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APPENDIX A

Background Topics

Abstract. This appendix treats some topics that are likely to be well known by some readers and
less well known by others. Section A1 deals with set theory and with functions: it discusses the
role of formal set theory, it works in a simplified framework that avoids too much formalism and the
standard pitfalls, it establishes notation, and it mentions some formulas. Some emphasis is put on
distinguishing the image and the range of a function, as this distinction is important in algebra and
algebraic topology and therefore plays a role when real analysis begins to interact seriously with
algebra.
Sections A2 and A3 assume knowledge of Section I.1 and discuss topics that occur logically

between the end of Section I.1 and the beginning of Section I.2. The first of these establishes
the Mean Value Theorem and its standard corollaries and then goes on to define the notion of a
continuous derivative for a function on a closed interval. The other section gives a careful treatment
of the differentiability of an inverse function in one-variable calculus.
Section A4 is a quick review of complex numbers, real and imaginary parts, complex conjuga-

tion, and absolute value. Complex-valued functions appear in the book beginning in Section I.5.
SectionA5 states and proves the classical Schwarz inequality, which is used in Chapter II to establish
the triangle inequality for certain metrics but is needed before that in Chapter I in the context of
Fourier series.
SectionsA6 andA7 are not needed until Chapter II. The first of these defines equivalence relations

and establishes the basic fact that they lead to a partitioning of the underlying set into equivalence
classes. The other section discusses the connection between linear functions and matrices in the
subject of linear algebra and summarizes the basic properties of determinants.
SectionA8, which is not neededuntil Chapter IV, establishes unique factorization for polynomials

with real or complex coefficients and defines “multiplicity” for roots of complex polynomials.
Sections A9 and A10 return to set theory. Section A9 defines partial orderings and includes

Zorn’s Lemma, which is a powerful version of the Axiom of Choice, while Section A10 concerns
cardinality. The material in these sections first appears in problems in Chapter V; it does not appear
in the text until Chapter X in the case of Section A9 and until Chapter XII in the case of Section A10.

A1. Sets and Functions

Real analysis typically makes use of an informal notion of set theory and notation
for it in which sets are described by properties of their elements and by operations
on sets. This informal set theory, if allowed to be too informal, runs into certain
paradoxes, such as the Russell paradox: “If S is the set of all sets that do not
contain themselves as elements, is S a member of S or is it not?” The conclusion
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604 Appendix A. Background Topics

of the Russell paradox is that the “set” of all sets that do not contain themselves
as elements is not in fact a set.
Mathematicians’ experience is that such pitfalls can be avoided completely by

working within some formal axiom system for sets, of which there are several
that are well established. A basic one is “Zermelo–Fraenkel set theory,” and the
remarks in this section refer specifically to it but refer to the others at least to
some extent.1
The standard logical paradoxes are avoided by having sets, elements (or “en-

tities”), and a membership relation ∈ such that a ∈ S is a meaningful statement,
true or false, if and only if a is an element and S is a set. The terms set, element,
and ∈ are taken to be primitive terms of the theory that are in effect defined by
a system of axioms. The axioms ensure the existence of many sets, including
infinite sets, and operations on sets that lead to other sets. To make full use of
this axiom system, one has to regard it as occurring in the context of certain rules
of logic that tell the forms of basic statements (namely, a = b, a ∈ S, and “S
is a set”), the connectives for creating complicated statements from simple ones
(“or,” “and,” “not,” and “if . . . then”), and the way that quantifiers work (“there
exists” and “for all”).
Working rigorously with such a system would likely make the development

of mathematics unwieldy, and it might well obscure important patterns and di-
rections. In practice, therefore, one compromises between using a formal axiom
system and working totally informally; let us say that one works “informally but
carefully.” The logical problems are avoided not by rigid use of an axiom system,
but by taking care that sets do not become too “large”: one limits the sets that one
uses to those obtained from other sets by set-theoretic operations and by passage
to subsets.2
A featureof the axiomsystem that one takes advantageof inworking informally

but carefully is that the axiom systemdoes not preclude the existence of additional
sets beyond those forced to exist by the axioms. Thus, for example, in the subject
of coin-tossing within probability, it is normal to work with the set of possible
outcomes as S = {heads, tails} even though it is not apparent that requiring this
S to be a set does not introduce some contradiction.
It is worth emphasizing that the points of the theory at which one takes particu-

lar care vary somewhat from subject to subject within mathematics. For example,
it is sometimes of interest in calculus of several variables to distinguish between

1Mathematicians have no proof that this technique avoids problems completely. Such a proof
would be a proof of the consistency of a version of mathematics in which one can construct the
integers, and it is known that this much of mathematics cannot be proved to be consistent unless it
is in fact inconsistent.

2Not every set so obtained is to be regarded as “constructed.” The Axiom of Choice, which we
come to shortly, is an existence statement for elements in products of sets, and the result of applying
the axiom is a set that can hardly be viewed as “constructed.”
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the range of a function and its image in a way that will be mentioned below, but it
is usually not too important. In homological algebra, however, the distinction is
extremely important, and the subject loses a great deal of its impact if one blurs
the notions of range and image.
Some references for set theory that are appropriate for reading once are

Halmos’s Naive Set Theory, Hayden–Kennison’s Zermelo–Fraenkel Set Theory,
and Chapter 0 and the appendix of Kelley’s General Topology. The Kelley book
is one that uses the word “class” as a primitive term more general than “set”; it
develops von Neumann set theory.

All that being said, let us now introduce the familiar terms, constructions,
and notation that one associates with set theory. To cut down on repetition, one
allows some alternative words for “set,” such as family and collection. The word
“class” is used by some authors as a synonym for “set,” but the word class is used
in some set-theory axiom systems to refer to a more general notion than “set,”
and it will be useful to preserve this possibility. Thus a class can be a set, but we
allow ourselves to speak, for example, of the class of all groups even though this
class is too large to be a set. Alternative terms for “element” are member and
point; we shall not use the term “entity.” Instead of writing ∈ systematically, we
allow ourselves to write “in.” Generally, we do not use ∈ in sentences of text as
an abbreviation for an expression like “is in” that contains a verb.
If A and B are two sets, some familiar operations on them are the union A∪B,

the intersection A∩ B, and the difference A− B, all defined in the usual way in
terms of the elements they contain. Notation for the difference of sets varies from
author to author; some other authors write A \ B or A ∼ B for difference, but
this book uses A − B. If one is thinking of A as a universe, one may abbreviate
A− B as Bc, the complement of B in A. The empty set ∅ is a set, and so is the
set of all subsets of a set A, which is sometimes denoted by 2A. Inclusion of a
subset A in a set B is written A ⊆ B or B ⊇ A. Inclusion that does not permit
equality is denoted by A $ B or B % A; in this case one says that A is a proper
subset of B or that A is properly contained in B.
If A is a set, the singleton {A} is a set with just the one member A. Another

operation is unordered pair, whose formal definition is {A, B} = {A}∪ {B} and
whose informal meaning is a set of two elements in which we cannot distinguish
either element over the other. Still another operation is ordered pair, whose
formal definition is (A, B) = {{A}, {A, B}}. It is customary to think of an
ordered pair as a set with two elements in which one of the elements can be
distinguished as coming first.3

3Unfortunately a “sequence” as in Chapter I gets denoted by {x1, x2, . . . } or {xn}∞n=1. If its
notation were really consistent with the above definitions, we might infer, inaccurately, that the
order of the terms of the sequence does not matter. The notation for unordered pairs, ordered pairs,
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Let A and B be two sets. The set of all ordered pairs of an element of A and
an element of B is a set denoted by A × B; it is called the product of A and B
or the Cartesian product. A relation between a set A and a set B is a subset of
A× B. Functions, which are to be defined in a moment, provide examples. Two
examples of relations that are usually not functions are “equivalence relations,”
which are discussed in Section A6, and “partial orderings,” which are discussed
in Section A9.
If A and B are sets, a relation f between A and B is said to be a function,

written f : A → B, if for each x ∈ A, there is exactly one y ∈ B such that
(x, y) is in f . If (x, y) is in f , we write f (x) = y. In this informal but careful
definition of function, the function consists ofmore than just a set of ordered pairs;
it consists of the set of ordered pairs regarded as a subset of A× B. This careful
definition makes it meaningful to say that the set A is the domain, the set B is the
range,4 and the subset of y ∈ B such that y = f (x) for some x ∈ A is the image
of f . The image is also denoted by f (A). Sometimes a function f is described in
terms of what happens to typical elements, and then the notation is x 7→ f (x) or
x 7→ y, possibly with y given by some formula or by some description in words
about how it is obtained from x . Sometimes a function f is written as f ( · ), with
a dot indicating the placement of the variable; this notation is especially helpful in
working with restrictions of functions, which we come to in a moment, and with
functions of two variables when one of the variables is held fixed. This notation
is useful also for functions that involve unusual symbols, such as the absolute
value function x 7→ |x |, which in this notation becomes | · |. The word map or
mapping is sometimes used for “function” and for the operation of a function,
particularly when a geometric context for the function is of importance.
Often mathematicians are not so careful with the definition of function. De-

pending on the degree of informality that is allowed, one may occasionally refer
to a function as f (x)when it should be called f or x 7→ f (x). If any confusion is
possible, it is wise to use themore rigorous notation. Another habit of informality
is to regard a function f : A → B as simply a set of ordered pairs. Thus two
functions f1 : A → B and f2 : A → C become the same if f1(a) = f2(a) for
all a in A. With the less careful definition, the notion of the range of a function is
not really well defined. The less careful definition can lead to trouble in algebra,
but it does not often lead to trouble in real analysis until one gets to a level where
algebra and analysis merge somewhat.
The set of all functions from a set A to a set B is a set. It is sometimes denoted

by BA. The special case 2A that arose with subsets comes by regarding 2 as a
set {1, 2} and identifying a function f from A into {1, 2} with the subset of all
elements x of A for which f (x) = 1.

and sequences is, however, traditional, and it will not be changed here.
4Some authors refer to B as the codomain.
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If a subset B of a set A may be described by some distinguishing property
P of its elements, we may write this relationship as B = {x ∈ A | P}. For
example, the function f in the previous paragraph is identified with the subset
{x ∈ A | f (x) = 1}. Another example is the image of a general function
f : A → B, namely f (A) = {y ∈ B | y = f (x) for some x ∈ A}. Still more
generally along these lines, if E is any subset of A, then f (E) denotes the set
{y ∈ B | y = f (x) for some x ∈ E}. Some authors use a colon instead of a
vertical line in this notation.
This book frequently uses sets denoted by expressions like

S
x∈S Ax , an in-

dexed union, where S is a set that is usually nonempty. If S is the set {1, 2}, this
reduces to A1∪ A2. In the general case it is understood that we have an unnamed
function, say f , given by x 7→ Ax , having domain S and range the set of all
subsets of an unnamed set T , and

S
x∈S Ax is the set of all y ∈ T such that y is

in Ax for some x ∈ S. When S is understood, we may write
S

x Ax instead ofS
x∈S Ax . Indexed intersections

T
x∈S Ax are defined similarly, and this time it is

essential to disallow S empty because otherwise the intersection cannot be a set
in any useful set theory.
There is also an indexed Cartesian product×x∈S Ax that specializes in the

case that S = {1, 2} to A1× A2. Usually S is assumed nonempty. This Cartesian
product is the set of all functions f from S into

S
x∈S Ax such that f (x) is in

Ax for all x ∈ S. In the special case that S is {1, . . . , n}, the Cartesian product
is the set of ordered n-tuples from n sets A1, . . . , An and may be denoted by
A1 × · · · × An; its members may be denoted by (a1, . . . , an) with aj ∈ Aj for
1 ≤ j ≤ n. When the factors of a Cartesian product have some additional
algebraic structure, the notation for the Cartesian product is sometimes altered;
for example, the Cartesian product of groups Ax is denoted by

Q
x∈S Ax .

It is completely normal in real analysis, and it is the practice in this book, to
take the following axiom as part of one’s set theory; the axiom is normally used
without specific mention.

Axiom of Choice. The Cartesian product of nonempty sets is nonempty.

If the index set is finite, then the Axiom of Choice reduces to a theorem of
set theory. The axiom is often used quite innocently with a countably infinite
index set. For example, Proposition 1.7c asserts that any sequence in R∗ has a
subsequence converging to lim sup an , and the proof constructs onemember of the
sequence at a time. When thesemembers have someflexibility in their definitions,
as is the case with the proof as it is written for Proposition 1.7c, the Axiom of
Choice is being invoked. When the members instead have specific definitions,
such as “the term an such that n is the smallest integer satisfying such-and-such
properties,” the axiom is not being invoked. The proof in the text of Proposition
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1.7c can be rewritten with specific definitions and thereby can avoid invoking the
axiom, but there is no point in undertaking this rewriting. In Chapter II the axiom
is invoked in situations in which the index set is uncountable; uses of compactness
provide a number of examples.
From the Axiom of Choice, one can deduce a powerful tool known as Zorn’s

Lemma, whose use it is normal to acknowledge. Zorn’s Lemma appears in
Section A9 and is used in problems beginning in Chapter V and in the text
beginning in Chapter X.
If f : A → B is a function and B is a subset of B 0, then f can be regarded

as a function with range B 0 in a natural way. Namely, the set of ordered pairs is
unchanged but is to be regarded as a subset of A × B 0 rather than A × B.
Let f : A → B and g : B → C be two functions such that the range of f

equals the domain of g. The composition g ◦ f : A → C is the function with
(g ◦ f )(x) = g( f (x)) for all x . Because of the construction in the previous
paragraph, it is meaningful to define the composition more generally when the
range of f is merely a subset of the domain of g.
A function f : A → B is said to be one-one if f (x1) 6= f (x2) whenever x1

and x2 are distinct members of A. The function is said to be onto, or often “onto
B,” if its image equals its range. The terminology “onto B” avoids confusion: it
specifies the image and thereby guards against the use of the less careful definition
of function mentioned above. A mathematical audience often contains some
people who use the careful definition of function and some people who use the
less careful definition. For the latter kind of person, a function is always onto
something, namely its image, and a statement that a particular function is onto
might be regarded as a tautology.
When a function f : A → B is one-one and is onto B, there exists a function

g : B → A such that g ◦ f is the identity function on A and f ◦ g is the identity
function on B. The function g is unique, and it is defined by the condition, for
y ∈ B, that g(y) is the unique x ∈ A with f (x) = y. The function g is called
the inverse function of f and is often denoted by f −1.
Conversely if f : A → B has an inverse function, then f is one-one and

is onto B. The reason is that a composition g ◦ f can be one-one only if f is
one-one, and in addition, that a composition f ◦ g can be onto the range of f
only if f is onto its range.
If f : A → B is a function and E is a subset of A, the restriction of f

to E , denoted by f
Ø
Ø
E , is the function f : E → B consisting of all ordered

pairs (x, f (x)) with x ∈ E , this set being regarded as a subset of E × B, not of
A×B. One especially common example of a restriction is restriction to one of the
variables of a function of two variables, and then the idea of using a dot in place
of a variable can be helpful notationally. Thus the function of two variables might
be indicated by f or (x, y) 7→ f (x, y), and the restriction to the first variable,
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for fixed value of the second variable, would be f ( · , y) or x 7→ f (x, y).
We conclude this section with a discussion of direct and inverse images of

sets under functions. If f : A → B is a function and E is a subset of A, we
have defined f (E) = {y ∈ B | y = f (x) for some x ∈ E}. This is the same
as the image of f

Ø
Ø
E and is frequently called the image or direct image of E

under f . The notion of direct image does not behave well with respect to some
set-theoretic operations: it respects unions but not intersections. In the case of
unions, we have

f
≥[

s∈S
Es

¥
=

[

s∈S
f (Es);

the inclusion⊇ follows since f
≥S

s∈S Es
¥

⊇ f (Es) for each s, and the inclusion
⊆ follows because any member of the left side is f of a member of some Es . In
the case of intersections, the question f (E ∩ F)

?
= f (E)∩ f (F) can easily have

a negative answer, the correct general statement being f (E∩F) ⊆ f (E)∩ f (F).
An example with equality failing occurs when A = {1, 2, 3}, B = {1, 2}, f (1) =
f (3) = 1, f (2) = 2, E = {1, 2} and F = {2, 3} because f (E ∩ F) = {2} and
f (E) ∩ f (F) = {1, 2}.
If f : A → B is a function and E is a subset of B, the inverse image of E

under f is the set f −1(E) = {x ∈ A | f (x) ∈ E}. This is well defined even if f
does not have an inverse function. (If f does have an inverse function f −1, then
the inverse image of E under f coincides with the direct image of E under f −1.)
Unlike direct images, inverse images behave well under set-theoretic opera-

tions. If f : A → B is a function and {Es | s ∈ S} is a set of subsets of B,
then

f −1
≥\

s∈S
Es

¥
=

\

s∈S
f −1(Es),

f −1
≥[

s∈S
Es

¥
=

[

s∈S
f −1(Es),

f −1(Ec
s ) = ( f −1(Es))c.

In the third of these identities, the complement on the left side is taken within
B, and the complement on the right side is taken within A. To prove the
first identity, we observe that f −1°T

s∈S Es
¢

⊆ f −1(Es) for each s ∈ S and
hence f −1°T

s∈S Es
¢

⊆
T

s∈S f −1(Es). For the reverse inclusion, if x is inT
s∈S f −1(Es), then x is in f −1(Es) for each s and thus f (x) is in Es for each s.

Hence f (x) is in
T

s∈S Es , and x is in f −1°T
s∈S Es

¢
. This proves the reverse

inclusion. The second and third identities are proved similarly.
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A2. Mean Value Theorem and Some Consequences

This section states and proves the Mean Value Theorem and two standard corol-
laries, and then it discusses the notion of a function with a continuous derivative
on a closed interval. It makes use of results in Section I.1 of the text.

Lemma. Let [a, b] be a nontrivial closed interval, and let f : [a, b] → R be
a continuous function that is differentiable on (a, b) and has f (a) = f (b) = 0.
Then the derivative f 0 satisfies f 0(c) = 0 for some c with a < c < b.

PROOF. We divide matters into three cases. If f (x) > 0 for some x , let
c be a member of [a, b] where f attains its maximum (existence by Theorem
1.11). Since f (x) > 0 somewhere, we must have a < c < b. Thus f 0(c)
exists. If f 0(c) > 0, then the inequality limh→0 h−1( f (c + h) − f (c)) > 0
forces f (c + h) > f (c) for h positive and sufficiently small, in contradiction to
the fact that f attains its maximum at c. Similarly if f 0(c) < 0, then we find
that f (c − h) > f (c) for h positive and sufficiently small, and again we have a
contradiction. We conclude that f 0(c) = 0.
If f (x) ≤ 0 for all x and f (x) < 0 for some x , let c instead be a member of

[a, b] where f attains its minimum. Arguing in the same way as in the previous
paragraph, we find that f 0(c) = 0.
Finally if f (x) = 0 for all x , then f 0(x) = 0 for a < x < b, and f 0(c) = 0

for c = 1
2 (a + b), for example. §

Mean Value Theorem. Let [a, b] be a nontrivial closed interval. If
f : [a, b] → R is a continuous function that is differentiable on (a, b), then

f 0(c) =
f (b) − f (a)

b − a

for some c with a < c < b.

PROOF. Apply the lemma to the function

g(x) = f (x) − f (a) − (x − a) f (b)− f (a)
b−a ,

which has g(a) = g(b) = 0 and g0(x) = f 0(x) − f (b)− f (a)
b−a . §

Corollary 1. A differentiable function f : (a, b) → R whose derivative is 0
everywhere on (a, b) is a constant function.

PROOF. If f (a0) 6= f (b0), then the Mean Value Theorem produces some c
between a0 and b0 where f 0(c) 6= 0. §
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Corollary 2. A differentiable function f : (a, b) → R whose derivative is
> 0 everywhere on (a, b) is strictly increasing on (a, b).

PROOF. If a0 < b0 and f (a0) ∏ f (b0), then the Mean Value Theorem produces
some c with a0 < c < b0 where f 0(c) ≤ 0. §

In the setting of the Mean Value Theorem, it can happen that f 0(x) has a
finite limit C as x decreases to a (or as x increases to b). This terminology
means that for any ≤ > 0, there exists some δ > 0 such that | f 0(x) − C| < ≤
whenever a < x < a+ δ. In this case, f can be extended to a function F defined
and continuous on (−∞, b], differentiable on (−∞, b), in such a way that F 0 is
continuous at a. In fact, the extended definition is

F(x) =

Ω f (x) for a ≤ x ≤ b,
f (a) + C(x − a) for − ∞ < x ≤ a.

To see that F 0(a) exists for the extended function F , let ≤ > 0 be given and choose
δ > 0 such that a < x < a + δ implies | f 0(x) −C| < ≤. If a < x < a + δ, then
the Mean Value Theorem gives

F(x) − F(a)
x − a

= F 0(c)

with a < c < x < a+ δ, and hence
Ø
Ø F(x)−F(a)

x−a −C
Ø
Ø < ≤. If a− δ < x < a, then

Ø
Ø
Ø
F(x) − F(a)

x − a
− C

Ø
Ø
Ø =

Ø
Ø
Ø
( f (a) + C(x − a)) − f (a)

x − a
− C

Ø
Ø
Ø = 0.

Thus F 0(a) exists and equals C . The definitions make limx→a F 0(x) = F 0(a),
and hence F 0 is continuous at a.

As a consequence of this construction, it makes sense to say that a continuous
function f : [a, b] → R with a derivative on (a, b) has a continuous derivative
at one or both endpoints. This phrasing means that f 0 has a finite limit at the
endpoint in question, and it is equivalent to say that f extends to a larger set
so as to be differentiable in an open interval about the endpoint and to have its
derivative be continuous at the endpoint.

A3. Inverse Function Theorem in One Variable

This section addresses one of the “further topics” mentioned at the end of Sec-
tion I.1 and assumes knowledge of Section I.1 and some additional facts about
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continuity and differentiability of functions of a real variable. The topic is that
of differentiability of inverse functions, the nub of the matter being continuity
of the inverse function. The topic is one that is sometimes skipped in calculus
courses and slighted in courses in real variable theory. Yet it is necessary for
the development of one of the two functions exp and log, of one of the two
functions sin and arcsin, and of one of the two functions tan and arctan unless
actual constructions of both members of a pair are given. In principle the matter
arises also with differentiation of the function x1/q on (0,∞), but the proposition
of this section can be readily avoided in that case by explicit calculations.

Proposition. Let (a, b) be an open interval in R, possibly infinite, and let
f : (a, b) → R be a function with a continuous everywhere-positive derivative.
Then f is strictly increasing and has an interval (c, d), possibly infinite, as its
image. The inverse function g : (c, d) → (a, b) exists and has a continuous
derivative given by g0(y) = 1/ f 0(g(y)).

PROOF. The function f is strictly increasing as a corollary of the Mean Value
Theorem, and its image is an interval (c, d) because of the Intermediate Value
Theorem (Theorem 1.12). Being one-one and onto, f has an inverse function g,
according to Section A1. Fix y0 ∈ (c, d), fix c0and d 0 such that c < c0 < y0 <
d 0 < d, and consider y 6= y0 in (c0, d 0). Put x = g(y), x0 = g(y0), a0 = g(c0),
and b0 = g(d 0). Then a < a0 < x0 < b0 < b since f is strictly increasing.
By Theorem 1.11, there exist real numbers m and M such that 0 < m ≤

f 0(t) ≤ M for all t ∈ [a0, b0]. The Mean Value Theorem produces ξ between x0
and x such that

|y − y0| = | f (x) − f (x0)| = | f 0(ξ)||x − x0| ∏ m|x − x0|,

and hence |x − x0| ≤ m−1|y − y0|. Since g is one-one, we have x 6= x0. Also,
f (x) = y 6= y0 = f (x0). Thus it makes sense to form

g(y) − g(y0)
y − y0

=
x − x0

f (x) − f (x0)
.

Let ≤ > 0 be given. Since limt→x0
f (t)− f (x0)

t−x0 = f 0(x0) 6= 0, we have

lim
t→x0

t − x0
f (t) − f (x0)

=
1

f 0(x0)
.

Choose η > 0 such that
Ø
Ø
Ø

t − x0
f (t) − f (x0)

−
1

f 0(x0)

Ø
Ø
Ø < ≤
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as long as |t − x0| < η with t 6= x0 and t ∈ [a0, b0]. Then put δ = ηm. If
|y − y0| < δ, then |x − x0| ≤ m−1|y − y0| < m−1δ = η. Since t = x satisfies
the condition |t − x0| < η with t 6= x0 and t ∈ [a0, b0], it follows that

Ø
Ø
Ø
g(y) − g(y0)

y − y0
−

1
f 0(x0)

Ø
Ø
Ø =

Ø
Ø
Ø

x − x0
f (x) − f (x0)

−
1

f 0(x0)

Ø
Ø
Ø < ≤

whenever |y − y0| < δ. Since ≤ is arbitrary, the conclusion is that g0(y0) =
1/ f 0(g(y0)). Since g is differentiable, g is continuous and also the composition
f 0◦g is continuous. Because f 0◦g is nowhere zero, g0 = 1/( f 0◦g) is continuous.
This completes the proof. §

A4. Complex Numbers

Complex numbers are taken as known, and this section reviews their notation and
basic properties.
Briefly, the system C of complex numbers is a two-dimensional vector space

over R with a distinguished basis {1, i} and a multiplication defined initially by
11 = 1, 1i = i1 = i , and i i = −1. Elements may then be written as a + bi or
a + ib with a and b in R; here a is an abbreviation for a1. The multiplication is
extended to all ofC so that the distributive laws hold, i.e., so that (a+bi)(c+di)
can be expanded in the expected way. The multiplication is associative and
commutative, the element 1 acts as a multiplicative identity, and every nonzero
element has a multiplicative inverse: (a + bi)

° a
a2+b2 − i b

a2+b2
¢

= 1.
Complex conjugation is indicated by a bar: the conjugate of a+ bi is a− bi

if a and b are real, and we write a + bi = a− bi . Then we have z + w = z̄+ w̄,
r z = r z̄ if r is real, and zw = z̄w̄.
The real and imaginary parts of z = a + bi are Re z = a and Im z = b.

These may be computed as Re z = 1
2 (z + z̄) and Im z = − i

2 (z − z̄).
The absolute value function of z = a + bi is given by |z| =

p
a2 + b2, and

this satisfies |z|2 = zz̄. It has the simple properties that |z̄| = |z|, |Re z| ≤ |z|,
and | Im z| ≤ |z|. In addition, it satisfies

|zw| = |z||w|
because |zw|2 = zwzw = zwz̄w̄ = zz̄ww̄ = |z|2|w|2,

and it satisfies the triangle inequality

|z + w| ≤ |z| + |w|

because |z + w|2 = (z + w)(z + w) = zz̄ + zw̄ + wz̄ + ww̄

= |z|2 + 2Re(zw̄) + |w|2 ≤ |z|2 + 2|zw̄| + |w|2

= |z|2 + 2|z||w| + |w|2 = (|z| + |w|)2.
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A5. Classical Schwarz Inequality

The inequality in question is as follows.5

Schwarz inequality. Let (a1, . . . , an) and (b1, . . . , bn) be n-tuples of complex
numbers. Then

Ø
Ø
Ø

nX

k=1
akbk

Ø
Ø
Ø ≤

≥ nX

k=1
|ak |2

¥1/2≥ nX

k=1
|bk |2

¥1/2
.

PROOF. We add n-tuples of complex numbers entry by entry, and we multiply
such an n-tuple by a complex scalar by multiplying each entry of the n-tuple
by that scalar. For any n-tuples of complex numbers a = (a1, . . . , an) and
b = (b1, . . . , bn), define |a| =

°Pn
k=1 |ak |2

¢1/2, |b| =
°Pn

k=1 |bk |2
¢1/2, and

(a, b) =
Pn

k=1 akbk .
The Schwarz inequality says that 0 ≤ 0 if b = (0, . . . , 0), and thus we may

assume that b is something else. In this case, |b| 6= 0. Then

0 ≤
Ø
Øa − |b|−2(a, b)b

Ø
Ø2 =

°
a − |b|−2(a, b)b, a − |b|−2(a, b)b

¢

= |a|2 − 2|b|−2|(a, b)|2 + |b|−4|(a, b)|2|b|2 = |a|2 − |b|−2|(a, b)|2,
and the asserted inequality follows. §

A6. Equivalence Relations

An equivalence relation on a set S is a relation between S and itself, i.e., is a
subset of S × S, satisfying three properties. We define the expression a ' b,
written “a is equivalent to b,” to mean that the ordered pair (a, b) is a member of
the relation, and we say that “'” is the equivalence relation. The properties are

(i) a ' a for all a in S, i.e., ' is reflexive,
(ii) a ' b implies b ' a if a and b are in S, i.e., ' is symmetric.
(iii) a ' b and b ' c together imply a ' c if a, b, and c are in S, i.e., ' is

transitive.
An example occurs with S equal to the set Z of integers with a ' b meaning

that the difference a − b is even. The properties hold because (i) 0 is even, (ii)
the negative of an even integer is even, and (iii) the sum of two even integers is
even.
There is one fundamental result about abstract equivalence relations. The

equivalence class of a, written [a] for now, is the set of all members b of S such
that a ' b.

5In the classical setting below, the inequality is often called the “Cauchy–Schwarz inequality”
and may have other people’s names attached to it as well. However, generalizations tend to be called
simply the “Schwarz inequality,” and this book therefore drops all names but Schwarz.
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Proposition. If ' is an equivalence relation on a set S, then any two equiv-
alence classes are disjoint or equal, and S is the union of all the equivalence
classes.

PROOF. Let [a] and [b] be the equivalence classes of members a and b of S.
If [a] ∩ [b] 6= ∅, choose c in the intersection. Then a ' c and b ' c. By (ii),
c ' b, and then by (iii), a ' b. If d is any member of [b], then b ' d. From
(iii), a ' b and b ' d together imply a ' d. Thus [b] ⊆ [a]. Reversing the
roles of a and b, we see that [a] ⊆ [b] also, whence [a] = [b]. This proves the
first conclusion. The second conclusion follows from (i), which ensures that a is
in [a], hence that every member of S lies in some equivalence class. §

EXAMPLE. With the equivalence relation on Z that a ' b if a − b is even,
there are two equivalence classes—the subset of even integers and the subset of
odd integers.

The first two examples of equivalence relations in this book arise in Chapter II.
The first example, which is in Section II.2 and concerns a passage from “pseu-
dometric spaces” to “metric spaces,” yields equivalence classes exactly as above.
The second example, which is in Section II.3, is a relation “is homeomorphic
to” and implicitly is defined on the class of all metric spaces. This class is not
a set, and Section A1 of this appendix suggested avoiding using classes that are
not sets in order to avoid the logical paradoxes mentioned at the beginning of the
appendix. There is not much problemwith using general classes in this particular
situation, but there is a simple approach in this situation for eliminating classes
that are not sets and thereby following the suggestion of Section A1 without
making an exception. The approach is to work with any subclass of metric spaces
that is a set. The equivalence relation is well defined on the set of metric spaces
in question, and the proposition yields equivalence classes within that set. This
set can be an arbitrary subclass of the class of all metric spaces that happens to be
a set, and the practical effect is the same as if the equivalence relation had been
defined on the class of all metric spaces.

A7. Linear Transformations, Matrices, and Determinants

A certain amount of linear algebra, done with real or complex scalars, is taken
as known. The topics of vectors, vector spaces, operations on matrices, row
reduction of matrices, spanning, linear independence, bases, and dimension will
not be reviewed here. This section will concentrate on the correspondence be-
tween linear transformations and matrices in the finite-dimensional case, and on
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the elementary properties of determinants. So as to be able to handle real and
complex scalars simultaneously, we denote by F either R or C.
The linear transformations in question will be functions with domain Fn and

range Fm . As is emphasized for the case F = R in Section II.1, the members of
these spaces are to be regarded as column vectorswith entries inF even if, in order
to save space, one occasionally writes them horizontally with commas between
entries. This is an important convention, since it makes matrix operations and
operations with linear transformations correspond to each other in the same order
without the need to transpose any matrix. The standard bases for Fn and Fm are
often denoted by {e1, . . . , en} and {u1, . . . , um}, respectively, in this book, where

e1 =







1
0
0
...
0





 , e2 =







0
1
0
...
0





 , . . . , en =







0
0
0
...
1







are n-entry column vectors and

u1 =





1
0
...
0



 , u2 =





0
1
...
0



 , . . . , um =





0
0
...
1





are m-entry column vectors.
A function T : Fn → Fm is a linear function if it satisfies T (x + y) =

T (x) + T (y) and T (cx) = cT (x) for all x and y in Fn and all elements c of F.
The terms “linear transformation” and “linear map” are used also.
An example is obtained from any m-by-n matrix A with entries in F, namely

T (x) = Ax , the right side being a matrix product. The size of A needs emphasis:
the number of rows equals the dimension of the range, and the number of columns
equals the dimension of the domain.
Conversely if T : Fn → Fm is a linear function, then there is a unique

such matrix A such that T (x) = Ax for all x in Fn: the j th column of A is
T (ej ) for 1 ≤ j ≤ n. For example, if T : R2 → R2 is the rotation about
the origin counterclockwise through an angle θ , then T

≥
1
0

¥
=

≥
cos θ
sin θ

¥
and

T
≥
0
1

¥
=

≥
− sin θ

cos θ

¥
. Consequently A =

≥
cos θ − sin θ

sin θ cos θ

¥
.

Sometimes it is necessary to have a notation for the entries of a matrix A, and
this text uses Ai j to indicate the entry of A in the i th row and j th column. If a
matrix is defined entry by entry, the entries being Mi j , the text will occasionally
refer to the whole matrix as [Mi j ]. This convention is especially handy if Mi j is
given by some nontrivial expression like @ui/@xj that involves i and j .
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We can give a tidy formula for the correspondence T ↔ A if we define a dot
product in Fm by

(a1, . . . , am) · (b1, . . . , bm) = a1b1 + · · · + ambm

with no complex conjugations involved. The correspondence of a linear function
T in L(Fn, Fm) to a matrix A with entries in F is then given by

Ai j = T (ej ) · ui .

The correspondence T ↔ A of linear functions to matrices carries certain
vector spaces associated to T to vector spaces associated with A. The kernel
of T , namely the set of vectors x with T (x) = 0, corresponds to the null space
of A, the set of column vectors with Ax = 0. The image of T , as defined in
Section A1, corresponds to the column space of A, the linear span of the columns
of A. The method of row reduction of matrices shows that

#{columns of A} = dim(null space of A) + dim(span of rows ofA),

while a little argument with bases shows that

dim(domain of T ) = dim(kernel of T ) + dim(image of T ).

In these two equations the left sides are equal, and the first terms on the two right
sides are equal. Therefore the second terms on the two right sides are equal, and
we obtain

dim(span of rows ofA) = dim(span of columns ofA).
The common value of the two sides of this equation is called the rank of A or
of T .
Under this correspondence of linear functions between column-vector spaces

withmatrices of the appropriate size, composition of linear functions corresponds
to matrix product in the same written order. In other words, suppose that
T : Fn → Fm corresponds to A of sizem-by-n and thatU : Fm → Fk corresponds
to B of size k-by-m. Then U ◦ T : Fn → Fk corresponds to BA of size k-by-n.
The determinant function A 7→ det A has domain the set of all square

matrices over F and has range F. It is uniquely defined by the three properties
(i) det A is linear in each row of A if the other rows are held fixed,
(ii) det A = 0 if two rows of A are equal,
(iii) det I = 1 if I denotes the identity matrix of any size.

These properties enable one to calculate det A by row reducing the matrix A.
Specifically replacement of a row by the sum of it and a multiple of another row
leaves det A unchanged,multiplicationof a rowby a constant tomake the diagonal
entry be one means pulling out the diagonal entry as a scalar factor multiplying
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the determinant, and interchanging two rows multiplies the determinant by −1.
After the row reduction is complete for a square matrix, either the reduced row-
echelon form is the identity matrix and (iii) says that the determinant is 1 or else
the reduced row-echelon form has a row of 0’s, and (i) and (ii) imply that the
determinant is 0.
The determinant function has the following additional properties, which may

be regarded as consequences of (i), (ii), and (iii) above:
(iv) det A 6= 0 if and only if A is invertible,
(v) det A = det Atr, where Atr is the transpose of A,
(vi) det(AB) = (det A)(det B),
(vii) det A =

P
σ (sgn σ )A1,σ (1) · · · An,σ (n) if A is n-by-nwith entries Ai, j ; the

sum is taken over all permutations σ of {1, . . . , n}, with sgn σ denoting
the sign of σ ,

(viii) (expansion by cofactors) for n > 1 if bAi j denotes the (n−1)-by-(n−1)
matrix obtained by deleting the i th row and j th column from the n-by-n
matrix A, then det A =

Pn
j=1 (−1)i+ j Ai j det bAi j for all i and det A =

Pn
i=1 (−1)i+ j Ai j det bAi j for all j ,

(ix) (Cramer’s rule) if det A 6= 0, if v is in Rn , and if Aj denotes the matrix
obtained by replacing the j th column of A by v, then the j th entry of the
unique solution x ∈ Rn of Ax = v is xj = det Aj

±
det A.

A8. Factorization and Roots of Polynomials

The first objective of this section is to prove unique factorization of real and
complex polynomials. Let F denote either the reals R or the complex numbers
C.
We work with polynomials with coefficients in F. These are expressions

P(X) = anXn +· · ·+a1X+a0 with an, . . . , a1, a0 in F. Although it is tempting
to think of P(X) as a function with independent variable X , it is better to identify
P with the sequence (a0, a1, . . . , an, 0, 0, . . . ) of coefficients. For this setting, a
polynomial (in one “indeterminate”) may be defined as a sequence of members
ofF such that all terms of the sequence are 0 from some point on. The indexing of
the sequence is to begin with 0. Addition, scalar multiplication, and polynomial
multiplication are then defined in the expected way so as to match the operations
on functions. The usual associative, commutative, and distributive laws are then
valid.
Nevertheless, it is still convenient to use the notation X in writing explicit

polynomials. If r is in F, we can evaluate P(X) = anXn + · · · + a1X + a0 at
r , and the result is the number P(r) = anrn + · · · + a1r + a0. We say that r
is a root of P if P(r) = 0. The degree of a polynomial P , denoted by deg P ,
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is the largest integer n such that the coefficient of Xn is nonzero; the notion of
“degree” is left undefined for the 0 polynomial, i.e., the polynomial all of whose
coefficients are 0. A factor of a polynomial A(X) is a polynomial B(X) such
that A(X) = B(X)Q(X) for some polynomial Q(X); we say also that B(X)
and Q(X) divide A(X). In this case, if B and Q are not 0, then A is not 0 and
deg A = deg B + deg Q.

Division Algorithm. If A(X) and B(X) are polynomials with coefficients in
F and if B(X) is not the 0 polynomial, then there exist unique polynomials Q(X)
and R(X) such that

(a) A(X) = B(X)Q(X) + R(X) and
(b) either R(X) is the 0 polynomial or deg R < deg B.

REMARK. This result codifies the usual method of dividing polynomials in
high-school algebra. That method writes A(X)/B(X) = Q(X) + R(X)/B(X),
and then one obtains the above result by multiplying by B(X). The polynomial
Q is the quotient in the division, and R(X) is the remainder.
PROOF OF UNIQUENESS. If A = BQ1 + R1 also, then B(Q − Q1) =

R1−R. Without loss of generality, R1−R is not the 0 polynomial since otherwise
Q − Q1 = 0 also. Then

deg B + deg(Q − Q1) = deg(R1 − R) ≤ max{deg R, deg R1} < deg B,

and we have a contradiction. §

PROOF OF EXISTENCE. If A = 0 or deg A < deg B, we take Q = 0 and
R = A, and we are done. Otherwise we induct on deg A. Assume the result
for degree ≤ n − 1, and let deg A = n. Write A = anXn + A1 with A1 = 0
or deg A1 < deg A. Let B = bk Xk + B1 with B1 = 0 or deg B1 < deg B. Put
Q1 = anb−1

k Xn−k . Then

A − BQ1 = anXn + A1 − anXn − anb−1
k Xn−k B1 = A1 − anb−1

k Xn−k B1
with the right side equal to 0 or of degree < deg A. Then the right side, by
induction, is of the form BQ2 + R, and A = B(Q1 + Q2) + R is the required
decomposition. §

Corollary 1 (Factor Theorem). If r is in F and P is a polynomial, then X − r
divides P if and only if P(r) = 0.
PROOF. If P = (X − r)Q, then P(r) = (r − r)Q(r) = 0. Conversely

let P(r) = 0. Taking B(X) = X − r in the Division Algorithm, we obtain
P = (X − r) + R with R = 0 or deg R < deg(X − r) = 1. In either event we
have 0 = P(r) = (r − r)Q(r) + R(r), and thus R(r) = 0. Of the two choices,
we must have R = 0, and then P = (X − r)Q. §
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Proposition. If P is a nonzeropolynomialwith coefficients inF and if deg P =
n, then P has at most n distinct roots.
PROOF. Let r1, . . . , rn+1 be distinct roots of P(X). By the Factor Theo-

rem, X − r1 is a factor of P(X). We prove inductively on k that the product
(X − r1)(X − r2) · · · (X − rk) is a factor of P(X). Assume that this assertion
holds for k, so that P(X) = (X − r1) · · · (X − rk)Q(X) and

0 = P(rk+1) = (rk+1 − r1) · · · (rk+1 − rk)Q(rk+1).

Since the rj ’s are distinct, we must have Q(rk+1) = 0. By the Factor Theorem,
we can write Q(X) = (X − rk+1)R(X) for some polynomial R(X). Substitution
gives P(X) = (X−r1) · · · (X−rk)(X−rk+1)R(X), and (X−r1) · · · (X−rk+1)
is exhibited as a factor of P(X). This completes the induction. Consequently

P(X) = (X − r1) · · · (X − rn+1)S(X)

for some polynomial S(X). Comparing the degrees of the two sides, we find that
deg S = −1, and we have a contradiction. §

A greatest common divisor of polynomials A and B with B 6= 0 is any
polynomial D of maximum degree such that D divides A and D divides B.
The Euclidean algorithm is the iterative process that makes use of the Division
Algorithm in the form

A = BQ1 + R1, R1 = 0 or deg R1 < deg B,

B = R1Q2 + R2, R2 = 0 or deg R2 < deg R1,
R1 = R2Q3 + R3, R3 = 0 or deg R3 < deg R2,

...

Rn−2 = Rn−1Qn + Rn, Rn = 0 or deg Rn < deg Rn−1,
Rn−1 = RnQn+1.

In the above computation the integer n is defined by the conditions that Rn 6= 0
and that Rn+1 = 0. Such an n must exist since deg B > deg R1 > · · · ∏ 0.

Theorem. Let A and B be polynomials with coefficients in F and with B 6= 0,
and let R1, . . . , Rn be the remainders generated by the Euclidean algorithmwhen
applied to A and B. Then

(a) Rn is a greatest common divisor of A and B,
(b) the greatest common divisor D of A and B is unique up to scalar multi-

plication,
(c) any D1 that divides both A and B necessarily divides D,
(d) there exist polynomials P and Q with AP + BQ = D.



A8. Factorization and Roots of Polynomials 621

PROOF. Let D1 divide A and B. From A = BQ1 + R1, we see that D1
divides R1. From B = R1Q2 + R2, we see that D1 divides R2. Continuing
in this way through Rn−2 = Rn−1Qn + Rn , we see that D1 divides Rn . In
particular any greatest common divisor D of A and B divides Rn and therefore
has deg D ≤ deg Rn . In the reverse direction, Rn−1 = RnQn+1 shows that
Rn divides Rn−1. From Rn−2 = Rn−1Qn + Rn , we see that Rn divides Rn−2.
Continuing in this way through B = R1Q2 + R2, we see that Rn divides B.
Finally A = BQ1 + R1 shows that Rn divides A and B. Thus Rn is a divisor of
both A and B, and we have seen that its degree is maximal. This proves (a).
If D is a greatest common divisor of A and B, it follows that D divides Rn

and deg D = deg Rn . This proves (b). We have seen that any D1 that divides
A and B necessarily divides Rn , and then (c) follows from the uniqueness of the
greatest common divisor up to scalar multiplication.
Put Rn+1 = 0, R0 = B, and R−1 = A. We prove by induction downward

that there are polynomials Sk and Tk such that RkSk + Rk+1Tk = D. The base
case of the induction is k = n, where we have Rn1 + Rn+10 = D. Suppose
that RkSk + Rk+1Tk = D with k ∏ 0. We rewrite Rk−1 = RkQk+1 + Rk+1 as
Rk+1 = Rk−1 − RkQk+1 and substitute to obtain

D = RkSk + Rk+1Tk = RkSk + Rk−1Tk − RkQk+1.

In other words, we can take Sk−1 = Tk and Tk = Sk − Qk+1, and our inductive
assertion is proved for k − 1. The assertion for −1 proves (d). §

A nonzero polynomial P with coefficients in F is prime if the only factors of
P are the scalar multiples of 1 and the scalar multiples of P .

Lemma. If A and B are nonzero polynomials with coefficients in F and if P
is a prime polynomial such that P divides AB, then P divides A or P divides B.

PROOF. Suppose that P does not divide A. Then 1 is a greatest commondivisor
of A and P , and part (d) of the above theorem produces polynomials S and T
such that AS + PT = 1. Multiplication by B gives ABS + PT B = B. Then P
divides ABS because it divides AB, and P divides PT B because it divides P .
Hence P divides B. §

Theorem (unique factorization). Every polynomial of degree ∏ 1 with coef-
ficients in F is a product of primes. This factorization is unique up to order and
to scalar multiplication of the prime factors.

PROOF. If A is givenand is not prime, decompose A = BC withdeg B < deg A
and degC < deg A. For each factor that is not prime, write the factor as the
product of two polynomials of lower degree. This process, when continued in
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this fashion, must stop since the degrees strictly decrease with any factorization.
This proves existence.
For uniqueness, assume the contrary and choosem ∏ 1 as small as possible so

that some polynomial has two distinct factorizations P1 · · · Pm = Q1 · · · Qn into
primes, apart from order and scalar factors. Adjusting scalar multiples, we may
assume that each Pj and Qk has leading coefficient 1 and that there is a global
coefficient multiplying each side. These global coefficients must be equal, being
the coefficients of the largest power of X on each side. Thus we may cancel them
and assume that each Pj and Qk has leading coefficient 1. By the lemma, the
fact that Q1 is prime means that Q1 must divide one of P1, . . . , Pm . Reordering
the factors, we may assume that Q1 divides P1. Since P1 is prime, P1 is a scalar
multiple of Q1. Since P1 and Q1 both have leading coefficient 1, P1 = Q1.
Then we can cancel P1 and Q1 from both of our factorizations, obtaining distinct
factorizations with fewer than m factors on one side. By the minimality of m,
either we have arrived at a contradiction or we now have the polynomial 1 left on
one side. Then the other side is 1, and the two sides match. §

If F is R, then X2 + 1 is prime. But X2 + 1 is not prime when F = C since
X2 + 1 = (X + i)(X − i). The Fundamental Theorem of Algebra, stated below,
implies that every prime polynomial over C is of degree 1. It is possible to prove
the Fundamental Theorem of Algebra within complex analysis as a consequence
of Liouville’s Theorem or within modern algebra as a consequence of Galois
theory and the Sylow theorems. This text gives a proof of the result in Section
II.7 using the Heine–Borel Theorem and other facts about compactness.

Fundamental Theorem of Algebra. Any polynomial with coefficients in C
and with degree ∏ 1 has at least one root.

Corollary. Let P be a nonzero polynomial of degree n with coefficients in C,
and let r1, . . . , rk be the roots. Then there exist unique integers mj > 0 such that
P(X) is a multiple of

Qk
j=1 (X − rj )mj . The numbers mj have

Pk
j=1mj = n.

PROOF. We may assume that deg P > 0. We apply unique factorization
to P(X). It follows from the Fundamental Theorem of Algebra and the Factor
Theorem that each prime polynomialwith coefficients inC has degree 1. Thus the
unique factorization of P(X) has to be of the form c

Qn
l=1(X − zl) for some

complex numbers that are unique up to order. The zl’s are roots, and every root is
a zl , by the Factor Theorem. Grouping like factors proves the desired factorization
and its uniqueness. The numbersmj have

Pk
j=1mj =n by a count of degrees. §

The integersmj in the corollary are called themultiplicities of the roots of the
polynomial P(X).
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A9. Partial Orderings and Zorn’s Lemma

A partial ordering on a set S is a relation between S and itself, i.e., a subset of
S× S, satisfying two properties. We define the expression a ≤ b to mean that the
ordered pair (a, b) is a member of the relation, and we say that “≤” is the partial
ordering. The properties are

(i) a ≤ a for all a in S, i.e., ≤ is reflexive,
(ii) a ≤ b and b ≤ c together imply a ≤ c whenever a, b, and c are in S, i.e.,

≤ is transitive.
An example of such an S is any set of subsets of a set X , with ≤ taken to

be inclusion ⊆. This particular partial ordering has a third property of interest,
namely
(iii) a ≤ b and b ≤ a with a and b in S imply a = b.

However, the validity of (iii) has no bearing on Zorn’s Lemma below. A partial
ordering is said to be a total ordering or simple ordering if (iii) holds and also
(iv) any a and b in S have either a ≤ b or b ≤ a.

For the sake of a result to be proved at the end of the section, let us interpolate
one further definition: a totally ordered set is said to be well ordered if every
nonempty subset has a least element, i.e., if each nonempty subset contains an
element a such that a ≤ b for all b in the subset.
A chain in a partially ordered set S is a totally ordered subset. An upper

bound for a chain T is an element u in S such that c ≤ u for all c in T . A
maximal element in S is an element m such that m ≤ a for some a in S implies
a ≤ m. (If (iii) holds, we can then conclude that m = a.)

Zorn’s Lemma. If S is a nonempty partially ordered set in which every chain
has an upper bound, then S has a maximal element.

REMARKS. Zorn’s Lemma will be proved below using the Axiom of Choice,
which was stated in Section A1. It is an easy exercise to see, conversely,
that Zorn’s Lemma implies the Axiom of Choice. It is customary with many
mathematical writers to mention Zorn’s Lemma each time it is invoked, even
though most writers nowadays do not ordinarily acknowledge uses of the Axiom
of Choice. Before coming to the proof, we give an example of howZorn’s Lemma
is used.

EXAMPLE. Zorn’s Lemma gives a quick proof that any real vector space V
has a basis. In fact, let S be the set of all linearly independent subsets of V , and
order S by inclusion upward as in the example above of a partial ordering. The
set S is nonempty because ∅ is a linearly independent subset of V . Let T be a
chain in S, and let u be the union of the members of T . If t is in T , we certainly
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have t ⊆ u. Let us see that u is linearly independent. For u to be dependent
would mean that there are vectors x1, . . . , xn in u with r1x1 + · · · + rnxn = 0 for
some system of real numbers not all 0. Let xj be in the member tj of the chain
T . Since t1 ⊆ t2 or t2 ⊆ t1, x1 and x2 are both in t1 or both in t2. To keep the
notation neutral, say they are both in t 02. Since t 02 ⊆ t3 or t3 ⊆ t 02, all of x1, x2, x3
are in t 02 or they are all in t3. Say they are both in t 03. Continuing in this way,
we arrive at one of the sets t1, . . . , tn , say t 0n , such that all of x1, . . . , xn are all
in t 0n . The members of t 0n are linearly independent by assumption, and we obtain
the contradiction r1 = · · · = rn = 0. We conclude that the chain T has an upper
bound in S. By Zorn’s Lemma, S has a maximal element, say m. If m is not
a basis, it fails to span. If a vector x is not in its span, it is routine to see that
m ∪ {x} is linearly independent and properly contains m, in contradiction to the
maximality of m. We conclude that m is a basis.

We now begin the proof of Zorn’s Lemma. If T is a chain in a partially ordered
set S, then an upper bound u0 for T is a least upper bound for T if u0 ≤ u for all
upper bounds of T . If (iii) holds in S, then there can be at most one least upper
bound for T . In fact, if u0 and u0

0 are least upper bounds, then u0 ≤ u0
0 since

u0 is a least upper bound, and u0
0 ≤ u0 since u0

0 is a least upper bound; by (iii),
u0 = u0

0.

Lemma. Let X be a nonempty partially ordered set such that (iii) holds, and
write ≤ for the partial ordering. Suppose that X has the additional property that
each nonempty chain in X has a least upper bound in X . If f : X → X is a
function such that x ≤ f (x) for all x in X , then there exists an x0 in X with
f (x0) = x0.

PROOF. A nonempty subset E of X will be called admissible for purposes of
this proof if f (E) ⊆ E and if the least upper bound of each nonempty chain in
E , which exists in X by assumption, actually lies in E . By assumption, X is an
admissible subset of X . If x is in X , then the intersection of admissible subsets of
X containing x is admissible. Let Ax be the intersection of all admissible subsets
of X containing x . This is admissible, and since the set of all y in X with x ≤ y
is admissible and contains x , it follows that x ≤ y for all y ∈ Ax . By hypothesis,
X is nonempty. Fix an element a in X , and let A = Aa . The main step will be to
prove that A is a chain.
To do so, consider the subsetC of members x of A with the property that there

is a nonempty chain Cx in A containing a and x such that
• a ≤ y ≤ x for all y in Cx ,
• f (Cx − {x}) ⊆ Cx , and
• the least upper bound of any nonempty subchain of Cx is in Cx .
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The element a is in C because we can take Ca = {a}. If x is in C , so that Cx
exists, let us use the bulleted properties to see that

A = Ax ∪ Cx . (∗)

We have A ⊇ Cx by definition; also A∩ Ax is an admissible set containing x and
hence containing A, and thus A ⊇ Ax . Therefore A ⊇ Ax ∪ Cx . For the reverse
inclusion it is enough to prove that Ax∪Cx is an admissible subset of X containing
a. The elementa is inCx , and thusa is in Ax∪Cx . For the admissibilitywehave to
show that f (Ax ∪Cx) ⊆ Ax ∪Cx and that the least upper bound of any nonempty
chain in Ax ∪Cx lies in Ax ∪Cx . Since x lies in Ax , Ax ∪Cx = Ax ∪ (Cx − {x})
and f (Ax ∪ Cx) = f (Ax) ∪ f (Cx − {x}) ⊆ Ax ∪ Cx , the inclusion following
from the admissibility of A and the second bulleted property of Cx .
To complete the proof of (∗), take a nonempty chain in Ax ∪ Cx , and let u be

its least upper bound in X ; it is enough to show that u is in Ax ∪Cx . The element
u is necessarily in A since A is admissible. Observe that

y ≤ x and x ≤ z whenever y is in Cx and z is in Ax . (∗∗)

If the chain has at least one member in Ax , then (∗∗) implies that x ≤ u, and
hence the set of members of the chain that lie in Ax forms a nonempty chain in
Ax with least upper bound u. Since Ax is admissible, u is in Ax . Otherwise the
chain has all its members in Cx , and then u is in Cx by the third bulleted property
of Cx .
This completes the proof of (∗). Let us now prove that ifCx andCx 0 exist with

x ≤ x 0 and x 6= x 0, then
Cx ⊆ Cx 0 . (†)

In fact, application of (∗) to x 0 gives A = Ax 0 ∪Cx 0 . Intersecting both sides with
Cx shows that Cx = (Cx ∩ Ax 0) ∪ (Cx ∩Cx 0). On the right side, the first member
is empty by (∗∗), and thus Cx = Cx ∩ Cx 0 . This proves (†).
Let C be the set of all members x of A for which Cx exists. We have seen that

a is in C . If we apply (∗) and (∗∗) first to a member x of C and then to a member
x 0 of C , we see that either x ≤ x 0 or x 0 ≤ x . That is, C is a chain.
Let us see that f (C) ⊆ C . If x is in C , then the set D = Cx ∪ { f (x)} certainly

has a as a member. The second bulleted property of Cx shows that f carries
Cx − {x} into D, and also f carries x into D. Thus f carries D − { f (x)} into
D, and D satisfies the second bulleted property of Cf (x). If {xα} is a chain in D
with least upper bound u, there are two possibilities. Either u is f (x), which is
in D by construction, or u is in C , which contains the least upper bound of any
nonempty chain in it. Thus u is in D, D satisfies the third bulleted property of
Cf (x), and Cf (x) exists. In other words, f (x) is in C , and f (C) ⊆ C .
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Finally let us see that the least upper bound u of an arbitrary chain {xα} in C ,
which exists in X by assumption, is a member of C . If xα = u for some α, then
Cu = Cxα

exists, and u is in C . So assume that xα 6= u for all α. Our candidate
for Cu will be D = (

S
α Cxα

) ∪ {u}. This certainly contains a. We check that
D satisfies the second bulleted property of Cu . For each α, we can find a β with
xα ≤ xβ and xα 6= xβ , since u is the least upper bound of all the x’s. Then (†)
gives Cxα

⊆ Cxβ
− {xβ}, and f (Cxα

) ⊆ f (Cxβ
− {xβ}) ⊆ Cxβ

⊆ D. Taking the
union over α shows that D satisfies the second bulleted property of Cu .
To see that D satisfies the third bulleted property ofCu , let v be the least upper

bound in A of a chain {yβ} in Cu . If v 6= u, then v cannot be an upper bound of
{xα}. So we can choose some xα0 such that v ≤ xα0 . Each yβ is ≤ v, and thus
each yβ is ≤ xα0 . Referring to (∗), we see that all yβ’s lie in Cxα0

. By the third
bulleted property of Cxα0

, v is in Cxα0
. Thus v is in D, and D satisfies the third

bulleted property of Cu . Consequently the least upper bound u of an arbitrary
chain in C lies in C .
In short, C is an admissible set containing a, and it also is a chain. Since A is

a minimal admissible set containing a, C = A and also A is a chain. Let u be the
least upper bound of A. We have seen that f (A) ⊆ A, and thus f (u) ≤ u. On
the other hand, u ≤ f (u) by the defining property of f . Therefore f (u) = u,
and the proof is complete. §

PROOF OF ZORN’S LEMMA. Let S be a partially ordered set, with partial
ordering ≤, in which every chain has an upper bound. Let X be the partially
ordered system, ordered by inclusion upward ⊆, of nonempty chains6 in S. The
partially ordered system X , being given by ordinary inclusion, satisfies property
(iii). A nonempty chainC in X is a nested system of chains cα of S, and

S
α cα is

a chain in S that is a least upper bound for C . The lemma is therefore applicable
to any function f : X → X such that c ⊆ f (c) for all c in X . We use the lemma
to produce a maximal chain in X .
Arguing by contradiction, suppose that no chain within S is maximal under

inclusion. For each nonempty chain cwithin S, let f (c) be a chain with c ⊆ f (c)
and c 6= f (c). (This choice of f (c) for each c is where we use the Axiom of
Choice.) The result is a function f : X → X of the required kind, the lemma
says that f (c) = c for some c in X , and we arrive at a contradiction. We conclude
that there is some maximal chain c0 within S.
By assumption in Zorn’s lemma, every nonempty chain within S has an upper

bound. Let u0 be an upper bound for the maximal chain c0. If u is a member of S
with u0 ≤ u, then c0 ∪ {u} is a chain and maximality implies that c0 ∪ {u} = c0.

6Here a chain is simply a certain kind of subset of S, and no element of S can occur more than
once in it even if (iii) fails for the partial ordering. Thus if S = {x, y} with x ≤ y and y ≤ x , then
{x, y} is in X and in fact is maximal in X .
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Therefore u is in c0, and u ≤ u0. This is the condition that u0 is a maximal
element of S. §

Corollary (Zermelo’s well-ordering theorem). Every set has a well ordering.
PROOF. Let S be a set, and let E be the family of all pairs (E,≤E) such that E

is a subset of S and ≤E is a well-ordering of E . The family E is nonempty since
(∅, ∅) is a member of it. We partially order E by a notion of “inclusion as an
initial segment,” saying that (E,≤E) ≤ (F,≤F) if

(i) E ⊆ F ,
(ii) a and b in E with a ≤E b implies a ≤F b,
(iii) a in E and b in F but not E together imply a ≤F b.

In preparation for applying Zorn’s Lemma, let C = {(Eα,≤α)} be a chain in E,
with the α’s running through some set I . Define E0 =

S
α Eα and define ≤0 as

follows: If e1 and e2 are in E0, let e1 be in Eα1 with α1 in I , and let e2 be in Eα2

with α2 in I . Since C is a chain, we may assume without loss of generality that
(Eα1,≤α1) ≤ (Eα2,≤α2), so that Eα1 ⊆ Eα2 in particular. Then e1 and e2 are both
in Eα2 and we define e1 ≤0 e2 if e1 ≤α2 e2, or e2 ≤0 e1 if e2 ≤α2 e1. Because of
(i) and (ii) above, the result is well defined independently of the choice of α1 and
α2. Similar reasoning shows that ≤0 is a total ordering of E0. If we can prove
that ≤0 is a well ordering, then (E0,≤0) is evidently an upper bound in E for the
chain C, and Zorn’s Lemma is applicable.
Now suppose that F is a nonempty subset of E0. Pick an element of F , and

let Eα0 be a set in the chain that contains it. Since (Eα0,≤α0) is well ordered and
F∩Eα0 is nonempty, F∩Eα0 contains a least element f0 relative to≤α0 . We show
that f0 ≤0 f for all f in F . In fact, if f is given, there are two possibilities. One
is that f is in Eα0 ; in this case, the consistency of ≤0 with ≤α0 forces f0 ≤0 f .
The other is that f is not in Eα0 but is in some Eα1 . Since C is a chain and
Eα1 ⊆ Eα0 fails, we must have (Eα0,≤α0) ≤ (Eα1,≤α1). Then f is in Eα1 but
not Eα0 , and property (iii) above says that f0 ≤α1 f . By the consistency of the
orderings, f0 ≤0 f . Hence f0 is a least element in F , and E0 is well ordered.
Application of Zorn’s Lemma produces a maximal element (E,≤E) of E. If

E were a proper subset of S, we could adjoin to E a member s of S not in E and
define every element e of E to be ≤ s. The result would contradict maximality.
Therefore E = S, and S has been well ordered. §

A10. Cardinality

Two sets A and B are said to have the same cardinality, written card A = card B,
if there exists a one-one function from A onto B. On any setA of sets, “having the
same cardinality” is plainly an equivalence relation and therefore partitionsA into



628 Appendix A. Background Topics

disjoint equivalence classes, the sets in each class having the samecardinality. The
question of what constitutes cardinality (or a “cardinal number”) in its own right
is one that is addressed in set theory but that we do not need to address carefully
here; the idea is that each equivalence class under “having the same cardinality”
has a distinguished representative, and the cardinal number is defined to be that
representative. We write card A for the cardinal number of a set A.
Having addressed equality, we now introduce a partial ordering, saying that

card A ≤ card B if there is a one-one function from A into B. Thefirst result below
is that card A ≤ card B and card B ≤ card A together imply card A = card B.

Proposition (Schroeder–Bernstein Theorem). If A and B are sets such that
there exist one-one functions f : A → B and g : B → A, then A and B have
the same cardinality.

PROOF. Define the function g−1 : image g → A by g−1(g(a)) = a; this
definition makes sense since g is one-one. Write (g ◦ f )(n) for the composition
of g ◦ f with itself n times, and define ( f ◦ g)(n) similarly. Define subsets An
and A0

n of A and subsets Bn and B 0
n for n ∏ 0 by

An = image((g ◦ f )(n)) − image((g ◦ f )(n) ◦ g),

A0
n = image((g ◦ f )(n) ◦ g) − image((g ◦ f )(n+1)),

Bn = image(( f ◦ g)(n)) − image(( f ◦ g)(n) ◦ f ),

B 0
n = image(( f ◦ g)(n) ◦ f ) − image(( f ◦ g)(n+1)),

and let

A∞ =
∞T

n=0
image((g ◦ f )(n)) and B∞ =

∞T

n=0
image(( f ◦ g)(n)).

Then we have

A = A∞ ∪
∞S

n=0
An ∪

∞S

n=0
A0
n and B = B∞ ∪

∞S

n=0
Bn ∪

∞S

n=0
B 0
n,

with both unions disjoint.
Let us prove that f carries An one-one onto B 0

n . If a is in An , then a =
(g ◦ f )(n)(x) for some x ∈ A and a is not of the form (g ◦ f )(n)(g(y)) with
y ∈ B. Applying f , we obtain f (a) = ( f ◦ ((g ◦ f )(n))(x) = ( f ◦ g)(n)( f (x)),
so that f (a) is in the image of (( f ◦ g)(n) ◦ f ). Meanwhile, if f (a) is in the
image of ( f ◦ g)(n+1), then f (a) = ( f ◦ g)(n+1)(y) = f ((g ◦ f )(n)(g(y))) for
some y ∈ B. Since f is one-one, we can cancel the f on the outside and obtain
a = (g ◦ f )(n)(g(y)), in contradiction to the fact that a is in An . Thus f carries
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An into B 0
n , and it is certainly one-one. To see that f (An) contains all of B 0

n , let
b ∈ B 0

n be given. Then b = ( f ◦ g)(n)( f (x)) for some x ∈ A and b is not of the
form ( f ◦ g)(n+1)(y) with y ∈ B. Hence b = f ((g ◦ f )(n)(x)), i.e., b = f (a)
with a = (g ◦ f )(n)(x). If this element a were in the image of (g ◦ f )(n) ◦ g,
we could write a = (g ◦ f )(n)(g(y)) for some y ∈ B, and then we would have
b = f (a) = f ((g ◦ f )(n)(g(y))) = ( f ◦ g)(n+1)(y), contradiction. Thus a is in
An , and f carries An one-one onto B 0

n .
Similarly g carries Bn one-one onto A0

n . Since A0
n is in the image of g, we can

apply g−1 to it and see that g−1 carries A0
n one-one onto Bn .

The same kind of reasoning as above shows that f carries A∞ one-one onto
B∞. In summary, f carries each An one-one onto B 0

n and carries A∞ one-one
onto B∞, while g−1 carries each A0

n one-one onto Bn . Then the function

h =

Ω f on A∞ and each An,
g−1 on each A0

n,

carries A one-one onto B. §

Next we show that any two sets A and B have comparable cardinalities in the
sense that either card A ≤ card B or card B ≤ card A.

Proposition. If A and B are two sets, then either there is a one-one function
from A into B or there is a one-one function from B into A.

PROOF. Consider the set S of all one-one functions f : E → B with E ⊆ A,
the empty function with E = ∅ being one such. Each such function is a certain
subset of A×B. If we order S by inclusion upward, then the union of themembers
of any chain is an upper bound for the chain. By Zorn’s Lemma let G : E0 → B
be a maximal one-one function of this kind, and let F0 be the image of G. If
E0 = A, then G is a one-one function from A into B. If F0 = B, then G−1

is a one-one function from B into A. If neither of these things happens, then
there exist x0 ∈ A − E0 and y0 in B − F0, and the function eG equal to G on
E0 and having eG(x0) = y0 extends G and is still one-one; thus it contradicts the
maximality of G. §

Cantor’s proof that there exist uncountable sets, donewith a diagonal argument,
in fact showed how to start from any set A and construct a set with strictly larger
cardinality.

Proposition (Cantor). If A is a set and 2A denotes the set of all subsets of A,
then card 2A is strictly larger than card A.
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PROOF. The map x 7→ {x} is a one-one function from A into 2A. If we are
given a one-one function F : A → 2A, let E be the set of all x in A such that x is
not in F(x). If F(x0) = E , then x0 ∈ E implies x0 /∈ F(x0) = E , while x0 /∈ E
implies x ∈ F(x0) = E . We have a contradiction in any case, and hence E is not
in the image of F . We conclude that F cannot be onto 2A. §




