subalgebra ofC(S, R) that separates points.
There can be no pair of points {x, y} such that all members of A vanish at x and y.
21. If for each s ∈ S, there is some member of A that is nonzero at s, prove in the

following way that A is still dense in C(S, R): Observe that the only place in
the proof of Theorem 2.58a that the presence of constant functions is used is in
the construction of the function hy in the third paragraph. Show that a function
hy still exists in A with hy(x) = f (x) and hy(y) = f (y) under the weaker
hypothesis that for each s ∈ S, there is some member of A that is nonzero at s.

22. Suppose that the members of A all vanish at some s0 in S. Let B = A + R1,
so that Theorem 2.58a applies to B. Use the linear function L : C(S, R) → R
given by L( f ) = f (s0), together with the fact that B cl = C(S, R), to prove that
A is uniformly dense in the subalgebra of all members of C(S, R) that vanish
at s0.
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23. Adapt the above arguments to prove corresponding results about the algebra
C(S, C) of complex-valued continuous functions.

24. Let C0([0,+∞), R) be the algebra of continuous functions from [0,+∞) into
R that have limit 0 at +∞.
(a) Prove that the set of all finite linear combinations of functions e−nx for

positive integers n is dense in C0([0,+∞), R).
(b) Suppose that f is in C0([0,+∞), R), that f (x) = 0 for x ∏ b, and that

R b
0 f (x)e−nx dx = 0 for all integers n > 0. Prove that f is the 0 function.

Problems 25–26 concern completions of a metric space. They use the notation of
Theorem 2.60. The first problem says that the completion is essentially unique, and
the second problem addresses the question of what happens if the original space is
already complete; in particular it shows that the completion of the completion is the
completion.
25. Suppose that (X, d) is a metric space, that (X∗

1,11) and (X∗
2,12) are complete

metric spaces, and that ϕ1 : X → X∗
1 and ϕ2 : X → X∗

2 are isometries such that
ϕ1(X) is dense in X∗

1 and ϕ2(X) is dense in X∗
2 . Prove that there exists a unique

isometry √ of X∗
1 onto X

∗
2 such that ϕ2 = √ ◦ ϕ1.

26. Prove that a metric space X is complete if and only if X∗ = X , i.e., if and only
if the standard isometry ϕ of X into its completion X∗ is onto.

Problems 27–31 concern the field Qp of p-adic numbers. The problems assume
knowledge of unique factorization for the integers; the last problem in addition
assumes knowledge of rings, ideals, and quotient rings. Let Q be the set of rational
numbers with their usual arithmetic, and fix a prime number p. Each nonzero rational
number r can be written, via unique factorization of integers, as r = mpk/n with p
not dividing m or n and with k a well-defined integer (positive, negative, or zero).
Define |r |p = p−k . For r = 0, define |0|p = 0. The function | · |p plays a role in
the relationship betweenQ andQp similar to the role played by absolute value in the
relationship between Q and R.
27. Prove that | · |p on Q satisfies (i) |r |p ∏ 0 with equality if and only if r = 0,

(ii) | − r |p = |r |p, (iii) |rs|p = |r |p|s|p, and (iv) |r + s|p ≤ max{|r |p, |s|p}.
Property (iv) is called the ultrametric inequality.

28. Show that (Q, d) is a metric space under the definition d(r, s) = |r − s|p.
29. Let (Qp, d) be the completion of the metric space (Q, d). Since |r |p can be

recovered from the metric by |r |p = d(r, 0), the function | · |p extends to a
continuous function | · |p : Qp → R.
(a) Using Proposition 2.47, show that addition, as a function fromQ×Q toQp,

extends to a continuous function fromQp × Qp toQp. Argue similarly that
the operation of passing to the negative, as a function fromQ toQp, extends
to a continuous function from Qp to Qp. Then prove that Qp is an abelian
group under addition.
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(b) Show that multiplication, as a function from Q × Q to Qp, extends to a
continuous function from Qp × Qp to Qp. (This part is subtler than (a)
because multiplication is not uniformly continuous as a function of two
variables.)

(c) Let Q× = Q − {0} and Q×
p = Qp − {0}. Show that the operation of

taking the reciprocal, as a function fromQ× toQ×
p , extends to a continuous

function from Q×
p to itself. Then prove that Q×

p is an abelian group under
multiplication.

(d) Complete the proof that Qp is a field by establishing the distributive law
t (r + s) = tr + ts within Qp.

30. (a) Prove that the subset
©
t ∈ Qp

Ø
Ø |t |p ≤ 1

™
of Qp is totally bounded.

(b) Prove that a subset ofQp is compact if and only if it is closed and bounded.
31. Prove that the subsetZp ofQp with |x |p ≤ 1 is a commutative ring with identity,

that the subset P with |x |p ≤ p−1 is an ideal in Zp, and that the quotient Zp/P
is a field of p elements.




