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CHAPTER VII 

Advanced Group Theory 

Abstract. This chapter continues the development of group theory begun in Chapter IV, the main
topics being the use of generators and relations, representation theory for finite groups, and group
extensions. Representation theory uses linear algebra and inner-product spaces in an essential way,
and a structure-theory theorem for finite groups is obtained as a consequence. Group extensions
introduce the subject of cohomology of groups.
Sections 1–3 concern generators and relations. The context for generators and relations is that of

a free group on the set of generators, and the relations indicate passage to a quotient of this free group
by a normal subgroup. Section 1 constructs free groups in terms of words built from an alphabet
and shows that free groups are characterized by a certain universal mapping property. This universal
mapping property implies that any group may be defined by generators and relations. Computations
with free groups are aided by the fact that two reduced words yield the same element of a free group
if and only if the reduced words are identical. Section 2 obtains the Nielsen–Schreier Theorem that
subgroups of free groups are free. Section 3 enlarges the construction of free groups to the notion
of the free product of an arbitrary set of groups. Free product is what coproduct is for the category
of groups; free groups themselves may be regarded as free products of copies of the integers.
Sections 4–5 introduce representation theory for finite groups and give an example of an important

application whose statement lies outside representation theory. Section 4 contains various results 
giving an analysis of the space C(G, C) of all complex-valued functions on a finite group G. In this 
analysis those functions that are constant on conjugacy classes are shown to be linear combinations
of the characters of the irreducible representations. Section 5 proves Burnside’s Theorem as an
application of this theory—that any finite group of order paqb with p and q prime and with a +b > 1 
has a nontrivial normal subgroup.
Section 6 introduces cohomology of groups in connection with group extensions. If N is to be 

a normal subgroup of G and Q is to be isomorphic to G/N , the first question is to parametrize the 
possibilities for G up to isomorphism. A second question is to parametrize the possibilities for G if 
G is to be a semidirect product of N and Q. 

1. Free Groups 

This section and the next two introduce some group-theoretic notions that in
principle apply to all groups but in practice are used with countable groups, often
countably infinite groups that are nonabelian. The material is especially useful in
applications in topology, particularly in connection with fundamental groups and
covering spaces. But the formal development here will be completely algebraic,
not making use of any definitions or theorems from topology. 
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307 1. Free Groups 

In the case of abelian groups, every abelian group G is a quotient of a suitable
free abelian group, i.e., a suitable direct sum of copies of the additive group Z 
of integers.1 Recall the discussion of Section IV.9: We introduce a copy Zg of 
Z for each g in G, define Ge = 

L
g∈G Zg, let ig : Zg → Ge be the standard 

embedding, and let ϕg : Zg → G be the group homomorphism written additively 
as ϕg(n) = ng. The universal mapping property of direct sums that was stated
as Proposition 4.17 produces a unique group homomorphism ϕ : Ge → G such 
that ϕ ◦ ig = ϕg for all g, and ϕ is the required homomorphism of a free abelian 
group onto G. 
The goal in this section is to carry out an analogous construction for groups that

are not necessarily abelian. The constructed groups, to be called “free groups,”
are to be rather concrete, and the family of all of them is to have the property that
every group is the quotient of some member of the family.
If S is any set, we construct a “free group F(S) on the set S.” Let us speak 

of S as a set of “symbols” or as the members of an “alphabet,” possibly infinite,
with which we are working. If S is empty, the group F(S) is taken to be the 
one-element trivial group, and we shall therefore now assume that S is not empty. 
If a is a symbol in S, we introduce a new symbol a−1 corresponding to it, and we 
let S−1 denote the set of all such symbols a−1 for a ∈ S. Define S0 = S ∪ S−1. 
A word is a finite string of symbols from S0, i.e., an ordered n-tuple for some 
n of members of S0 with repetitions allowed. Words that are n-tuples are said 
to have length n. The empty word, with length 0, will be denoted by 1. Other
words are usually written with the symbols juxtaposed and all commas omitted,
as in abca−1cb−1. The set of words will be denoted by W (S0). We introduce a 
multiplication W (S0)× W (S0) → W (S0) by writing end-to-end the words that are 
to be multiplied: (abca−1 , cb−1) 7→ abca−1cb−1. The length of a product is the
sum of the lengths of the factors. It is plain that this multiplication is associative
and that 1 is a two-sided identity. It is not a group operation, however, since most
elements of W (S0) do not have inverses: multiplication never decreases length,
and thus the only way that 1 can be a product of two elements is as the product
11. To obtain a group from W (S0), we shall introduce an equivalence relation in 
W (S0). 
Two words are said to be equivalent if one of the words can be obtained 

from the other by a finite succession of insertions and deletions of expressions 
aa−1 or a−1a within the word; here a is assumed to be an element of S. It will be 
convenient to refer to the pairs aa−1 and a−1a together; therefore when b = a−1 is 
in S−1, let us define b−1 = (a−1)−1 to be a. Then two words are equivalent if one
of the words can be obtained from the other by a finite succession of insertions
and deletions of expressions of the form bb−1 with b in S0. This definition is 

1Direct sum here is what coproduct, in the sense of Section IV.11, amounts to in the category of
all abelian groups. 
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arranged so that “equivalent” is an equivalence relation. We write x ∼ y if x and 
y are words that are equivalent. The underlying set for the free group F(S) will 
be taken to be the set of equivalence classes of members of W (S0). 

Theorem 7.1. If S is a set and W (S0) is the corresponding set of words built 
from S0 = S ∪ S−1, then the product operation defined on W (S0) descends in a 
well-defined fashion to the set F(S) of equivalence classes of members of W (S0),
and F(S) thereby becomes a group. Define ∂ : S → F(S) to be the composition
of the inclusion into words of length one followed by passage to equivalence
classes. Then the pair (F(S), ∂) has the following universal mapping property: 
whenever G is a group and ϕ : S → G is a function, then there exists a unique 
group homomorphism ϕe : F(S) → G such that ϕ = eϕ ◦ ∂. 

REMARK. The group F(S) is called the free group on S. Figure 7.1 illustrates 
its universal mapping property. The brief form in words of the property is that 
any function from S into a group G extends uniquely to a group homomorphism 
of F(S) into G. This universal mapping property actually characterizes F(S), as 
will be seen in Proposition 7.2. 

ϕS −−−→ G 

∂

y

F(S) 

FIGURE 7.1. Universal mapping property of a free group. 

PROOF. Let us denote equivalence classes by brackets. We want to define
multiplication in F(S) by [w1][w2] = [w1w2]. To see that this formula makes 
sense in F(S), let x1, x2, and y be words, and let b be in S0. Define x = x1x2 and 
x 0 = x1bb−1x2, so that x 0 ∼ x . Then it is evident that x 0 y ∼ xy and yx 0 ∼ yx . 

0 0Iteration of this kind of relationship shows that w1 ∼ w1 and w2 ∼ w2 implies
0 0w1w2 ∼ w1w2, and hence multiplication of equivalence classes is well defined.
Since multiplication in W (S0) is associative, we have [w1]([w2][w3]) = 

[w1][w2w3] = [w1(w2w3)] = [(w1w2)w3] = [w1w2][w3] = ([w1][w2])[w3].
Thus multiplication is associative in F(S). The class [1] of the empty word 1 is a 
two-sided identity. If b1, . . . , bn are in S0, then bn 

−1 · · · b2 
−1b1 

−1b1b2 · · · bn is equiv-
alent to 1, and so is b1b2 · · · bnb−1 · · · b−1b−1. Consequently [b−1 · · · b−1b−1] is n 2 1 n 2 1
a two-sided inverse of [b1b2 · · · bn], and F(S) is a group.
Now we address the universal mapping property, first proving the stated unique-

ness of the homomorphism. Every member of F(S) is the product of classes [b]
with b in S0. In turn, if b is of the form a−1 with a in S, then [b] = [a]−1. Hence 
F(S) is generated by all classes [a] with a in S, i.e., by ∂(S). Any homomorphism 

eϕ 
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of a group is determined by its values on the members of a generating set, and
uniqueness therefore follows from the formula ϕ([a]) = ϕ(∂(a)) = ϕ(a). 
For existence we begin by defining a function 8 : W (S0) → G such that 

ee

for in Sa a a8( ) ϕ( )= , 
1 1 1 1for in S− − − −a a a8( ) ϕ( )= , 

for and in W S0
1 2 1 2 1 28(w ) 8(w )8(w ) ( ). =w w w

1 1 1 1We use the formulas for in and for inS S− − − −a a a a a a8( ) ϕ( ) 8( ) ϕ( )= = 
as a definition of for in . Any member of can be written uniquely b b S W S0 08( ) ( ) 

e
e e

as b1 · · · bn with each bj in S0, and we set 8(b1 · · · bn) = 8(b1) · · · 8(bn). (If 
n = 0, the understanding is that 8(1) = 1.) Then 8 has the required properties. 

e

Let us show that w0 ∼ w implies 8(w0) = 8(w). If b1, . . . , bn are in S0 and 

e

b is in S0, then the question is whether 

8(b1 · · · bkbb−1bk+1 · · · bn) = 
? 

8(b1 · · · bkbk+1 · · · bn). 

e

If g and g0 denote the elements 8(b1) · · · 8(bk) and 8(bk+1) · · · 8(bn) of G, then 
the two sides of the queried formula are 

g8(b)8(b−1)g0 and gg0 . 

Thus the question is whether 8(b)8(b−1) always equals 1 in G. If b = a is in S,
this equals ϕ(a)ϕ(a)−1 = 1, while if b = a−1 is in S−1, it equals ϕ(a)−1ϕ(a) = 1. 

[ϕ( ww e 

We conclude that w0 ∼ w implies 8(w0) = 8(w). 
We may therefore defineϕ([w]) = 8(w) for [w] in F(S). Sinceϕ([w][w0]) = 

e

ϕ([w])ϕ([w ϕ is a homomorphism 
of F(S) into G. ϕ([a]) ϕ(a). 
ϕ(∂(a)) = ϕ(a). This completes the proof of existence. 

0]) 0]),8(ww0) = 8(w)8(w0) = 
For a in S, we have

= 
In other words, = 8(a) = 

§ 

ee

Proposition 7.2. Let S be a set, F be a group, and ∂0 : S → F be a func-
tion. Suppose that the pair (F, ∂0) has the following universal mapping property: 
whenever G is a group and ϕ : S → G is a function, then there exists a unique 
group homomorphism ϕ : F → G such that ϕ ϕ ◦ ∂0 Then there exists a 
unique group homomorphism 8 : F(S) → F such that ∂0 

= . 
= 8 ◦ ∂, and it is a 

group isomorphism. 

REMARKS. Chapter VI is not a prerequisite for the present chapter. However,
readers who have been through Chapter VI will recognize that Proposition 7.2 is
a special case of Problem 19 at the end of that chapter. 
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PROOF. We apply the universal mapping property of (F(S), ∂), as stated in 
Theorem 7.1, to the group G = F and the function ϕ = ∂0, obtaining a group 
homomorphism 8 : F(S) → F such that ∂0 = 8 ◦ ∂. Then we apply the given 
universal mapping property of (F, ∂0) to the group G = F(S) and the function 
ϕ = ∂, obtaining a group homomorphism 9 : F → F(S) such that ∂ = 9 ◦ ∂0. 
The group homomorphism 9 ◦ 8 : F(S) → F(S) has the property that 

(9 ◦8)◦∂ = 9 ◦(8◦∂) = 9 ◦∂0 = ∂, and the identity 1F(S) has this same property.
By the uniqueness of the group homomorphism in Theorem 7.1, 9 ◦ 8 = 1F(S). 
Similarly the group homomorphism 8 ◦ 9 : F → F has the property that 

(8 ◦ 9) ◦ ∂0 = ∂0, and the identity 1F has this same property. By the uniqueness
of the group homomorphism in the assumed universal mapping property of F , 
8 ◦ 9 = 1F . 
Therefore 8 is a group isomorphism. We know that ∂(S) generates F(S). If 

80 : F(S) → F is another group isomorphism with ∂0 = 80 ◦ ∂, then 80 and 8 
agree on ∂(S) and therefore have to agree everywhere. Hence 8 is unique. § 

Proposition 7.2 raises the question of recognizing candidates for the set T = 
∂0(S) in a given group F so as to be in a position to exhibit F as isomorphic to the 
free group F(S). Certainly T has to generate F . But there is also an independence
condition. The idea is that if we form words from the members of T , then two 
words are to lead to equal members of F only if they can be transformed into one
another by the same rules that are allowed with free groups.
What this problem amounts to in the case that F = F(S) is that we want a 

decision procedure for telling whether two given words are equivalent. This is
the so-called word problem for the free group. If we think about the matter for a
moment, not much is instantly obvious. If a1 and a2 are two members of S and if 
they are considered as words of length 1, are they equivalent? Equivalence allows
for inserting pairs bb−1 with b in S0, as well as deleting them. Might it be possible
to do some complicated iterated insertion and deletion of pairs to transform a1 

into a2? Although the negative answer can be readily justified in this situation by
a parity argument, it can be justified even more easily by the universal mapping
property: there exist groups G with more than one element; we can map a1 to 
one element of G and a2 to another element of G, extend to a homomorphism 
ϕ : F(S) → G, see that ϕ(∂(a1)) ϕ(∂(a2)), and conclude that ∂(a1)6= 6= ∂(a2).eee
But what about the corresponding problem for two more-complicated words in a
free group? Fortunately there is a decision procedure for the word problem in a
free group. It involves the notion of “reduced” words. A word in W (S0) is said 
to be reduced if it contains no consecutive pair bb−1 with b in S0. 

Proposition 7.3 (solution of the word problem for free groups). Let S be a set, 
let S0 = S ∪ S−1, and let W (S0) be the corresponding set of words. Then each 
word in W (S0) is equivalent to one and only one reduced word. 
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REMARK. To test whether two words are equivalent, the proposition says to 
delete pairs bb−1 with b ∈ S0 as much as possible from each given word, and to
check whether the resulting reduced words are identical. 

PROOF. Removal of a pair bb−1 with b ∈ S0 decreases the length of a word 
by 2, and the length has to remain ∏ 0. Thus the process of successively removing
such pairs has to stop after finitely many steps, and the result is a reduced word.
This proves that each equivalence class contains a reduced word.
For uniqueness we shall associate to each word a finite sequence of reduced

words such that the last member of the sequence is unchanged when we insert
or delete within the given word any expression bb−1 with b ∈ S0. Specifically if 
w = b1 · · · bn , with each bi in S0, is a given word, we associate to w the sequence 
of words x0, x1, . . . , xn defined inductively by 

x0 = 1, 
x1 = b1, 

Ω xi−1bi if i ∏ 2 and xi−1 does not end in bi 
−1 , 

= (∗)xi 
yi−2 if i ∏ 2 and xi−1 = yi−2bi 

−1 , 

and we define r(w) = xn . Let us see, by induction on i ∏ 0, that xi is reduced. 
The base cases i = 0 and i = 1 are clear from the definition. Suppose that i ∏ 2 
and that x0, . . . , xi−1 are reduced. If xi−1 = yi−2b−1 for some yi−2, then xi−1i
reduced forces yi−2 to be reduced, and hence xi = yi−2 is reduced. If xi−1 does 
not end in b−1, then the last two symbols of xi = xi−1bi do not cancel, and no i
earlier pair can cancel since xi−1 is assumed reduced; hence xi is reduced. This 
completes the induction and shows that xi is reduced for 0 ≤ i ≤ n. 
If the word w = b1 · · · bn is reduced, then each xi for i ∏ 2 is determined by 

the first of the two choices in (∗), and hence xi = b1 · · · bi for all i . Consequently 
r(w) = w if w is reduced. If we can prove for a general word b1 · · · bn that 

r(b1 · · · bn) = r(b1 · · · bkbb−1bk+1 · · · bn), (∗∗) 

then it follows that every word w0 equivalent to a word w has r(w0) = r(w). Since 
r(w) = w for w reduced, there can be only one reduced word in an equivalence 
class. 
To prove (∗∗), let x0, . . . , xn be the finite sequence associated with b1 · · · bn ,

and let x00 , . . . , xn0 +2 be the sequence associated with b1 · · · bkbb−1bk+1 · · · bn . 
Certainly xi = xi

0 for i ≤ k. Let us compute xk0+1 and xk
0
+2. From (∗) we see that 

Ω xkb if xk does not end in b−1 , 
=k+1x 0

y if xk = yb−1 . 
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In the first of these cases, xk0+1 ends in b, and (∗) says therefore that xk0+2 = xk . 
In the second of the cases, the fact that xk is reduced implies that y does not end 
in b; hence (∗) says that x 0 = yb−1 = xk . In other words, x 0 = xk in both k+2 k+2
cases. Since the inductive definition of any xi depends only on xi−1, and similarly 
for xi0, we see that xk0+2+i = xk+i for 0 ≤ i ≤ n − k. Therefore xn0 +2 = xn , and 
(∗∗) follows. This proves the proposition. § 

Let us return to the problem of recognizing candidates for the set T = ∂0(S)
in a given group F so that the subgroup generated by T is a free group. Using 
the universal mapping property for the free group F(T ), we form the group 
homomorphism of F(T ) into F that extends the identity mapping on T . We want 
this homomorphism to be one-one, i.e., to have the property that the only way a
word in F built from the members of T can equal the identity is if it comes from
the identity. Because of Proposition 7.3 the only reduced word in F(T ) that yields
the identity is the empty word. Thus the condition that the homomorphism be
one-one is that the only image in F of a reduced word in F(T ) that can equal the
identity is the image of the empty word. Making this condition into a definition,
we say that a subset S = {gt | t ∈ T } of F not containing 1 is free if no nonempty 
product h1h2 · · · hm in which each hi or h−1 is in S and each hi+1 is different i 
from h−1 can be the identity. A free set in F that generates F is called a free i
basis for F . 

EXAMPLE. Within the free group F({x, y}) on two generators x and y, consider 
the subgroup generated by u = x2, v = y2, and w = xy. The claim is that 
the subset {u, v, w} is free, so that the subgroup generated by u, v, and w is 
isomorphic to a free group F({u, v, w}) on three generators. We are to check that 

−1no nonempty reduced word in u, v, w, u−1, v ,w−1 can reduce to the empty 
word after substitution in terms of x and y. We induct on the length of the u, v, w 
word, the base case being length 0. Suppose that v = y2 occurs somewhere 
in our reduced u, v, w word that collapses to the empty word after substitution.
Consider what is needed for the left-hand factor of y in the y2 to cancel. The 
cancellation must result from the presence of some y−1. Suppose that this y−1 

occurs to the left of y2. Since passing to a reduced word need involve only
deletions and not insertions of pairs, everything between y−1 and y2 must cancel. 

−1If the y−1 has resulted from w = y−1x−1, then the number of x, y symbols
between y−1 and y2 is odd, and an odd number of factors can never cancel. So 

−1the y−1 must arise from the right-hand y−1 in a factor v = y−2. The symbols 
between y−2 and y2 come from some reduced u, v, w word, and induction shows 
that this word must be trivial. Then y−2 and y2 are adjacent, contradiction. Thus 
the left factor of y2 must cancel because of some y−1 on the right of y2. If the y−1 

−1is part of w−1 = y−1x−1 or is the left y−1 in v = y−2, then the number of x, y 
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symbols between the left y and the y−1 is odd, and we cannot get cancellation. So 
the y−1 must be the right-hand y−1 in a factor y−2. Then we have an expression 
y(y · · · y−1)y−1 in which the symbols in parentheses cancel. The symbols · · · 
must cancel also; since these represent some reduced u, v, w word, induction 
shows that · · · is empty. We conclude that y2 and y−2 are adjacent, contradiction. 
Thus our reduced u, v, w word contains no factor v. Similarly examination of the 
right-hand factor x in an occurrence of x2 shows that our reduced u, v, w word 
contains no factor u. It must therefore be a product of factors w or a product of 

e

factors w−1. Substitution of w = xy leads directly without any cancellation to 
an x, y reduced word, and we conclude that the u, v, w word is empty. Thus the 
subset {u, v, w} is free. 

If G is any group, the commutator subgroup G 0 of G is the subgroup generated 
by all elements xyx−1 y−1 with x ∈ G and y ∈ G. 

Proposition 7.4. If G is a group, then the commutator subgroup is normal, 
and G/G 0 is abelian. If ϕ : G → H is any homomorphism of G into an abelian 
group H , then ker ϕ ⊇ G 0. 

PROOF. The computation 

axyx−1 y−1a−1 = (axa−1)(aya−1)(axa−1)−1(aya−1)−1 

shows that G 0 is normal. If √ : G → G/G 0 is the quotient homomorphism, then 
√(x)√(y) = xyG 0 = xy(y−1x−1 yx)G 0 = yxG 0 = √(y)√(x), and therefore 
G/G 0 is abelian. Finally if ϕ : G → H is a homomorphism of G into an abelian 
group H , then the computation ϕ(xyx−1 y−1) = ϕ(x)ϕ(y)ϕ(x)−1ϕ(y)−1 = 
ϕ(x)ϕ(x)−1ϕ(y)ϕ(y)−1 = 1 shows that G 0 ⊆ ker ϕ. § 

Corollary 7.5. If F is the free group on a set S and if F 0 is the commutator 
subgroup of F , then F/F 0 is isomorphic to the free abelian group 

L
s∈S Zs . 

PROOF. Let H = 
L

s∈S Zs , and let ϕ : S → H be the function with ϕ(s) = 1s ,
i.e., ϕ(s) is to be the member of H that is 1 in the sth coordinate and is 0 elsewhere. 
Application of the universal mapping property of F as given in Theorem 7.1 
yields a group homomorphism ϕ : F → H such that ϕ ◦ ∂ Since the = ϕ. 

e
e

e
e

e
e

elements ϕ(s), with s in S, generate H , ϕ carries F onto H . Since H is abelian, 
Proposition 7.4 shows that kerϕ ⊇ F 0. Proposition 4.11 shows that ϕ descends 
to a homomorphism ϕ0 : F/F 0 → H , and ϕ0 has to be onto H . 
To complete the proof, we show that ϕ0 is one-one. Let x be a member of F .e

Since the products of the elements ∂(s) and their inverses generate F and since 
j1 jnF/F 0 is abelian, we can write xF 0 = s · · · s F 0, where si1 occurs a total of i1 in

j1 times in x , . . . , and sin occurs a total of jn times in x ; it is understood that 
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an occurrence of si
−
1 

1 is to contribute −1 toward j1. Then we have ϕ0(xF 0) = e
j1ϕ(si1 )+· · ·+ jnϕ(sin ). If eϕ0(xF 0) = 0, we obtain j1ϕ(si1 )+· · ·+ jnϕ(sin ) = 0,
and then j1 = · · · = jn = 0 since the elements ϕ(si1 ), . . . , ϕ(sin ) are members 
of a Z basis of H . Hence xF 0 = F 0, x is in F 0, and ϕ0 is one-one. §e

Corollary 7.6. If F1 and F2 are isomorphic free groups on sets S1 and S2,
respectively, then S1 and S2 have the same cardinality. 

PROOF. Corollary 7.5 shows that an isomorphism of F1 with F2 induces an 
isomorphism of the free abelian groups 

L
Zs1 and 

L
Zs2 . The rank of a s∈S1 s∈S2

free abelian group is a well-defined cardinal, and the result follows—almost.
We did not completely prove this fact about the rank of a free abelian group

in Section IV.9. Theorem 4.53 did prove, however, that rank is well defined for
finitely generated free abelian groups. Thus the corollary follows if S1 and S2 are 
finite. If S1 or S2 is uncountable, then the cardinality of the corresponding free
abelian group matches the cardinality of its Z basis; hence the corollary follows 
if S1 or S2 is uncountable. The only remaining case to eliminate is that one of 
S1 and S2, say the first of them, has a countably infinite Z basis and the other 
has finite rank n. The first of the groups then has a linearly independent set of 
n + 1 elements, and Lemma 4.54 shows that the span of these elements cannot
be isomorphic to a subgroup of a free abelian group of rank n. This completes 
the proof in all cases. § 

Because of Corollary 7.6, it is meaningful to speak of the rank of a free group;
it is the cardinality of any free basis. We shall see in the next section that any
subgroup of a free group is free. In contrast to the abelian case, however, the rank
may actually increase in passing from a free group to one of its subgroups: the
example earlier in this section exhibited a free group of rank 3 as a subgroup of
a free group of rank 2.
We turn to a way of describing general groups, particularly groups that are at

most countable. The method uses “generators,” which we already understand,
and “relations,” which are defined in terms of free groups. Let S be a set, let 
R be a subset of F(S), and let N (R) be the smallest normal subgroup of F(S)
containing R. The group G = F(S)/N (R) is sometimes written as G = hS; Ri 
or as 

G = helements of S; elements of Ri, 

with the elements of S and R listed rather than grouped as a set. Either of these 
expressions is called a presentation of G. The set S is a set of generators, and 
the set R is the corresponding set of relations. The following result implicit in
the universal mapping property of Theorem 7.1 shows the scope of this definition. 
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Proposition 7.7. Each group G is the homomorphic image of a free group. 

PROOF. Let S be a set of generators for G; for example, S can be taken to 
be G itself. Let ϕ : S → G be the inclusion of the set of generators into G,
and let ϕ : F(S) → G be the group homomorphism of Theorem 7.1 such that 

is a subgroup of that contains Gsϕ(∂( )) ϕ 
is the required ϕe

§ 

e
e

ϕ(s) for all s in S. The image of
the generating set S and is therefore equal to all of G. 
e = 

Thus 
homomorphism. 

If G is any group and
sition 7.7, then the subgroup R 
Consequently every group can be given by generators and relations.

e
eϕ : F(S) → G is the homomorphism given in Propo-

ϕ has the property that G ∼ hS; Ri.ker= = 

For example the proof of the proposition shows that one possibility is to take 
S = G and R equal to the set of all members of the multiplication table, but with
the multiplication table entry ss0 = s 00 rewritten as the left side ss0(s 00)−1 of an 
equation ss 0(s 00)−1 = 1 specifying a combination of generators that maps to 1.
This is of course not a very practical example. Generators and relations are most
useful when S and R are fairly small. One says that G is finitely generated if S can 
be chosen to be finite, finitely presented if both S and R can be chosen to be 
finite. 

A frequently used device in working with generators and relations is the
following simple proposition. 

Proposition 7.8. Let G = hS; Ri be a group given by generators and relations, 
let G 0 be a second group, let ϕ be a one-one function ϕ from S onto a set of 
generators for G 0, and let 8 : F(S) → G 0 be the extension of ϕ to a group 
homomorphism. If 8(r) = 1 for every member r of R, then 8 descends to a 
homomorphism of G onto G 0. In particular, if G = hS; Ri and G 0 = hS; R0i 
are groups given by generators and relations with R ⊆ R0, then the natural 
homomorphism of F(S) onto G 0 descends to a homomorphism of G onto G 0. 

PROOF. The proposition follows immediately from the universal mapping
property in Theorem 7.1 in combination with Proposition 4.11. § 

Now let us consider some examples of groups given by generators and relations.
The case of one generator is something we already understand: the group has to
be cyclic. A presentation of Z is as ha; i, and a presentation of Cn is as ha; ani. 
But other presentations are possible with one generator, such as ha; a6 , a9i for 
C3. Here is an example with two generators. 
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∼ ≠ Æ
EXAMPLE. Let us prove that Dn = x, y; xn , y2, (xy)2 , where Dn is the 

dihedral group of order 2n. Concretely let us work with Dn as the group of 2-by-2 
0real matrices generated by 

≥ 
cos 2π/n − sin 2π/n 

¥ 
and 

≥ 
1 

¥
. The generated group sin 2π/n cos 2π/n 0 −1 

indeed has order 2n. If we identify 

with 
≥ 
cos 2π/n − sin 2π/n 

¥ 
0 
¥

x and y with 
≥ 
1 

,sin 2π/n cos 2π/n 0 −1 

then y2 = 1, and the formula 
≥ 
cos 2π/n − sin 2π/n 

¥k ≥ 
cos 2πk/n − sin 2πk/n 

¥ 
=sin 2π/n cos 2π/n sin 2πk/n cos 2πk/n 

≥ 
cos 2π/n sin 2π/nshows that xn = 1. In addition, xy = 

¥
, and the square of sin 2π/n − cos 2π/n 

this is the identity. By Proposition 7.8, Dn is a homomorphic image of Den = ≠
x, y; xn , y2, (xy)2

Æ
. To complete the identification, it is enough to show that the 

order of Den is ≤ 2n because the homomorphism of Den onto Dn must then be 
one-one. In 

≠
x, y; xn , y2, (xy)2

Æ
, we compute that y−1 = y and that x(yx)y = 1 

implies yx = x−1 y−1 = x−1 y. Induction then yields yxk = x−k y for k > 0. 
Multiplying left and right by y gives yx−k = xk y for k > 0. So yxl = x−l y for 
every integer l. This means that every element is of the form xm or xm y, and we 
may take 0 ≤ m ≤ n − 1. Hence there are at most 2n elements. 

Without trying to be too precise, let us mention that the word problem for 
finitely presented groups is to give an algorithm for deciding whether two words
represent the same element of the group. It is known that there is no such 
algorithm applicable to all finitely presented groups. Of course, there can be
such an algorithm for certain special classes of presentations. For example, if
there are no relations in the presentation, then the group is a free group, and
Proposition 7.3 gives a solution in this case. There tends to be a solution for a
class of groups if the groups all correspond rather concretely to some geometric
situation, such as a tiling of Euclidean space or some other space. The example
above with Dn is of this kind. 
By way of a concrete class of examples, one can identify any doubly generated

group of the form 
≠
x, y; xa , yb, (xy)c

Æ 
if a, b, c are integers > 1, and one can

describe what words represent what elements in these groups. These groups all
correspond to tilings in 2 dimensions. In fact, let ∞ = a−1 + b−1 + c−1. If ∞ > 1,
the tiling is of the Riemann sphere, and the group is finite. If ∞ = 1, the tiling is 
of the Euclidean plane R2, and the group is infinite. If ∞ < 1, the tiling is of the
hyperbolic plane, and the group is infinite. In all cases one starts from a triangle in
the appropriate geometry with angles π/a, π/b, and π/c, and a basic tile consists
of the double of this triangle obtained by reflecting the triangle about any of its 
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sides. The group elements x , y, and xy are rotations, suitably oriented, about the
vertices of the triangle through respective angles 2π/a, 2π/b, and 2π/c. Further 
information about the cases ∞ > 1 and ∞ = 1 is obtained in Problems 37–46 at 
the end of the chapter.
We conclude with one further example of a presentation whose group we can

readily identify concretely. 

Proposition 7.9. Let S be a set, and let R = {sts−1t−1 | s ∈ S, t ∈ S}. Then 
the smallest normal subgroup of the free group F(S) containing R is the com-
mutator subgroup F(S)0, and therefore hS; Ri is isomorphic to the free abelian 
group 

L 
s∈S Zs . 

PROOF. The members of R are in F(S)0, the product of two members of F(S)0 
is in F(S)0, and any conjugate of a member of F(S)0 is in F(S)0. Therefore 
the smallest normal subgroup N (R) containing R has N (R) ⊆ F(S)0. Let 
ϕ : F(S) → F(S)/N (R) be the quotient homomorphism. Elements of the 
quotient F(S)/N (R) may be expressed as words in the elements ϕ(s) and ϕ(s)−1 

for s in S, and the factors commute because of the definition of R. Therefore 
F(S)/N (R) is abelian. By Proposition 7.4, N (R) ⊇ F(S)0. Therefore N (R) = 
F(S)0. This proves the first conclusion, and the second conclusion follows from
Corollary 7.5. § 

2. Subgroups of Free Groups 

The main result of this section is that any subgroup of a free group is a free group.
An example in the previous section shows that the rank can actually increase in
the process of passing to the subgroup.
The proof of the main result is ostensibly subtle but is relatively easy to under-

stand in topological terms. Although we shall give the topological interpretation,
we shall not pursue it further, and the proof that we give may be regarded as a
translation of the topological proof into the language of algebra, combined with
some steps of beautification.
For purposes of the topological argument, let us think of the given free group

for the moment as finitely generated, and let us suppose that the subgroup has
finite index. A free group on n symbols is the fundamental group of a bouquet 
of n circles, all joined at a single point, which we take as the base point. By the
theory of covering spaces, any subgroup of index k is the fundamental group of 
some k-sheeted covering space of the bouquet of circles. This covering space is
a 1-dimensional simplicial complex, and one can prove with standard tools that
the fundamental group of any 1-dimensional simplicial complex is a free group.
The theorem follows. 
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If the special hypotheses are dropped that the given free group is finitely
generated and the subgroup has finite index, then the same proof is applicable as
long as one allows a suitable generalization of the notion of simplicial complex.
Thus the topological argument is completely general.
The theorem then is as follows. 

Theorem 7.10 (Nielsen–Schreier Theorem). Every subgroup of a free group 
is a free group. 

REMARKS. The algebraic proof will occupy the remainder of the section but
will occasionally be interrupted by comments about the example in the previous
section. 

Let the given free group be F , let the subgroup be H , and form the right cosets 
Hg in F . Let C be a set of representatives for these cosets, with 1 chosen as
the representative of the identity coset; we shall impose further conditions on C 
shortly. 

EXAMPLE, CONTINUED. For the example in the previous section, we were 
given a free group F with two generators x, y, and the subgroup H is taken to 
have generators x2 , xy, y2. In fact, one readily checks that H is the subgroup
formed from all words of even length, and we shall think of it that way. The set
C of coset representatives may be taken to be {1, x} in this case. The argument 
we gave that H is free has points of contact with the proof we give of Theorem
7.10 but is not an exact special case of it. One point of contact is that within
each generator of H that we identify, there is some particular factor that does
not cancel when that generator appears in a word representing a member of the
subgroup. 

We define a function ρ : F → C by taking ρ(x) to be the coset representative 
of the member x of F . This function has the property that ρ(hx) = ρ(x) for all 
h in H and x in F . Also, x 7→ xρ(x)−1 is a function from F to H , and it is the 
identity function on H . The first lemma shows that a relatively small subset of 
the elements xρ(x)−1 is a set of generators of H . 

Lemma 7.11. Let S be the set of generators of F , and let S0 = S ∪ S−1. 
Every element of H is a product of elements of the form gbρ(gb)−1 with g in 
C and b in S0. Furthermore the element g0 = ρ(gb) of C has the properties 
that g = ρ(g0b−1) and that gb−1ρ(gb−1)−1 is of the form 

° 
g0bρ(g0b)−1

¢−1. 
Consequently the elements gaρ(ga)−1 with g in C and a in S form a set of 
generators of H . 
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EXAMPLE, CONTINUED. In the example, we are taking C = {1, x} and S = 
{x, y}. The elements gbρ(gb)−1 obtained with g=1 and b equal to x, y, x−1 , y−1 

are 1, yx−1, x−1x−1, and y−1x−1. The elements gbρ(gb)−1 obtained with g = x 
and b equal to x, y, x−1 , y−1 are xx , xy, 1, and xy−1. The lemma says that 1, 
yx−1, xx , and xy form a set of generators of H and that the elements x−1x−1, 
y−1x−1, 1, and xy−1 are inverses of these generators in some order. 

REMARK. The lemma needs no hypothesis that F is free. A nontrivial ap-
plication of the lemma with F not free appears in Problem 43 at the end of the 
chapter. 

PROOF. Any h in F can be written as a product h = b1 · · · bn with each bj in 
S0. Define r0 = 1 and rk = ρ(b1 · · · bk ) for 1 ≤ k ≤ n. Then 

hr−1 = (r0b1r−1)(r1b2r−1) · · · (rn−1bnr−1). (∗)n 1 2 n 

Since 

rk = ρ(b1 · · · bk) = ρ(b1 · · · bk−1bk ) = ρ(ρ(b1 · · · bk−1)bk ) = ρ(rk−1bk ), 

we have rk−1bkrk 
−1 = gbρ(gb)−1 with g = rk−1 and b = bk . Thus (∗) exhibits 

hr−1 as a product of elements as in the first conclusion of the lemma. Since n 
rn = ρ(b1 · · · bn) = ρ(h), rn = 1 if h is in H . Therefore in this case, h itself is 
a product of elements as in the statement of that conclusion, and that conclusion
is now proved.
For the other conclusion, let gb−1ρ(gb−1)−1 be given, and put g0 = ρ(gb−1),

so that gb−1g0−1 = h is in H . This equation implies that g0b = h−1g. Hence 
ρ(g0b) = ρ(h−1g) = ρ(g) = g, and it follows that gb−1ρ(gb−1)−1 = gb−1g0−1 

= (g0bg−1)−1 = 
° 
g0bρ(g0b)−1

¢−1. This proves the lemma. § 

Lemma 7.12. With F free it is possible to choose the set C of coset represen-
tatives in such a way that all of its members have expansions in terms of S0 as 
g = b1 · · · bn in which 

(a) g = b1b2 · · · bn is a reduced word as written, 
(b) b1b2 · · · bn−1 is also a member of C . 
REMARKS. It is understood from the case of n = 1 in (b) that 1 is the 

representative of the identity coset. When C is chosen as in this lemma, C is 
said to be a Schreier set. In the example, C = {1, x} is a Schreier set. So is 
C = {1, y}, and hence the selection of a Schreier set may involve a choice. 

PROOF. If S0 is finite or countably infinite, we enumerate it. In the uncountable
case (which is of less practical interest), we introduce a well ordering in S0 by
means of Zermelo’s Well-Ordering Theorem as in Section A5 of the appendix. 
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The ordering of S0 will be used to define a lexicographic ordering of the set of
all reduced words in the members of S0. If 

x = b1 · · · bm and y = b1
0 · · · bn 

0 (∗) 

are reduced words with m ≤ n, we say that x < y if any of the following hold: 
(i) m < n,
(ii) m = n and b1 < b1

0 ,
(iii) m = n, and for some k < m, b1 = b1

0 , . . . , bk = bk
0 , and bk+1 < bk

0
+1. 

With this definition the set of reduced words is well ordered, and hence any
nonempty subset of reduced words has a least element.
Let us observe that if x, y, z are reduced words with x < y and if yz is reduced 

as written, then xz < yz after xz has been reduced. In fact, let us assume that x 
and y are as in (∗) and that the length of z is r . The assumption is that yz has 
length n + r , and the length of xz is at most m + r . If m < n, then certainly 
xz < yz. If m = n and xz fails to be reduced, then the length of xz is less than the 
length of yz, and xz < yz. If m = n and xz is reduced, then the first inequality 
bk < bk

0 with x and y shows that xz < yz. 
To define the set C of coset representatives, let the representative of Hg be 

the least member of the set Hg, each element being written as a reduced word.
Since the length of the empty word is 0, the representative of the identity coset
H is 1 under this definition. Thus all we have to check is that an initial segment
of a member of C is again in C . 
Suppose that b1 · · · bn is in C , so that b1 · · · bn is the least element of Hb1 · · · bn . 

Denote the least element of Hb1 · · · bn−1 by g. If g = b1 · · · bn−1, we are done. 
Otherwise g < b1 · · · bn−1, and then the fact that b1 · · · bn is reduced implies 
that gbn < b1 · · · bn . But gbn is in Hb1 · · · bn , and this inequality contradicts 
the minimality of b1 · · · bn in that coset. Thus we conclude that g = b1 · · · bn−1. 
This proves the lemma. § 

For the remainder of the proof of Theorem 7.10, we assume, as we may by
Lemma 7.12, that the set C of coset representatives is a Schreier set. Typical 
elements of S will be denoted by a, and typical elements of S0 = S ∪ S−1 will be 
denoted by b. Let us write u for a typical element gaρ(ga)−1 with g in C , and let 
us write v for a typical element gbρ(gb)−1 with g in C . The elements u generate
H by Lemma 7.11, and each element v is either an element u or the inverse of an 
element u, according to the lemma. We shall prove that the elements u not equal 
to 1 are distinct and form a free basis of H . 
First we prove that each of the elements v = gbρ(gb)−1 either is reduced as 

written or is equal to 1. Put g0 = ρ(gb), so that v = gbg0−1. Since g and g0 are in 
the Schreier set C , they are reduced as written, and hence so are g and g0−1. Thus 
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the only possible cancellation in v occurs because the last factor of g is b−1 or the 
last factor of g0 is b. If the last factor of g is b−1, then gb is an initial segment of 
g and hence is in the Schreier set C ; thus ρ(gb) = gb and v = gbρ(gb)−1 = 1. 
Similarly if the last factor of g0 is b, then g0b−1 is an initial segment of g0 and 
hence is in the Schreier set C ; thus ρ(g0b−1) = g0b−1, and Lemma 7.11 gives 

−1v = 
°
gbρ(gb)−1

¢−1 
= g0b−1ρ(g0b−1)−1 = 1. Thus v = gbρ(gb)−1 either is 

reduced as written or is equal to 1.
Next let us see that the elements v other than 1 are distinct. Suppose that 

v = gbρ(gb)−1 = g0b0ρ(g0b0)−1 is different from 1. Remembering that each of
these expressions is reduced as written, we see that if g is shorter than g0, then gb 
is an initial segment of g0. Since C is a Schreier set, gb is in C and ρ(gb) = gb;
thus v = gbρ(gb)−1 equals 1, contradiction. Similarly g0 cannot be shorter than 
g. So g and g0 must have the same length l. In this case the first l + 1 factors 
must match in the two equal reduced words, and we conclude that g = g0 and 
b = b0. This proves the uniqueness.
We know that each v is either some u or some u0−1, and this uniqueness shows 

that it cannot be both unless v = 1. Therefore the nontrivial u’s are distinct, and 
the nontrivial v’s consist of the u’s and their inverses, each appearing once. 
Since an element v not equal to 1 therefore determines its g and b, let us refer 

to the factor b of v = gbρ(gb)−1 as the significant factor of v. This is the part 
that will not cancel out when we pass from a product of v’s to its reduced form. 
Specifically suppose that we have v = gbρ(gb)−1 and v̄ = ḡb̄ρ(ḡb̄)−1, that 

neither of these is 1, and that v̄ =6 v−1. Put g0 = ρ(gb) and ḡ0 = ρ(ḡb̄). The 
claim is that the cancellation in forming vv̄ = gbg0−1ḡb̄ḡ0−1 does not extend 

¯to either of the significant factors b and b. If it does, then one of three things 
happens: 

(i) the b in bg0−1 gets canceled because the last factor of g0 is b, in which 
case g0b−1 is an initial segment of g0, g0b−1 = ρ(g0b−1) = g, and 
v = gbg0−1 = 1, or 

(ii) the b̄ in ḡb̄ gets canceled because the last factor of ḡ is b̄−1, in which case 
ḡb̄ is an initial segment of ḡ, ḡb̄ = ρ(ḡb̄) = ḡ0, and v̄ = ḡb̄ḡ0−1 = 1, or 

(iii) g0−1ḡ = 1 and bb̄ = 1, in which case ḡ = g0, b̄ = b−1, and the middle 
−1conclusion of Lemma 7.11 allows us to conclude that v̄ = v . 

All three of these possibilities have been ruled out by our assumptions, and
therefore neither of the significant factors in vv̄ cancels. 
As a consequence of this noncancellation, we can see that in any product 

v1 · · · vm of v’s in which no vk is 1 and no vk+1 equals v −1, none of the significantk
factors cancel. In fact, the previous paragraph shows that the significant factors
of v1 and v2 survive in forming v1v2, the significant factors of v2 and v3 survive 
in right multiplying by v3, and so on. Since the nontrivial u’s are distinct and 
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the nontrivial v’s consist of the u’s and their inverses, each appearing once, we 
conclude that the set of nontrivial u’s is a free subset of F . Lemma 7.11 says that 
the u’s generate H , and therefore the set of nontrivial u’s is a free basis of H . 

3. Free Products 

The free abelian group on an index set S, as constructed in Section IV.9, has a
universal mapping property that allows arbitrary functions from S into any target
abelian group to be extended to homomorphisms of the free abelian group into
the target group. The construction of free groups in Section 1 was arranged to
adapt the construction so that the target group in the universal mapping property
could be any group, abelian or nonabelian.
In this section we make a similar adaptation of the construction of a direct sum

of abelian groups so that the result is applicable in a context of arbitrary groups.
Proposition 4.17 gave the universal mapping property of the external direct sumL

s∈S Gs of a set of abelian groups with associated embedding homomorphisms 
is0 : Gs0 → 

L
s∈S Gs . The statement is that if H is any abelian group and 

{ϕs | s ∈ S} is a system of group homomorphisms ϕs : Gs → H , then there 
exists a unique group homomorphism ϕ : 

L
s∈S Gs → H such that ϕ ◦ is0 = ϕs0

for all s0 ∈ S. Example 2 of coproducts in Section IV.11 shows that direct sum
is therefore the coproduct functor in the category of all abelian groups.
This universal mapping property of 

L
s∈S Gs fails when H is a nonabelian 

group such as the symmetric group S3. In fact, S3 has an element of order 2 and 
an element of order 3 and hence admits nontrivial homomorphisms ϕ2 : C2 → S3 

and ϕ3 : C3 → S3. But there is no homomorphism ϕ : C2 ⊕ C3 → S3 such 
that ϕ ◦ i2 = ϕ2 and ϕ ◦ i3 = ϕ3 because the image of ϕ has to be abelian but the 
images of ϕ2 and ϕ3 do not commute. Consequently direct sum cannot extend to
a coproduct functor in the category of all groups.
Instead, the appropriate group constructed from C2 and C3 for this kind of 

universal mapping property is the “free product” of C2 and C3, denoted by 
C2 ∗ C3. In this section we construct the free product of any set of groups,
finite or infinite. Also, we establish its universal mapping property and identify
it in terms of generators and relations. The prototype of a free product is the free 
group F(S), which equals a free product of copies of Z indexed by S. A free 
product is always an infinite group if at least two of the factors are not 1-element 
groups.
An important application of free products occurs in the theory of the fundamen-

tal group in topology: if X is a topological space for which the theory of covering 
spaces is applicable, and if A and B are open subsets of X with X = A ∪ B such 
that A ∩ B is nonempty, connected, and simply connected, then the fundamental 
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group of X is the free product of the fundamental group of A and the fundamental 
group of B. This result, together with a generalization that no longer requires 
A ∩ B to be simply connected, is known as the Van Kampen Theorem. 
Let S be a nonempty set of groups Gs for s in S. The set S is allowed to be 

infinite, but in practice it often has just two elements. We shall describe the group
defined to be the free product G = *s∈S Gs . We start from the set W ({Gs }) of 
all words built from the groups Gs . This consists of all finite sequences g1 · · · gn 

with each gi in some Gs depending on i . The length of a word is the number of
factors in it. The empty word is denoted by 1. We multiply two words by writing
them end to end, and the resulting operation of multiplication is associative. A
word is said to be equivalent to a second word if the first can be obtained from
the second by a finite sequence of steps of the following kinds and their inverses: 

(i) drop a factor for which gi is the identity element of the group in which it 
lies,

(ii) collapse two factors gi gi+1 to a single one gi ∗ if gi and gi+1 lie in the same 
Gs and their product in that group is gi ∗ . 

The result is an equivalence relation, and the set of equivalence classes is the
underlying set of *s∈S Gs . 

Theorem 7.13. If S is a nonempty set of groups Gs and W ({Gs }) is the set 
of all words from the groups Gs , then the product operation defined on W ({Gs })
descends in a well-defined fashion to the set *s∈S Gs of equivalence classes of 
members of W ({Gs }), and *s∈S Gs thereby becomes a group. For each s0 in 

S, define is0 : Gs0 → *s∈S Gs to be the group homomorphism obtained as the 
composition of the inclusion of Gs0 into words of length 1 followed by passage
to equivalence classes. Then the pair 

°
*s∈S Gs , {is }

¢ 
has the following universal 

mapping property: whenever H is a group and {ϕs | s ∈ S} is a system of group 
homomorphisms ϕs : Gs → H , then there exists a unique group homomorphism 
ϕ : *s∈SGs → H such that ϕ ◦ is0 = ϕs0 for all s0 ∈ S. 

ϕsGs0 −−−→ H 


is0 

y

*s∈SGs 

FIGURE 7.2. Universal mapping property of a free product. 

REMARKS. The group *s∈SGs is called the free product of the groups Gs . 
Figure 7.2 illustrates its universal mapping property. This universal mapping 
property actually characterizes *s∈SGs , as will be seen in Proposition 7.14. One 

ϕ 
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often writes G1 ∗· · ·∗ Gn when the set S is finite; the order of listing the groups is
immaterial. The proof of Theorem 7.13 is rather similar to the proof of Theorem
7.1, and we shall skip some details. 

PROOF. Let us write ∼ for the equivalence relation on words, and let us denote
equivalence classes by brackets. We want to define multiplication in *s∈SGs by 

[w1][w2] = [w1w2]. To see that this formula makes sense in *s∈SGs , let x , x 0, 
and y be words in W ({Gs }), and suppose that x and x 0 differ by only one operation 
of type (i) or type (ii) as above. Then x ∼ x 0, and it is evident that x 0 y ∼ xy and 

0 0yx 0 ∼ yx . Iteration of this kind of relationship shows that w1 ∼ w1 and w2 ∼ w2 
0 0implies w1w2 ∼ w1w2, and hence multiplication is well defined.

The associativity of multiplication in W ({Gs }) implies that multiplication in 

*s∈SGs is associative, and [1] is a two-sided identity. We readily check that if 
g = g1 · · · gn is a word, then the word g−1 = g−1 · · · g−1 has the property that n 1
[g−1] is a two-sided inverse to [g]. Therefore *s∈SGs is a group. 
The uniqueness of the homomorphism ϕ in the universal mapping property

is no problem since all words are products of words of length 1 and since the
subgroups is0 (Gs0 ) together generate *s∈SGs . 
For existence of ϕ, we begin by defining a function 8 : W ({Gs }) → H such 

that 

8(gs ) = ϕs (gs ) for gs in Gs when viewed as a word of length 1, 
8(w1w2) = 8(w1)8(w2) for w1 and w2 in W ({Gs}). 

We take the formulas 8(gs ) = ϕ(gs ) for gs in Gs as a definition of 8 on words 
of length 1. Any member of W ({Gs }) can be written uniquely as g1 · · · gn with 
each gi in Gsi , and we set 8(g1 · · · gn) = 8(g1) · · · 8(gn). (If n = 0, the 
understanding is that 8(1) = 1.) Then 8 has the required properties. 
Let us show that w0 ∼ w implies 8(w0) = 8(w). The questions are whether 
(i) if g1, . . . , gn are in various Gs’s with gi equal to the identity 1si of Gsi ,
then 

8(g1 · · · gi−11si gi+1 · · · gn) = 
? 

8(g1 · · · gi−1gi+1 · · · gn), 

(ii) if g1, . . . , gn are in various Gs ’s with Gsi = Gsi +1 and if gi gi+1 = g∗ in 
Gsi , then 

i 

8(g1 · · · gi−1gi gi+1gi+2 · · · gn) = 
? 

8(g1 · · · gi−1gi 
∗gi+2 · · · gn). 
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In the case of (i), the question comes down to whether a certain h8(1si )h0 in H 
equals hh0, and this is true because 8(1si ) = ϕsi (1si ) is the identity of H . In 
the case of (ii), the question comes down to whether h8(gi )8(gi+1)h0 equals
h8(gi 

∗ )h0 if Gsi = Gsi +1 and gi gi+1 = gi 
∗ in Gsi , and this is true because 

8(gi )8(gi+1) = ϕsi (gi )ϕsi (gi+1) = ϕsi (gi gi+1) = ϕsi (gi 
∗ ) = 8(gi 

∗ ). We 
conclude that w0 ∼ w implies 8(w0) = 8(w). 
We may therefore define ϕ([w]) = 8(w) for [w] in F({Gs }), and ϕ is a 

homomorphism of F({Gs }) into H as a consequence of the property 8(w1w2) = 
8(w1)8(w2) of 8 on W ({Gs }). For gs in Gs , we have ϕ([gs ]) = 8(gs ) = 
ϕs (gs ), i.e., ϕ(i(gs )) = ϕs (gs ). This completes the proof of existence. § 

Proposition 7.14. Let S be a nonempty set of groups Gs . Suppose that G 0 is 
a group and that i 0 : Gs → G 0 for s ∈ S is a system of group homomorphismss
with the following universal mapping property: whenever H is a group and 
{ϕs | s ∈ S} is a system of group homomorphisms ϕs : Gs → H , then there 
exists a unique group homomorphism ϕ : G 0 → H such that ϕ ◦ i 0 = ϕs for all s 
s ∈ S. Then there exists a unique group homomorphism 8 : *s∈SGs → G 0 

such that i 0 = 8 ◦ is for all s ∈ S. Moreover, 8 is a group isomorphism, and the s
homomorphisms i 0 : Gs → G 0 are one-one. s 

REMARKS. As was true with Proposition 7.2, readers who have been through
Chapter VI will recognize that Proposition 7.14 is a special case of Problem 19
at the end of that chapter. 
PROOF. Put G = *s∈SGs . In the universal mapping property of Theorem 

7.13, let H = G 0 and ϕs = i 0 , and let 8 : G → G 0 be the homomorphism ϕs
produced by that theorem. Then 8 satisfies 8 ◦ is = i 0 for all s. Reversing the s
roles of G and G 0, we obtain a homomorphism 80 : G 0 → G with 80 ◦ i 0 = iss
for all s. Therefore (80 ◦ 8) ◦ is = 80 ◦ i 0 = is .s
Comparing 80 ◦ 8 with the identity 1G and applying the uniqueness in the 

universal mapping property for G, we see that 80 ◦ 8 = 1G . Similarly the 
uniqueness in the universal mapping property of G 0 gives 8 ◦ 80 = 1G 0 . Thus 8 
is a group isomorphism. It is uniquely determined by the given properties since
the various subgroups is (Gs ) generate G. Since i 0 = 8 ◦ is and since 8 and iss 
are one-one, i 0 is one-one. §s 

As was the case for free groups, we want a decision procedure for telling
whether two given words in W ({Gs }) are equivalent. This is the so-called word 
problem for the free product. Solving it allows us to use free products concretely,
just as Proposition 7.3 allowed us to use free groups concretely. A word in 
W ({Gs })) is said to be reduced if it 

(i) contains no factor for which gi is the identity element of the group Gs in 
which it lies, 
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(ii) contains no two consecutive factors gi and gi+1 taken from the same 
group Gs . 

Proposition 7.15. (solution of the word problem for free products). If S is a 
nonempty set of groups Gs and W ({Gs }) is the set of all words from the groups 
Gs , then each word in W ({Gs }) is equivalent to one and only one reduced word. 

EXAMPLE. Consider the free product C2∗C2 of two cyclic groups, one with x as 
generator and the other with y as generator. Words consist of a finite sequence of 
factors of x , y, the identity of the first factor, and the identity of the second factor.
A word is reduced if no factor is an identity and if no two x’s are adjacent and no 
two y’s are adjacent. Thus the reduced words consist of finite sequences whose
terms are alternately x and y. Those of length ≤ 3 are 1, x, y, xy, yx, xyx, yxy,
and in general there are two of each length > 0. The proposition tells us that all 
these reduced words give distinct members of C2 ∗ C2. In particular, the group is 
infinite. 

REMARK. More generally, to test whether two words are equivalent, the
proposition says to eliminate factors of the identity and multiply consecutive
factors in each word when they come from the same group, and repeat these steps
until it is no longer possible to do either of these operations on either word. Then
each of the given words has been replaced by a reduced word, and the two given
words are equivalent if and only if the two reduced words are identical. Problems
37–46 at the end of the chapter concern C2 ∗C3, and some of these problems make
use of the result of this proposition—that distinct reduced words are inequivalent. 

PROOF OF PROPOSITION 7.15. Both operations—eliminating factors of the
identity and multiplying consecutive factors in each word when they come from
the same group—reduce the length of a word. Since the length has to remain 
∏ 0, the process of successively carrying out these two operations as much as
possible has to stop after finitely many steps, and the result is a reduced word.
This proves that each equivalence class of words contains a reduced word.
For uniqueness of the reduced word in an equivalence class, we proceed

somewhat as with Proposition 7.3, associating to each word a finite sequence
of reduced words such that the last member of the sequence is unchanged when
we apply an operation to the word that preserves equivalence. However, there are
considerably more details to check this time.
If w = g1 · · · gn is a given word with each gi in Gsi , then we associate to w 

the sequence of reduced words x0, x1, . . . , xn defined inductively by 

x0 = 1, 
Ω g1 if g1 is not the identity of Gs1 ,x1 = 
1 if g1 is the identity of Gs1 , 
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and the following formula for i ∏ 2 if xi−1 is of the reduced form h1 · · · hk with 
hj in Gtj : 

 
h1 · · · hkgi if Gsi 6= Gtk and gi is not the identity 1Gsi 

of Gsi ,
h1 · · · if gi is the identity 1Gsi 

of Gsi ,
 hkxi = 
h1 · · · hk−1 if Gtk = Gsi with hkgi = 1Gsi 

, 
h1 · · · hk−1g∗ if Gtk = Gsi with hkgi = g∗ 6= 1Gsi 

.i i 

Put r(w) = xn . We check inductively for i ∏ 0 that each xi is reduced. In fact, xi 
for i ∏ 2 begins in every case with h1 · · · hk−1, which is assumed reduced. The 
only possible reduction for xi thus comes from factors that are adjoined or from 
interference with hk−1, and all possibilities are addressed in the above choices. 
Thus r(w) = xn is necessarily reduced for each word w. 
If g1 · · · gn is reduced as given, then xi is determined by the first possible choice 

h1 · · · hkgi every time, and hence xi = g1 · · · gi for all i . Therefore we obtain 
r(w) = w if w is reduced. 
Now consider the equivalent words 

0 w = g1 · · · gj gj+1 · · · gn and w = g1 · · · gj 1Gs gj+1 · · · gn. 

0Form x0, . . . , xn for w and x0
0 , . . . , xn

0
+1 for w . Then we have xj0 = xj ; let 

h1 · · · hk be a reduced form of xj0 . The formula for xj0+1 is governed by the 
second choice in the display, and xj

0
+1 = h1 · · · hk = xj . Then xj

0
+i+1 = xj+i for 

1 ≤ i ≤ n − j as well. Hence xn0 +1 = xn , and r(w0) = r(w). 
Next suppose that gj ∗ = gj gj+1 in Gsj , and consider the equivalent words 

0 w = g1 · · · gj−1g∗ 
j gj+2 · · · gn and w = g1 · · · gj−1gj gj+1gj+2 · · · gn. 

As above, form x0, . . . , xn for w and x0
0 , . . . , xn

0
+1 for w0. Then we have xj−1 = 

xj
0
−1, and we let h1 · · · hk be a reduced form of xj−1. There are cases, subcases,

and subsubcases. 
First assume Gtk 6 Gsj . Then xj equals h1 · · · hkg∗ 

j or h1 · · · hk in the two= 
subcases g∗ 6 and g∗ . In the first subcase, we have g∗ 6 andj = 1Gsj j = 1Gsj j = 1Gsj 

xj = h1 · · · hkgj 
∗ . Then xj

0 equals h1 · · · hkgj or h1 · · · hk in the two subsubcases 
gj 6 1Gsj 

and gj = 1Gsj 
. In the first subsubcase, xj0+1 = · · hkgj 

∗ = xj= h1 · 
whether or not gj+1 = 1Gsj 

. In the second subsubcase, g∗ 
j = gj gj+1 cannot be 

1Gsj 
, and therefore xj0+1 = h1 · · · hkgj 

∗ = xj . 
In the second subcase of the case Gtk 6 Gsj , we have g∗ 

j 1Gsj 
and xj == = 

xj−1 = h1 · · · hk . Then xj
0 equals h1 · · · hkgj or h1 · · · hk in the two subsubcases 

gj 6= 1Gsj 
and gj = 1Gsj 

. In both subsubcases, xj0+1 = h1 · · · hk , so that xj0+1 = 
xj . 
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Now assume Gtk = Gsj . Then xj equals h1 · · · hk−1h∗ 
k or h1 · · · hk−1 in the 

two subcases hkg∗ 
j = k 6 1Gsj 

and hkg∗ 
j 1Gsj 

.h∗ = = In the first subcase, we 
have hkg∗ 

j = h∗ 
k 6= 1Gsj 

and xj = h1 · · · hk−1h∗ 
k . Then xj

0 equals h1 · · · hk−1hk
0 or 

h1 · · · hk−1 in the two subsubcases hkgj = h0 6 and hkgj . In the first = 1Gsj 
= 1Gsj

subsubcase, h0
kgj+1 = hkgj gj+1 = hkgj 

∗ = hk 
∗ implies xj0+1 = h1 · · · hk−1h∗ 

k = 
xj . In the second subsubcase, we know that h∗ 

k cannot be 1Gsi 
and hence that 

gj+1 = hkgj gj+1 = hkgj 
∗ = h∗ 

k cannot be 1Gsj 
; thus xj0+1 = h1 · · · hk−1hk 

∗ = xj . 
In the second subcase of the case Gtk = Gsj , we have hkg∗ 

j = 1Gsj 
and xj = 

h1 · · · hk−1. Then xj
0 equals h1 · · · hk−1h∗0 or h1 · · · hk−1 in the two subsubcases 

k 

k 
0hkgj = hk 

∗ 6 1Gsj 
and hkgj = 1Gsj 

.= In the first subsubcase, gj+1 cannot be 
1Gsj 

but hk ∗0gj+1 = hkgj gj+1 = hkgj 
∗ = 1Gsj 

; hence xj0+1 = h1 · · · hk−1 = xj . 
In the second subsubcase, xj0 = h1 · · · hk−1 and gj+1 = 1Gsj 

, so that xj0+1 = 
h1 · · · hk−1 = xj . 
We conclude that xj0+1 = xj in all cases. Hence xj0+i+1 = xj+i for 0 ≤ i ≤ 

n − j , xn0 +1 = xn , and r(w0) = r(w). Consequently the only reduced word that 
is equivalent to w is r(w). § 

Proposition 7.16. Let S be a nonempty set of groups Gs , and suppose that 
hSs ; Rs i is a presentation of Gs , the sets Ss being understood to be disjoint for 
s ∈ S. Then 

≠S
Ss ; 

S
Rs 

Æ 
is a presentation of the free product *s∈SGs .s∈S s∈S 

REMARK. One effect of this proposition is to make Proposition 7.8 available
as a tool for use with free products. Using Proposition 7.8 may be easier than
appealing to the universal mapping property in Theorem 7.13. 

PROOF. Put S = 
S

Ss and R = 
S

Rs , and define G to be a group given s∈S s∈S
by generators and relations as G = hS; Ri. Consider the function from Ss into 
the quotient group G = F(S)/N (R) given by carrying x in Ss into the word 
x in S and then passing to F(S) and its quotient G. Because of the universal 
mapping property of free groups, this function extends to a group homomorphism 
is : F(Ss ) → G. If r is a reduced word relative to Ss representing a member e
of Rs , then r is carried by eis into a member of the larger set R and then into 
the identity of G. Since kereis is normal in F(Ss ), kereis contains the smallest 
normal subgroup N (Rs ) in F(Ss ) that contains Rs . Proposition 4.11 shows that 
is descends to a group homomorphism is : Gs → G.e
We shall prove that G and the system {is } have the universal mapping property

of Proposition 7.14 that characterizes a free product. Then it will follow from
that proposition that G ∼= *s∈SGs , and the proof will be complete. 
Thus let H be a group, and let {ϕs | s ∈ S} be a system of group homo-

morphisms ϕs : Gs → H . We are to produce a homomorphism 8 : G → H 
such that 8 ◦ is = ϕs for all s, and we are to prove that such a homomorphism 
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is unique. Let qs : F(Ss) → Gs be the quotient homomorphism, and define 
ϕs : F(Ss ) → H by ϕs = ϕs ◦ qs . Now define e8 : S → H as follows: if e e
x is in S, then x is in a set Ss for a unique s and thereby defines a member 
of F(Ss) for that unique s; 8e(x) is taken to be ϕs (x). The universal mapping 
property of the free group F(S) allows us to extend 

e
e8 to a group homomorphism, 

which we continue to call e Let r be a nontrivial relation in 8, of F(S) into H . 
R ⊆ F(S). Then r , by hypothesis of disjointness for the sets Ss , lies in a unique 
Rs . Hence e ϕes (r) = ϕs (qs(r)) = ϕs (1s ) = 1H . Consequently the kernel 8(r) = 
of e 88 contains the smallest normal subgroup N (R) of F(S) containing R, and e
descends to a homomorphism 8 : G → H . This 8 satisfies 

8 ◦ is ◦ qs = 8 ◦eis = e = eϕs = ϕs ◦ qs .8
Ø
Ø
F(Ss ) 

Since the quotient homomorphism qs is onto Gs , we obtain 8 ◦ is = ϕs , and 
existence of the homomorphism 8 is established. 
For uniqueness, we observe that the identities 8 ◦ is = ϕs imply that 8 is 

uniquely determined on the subgroup of G generated by the images of all is . 
Since qs is onto Gs , this subgroup is the same as the subgroup generated by the 
images of all eis . This subgroup contains the image in G of every generator of 
F(S) and hence is all of G. Thus 8 is uniquely determined. § 

4. Group Representations 

Group representations were defined in Section IV.6 as group actions on vector
spaces by invertible linear functions. The underlying field of the vector space
will be taken to be C in this section and the next, and the theory will then be 
especially tidy. The subject of group representations is one that uses a mix of
linear algebra and group theory to reveal hidden structure within group actions. It
has broad applications to algebra and analysis, but we shall be most interested in
an application to finite groups known as Burnside’s Theorem that will be proved
in the next section. 
Let us begin with the abelian case, taking G for the moment to be a finite abelian 

group. A multiplicative character of G is a homomorphism χ : G → S1 ⊆ C× 

of G into the multiplicative group of complex numbers of absolute value 1. The
multiplicative characters form an abelian group Gb under pointwise multiplication 
of their complex values: (χχ 0)(g) = χ(g)χ 0(g). The identity of Gb is the 
multiplicative character that is identically 1 on G, and the inverse of χ is the 
complex conjugate of χ . 
The notion of multiplicative character adapts to the case of a finite group the

familiar exponential functions x 7→ einx on the line, which can be regarded as
multiplicative characters of the additive group R/2πZ of real numbers modulo 
2π . These functions have long been used to resolve a periodic function of 
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time into its component frequencies: The device is the Fourier series of the
function f . If f is periodic of period 2π , then the Fourier coefficients of f 

1 
R πare cn = f (x)e−inx dx , and the Fourier series of f is the infinite series 2π −πP∞ 

n=−∞ cneinx . A portion of the subject of Fourier series looks for senses in 
which f (x) is actually equal to the sum of its Fourier series. This is the problem 
of Fourier inversion. 
A similar problem can be formulated when R/2πZ is replaced by the finite 

abelian group G. The exponential functions are replaced by the multiplicative
characters. One can form an analog of Fourier coefficients for the vector space
C(G, C) of complex-valued functions2 defined on G, and then one can form the
analog of the Fourier series of the function. The problem of Fourier inversion
becomes one of linear algebra, once we take into account the known structure of
all finite abelian groups (Theorem 4.56). The result is as follows. 

Theorem 7.17 (Fourier inversion formula for finite abelian groups). Let G be a 
finite abelian group, and introduce an inner product on the complex vector space
C(G, C) of all functions from G to C by the formula 

X
hF, F 0i = F(g)F 0(g), 

g∈G 

the corresponding norm being kFk = hF, Fi1/2. Then the members of Gb form an 
orthogonal basis of C(G, C), each χ in Gb satisfying kχk2 = |G|. Consequently 
|Gb| = |G|, and any function F : G → C is given by the “sum of its Fourier 
series”: 

1 X ≥ X ¥
F(g) = F(h)χ(h) χ(g). 

|G| 
χ∈Gb h∈G 

REMARKS. This theorem is one of the ingredients in the proof in Chapter I of
Advanced Algebra of Dirichlet’s theorem that if a and b are positive relatively
prime integers, then there are infinitely many primes of the form an + b. In 
applications to engineering, the ordinary Fourier transform on the line is often
approximated, for computational purposes, by a Fourier series on a large cyclic
group, and then Theorem 7.17 is applicable. Such a Fourier series can be com-
puted with unexpected efficiency using a special grouping of terms; this device 

2The notation C(G, C) is to be suggestive of what happens for G = S1 and for G = R1, where 
one works in part with the space of continuous complex-valued functions vanishing off a bounded
set. In any event, pointwise multiplication makes C(G, C) into a commutative ring. Later in the
section we introduce a second multiplication, called “convolution,” that makes C(G, C) into a ring 
in a different way. In Chapter VIII we shall introduce the “complex group algebra” CG of G. The 
vector space C(G, C) is the dual vector space of CG. However, C(G, C) and CG are canonically
isomorphic because they have distinguished bases, and the isomorphism respects the multiplication
structures—convolution in C(G, C) and the group-algebra multiplication in CG. 
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is called the fast Fourier transform and is described in Problems 29–31 at the 
end of the chapter. 

PROOF. For orthogonality let χ and χ 0 be distinct members of Gb, and put 
χ 00 = χχ 0 = χχ 0−1. Choose g0 in G with χ 00(g0) =6 1. Then 

χ 00(g0) 
°P 

g∈G χ
00(g)

¢ 
= 

P 
g∈G χ

00(g0g) = 
P 

g∈G χ
00(g), 

so that [1 − χ 00(g0)] 
P

g∈G χ
00(g) = 0 

and therefore 
P

g∈G χ
00(g) = 0. 

Consequently hχ, χ 0i = 
P

g∈G χ(g)χ 0(g) = 
P

g∈G χ
00(g) = 0. 

The orthogonality implies that the members of Gb are linearly independent, 
and we obtain |Gb| ≤ dim C(G, C) = |G|. Certainly kχk2 = 

P
g∈G |χ(g)|2 = P

g∈G 1 = |G|. 
To see that the members of Gb are a basis of C(G, C), we write G as a direct 

sum of cyclic groups, by Theorem 4.56. A summand Z/mZ has at least m distinct 
multiplicative characters, given by j mod m 7→ e2π i jr/m for 0 ≤ r ≤ m − 1, and 
these characters extend to G as 1 on the other direct summands of G. Taking
products of such multiplicative characters from the different summands of G,
we see that |Gb| ∏ |G|. Therefore |Gb| = |G|, and Gb is an orthogonal basis by 
Corollary 2.4. The formula for F(g) in the statement of the theorem follows by 
applying Theorem 3.11c. § 

Now suppose that the finite group G is not necessarily abelian. Since S1 is 
abelian, Proposition 7.4 shows that χ takes the value 1 on every member of the 
commutator subgroup G 0 of G. Consequently there is no way that the multiplica-
tive characters can form a basis for the vector space C(G, C) of complex-valued 
functions on G. The above analysis thus breaks down, and some adjustment is
needed in order to extend the theory.
The remedy is to use representations, as defined in Section IV.6, on complex

vector spaces of dimension > 1. We shall assume in the text that the vector space
is finite-dimensional. The sense in which representations extend the theory of
multiplicative characters is that any multiplicative character χ gives a represen-
tation R on the 1-dimensional vector space C by R(g)(z) = χ(g)z for g in G 
and z in C. Conversely any 1-dimensional representation gives a multiplicative
character: if R is the representation on the 1-dimensional vector space V and if 
v0 6 = χ(g)v0. It is enough= 0 is in V , then χ(g) is the scalar such that R(g)v0 

to observe that the only elements of finite order in the multiplicative group C× 

are certain members of the circle S1, and then it follows that χ takes values in S1. 
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In the higher-dimensional case, the analog of the multiplicative character χ 
in passing to a 1-dimensional representation R is a “matrix representation.” A 
matrix representation of G is a function g 7→ [ρ(g)i j ] from G into invertible 
square matrices of some given size such that ρ(g1g2)i j = 

Pn
k=1 ρ(g1)ik ρ(g2)k j . 

If a representation R acts on the finite-dimensional complex vector space V , then 
the choice of an ordered basis 0 for V leads to a matrix representation by the 
formula ∂µ 

R(g)[ρ(g)i j ] = . 
00 

Conversely if a matrix representation g 7→ [ρ(g)i j ] and an ordered basis 0 of V 
are given, then the same formula may be used to obtain a representation R of G 
on V . 
In contrast to the 1-dimensional case, the matrices that occur with a matrix rep-

resentation of dimension > 1 need not be unitary. The correspondence between
unitary linear maps and unitary matrices was discussed in Chapter III. When
the finite-dimensional vector space V has an inner product, a linear map was
defined to be unitary if it satisfies the equivalent conditions of Proposition 3.18.
A complex square matrix A was defined to be unitary if A∗ A = I . The matrix 
of a unitary linear map relative to an ordered orthonormal basis is unitary, and
conversely when a unitary matrix and an ordered orthonormal basis are given, the
associated linear map is unitary. We can thus speak of unitary representations 
and unitary matrix representations. 
Some examples of representations appear in Section IV.6. One further pair

of examples will be of interest to us. With the finite group G fixed but not 
necessarily abelian, we continue to let C(G, C) be the complex vector space of 
all functions f : G → C. We define two representations of G on C(G, C): the 
left regular representation ` given by (`(g) f )(x) = f (g−1x) and the right
regular representation r given by (r(g) f )(x) = f (xg). The reason for the 
presence of an inverse in one case and not the other was discussed in Section
IV.6. Relative to the inner product 

X
( f1, f2) = f1(x) f2(x), 

x∈G 

both ` and r are unitary. The argument for ` is that 

(`(g) f1,`(g) f2) = 
X 

(`(g) f1)(x)(`(g) f2)(x) = 
X 

f1(g−1x) f2(g−1x) 
x∈G x∈G 

under y=g−1 x X
= f1(y) f2(y) = ( f1, f2), 

y∈G 

and the argument for r is completely analogous. 
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It will be convenient to abbreviate “representation R on V ” as “representa-
tion (R, V ).” Let (R, V ) be a representation of the finite group G on a finite-
dimensional complex vector space. An invariant subspace U of V is a vector 
subspace such that R(g)U ⊆ U for all g in G. The representation is irreducible 
if V 6= 0 and if V has no invariant subspaces other than 0 and V . 
Two representations (R1, V1) and (R2, V2) on finite-dimensional complex vec-

tor spaces are equivalent if there exists a linear invertible function A : V1 → V2 

such that AR1(g) = R2(g)A for all g in G. In the terminology of Section
IV.11, “equivalent” is the notion of “is isomorphic to” in the category of all
finite-dimensional representations of G. 
In more detail a morphism from (R1, V1) to (R2, V2) in this category is an 

intertwining operator, namely a linear map A : V1 → V2 such that AR1(g) = 
R2(g)A for all g in G. The condition for this equality to hold is that the diagram
in Figure 7.3 commute. 

AV1 −−−→ V2 

R1(g) 


y



y

V1 −−−→ V2 

R2(g) 

A

FIGURE 7.3. An intertwining operator for two representations, i.e., a morphism
in the category of finite-dimensional representations of G. 

An example of a pair of representations that are equivalent is the left and right
regular representations of G on C(G, C): in fact, if we define (A f )(x) = f (x−1),
then 

(`(g)A f )(x) = (A f )(g−1x) = f (x−1g) = (r(g) f )(x−1) = (Ar(g) f )(x). 

Proposition 7.18 (Schur’s Lemma). If (R1, V1) and (R2, V2) are irreducible 
representations of the finite group G on finite-dimensional complex vector spaces 
and if A : V1 → V2 is an intertwining operator, then A is invertible (and hence 
exhibits R1 and R2 as equivalent) or else A = 0. If (R1, V1) = (R2, V2) and 
A : V1 → V2 is an intertwining operator, then A is scalar. 

REMARK. The conclusion that A is scalar makes essential use of the fact that 
the underlying field is C. 

PROOF. The equality R2(g)Av1 = AR1(g)v1 shows that ker A and image A 
are invariant subspaces. By the assumed irreducibility, ker A equals 0 or V1, and 
image A equals 0 or V2. The first statement follows. When (R1, V1) = (R2, V2),
the identity I : V1 → V2 is an intertwining operator. If ∏ is an eigenvalue of A,
then A − ∏I is another intertwining operator. Since A − ∏I is not invertible when 
∏ is an eigenvalue of A, A − ∏I must be 0. § 
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Corollary 7.19. Every irreducible finite-dimensional representation of a finite 
abelian group G is 1-dimensional. 

PROOF. If (R, V ) is given, then the linear map A = R(g) satisfies AR(x) = 
R(gx) = R(xg) = R(x)A for all x in G. By Schur’s Lemma (Proposition 7.18), 
A = R(g) is scalar. Since g is arbitrary, every vector subspace of V is invariant. 
Irreducibility therefore implies that V is 1-dimensional. § 

Let R be a representation of the finite group G on the finite-dimensional 
complex vector space V , let ( · , · )0 be any inner product on V , and define 

X
(v1, v2) = (R(x)v1, R(x)v2)0. 

x∈G 

Then we have 

(R(g)v1, R(g)v2) = 
P 

(R(x)R(g)v1, R(x)R(g)v2)0 
x∈G 

= 
P 

(R(xg)v1, R(xg)v2)0 
x∈G 

= 
P 

(R(y)v1, R(y)v2)0 by the change y = xg 
y∈G 

= (v1, v2). 

With respect to the inner product ( · , · ), the representation (R, V ) is therefore 
unitary. In other words, we are always free to introduce an inner product to
make a given finite-dimensional representation unitary. The significance of this
construction is noted in the following proposition. 

Proposition 7.20. If (R, V ) is a finite-dimensional representation of the finite 
group G and if an inner product is introduced in V that makes the representation
unitary, then the orthogonal complement of an invariant subspace is invariant. 

PROOF. Let U be an invariant subspace. If u is in U and u⊥ is in U ⊥, then 
(R(g)u⊥ , u) = (R(g)−1 R(g)u⊥ , R(g)−1u) = (u⊥ , R(g)−1u) = 0. Thus u⊥ in 
U⊥ implies R(g)u⊥ is in U ⊥. § 

Corollary 7.21. Any finite-dimensional representation of the finite group G 
is a direct sum of irreducible representations. 

REMARK. That is, we can find a system of invariant subspaces such that the 
action of G is irreducible on each of these subspaces and such that the whole
vector space is the direct sum of these subspaces. 
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PROOF. This is immediate by induction on the dimension. For dimension 0,
the representation is the empty direct sum of irreducible representations. If the
decomposition is known for dimension < n and if U is an invariant subspace 
under R of smallest possible dimension ∏ 1, then U is irreducible under R, and 
Proposition 7.20 says that the subspace U ⊥, which satisfies V = U ⊕ U ⊥, is 
invariant. It is therefore enough to decompose U ⊥, and induction achieves such 
a decomposition. § 

Proposition 7.22 (Schur orthogonality). For finite-dimensional representa-
tions of a finite group G in which inner products have been introduced to make
the representations unitary, 

(a) if (R1, V1) and (R2, V2) are inequivalent and irreducible, then 
X 

0 0 0 0(R1(x)v1, v 1)(R2(x)v2, v2) = 0 for all v1, v 1 ∈ V1 and v2, v 2 ∈ V2. 
x∈G 

(b) if (R, V ) is irreducible, then 

0 0 |G|(v1, v2)(v1
0 , v2

0 ) 0 0
X

(R(x)v1, v 1)(R(x)v2, v2) = for v1, v2, v 1, v 2 ∈ V .
dim Vx∈G 

REMARKS. If G is abelian, then V1 and V2 in (a) are 1-dimensional, and the
conclusion of (a) reduces to the statement that the multiplicative characters are
orthogonal. Conclusion (b) in this case reduces to a trivial statement. 

PROOF. For (a), let l : V2 → V1 be any linear map, and form the linear map 

L = 
P 

R1(x)l R2(x−1). 
x∈G 

Multiplying on the left by R1(g) and on the right by R2(g−1) and changing vari-
ables in the sum, we obtain R1(g)LR2(g−1) = L , so that R1(g)L = LR2(g) for 
all g ∈ G. By Schur’s Lemma (Proposition 7.18) and the assumed irreducibility

0 0and inequivalence, L = 0. Thus (Lv2, v1) = 0. For the particular choice of l as 
l(w2) = (w2, v2)v1, we have 

0 0 00 = (Lv2, v1) = 
P 

(R1(x)l R2(x−1)v2
0 , v1) 

x∈G 

0 0= 
P °

R1(x)(R2(x−1)v2
0 , v2)v1, v1

¢ 
= 

P 
(R1(x)v1, v1)(R2(x−1)v2

0 , v2), 
x∈G x∈G 

0and (a) results since (R2(x−1)v2
0 , v2) = (R2(x)v2, v2). 

For (b), we proceed in the same way, starting from l : V → V , and we obtain 
L = ∏I from Schur’s Lemma. Taking the trace of both sides, we find that 
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∏ dim V = Tr L = |G| Tr l. 

Therefore ∏ = |G|(Tr l)
± 
dim V . Since L = ∏I , 

|G| Tr l0 0 0(Lv2, v 1) = (v1
0 , v 2).dim V 

Again we make the particular choice of l as l(w2) = (w2, v2)v1. Since Tr l = 
(v1, v2), we obtain 

0(v1, v2)(v1
0 , v2) Tr l 0 0 0= 1, v2) = |G|−1(Lv2, v 1)dim V dim V 

(v0

0= |G|−1 P 
(R(x)l R(x−1)v2

0 , v1) 
x∈G 

0
¢

= |G|−1 P °
R(x)(R(x−1)v2

0 , v2)v1, v1
x∈G 

0= |G|−1 P 
(R(x)v1, v1)(R(x−1)v2

0 , v2), 
x∈G 

0and (b) results since (R(x−1)v2
0 , v2) = (R(x)v2, v2). § 

Let us interpret Proposition 7.22 as a statement about the left and right regular
representations ̀  and r of G on the inner-product space C(G, C), the inner product 
being h f, f 0i = 

P
g∈G f (g) f 0(g). Let R be an irreducible representation of G 

on the finite-dimensional vector space V , and introduce an inner product to make 
it unitary. A member of C(G, C) of the form g 7→ (R(g)v, v0) is called a matrix 
coefficient of R. Let v1, . . . , vn be an orthonormal basis of V . The matrix 
representation of G that corresponds to R and this choice of orthonormal basis 
has ρ(g)i j = (R(g)vj , vi ), and hence the entries of [ρ(g)i j ], as functions on G,
provide examples of matrix coefficients. These particular matrix coefficients are
orthogonal, according to Proposition 7.22b, with 

X X |G|(vj , vj )(vi , vi ) |G|
|ρ(g)i j |2 (R(g)vj , vi )(R(g)vj , vi ) = 

g∈G 

= 
g∈G dim V 

= 
dim V 

. 

Thus the functions 
p

|G|−1 dim V ρ(x)i j form an orthonormal basis of an 
n2-dimensional subspace VR of C(G, C), where n = dim V . The vector subspace 
VR has the following properties: 

(i) All matrix coefficients of R are in VR , as is seen by expanding v = 
P

j cj vj 
0and v = 

P
i di vi and obtaining (R(g)v, v0) = 

P
i, j cj d̄i (R(g)vj , vi ) = 

P
i, j cj d̄i ρ(g)i j . 



337 4. Group Representations 

(ii) VR is invariant under ` and r because 

`(g)(R( · )v, v0)(x) = (R(g−1x)v, v0) = (R(x)v, R(g)v0), 

r(g)(R( · )v, v0)(x) = (R(xg)v, v0) = (R(x)R(g)v, v0). 

(iii) Any representation R0 equivalent to R has VR0 = VR . 
Let us see how VR decomposes into irreducible subspaces under r . The com-

putation with r in (ii) above shows, for each i , that the vector space of all functions 
x 7→ (R(x)v, vi ) for v ∈ V is invariant under r . This is the linear span of the 
matrix coefficients obtained from the i th row of [ρ(x)i j ]. Define a linear map A 
from V into this vector space by Av = (R( · )v, vi ). It is evident that A is one-one 
onto, and moreover AR(g)v = (R( · )R(g)v, vi ) = r(g)(R( · )v, vi ) = r(g)Av. 
Thus A exhibits this space, with r as representation, as equivalent to (R, V ). The 
space VR is the direct sum of these spaces on i , and the summands are orthogonal, 
according to Proposition 7.22b. Thus VR decomposes under r as the direct sum 
of dim V irreducible subspaces, each one equivalent to (R, V ). 
One can make a similar analysis with `, using columns in place of rows.

However, this analysis is a little more subtle since VR , acted upon by `, is the 
direct sum of dim V copies of the “contragredient” of (R, V ), rather than (R, V )
itself. The details are left to Problems 32–36 at the end of the chapter.
As R varies over inequivalent representations, these vector spaces VR are 

orthogonal, according to Proposition 7.22a. The claim is that their direct sum is
the space C(G, C) of all functions on G. We argue by contradiction. The sum is 
invariant under r , and if it is not all of C(G, C), then we can find a nonzero vector 
subspace U = { f ( · )} of C(G, C) orthogonal to all the spaces VR such that U is 
invariant and irreducible under r . Let u1, . . . , um be an orthonormal basis of U . 
Then each function x 7→ (r(x)uj , ui ) is orthogonal to U by construction, i.e., 

X
0 = (r(x)uj , ui ) f (x) for all f in U . 

x∈G 

Applying the Riesz Representation Theorem (Theorem 3.12), choose a member 
e of U such that f (1) = ( f, e) for all f in U . By definition of r(x) and e, we 
find that 

u(x) = (r(x)u)(1) = (r(x)u, e) 
for all u in U . Substitution and use once more of Proposition 7.22b gives 

0 = 
X 

(r(x)uj , ui )(r(x)u, e) =
|G|(uj , u)(ui , e) 

dim Ux∈G 

for all i and j . Since we can take u = uj = u1 and since i is arbitrary, this 
equation forces e = 0 and gives a contradiction. We conclude that the sum of all 
the spaces VR is all of C(G, C). Let us state the result as a theorem. 
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Theorem 7.23. For the finite group G, let {(Rα, Uα)} be a complete set of
inequivalent irreducible finite-dimensional representations of G, and let VRα be 
the linear span of the matrix coefficients of Rα. Then 

(a) the spaces VRα are mutually orthogonal and are invariant under the left
and right regular representations ` and r ,

(b) the representation (r, VRα
) is equivalent to the direct sum of dim Uα copies

of (Rα, Uα),
(c) the direct sum of the spaces VRα is the space C(G, C) of all complex-

valued functions on G. 
Moreover, 

(d) the number of Rα’s is finite, 
(e) dim VRα = (dim Uα)2,
(f) any irreducible subspace of (r, C(G, C)) that is equivalent to (Rα, Uα) is 

contained in VRα . 

Corollary 7.24. Let {(Rα, Uα)} be a complete set of inequivalent irreducible
finite-dimensional representations of the finite group G, and let dα = dim Uα. In 
each Uα, introduce an inner product making (Rα, Uα) unitary. For each α, let ©
u(
1 
α)

, . . . , u(
d
α

α

)™ 
be an orthonormal basis of Uα. Then the functions in C(G, C) 

(α) (α)given by 
p

|G|−1dα 
°
Rα(x)v , v

¢ 
form an orthonormal basis of C(G, C).j i

Consequently every f in C(G, C) satisfies 

f (x) = 
1 X 

dα 

X≥ X 
f (y) 

°
Rα(y)vj

(α)
, vi

(α)¢ ¥°
Rα(x)vj

(α)
, vi

(α)¢ 

|G| α i, j y∈G 

and X 
| f (x)|2 = 

1 X 
dα 

X ØØ
Ø 
X 

f (y) 
°
Rα(y)v(

j 
α)

, vi
(α)¢

Ø
Ø
Ø 
2 
. 

x∈G |G| α i, j y∈G 

REMARKS. The first displayed formula is the Fourier inversion formula 
for an arbitrary finite group G and generalizes Theorem 7.17, which gives the
result in the abelian case; in the abelian case all the dimensions dα equal 1, and the 

(α) (α)functions 
° 
Rα(x)vj , vi 

¢ 
are just the multiplicative characters of G. The second 

displayed formula is known as the Plancherel formula, a result incorporating
the conclusion about norms in Parseval’s equality (Theorem 3.11d). 

PROOF. This follows form (a), (c), and (e) in Theorem 7.23, together with
Theorem 3.11 and the remarks made before the statement of Theorem 7.23. § 

Corollary 7.25. Let {(Rα, Uα)} be a complete set of inequivalent irreducible
finite-dimensional representations of the finite group G, and let dα = dim Uα. 
Then 

P 
d2 = |G|.α α 
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PROOF. This follows by counting the number of members listed in the
orthonormal basis of C(G, C) given in Corollary 7.24. § 

We shall make use of a second multiplication on the vector space C(G, C)
besides the pointwise multiplication that itself makes C(G, C) into a ring. The 
new multiplication is called convolution and is defined by 

( f1 ∗ f2)(x) = 
X 

f1(y) f2(y−1x) = 
X 

f1(xy−1) f2(y), 
y∈G y∈G 

the two expressions on the right being equal by a change of variables. The first of
the expressions on the right equals the value of the function 

P
y∈G f1(y)`(y) f2 at 

x and shows that the convolution is an average of the left translates of f2 weighted
by f1. Convolution is associative because 

( f1 ∗ ( f2 ∗ f3))(x) = 
X 

f1(y)( f2 ∗ f3)(y−1x) = 
X 

f1(y) f2(y−1xz−1) f3(z) 
y y,z 

X
= ( f1 ∗ f2)(xz−1) f3(z) = (( f1 ∗ f2) ∗ f3)(x), 

z 

and one readily checks that C(G, C) becomes a ring when convolution is used as 
the multiplication.
For any finite-dimensional representation (R, V ) and any v in V , let us define 

R( f )v = 
P 

x∈G f (x)R(x)v. Convolution has the property that 

R( f1 ∗ f2) = R( f1)R( f2) 

because 

R( f1 ∗ f2)v = 
P

x ( f1 ∗ f2)(x)R(x)v = 
P

x,y f1(xy−1) f2(y)R(x)v 

= 
P

f1(x) f2(y)R(xy)v = 
P

f1(x)R(x) 
°P

f2(y)R(y)v
¢ 

x,y x y 

= 
P

f1(x)R(x)R( f2)v = R( f1)R( f2)v. x 

We shall combine the notion of convolution with the notion of a “character.” If 
(R, V ) is a finite-dimensional representation of G, then the character of (R, V )
is the function χR given by 

χR(x) = Tr R(x), 

with Tr denoting the trace. Equivalent representations have the same character
since Tr(AR(x)A−1) = Tr R(x) if A is invertible. Characters have the additional 
properties that 

(i) χR (gxg−1) = χR(x) because Tr R(gxg−1) = Tr(R(g)R(x)R(g)−1) = 
Tr R(x),

(ii) χR1⊕···⊕Rn 
= χR1 

+ · · · + χRn 
since the trace of a block-diagonal matrix

is the sum of the traces of the blocks. 
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The character of a 1-dimensional representation is the associated multiplicative
character. Here is an example of a character for a representation on a space of
dimension more than 1; its values are not all in S1. 

EXAMPLE. The dihedral group Dn with 2n elements, defined in Section IV.1,
is isomorphic to the matrix group generated by 

≥ 
cos 2π/n − sin 2π/n 

¥ ≥ 
1 0 

¥
x = and y = .sin 2π/n cos 2π/n 0 −1 

The map carrying each matrix of the group to itself is a representation of Dn on 
C2. The value of the character of this representation is 2 cos 2πk/n on xk for 
0 ≤ k ≤ n − 1, and the value of the character is 0 on y and on the remaining 
n − 1 elements of the group. 

Computations with characters are sometimes aided by the use of inner products.
If an inner product is imposed on a finite-dimensional complex vector space V 
and if {vi } is an orthonormal basis, then the trace of a linear A : V → V is given 
by Tr A = 

P
i (Avi , vi ). If R is a representation on V , we consequently have 

χR(x) = 
P

i (R(x)vi , vi ). 

Proposition 7.26. Let R, R1, and R2 be irreducible finite-dimensional repre-
sentations of a finite group G. Then their characters satisfy 

(a) 
P

x∈G |χR(x)|2 = |G|, 
(b) 

P
x∈G χR1 

(x)χR2 
(x) = 0 if R1 and R2 are inequivalent. 

PROOF. These follow from Schur orthogonality (Proposition 7.22): For (a), 
let R act on the vector space V , let d = dim V , introduce an inner product with 
respect to which R is unitary, and let {vi } be an orthonormal basis of V . Then 
Proposition 7.22b gives 

P
x |χR(x)|2 = 

P °P
i (R(x)vi , vi )

¢° P
j (R(x)vj , vj )

¢ 
x 

= 
P

i, j 
P

x (R(x)vi , vi )(R(x)vj , vj ) 

= 
P

i, j |G|d−1δi j δi j = 
P

i |G|d−1 = |G|. 

Part (b) is proved in the same fashion, using Proposition 7.22a. § 

Let us now bring together the notions of convolution and character. A class 
function on G is a function f in C(G, C) with f (gxg−1) = f (x) for all g and 
x in G. That is, class functions are the ones that are constant on each conjugacy
class of the group. Every character is an example of a class function. The class 
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functions form a vector subspace of C(G, C), and the dimension of this vector
subspace equals the number of conjugacy classes in G. Class functions are closed 
under convolution because if f1 and f2 are class functions, then 

( f1 ∗ f2)(gxg−1) = 
P 

f1(gxg−1 y−1) f2(y) = 
P 

f1(xg−1 y−1g) f2(g−1 yg)y y 

= 
P

f1(xz−1) f2(z) = ( f1 ∗ f2)(x). z 

On an abelian group every member of C(G, C) is a class function. 

Theorem 7.27 (Fourier inversion formula for class functions). For the finite 
group G, let {(Rα, Uα)} be a complete set of inequivalent irreducible finite-
dimensional representations of G. If f is a class function on G, then 

1 X≥ X ¥
f (x) = f (y)χRα

(y) χRα
(x). 

|G| α y∈G 

REMARK. This result may be regarded as a second way (besides the one in
Corollary 7.24) of generalizing Theorem 7.17 to the nonabelian case. 
PROOF. Using the result and notation of Corollary 7.24, we have 

(α) (α) 
¥

(α) (α)f (x) = |G|−1 P 
dα 

P≥ P 
f (y)(Rα(y)vi , vj ) (Rα(x)vi , vj ). 

α i, j y∈G 

Replace f (y) by f (gyg−1) since f is a class function, and then change variables 
and sum over g in G to see that |G| f (x) is equal to 

(α) (α) 
¥

(α) (α)|G|−1 P 
dα 

P≥P 
f (y)(Rα(y)Rα(g)vi , Rα(g)vj ) (Rα(x)vi , vj ). 

α i, j g,y 

Within this expression we have 

(α) (α)P 
(Rα(y)Rα(g)vi , Rα(g)vj ) 

g 

(α) (α) (α) (α)¢= 
P °

Rα(y)(Rα(g)vi , vk )vk , Rα(g)vj
g,k 

(α) (α) (α) (α)= 
P 

(Rα(g)vi , vk )(Rα(g)vj , Rα(y)vk ) 
g,k 

|G| (α) (α) (α) (α)= dα 

P 
(vj , vi )(Rα(y)vk , vk ) by Schur orthogonality 

k 
|G| (α) (α)= (vj , vi )χRα

(y)dα 

|G|= δi j χRα
(y).dα 

Substituting, we obtain the formula of the theorem. § 
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Corollary 7.28. If G is a finite group, then the number of irreducible finite-
dimensional representations of G, up to equivalence, equals the number of con-
jugacy classes of G. 

PROOF. Theorem 7.27 shows that the irreducible characters span the vector
space of class functions. Proposition 7.26b shows that the irreducible characters
are orthogonal and hence are linearly independent. Thus the number of irreducible
characters equals the dimension of the space of class functions, which equals the
number of conjugacy classes. § 

EXAMPLE. The above information already gives us considerable control over
finding a complete set of inequivalent irreducible finite-dimensional representa-
tions of elementary groups. We know that the number of such representations
equals the number of conjugacy classes and that the sum of the squares of their
dimensions equals |G|. For the symmetric group S3 of order 6, for example, the
conjugacy classes are given by the cycle structures of the possible permutations,
namely the cycle structures of (1), (1 2), and (1 2 3). Hence there are three 
inequivalent irreducible representations. The sum of the squares of the three
dimensions is to be 6; thus we have two of dimension 1 and one of dimension 2.
The multiplicative characters 1 and sgn are the two of dimension 1, and the one
of dimension 2 can be taken to be the 2-dimensional representation of D3 whose 
character was computed in the example preceding Proposition 7.26. 

One final constraint on the dimensions of the irreducible representations of a
finite group G is as follows. 

Proposition 7.29. If G is a finite group and (R, V ) is an irreducible finite-
dimensional representation of G, then dim V divides |G|. 

For example, if |G| = p2 with p prime, then it follows from Propositions
7.29 and 7.25 that every irreducible finite-dimensional representation of G has 
dimension 1, and one can easily conclude from this fact that G is abelian. (See
Problem 14 at the end of the chapter.) Thus we recover as an immediate conse-
quence the conclusion of Corollary 4.39 that groups of order p2 are abelian. 
The proof of Proposition 7.29 is surprisingly subtle. We shall obtain the 

theorem as a consequence of Theorem 7.31 below, a theorem that will be used
also in the proof of Burnside’s Theorem in the next section. Theorem 7.31 gives a
little taste of the usefulness of algebraic number theory, and we shall see more of
this usefulness in Chapter IX. The application to Burnside’s Theorem will use the
Fundamental Theorem of Galois Theory, whose proof is deferred to Chapter IX.
An algebraic integer is any complex number that is a root of a monic poly-

nomial with coefficients in Z. For example, 
p
2 and 2

1 (1 + i
p
3) are algebraic 
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integers because they are roots of X2 − 2 and X2 − X + 1, respectively. Any 
root of unity is an algebraic integer, being a root of some polynomial Xn − 1. 
The set of algebraic integers will be denoted in this chapter by O. Before stating 
Theorem 7.31, let us establish two elementary facts about O. 

Lemma 7.30. The set O of algebraic integers is a ring, and O ∩ Q = Z. 
PROOF. Suppose that x and y are complex numbers satisfying the polynomial 

equations xm +am−1xm−1+· · ·+a1x+a0 = 0 and yn+bn−1 yn−1+· · ·+b1 y+b0 = 
0, each with integer coefficients. Form the subset of C given by 

m−1 n−1
M = 

P P 
Zxk yl . 

k=0 l=0 

This is a finitely generated subgroup of the abelian group C under addition. It 
satisfies 

m nP−1 nP−1 
xM = 

P 
Zxk yl ⊆ M + Zyl xm 

k=1 l=0 l=0 

nP−1 
= M + Zyl (−am−1xm−1 − · · · − a1x − a0) ⊆ M, 

l=0 

and similarly yM ⊆ M . Hence (x ± y)M ⊆ M and xy ⊆ M . 
To prove that O is a ring, it is enough to show that if N is a nonzero finitely 

generated subgroup of the abelian group C under addition and if z is a complex 
number with zN ⊆ N , then z is an algebraic integer. By Theorem 4.56, N is a 
direct sum of cyclic groups. Since every nonzero member of C has infinite order 
additively, these cyclic groups must be copies of Z. So N is free abelian. Let 
z1, . . . , zn be a Z basis of N . Here n > 0. Since zN ⊆ N , we can find unique 
integers ci j such that 

n
zzi = 

P 
ci j zj for 1 ≤ i ≤ n. 

j=1 
√ z1 

! 
.This equation says that the matrix C = [ci j ] has . as an eigenvector with . 
zn

eigenvalue z. Therefore the matrix z I − C is singular, and det(z I − C) = 0. 
Since det(z I −C) is a monic polynomial expression in z with integer coefficients, 
z is an algebraic integer.
To see that O∩Q = Z, let p and q be relatively prime integers with q > 0, and 

suppose that p/q is a root of Xn + an−1 Xn−1 +· · ·+ a1 X + a0 with an−1, . . . , a0 

in Z. Substituting p/q for X , setting the expression equal to 0, and clearing 
fractions, we obtain pn + an−1 pn−1q + · · · + a1 pqn−1 + a0qn = 0. Since q
divides every term here after the first, we conclude that q divides pn . Since 
GCD( p, q) = 1, we conclude that q = 1. Thus p/q is in Z. § 
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Lemma 7.30 allows us to see that if G is a finite group and χ is the irreducible 
character corresponding to an irreducible finite-dimensional representation R,
then χ(x) is an algebraic integer for each x in G. In fact, the subgroup H of G 
generated by x is cyclic and is in particular abelian. Corollary 7.21 says that R

Ø
Ø
H

is the direct sum of irreducible representations of H , and Corollary 7.19 says that
each such irreducible representation is 1-dimensional. Thus in a suitable basis,
R
Ø
Ø
H is diagonal. The diagonal entries must be roots of unity (in fact, N th roots 

of unity if x has order N ), and χ(x) is thus a sum of roots of unity. By Lemma 
7.30, χ(x) is an algebraic integer. 

Theorem 7.31. Let G be a finite group, (R, V ) be an irreducible finite-
dimensional representation of G, χ be the character of R, and C be a conjugacy 
class in G. Denote by χ(C) the constant value of χ on the conjugacy class C . 
Then |C|χ(C)

± 
dim V is an algebraic integer. 

PROOF. If f is any class function on G, then R( f ) commutes with each R(x)
for x in G because R( f ) = 

P
f (y)R(y) yieldsy 

R(x)R( f )R(x)−1 = 
P 

f (y)R(x)R(y)R(x)−1 = 
P 

f (y)R(xyx−1) 
y y 

= 
P 

f (x−1zx)R(z) = 
P 

f (z)R(z) = R( f ). 
z z 

By Schur’s Lemma (Proposition 7.18), R( f ) is scalar. If C is a conjugacy class, 
then the function IC that is 1 on C and is 0 elsewhere is a class function, and hence 
R(IC ) is a scalar ∏C . As C varies, the functions IC form a vector-space basis of 
the space of class functions. The formula (IC ∗ IC 0 )(x) = 

P 
IC (y)IC 0 (y−1x)y

shows that IC ∗ IC 0 is integer-valued, and we have seen that the convolution of
two class functions is a class function. Therefore IC ∗ IC 0 = 

P
C 00 nCC 0C 00 IC 00 for 

suitable integers nCC 0C 00 . Application of R gives ∏C ∏C 0 = 
P

C 00 nCC 0C 00 ∏C 00 . If we 
fix C and let A be the square matrix with entries AC 0C 00 = nCC 0C 00 , we obtain 

X
∏C ∏C 0 = AC 0C 00 ∏C 00 . 

C 00 

This equation says that the matrix A has the column vector with entries ∏C 00 as 
an eigenvector with eigenvalue ∏C . Therefore the matrix ∏C I − A is singular, 
and det(∏C I − A) = 0. Since det(∏C I − A) is a monic polynomial expression 
in ∏C with integer coefficients, ∏C is an algebraic integer. Taking the trace of the 
equation R(IC ) = ∏C I , we obtain 

P 
x∈C χ(x) = ∏C dim V . Since χ(x) = χ(C)

for x in C , the result is that |C|χ(C)/ dim V = ∏C . Since ∏C is an algebraic 
integer, |C|χ(C)/ dim V is an algebraic integer. § 
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PROOF THAT THEOREM 7.31 IMPLIES PROPOSITION 7.29. Proposition 7.26a 
gives 

P P
|G| x∈G |χ(x)|2 P

C x∈C |χ(x)|2 ≥ |C|χ(C) ¥X
= = = χ(C).

dim V dim V dim V dim VC 

Each term in parentheses on the right side is an algebraic integer, according to
Theorem 7.31, and therefore Lemma 7.30 shows that |G|/ dim V is an algebraic 
integer. Since |G|/ dim V is in Q, Lemma 7.30 shows that |G|/ dim V is in Z. § 

5. Burnside’s Theorem 

The theorem of this section is as follows. 

Theorem 7.32 (Burnside’s Theorem). If G is a finite group of order paqb with 
p and q prime and with a + b > 1, then G has a nontrivial normal subgroup. 

The argument will use the result Theorem 7.31 from algebraic number the-
ory, and also it will make use of a special case of the Fundamental Theorem
of Galois Theory, whose proof is deferred to Chapter IX. That special case is
the following statement, whose context was anticipated in Section IV.1, where
groups of automorphisms of certain fields were discussed briefly. Since the set 
{1, e2π i/n , e2·2π i/n , e3·2π i/n , . . . } is linearly dependent over Q, Proposition 4.1 in 
that section implies that the subring Q[e2π i/n] of C generated by Q and e2π i/n is a 
subfield and is a finite-dimensional vector space over Q. According to Example 9 
of that section, the group 0 = Gal(Q[e2π i/n]/Q) of automorphisms of Q[e2π i/n]
fixing every element of Q is a finite group. 

Proposition 7.33 (special case of the Fundamental Theorem of Galois Theory). 
Let n > 0 be an integer, and put K = Q[e2π i/n]. Let 0 be the finite group of 
field automorphisms of K fixing every element of Q. Then the only members β 
of K such that σ (β) = β for every σ in 0 are the members of Q. 

Lemma 7.34. Let G be a finite group, (R, V ) be an irreducible finite-
dimensional representation of G, χ be the character of R, and C be a conjugacy 
class in G. If GCD(|C|, dim V ) = 1 and if x is in C , then either R(x) is scalar 
or χ(x) = 0. 
PROOF. Define χ(C) to be the constant value of χ on C , and put α = 

χ(x)/ dim V = χ(C)/ dim V . Since GCD(|C|, dim V ) = 1, we can choose 
integers m and n with m|C| + n dim V = 1. Multiplication by α yields 

m|C|χ(C) 
+ nχ(C) = α.

dim V 
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Theorem 7.31 shows that the coefficients |C|χ(C) and χ(C) of m and n on the dim V
left side are algebraic integers, and therefore α is an algebraic integer. As we 
observed toward the end of the previous section, χ(x) = χ(C) is the sum of 
dim V roots of unity. Since α = χ(C)/ dim V , we see that |α| ≤ 1 with equality 
only if all the roots of unity are equal, in which case R(x) is scalar. In view of 
the hypothesis, we may assume that |α| < 1. We shall show that α = 0. 
Let K = Q[e2π i/|G|] be the smallest subfield of C containing Q and the 

complex number e2π i/|G|, and let 0 be the group of field automorphisms of K 
that fix every element of Q. We know that K is finite-dimensional over Q and 
that 0 is a finite group, and Proposition 7.33 shows that the only members of K 
fixed by every element of 0 are the members of Q. 
Our element x of G has x |G| = 1. Thus every root of unity contributing 

to χ(x) is a |G|th root of unity and is in K . Therefore the algebraic integer α 
is in K . If σ is in 0, each of the |G|th roots of unity is mapped by σ to some 
complex number x satisfying x |G| = 1, and hence the member σ (α) of K satisfies 
|σ (α)| ≤ 1. Also, σ (α) is an algebraic integer, as we see by applying σ to the 
monic equation with integer coefficients satisfied by α, and we are assuming that 
|α| < 1. Consequently β = 

Q
σ (α) is an algebraic integer and has absolute σ ∈0

value < 1. A change of variables in the product shows that β is fixed by every 
member of 0, and we see from the previous paragraph that β is in Q. By Lemma 
7.30, β is in Z. Being of absolute value less than 1, it is 0. Thus α = 0, and 
χ(x) = 0. § 

Lemma 7.35. Let G be a finite group, and let C be a conjugacy class in G 
such that |C| = pk for some prime p and some integer k > 0. Then there exists 
an irreducible finite-dimensional representation R 6= 1 of G with R(x) scalar for 
every x in C . Consequently G is not simple. 

PROOF. The conjugacy class C cannot be {1} because |{1}| 6 pk with k > 0.= 
Let χreg be the character of the right regular representation r of G on C(G, C). If 
Ig denotes the function that is 1 at g and is 0 elsewhere, then the functions Ig form 
an orthonormal basis of C(G, C), and therefore χreg(x) = 

P
g∈G (r(x)Ig, Ig) = P 

g∈G (Igx−1 , Ig). Every term on the right side is 0 if x 6 1, and thus Theorem = 
7.23 gives 

0 = χreg(x) = 1 + 
X 

dχχ(x) for x ∈ C, (∗) 
χ 6=1 

the sum being taken over all irreducible characters other than 1, with dχ being
the dimension of an irreducible representation corresponding to χ . Let Rχ be an 
irreducible representation with character χ . Any χ such that p does not divide 
dχ has GCD(|C|, dχ) = 1 since |C| is assumed to be a power of p. Arguing by 
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contradiction, we may assume that no such χ has Rχ(x) scalar, and then Lemma 
7.34 says that χ(x) = 0 for all such χ . Hence (∗) simplifies to 

X
0 = 1 + dχχ(x) for x ∈ C. (∗∗) 

χ 6=1, p divides dχ 

Since χ(x) is an algebraic integer, Lemma 7.30 shows that this equation is of the 
form 1 + pβ = 0, where β is an algebraic integer. Then β = −1/ p shows that 
−1/ p is an algebraic integer. Since −1/p is in Q, Lemma 7.30 shows that it 
must be in Z, and we have arrived at a contradiction. Thus there must have been 
some χ with Rχ(x) scalar for x in C . 
The set of g in G for which this Rχ has Rχ(g) scalar is a normal subgroup of 

G that contains x and cannot therefore be {1}. Assume by way of contradiction 
that G is simple. Then Rχ(g) is scalar for all g in G. Since Rχ is irreducible, 
Rχ is 1-dimensional. Then the commutator subgroup G 0 of G is contained in the 
kernel of Rχ . Since Rχ 6= 1, G 0 is not all of G. Since G 0 is normal, G 0 = {1},
and we conclude that G is abelian. But the given G has a conjugacy class with
more than one element, and we have arrived at a contradiction. § 

PROOF OF THEOREM 7.32. Corollary 4.38 shows that a group of prime-power
order has a center different from {1}, and we may therefore assume that p 6= q, 
a > 0, and b > 0. Let H be a Sylow q-subgroup. Applying Corollary 4.38, 
let x be a member of the center ZH of H other than 1. The centralizer ZG ({x})
is a subgroup containing H , and it therefore has order pa0 qb. If a0 = a, then 
x is in the center of G, and the powers of x form the desired proper normal 
subgroup of G. Thus a0 < a. By Proposition 4.37 the conjugacy class C of x has 
|G|/ pa0 qb = pa−a0 elements with a − a0 > 0. By Lemma 7.35, G is not simple.

§ 

6. Extensions of Groups 

In Section IV.8 we examined composition series for finite groups. For a given
finite group, a composition series consists of a decreasing sequence of subgroups
starting with the whole group and ending with {1}, each normal in the next larger
one, such that the successive quotient groups are simple. The Jordan–Hölder 
Theorem (Corollary 4.50) assured us that the set of successive quotients, up to
isomorphism, is independent of the choice of composition series. This theorem
raises the question of reconstructing the whole group from data of this kind.
Consider a single step of the process. If we know the normal subgroup and the
simple quotient that it yields at a certain stage, what are the possibilities for the
next-larger subgroup? We study this question and some of its ramifications in
this section, dropping any hypotheses that are not helpful in the analysis. Here is
an example that we shall carry along. 
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EXAMPLE. Suppose that the normal subgroup is the cyclic group C4 and that 
the quotient is the cyclic group C2. The whole group has to be of order 8, and
the classification of groups of order 8 done in Problems 39–44 at the end of
Chapter IV tells us that there are four different possibilities for the whole group:
the abelian groups C4 × C2 and C8, the dihedral group D4, and the quaternion 
group H8. 

Let us establish a framework for the general problem. We start with a group E ,
a normal subgroup N , and the quotient G = E/N . We seek data that determine 
the group law in E in terms of N and G. For each member u of G, fix a coset 
representative ū in E such that ¯ = u. Since N is normal, the element ¯uN u of E 
yields an automorphism ( · = ux ū−1. In addition, the fact )u of N defined by xu ¯
that G is a group says that any two of our representatives ū and v̄ have 

ūv̄ = a(u, v)uv for some unique a(u, v) in N . 

The set of all elements a(u, v) for this choice of coset representatives is called a 
factor set, and E is called a group extension of N by the group3 G. 
The automorphisms and the factor set constructed above have to satisfy two

compatibility conditions, as follows: 
(i) (xv)u = a(u, v)xuva(u, v)−1 because (xu)v = ū(xv)ū−1 = ūv̄x v̄−1ū−1 

= (a(u, v)uv)x(a(u, v)uv)−1 = a(u, v)xuva(u, v)−1,
(ii) a(v, w)ua(u, vw) = u ̄ w = a(u, v)uvw̄a(u, v)a(uv, w) because ( ̄ v) ¯

= a(u, v)a(uv, w)uvw and u( ̄ w) ¯ = uvw ¯ v ¯ = ua(v, w)vw a(v, w)u ¯ = 
a(v, w)ua(u, vw)uvw. 

Then the multiplication law in E is given in terms of the automorphisms and the 
factor set by the formula 
(iii) (xū)(y ̄ = u)(y ̄ = u ̄ =v) xyua(u, v)uv by the computation (x ¯ v) xyu ¯v 

xyua(u, v)uv. 
Conversely, according to the proposition below, such data determine a group E 
with a normal subgroup isomorphic to N and a quotient E/N isomorphic to G. 

Proposition 7.36 (Schreier). Let two groups N and G be given, along with 
a family of automorphisms x 7→ xu of N parametrized by u in G, as well as a 
function a : G × G → N such that 

(a) (xv)u = a(u, v)xuva(u, v)−1 for all u and v in G,
(b) a(v, w)ua(u, vw) = a(u, v)a(uv, w) for all u, v, w in G. 

Then the set N × G becomes a group E under the multiplication 

(c) (x, u)(y, v) = (xyua(u, v), uv), 
3Warning: Some authors say “group extension of G by N .” 
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and this group has a normal subgroup isomorphic to N with quotient group 
isomorphic to G. More particularly, the identity of E is (a(1, 1)−1 , 1), the map 
x 7→ (xa(1, 1)−1 , 1) of N into E is a one-one homomorphism that exhibits N as a 
normal subgroup of E , and the map (x, u) 7→ u of E onto G is a homomorphism 
that exhibits G as isomorphic to E/N . 

PROOF. Reverting to the earlier notation, let us write xū in place of (x, u) for 
elements of E . Associativity of multiplication follows from the computation 

(xuy ¯ v)(¯ z ¯
° 
xyua(u, v)uv w by (c) w) = 

¢
z ¯

= xyua(u, v)zuva(uv, w)uvw by (c) 

= xyua(u, v)zuva(u, v)−1a(u, v)a(uv, w)uvw 

= xyua(u, v)zuva(u, v)−1a(v, w)ua(u, vw)uvw by (b) 

= x 
° 
yzva(v, w)

¢ua(u, vw)uvw by (a) 
= (xū) 

° 
yzva(v, w)vw

¢ 
by (c) 

= (xū)(y ̄ w) vz ¯ by (c). 

The identity is to be 1̄a(1, 1)−1. Before checking this assertion, we prove three 
preliminary identities. Setting u = v = 1 in (a) and replacing x1 by x gives4 

x1 = a(1, 1)xa(1, 1)−1 for all x ∈ N . (∗) 

Setting v = w = 1 in (b) gives a(1, 1)ua(u, 1) = a(u, 1)a(u, 1) and hence 

a(1, 1)u = a(u, 1) for all u ∈ G. (†) 

Meanwhile, setting u = v = 1 in (b) gives a(1, w)1a(1, w) = a(1, 1)a(1, w) 
and hence a(1, w)1 = a(1, 1) for all w ∈ G. The left side a(1, w)1 of this last 
equality is equal to a(1, 1)a(1, w)a(1, 1)−1 by (∗); canceling a(1, 1) yields 

a(1, w) = a(1, 1) for all w ∈ G. (††) 

Using these identities, we check that a(1, 1)−1 ̄1 is a two-sided identity by making 
the computations 

(xū)(a(1, 1)−11̄) = x(a(1, 1)−1)ua(u, 1)ū by (c) 

= x(a(1, 1)−1)ua(1, 1)uū by (†) 
= xū

4The effect of the automorphism x 7→ x1 is not necessarily trivial since the coset representative 
1̄ of 1 is not assumed to be the identity. Thus we must distinguish between x1 and x . 
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and 

(a(1, 1)−11̄)(yv) ¯ = a(1, 1)−1 y1a(1, v) v̄ by (c) 

= ya(1, 1)−1a(1, v) v̄ by (∗) 
= yv̄ by (††). 

Let us check that a left inverse for xū is a(1, 1)−1a(u−1 , u)−1(xu−1 
)−1u−1. 

In fact, 

° 
a(1, 1)−1a(u−1 , u)−1(xu

−1 
)−1u−1

¢
(xū) 

= a(1, 1)−1a(u−1 , u)−1(xu
−1 

)−1xu
−1 
a(u−1 , u)1̄ by (c) 

= a(1, 1)−11̄, 

as required. Thus multiplication is associative, there is a two-sided identity, and
every element has a left inverse. It follows that E is a group. 
The map xū 7→ u of E into G is a homomorphism by (c), and it is certainly 

onto G. Its kernel is evidently the subgroup of all elements xa(1, 1)−1 ̄1 in E . 
Since 

° 
xa(1, 1)−11̄

¢°
ya(1, 1)−11̄

¢ 
= xa(1, 1)−1(ya(1, 1)−1)1a(1, 1)1̄ by (c) 

= xa(1, 1)−1a(1, 1)(ya(1, 1)−1)1̄ by (∗) 

= xya(1, 1)−11̄, 

the one-one map x 7→ xa(1, 1)−1 ̄1 of N onto the kernel respects the group
structures and is therefore an isomorphism. In other words, the embedded version
of N is the kernel. Being a kernel, it is a normal subgroup. § 

EXAMPLE, CONTINUED. Let N = C4 = {1, r, r2 , r3} and G = C2 = {1, u0}
with u2 = 1. The group N has two automorphisms, the nontrivial one fixing 1 0
and r2 while interchanging r and r3. The automorphism of N from 1 ∈ G has to 
be trivial, while the automorphism of N from u0 ∈ G can be trivial or nontrivial. 
In fact, 

Ω trivial for E = C4 × C2 and E = C8,the automorphism is 
nontrivial for E = D4 and E = H8. 

In each case the automorphism does not depend on the choice of coset represen-
tatives. The factor sets do depend on the choice of representatives, however. Let
us fix 1̄ as the identity of E and make a particular choice of u0 for each E . Then 
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the definition of factor set shows that a(1, 1) = a(u0, 1) = a(1, u0) = 1, and 
the only part of the factor set yet to be determined is a(u0, u0). Let us consider 
matters group by group. For C4 ×C2, we can take u0 to be the generator of the C2 

factor; this has square 1, and hence a(u0, u0) = 1. For C8 = {1 θ, θ2 , . . . , θ7},
let us think of N as embedded in E with r = θ2. The element u0 can be any odd 
power of θ ; if we take u0 = θ , then (u0)2 = θ2 = r , and hence a(u0, u0) = r . 
For E = D4, the example following Proposition 7.8 shows that we may view the
elements as the rotations 1, r, r2 , r3 and the reflections s, rs, r2s, r3s for particular 
choices of r and s. We can take u0 to be any of the reflections, and then (u0)2 = 1 
and a(u0, u0) = 1. Finally for E = H8 = {±1, ±i, ±j, ±k}, let us say that N 
is embedded as {±1, ±i}. Then u0 can be any of the four elements ±j and ±k. 
Each of these has square −1, and hence a(u0, u0) = −1. For the choices we 
have made, we therefore have 

a(u0, u0) = 


 

 

1 for E = C4 × C2 and E = D4, 
r for E = C8, 
−1 for E = H8. 

ee
e

e

The formula of Proposition 7.36a reduces to (xv)u = xuv since N is abelian, and 
it is certainly satisfied. The formula for Proposition 7.36b is a(v, w)ua(u, vw) = 
a(u, v)a(uv, w). This is satisfied for E = C4 × C2 and E = D4 since a( · , · ) is 
identically 1. For the other two cases the values of a( · , · ) lie in the 2-element 
subgroup of N that is fixed by the nontrivial automorphism, and hence a(v, w)u = 
a(v, w) in every case. The formula to be checked reduces to a(v, w)a(1, 1) = 
a(1, 1)a(v, w) by (††) if u = 1, to a(1, 1)a(u, w) = a(1, 1)a(u, w) by (†) and 
(††) if v = 1, and to a(1, 1)a(u, v) = a(u, v)a(1, 1) by (†) if w = 1. Thus all 
that needs checking is the case that u = v = w = u0, and then the formula in 
question reduces to a(u0, u0)a(1, 1) = a(u0, u0)a(1, 1) by (†) and (††). 

Let us examine for a particular extension the dependence of the automorphisms
and factor set on the choice of coset representatives. Returning to our original
construction, suppose that we change the coset representatives of the members
of G, associating a member u to u ∈ G in place of We then obtain a new 

uxu−1 

u = α(u) ̄

ū.e
automorphism of N corresponding to u, and we write it as x 7→ xu∗ 

instead of x 7→ xu = ux ¯ u lies in the ¯ u−1. To quantify matters, we observe that
same coset of N as does ū. Thus u for some function α : G → N , and 

= 

e

ee

the function α can be absolutely arbitrary. In terms of this function α, the two 
automorphisms are related by 

uxu−1 

If the factor set for the system {

xu
∗ 

ux ū−1α(u)−1 = α(u)xuα(u)−1= = α(u) ̄ . 

= 
u} of coset representatives is denoted by 

{b(u, v)}, then we have b(u, v)α(uv)uv b(u, v)ufv u vee= = α(u)ūα(v) v̄ = 
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α(u)α(v)ua(u, v)uv. Equating coefficients of uv, we obtain 

b(u, v) = α(u)α(v)ua(u, v)α(uv)−1 . 

Accordingly we say that a group extension of N by G determined by automor-
phisms x 7→ xu and a factor set a(u, v) is equivalent, or isomorphic, to a group 
extension of N by G determined by automorphisms x 7→ xu∗ and a factor set 
b(u, v) if there is a function α : G → N such that 

xu
∗ 
= α(u)xuα(u)−1 and b(u, v) = α(u)α(v)ua(u, v)α(uv)−1 

for all u and v in G. It is immediate that equivalence of group extensions is an
equivalence relation. 

Proposition 7.37. Suppose that E1 and E2 are group extensions of N by G 
with respective inclusions i1 : N → E1 and i2 : N → E2 and with respective 
quotient homomorphisms ϕ1 : E1 → G and ϕ2 : E2 → G. If there exists a group 
isomorphism 8 : E1 → E2 such that the two squares in Figure 7.4 commute, then
the two group extensions are equivalent. Conversely if the two group extensions
are equivalent, then there exists a group isomorphism 8 : E1 → E2 such that the 
two squares in Figure 7.4 commute. 

i1 ϕ1N −−−→ E1 −−−→ G 
∞

∞
∞ 8


y 

∞
∞
∞ 

i2 ϕ2N −−−→ E2 −−−→ G 

FIGURE 7.4. Equivalent group extensions. 

REMARKS. The commutativity of the squares is important. Just because two
group extensions of N by G are isomorphic as groups does not imply that they
are equivalent group extensions. An example is given in Problem 19 at the end
of the chapter. 

PROOF. For the direct part, suppose that 8 exists. For each u in G, select ū in 
E1 with ϕ1(ū) = u. Then we can form the extension data {x 7→ xu } and {a(u, v)}
for E1 relative to the normal subgroup i1(N ) and the system {ū | u ∈ G} of coset 
representatives. When reinterpreted in terms of N , E1, and G, these data become 
{i−1(x) 7→ i−1(xu)} and {i−1(a(u, v))}.1 1 1
Application of 8 to the coset i1(N )ū yields i2(N )8(ū) since 8 i1 = i2, and 

8(ū) is a member of E2 with ϕ2(8(ū)) = ϕ1(ū) = u. Setting eu = 8(ū), we 
see that 8(i1(N )ū) is the coset i2(N )eu of i2(N ) in E2. Thus we can determine 
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extension data for E2 relative to i2(N ) and the system {u | u ∈ G}, and we can 
transform them by i−1 to obtain data relative to N , E2, and G.2 

e

The claim is that the data relative to N , E2, and G match those for N , E1, and 
G. The automorphisms of N from E2 are the maps i−1(x 0) 7→ i−1(x 0u∗ 

), where 
x 0u∗ ux 0u−1. From i2 

2 2 
ee= = 8 i1 and the fact that each of these maps is one-one, 

= i−18−1 on i2(N ). Substitution shows that the automorphisms 
of N from E2 are 

1we obtain i2 
−1 

i1 
−1(8−1(x 0)) 7→ i1 

−1(8−1(x 0u∗ 
)) = i1 

−1(8−1 eu−1

(x 0))u

0uxe( 

((8−1

)) 

= i1 
−1(ū8−1(x 0)ū−1) = i1 

−1 ). 

If we set x 0 = 8(x) with x in i1(N ), then the automorphisms of N from E2 take 
the form i−1(x) 7→ i−1(xu). Thus they match the automorphisms of N from E1.1 1
In the case of the factor sets, we have ūv̄ = a(u, v)uv. Application of 8 gives 

uee 8(a(u, v))}.2v = 8(a(u, v))f
Since i−18 = i1 

−1 
uv. Thus the factor set for E2 relative to N is {i−1 

, this matches the factor set for E1 relative to N .2 

ee

We turn to the converse part. Suppose that the multiplication law in E1 is 
(i1(x)ū)(i1(y) ̄ = for x and y in N , and that the v) i1(x)i1(y)ui1(a(u, v))uv 
multiplication law in E2 is (i2(x)u)(i2(y)v) = i2(x)i2(y)u

∗ i2(b(u, v))fuv. Here ¯
v are preimages of u and v under ϕ1, andu andv are preimages of u and v under 

u 
and ¯ ee

= i1 
−1(i1(x)u ) and xu∗

= i2 
−1(i2(x)u

∗ 
).Define automorphisms of N by xu 

We can then rewrite the multiplication laws as 
ϕ2. 

(i1(x)ū)(i1(y) ̄v) = i1(xyua(u, v))uv 

and ee(i2(x)u)(i2(y)

The assumption that E1 is equivalent to E2 as an extension of N by G means that 
there exists a function α : G → N such that 

xu
∗ 
= α(u)xuα(u)−1 and b(u, v) = α(u)α(v)ua(u, v)α(uv)−1 

for all u and v in G. Define 8 : E1 → E2 by 

v) = i2(xyu
∗ 
b(u, v))fuv. 

8(i1(x)ū) = i2(xα(u)−1 u) .e

Certainly 8 is one-one onto. It remains to check that 8 is a group homomorphism 
and that the squares commute in Figure 7.4.
To check that 8 : E1 → E2 is a group homomorphism, we compare 

8(i1(x)ui¯ 1(y) ̄ uvv) = 8(i1(xyua(u, v))uv = i2(xyua(u, v)α(uv)−1)f
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with the product 

8(i1(x)ū)8(i1(y) ̄ )ui2(yα(v)−1v) = i2(xα(u)−1 e )ev 

= i2(xα(u)−1(yα(v)−1 uv. )u
∗ 
b(u, v))f

Since 

α(u)−1(yα(v)−1)u
∗ 
b(u, v) = α(u)−1(yα(v)−1)u

∗ 
α(u)α(v)ua(u, v)α(uv)−1 

= (yα(v)−1)u α(v)ua(u, v)α(uv)−1 

= yua(u, v)α(uv)−1 , 

these expressions are equal, and 8 is a group homomorphism. Thus 8 is a group 
isomorphism.
Now we check the commutativity of the squares. The computation 

ϕ28(i1(x)ū) = ϕ2(i2(xα(u)−1)eu) = u = ϕ1(i1(x)ū) 

shows that the right-hand square commutes.
For the left-hand square we use the fact recorded in the statement of Proposition

7.36 that i1(a(1, 1)−1)¯ 1 is the identity of 1 is the identity of E1 and i2(b(1, 1)−1)e
E2. Therefore 8 i1(x) = 8(i1(xa(1, 1)−1)1̄) = i2(xa(1, 1)−1α(1)−1)e1. Since 
i2(x) = xb(1, 1)−11, the left-hand square commutes if b(1, 1) = α(1)a(1, 1).e
This formula follows from (∗) in the proof of Proposition 7.36 by the computation 

b(1, 1) = α(1)α(1)1a(1, 1)α(1)−1 = α(1)a(1, 1)α(1)α(1)−1 = α(1)a(1, 1), 

and thus the left-hand square indeed commutes. § 

For the remainder of this section, let us assume that N is abelian. In this 
case Proposition 7.36a reduces to the identity (xv)u = xuv for all u and v in 
G independently of the choice of representatives, just as it does in the example
we studied with N = C4 and G = C2. In the terminology of Section IV.7, G 
acts on N by automorphisms.5 Suppose we fix such an action τ : G → Aut N 
by automorphisms and consider all extensions of N by G built from τ . In our 
example we are thus to consider E equal to C4 × C2 or C8, which are built with 
the trivial τ , or else E equal to D4 or H8, which are built with the nontrivial τ (in
which the nontrivial element of G acts by the nontrivial automorphism of N ).
Since N is abelian, let us switch to additive notation for N and to ordinary 

function notation for τ(w), rewriting the formula of Proposition 7.36b as 

τ(u)a(v, w) + a(u, vw) = a(u, v) + a(uv, w). 

5The formula (xv)u = xuv correctly corresponds to a group action with the group on the left as 
in Section IV.7. 
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This condition is preserved under addition of factor sets as long as τ does not 
change, it is satisfied by the 0 factor set, and the negative of a factor set is again
a factor set. Therefore the factor sets for this τ form an abelian group. 
Two factor sets for this τ are equivalent (in the sense of yielding equivalent

group extensions) if and only if their difference is equivalent to 0, and a(u, v) is 
equivalent to 0 if and only if 

a(u, v) = α(uv) − α(u) − τ(u)α(v) 

for some function α : G → N . The set of factor sets for this τ that are equivalent 
to 0 is thus a subgroup,6 and we arrive at the following result. 

Proposition 7.38. Let G and N be groups with N abelian, and suppose that 
τ : G → Aut N is a homomorphism. Then the set of equivalence classes of
group extensions of N by G corresponding to the action τ : G → Aut N is 
parametrized by the quotient of the abelian group of factor sets by the subgroup
of factor sets equivalent to 0. 

The extension E corresponding to the 0 factor set is of special interest. In
this case the multiplication law for the coset representatives is ūv̄ = uv since 
the member a(u, v) = 0 of N is to be interpreted multiplicatively in this product
formula. Consequently the map u 7→ ū of G into E is a group homomorphism, 
necessarily one-one, and we can regard G as a subgroup of E . Proposition 4.44 
allows us to conclude that E is the semidirect product G ×τ N . The multiplication 
law for general elements of E , with multiplicative notation used for N , is 

(xū)(y ̄v) = x(τ (u)y)uv. 

It is possible also to describe explicitly the extension one obtains from the
sum of two factor sets corresponding to the same τ , but we leave this matter 
to Problems 20–23 at the end of the chapter. The operation on extensions that
corresponds to addition of factor sets in this way is called Baer multiplication. 
What we saw in the previous paragraph says that the group identity under Baer
multiplication is the semidirect product. 

The two conditions, the compatibility condition on a factor set given in Proposi-
tion 7.36b and the condition with α in it for equivalence to 0, are of a combinatorial
type that occurs in many contexts in mathematics and is captured by the ideas
of “homology” and “cohomology.” For the current situation the notion is that of
cohomology of groups, and we shall define it now. The subject of homological 

6One can legitimately ask whether an arbitrary α : G → N leads to a factor set under the 
definition a(u, v) = α(uv) − τ (v)α(u) − α(v), and one easily checks that the answer is yes. 
Alternatively, one can refer to the case n = 2 in the upcoming Proposition 7.39. 
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algebra, which is developed in Chapter IV of Advanced Algebra, puts cohomology
of groups in a wider context and explains some of its mystery.
We fix an abelian group N , a group G, and a group action τ of G on N 

by automorphisms. It is customary to suppress τ in the notation for the group
action, and we shall follow that convention. For integers n ∏ 0, one begins with 
the abelian group Cn(G, N ) of n-cochains of G with coefficients in N . This is 
defined by 

Ω N if n = 0,
Cn(G, N ) = © 

f : 
Qn

k=1 G → N 
™ 

if n > 0. 
In words, Cn(G, N ) is the set of all functions into N from the n-fold direct product 
of G with itself. The coboundary map δn : Cn(G, N ) → Cn+1(G, N ) is the 
homomorphism of abelian groups defined by 

(δ0 f )(g1) = g1 f − f 

and by 

(δn f )(g1, . . . , gn+1) = g1( f (g2, . . . , gn+1)) 
n

+ 
P 

(−1)i f (g1, . . . , gi−1, gi gi+1, gi+2, . . . , gn+1)
i=1 

+ (−1)n+1 f (g1, . . . , gn) 

for n > 0. We postpone to the end of this section the proof of the following result. 

Proposition 7.39. δnδn−1 = 0 for all n ∏ 1. 

It follows from Proposition 7.39 that image δn−1 ⊆ ker δn for all n ∏ 1. Thus 
if we define abelian groups by 

Zn(G, N ) = ker δn, 
Ω 0 for n = 0,

Bn(G, N ) = 
image δn−1 for n > 0, 

then Bn(G, N ) ⊆ Zn(G, N ) for all n, and it makes sense to define the abelian 
groups 

Hn(G, N ) = Zn(G, N )/Bn(G, N ) for n ∏ 0. 
The elements of Zn(G, N ) are called n-cocycles, the elements of Bn(G, N ) are 
called n-coboundaries, and Hn(G, N ) is called the nth cohomology group of G 
with coefficients in N . 

EXAMPLES IN LOW DEGREE. 
DEGREE 0. Here (δ0 f )(u) = u f − f with f in N and u in G. The cocycle 

condition is that this is 0 for all u. Thus f is to be fixed by G. We say that an f 
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fixed by G is an invariant of the group action. The space of invariants is denoted 
by NG . By convention above, we are taking B0(G, N ) = 0. Thus 

H 0(G, N ) = NG . 

DEGREE 1. Here (δ1 f )(u, v) = u( f (v)) − f (uv) + f (u) with f a function 
from G to N . The cocycle condition is that 

f (uv) = f (u) + u( f (v)) for all u, v ∈ G. 

A function f satisfying this condition is called a crossed homomorphism of G 
into N . A coboundary is a function f : G → N of the form f (u) = (δ0x)(u) = 
ux − x for some x ∈ N . Then H 1(G, N ) is the quotient of the group of crossed
homomorphisms by this subgroup. In the special case that the action of G on N is 
trivial, the crossed homomorphisms reduce to ordinary homomorphisms of G into 
N , and every coboundary is 0. Thus H1(G, N ) is the group of homomorphisms 
of G into N if G acts trivially on N . 
DEGREE 2. Here f is a function from G × G into N , and 

(δ2 f )(u, v, w) = u( f (v, w)) − f (uv, w) + f (u, vw) − f (u, v). 

The cocycle condition is that 
u( f (v, w)) + f (u, vw) = f (uv, w) + f (u, v) for all u, v, w ∈ G. 

This is the same as the condition that { f (u, v)} be a factor set for extensions of 
N by G relative to the given action of G on N by automorphisms. A coboundary 
is a function f : G × G → N of the form 

f (u, v) = (δ0α)(u, v) = u(α(v)) − α(uv) + α(u) for some α : G → N . 

This is the same as the condition that {− f (u, v)} be a factor set equivalent to 0. 
Thus we can restate Proposition 7.38 as follows. 

Proposition 7.40. Let G and N be groups with N abelian, and suppose that 
τ : G → Aut N is a homomorphism. Then the set of equivalence classes of
group extensions of N by G corresponding to the action τ : G → Aut N is 
parametrized by H2(G, N ). 

Since group extensions have such a nice interpretation in terms of cohomology 
groups H2, it is reasonable to look for a nice interpretation for H 1 as well. Indeed, 
H1 has an interpretation in terms of uniqueness up to inner isomorphisms for
semidirect-product decompositions. We continue with the abelian group N , a 
group G, and a group action τ of G on N by automorphisms. A semidirect product 
E = G ×τ N is an allowable extension. Since G embeds as a subgroup of E , we 
are given a one-one group homomorphism u 7→ ū of G into E . The construction 
at the beginning of this section works with the set ū of coset representatives, and 
they have ūv̄ = uv. 
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Suppose that the semidirect product can be formed by a second one-one group
homomorphism u 7→ u of G into E . If we write u u for a function 
α : G → N , then we know from earlier in the section that the extensions formed 

u} are equivalent. Because G maps homomorphically into E 
for both systems, the factor sets are 0 in both cases. Consequently the function α 

ee

e

= α(u) ̄

from {ū} and from {

e

must satisfy 

e

α(uv) − α(u) − τ(u)α(v) = 0. 
This is exactly the condition that α : G → N be a 1-cocyle. Thus the group 
Z1(G, N ) parametrizes all ways that we can embed G as a complementary 
subgroup to N in the semidirect product E = G ×τ N . 
A relatively trivial way to construct a one-one group homomorphism u 7→ u 

u ux0 forx0 
−1from u 7→ ū is to form, in the usual multiplicative notation,

x−1 x−1some x0 ∈ N . Then ue
¯= 

¯ 1 =ux0 ̄ (τ (u)(x0)) ū, and the additive notation 
Referring to our earlier computations in 

= 0 0
for α(u) has α(u) τ(u)(x0) − x0. 
degree 1, we see that α is in the group B1(G, N ) of coboundaries. 
The conclusion is that H1(G, N ) parametrizes all ways, modulo relatively 

trivial ways, that we can embed G as a complementary subgroup to N in the 
semidirect product E = G ×τ N . 
As promised, we now return to the proof of Proposition 7.39. 

PROOF OF PROPOSITION 7.39. For n = 1, we have 

(δ1δ0 f )(u, v) = u((δ0 f )(v)) − (δ0 f )(uv) + (δ0 f )(u) 
= u(v f − f ) − (uv f − f ) + (u f − f ) = 0. 

For n > 1, we begin with 

(δnδn−1 f )(g1, . . . , gn+1) = g1((δn−1 f )(g2, . . . , gn+1)) 

= 

+
Pn

i=1
(−1)i (δn−1 f )(g1, . . . , gi gi+1, . . . , gn+1) 

+ (−1)n+1(δn−1 f )(g1, . . . , gn) 

= I + II + III. 

Here 

I = g1g2( f (g3, . . . , gn+1)) +
Pn

i=2 
(−1)i−1g1( f (g2, . . . , gi gi+1, . . . , gn+1)) 

+ (−1)ng1( f (g2, . . . , gn)) = IA + IB + IC, 

Pn

i=2
(−1)i (δn−1 f )(g1, . . . , gi gi+1, . . . , gn+1)II = −(δn−1 f )(g1g2, g3, . . . , gn)+ 

= IIA + IIB, 
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III = (−1)n+1g1( f (g2, . . . , gn)) + (−1)n+1(−1) f (g1g2, g3, . . . , gn) 

+ (−1)n+1 
nP−1 

(−1)i f (g1, . . . , gi gi+1, . . . , gn)
i=2 

+ (−1)n+1(−1)n f (g1, . . . , gn−1) 

= IIIA + IIIB + IIIC + IIID. 

Terms IIA and IIB decompose further as 

IIA = −g1g2( f (g3, . . . , gn+1)) + f (g1g2g3, g4, . . . , gn+1) 
n

− 
P

(−1)i+1 f (g1g2, . . . , gi gi+1, . . . , gn+1) − (−1)n f (g1g2, g3, . . . , gn) 
i=3

= IIAa + IIAb + IIAc + IIAd, 
n

IIB = 
P 

(−1)i g1( f (g2, . . . , gi gi+1, . . . , gn+1)) 
i=2 

+ (−1)2(−1) f (g1g2g3, g4, . . . , gn+1) 
n

+ 
P 

(−1)i (−1) f (g1g2, . . . , gi gi+1, . . . , gn+1)
i=3 

n iP−2 
+ 

P 
(−1)i (−1) j f (g1, . . . , gj gj+1, . . . , gi gi+1, . . . , gn+1)

i=2 j=2 

n
+ 

P 
(−1)i (−1)i−1 f (g1, . . . , gi−1gi gi+1, . . . , gn+1)

i=3 

nP−1 
+ (−1)i (−1)i f (g1, . . . , gi gi+1gi+2, . . . , gn+1)

i=2 

nP−2 n
+ (−1)i 

P 
(−1) j−1 f (g1, . . . , gi gi+1, . . . , gj gj+1, . . . , gn+1) 

i=2 j=i+2 

nP−1 
+ (−1)i (−1)n f (g1, . . . , gi gi+1, . . . , gn)

i=2 

+ (−1)n(−1)n f (g1, . . . , gn−1) 

= IIBa + IIBb + IIBc + IIBd + IIBe + IIBf + IIBg + IIBh + IIBi. 

Inspection shows that we have cancellation between term IA and term IIAa, term
IB and term IIBa, term IC and term IIIA, term IIAb and term IIBb, term IIAc and
term IIBc, term IIAd and term IIIB, term IIBd and term IIBg, term IIBe and term
IIBf, term IIBh and term IIIC, and term IIBi and term IIID. All the terms cancel,
and we conclude that δnδn−1 f = 0. § 
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7. Problems 

1. Using Burnside’s Theorem and Problem 34 at the end of Chapter IV, show that
60 is the smallest possible order of a nonabelian simple group. 

2. A commutator in a group is any element of the form xyx−1 y−1. 
(a) Prove that the inverse of a commutator is a commutator.
(b) Prove that any conjugate of a commutator is a commutator. 

3. Let a and b be elements of a group G. Prove that the subgroup generated by a 
and b is the same as the subgroup generated by bab2 and bab3. 

4. A subgroup H of a group G is said to be characteristic if it is carried into itself 
by every automorphism of G. 
(a) Prove that characteristic implies normal.
(b) Prove that the center ZG of G is a characteristic subgroup.
(c) Prove that the commutator subgroup G 0 of G is a characteristic subgroup. 

5. In the terminology of the previous problem, which subgroups of the quaternion
subgroup H8 are characteristic? 

6. Is every finite group finitely presented? Why or why not? 

7. Let G = SL(2, R), and let G 0 be the commutator subgroup. 
(a) Prove that every element 

≥ 
1 t 

¥ 
is in G 0.0 1 

(b) Prove that G 0 = G. 
0(c) Prove that 

≥ 
−1 

¥ 
is not a commutator even though it is in G 0.0 −1 

8. Problem 53 at the end of Chapter IV produced a group G of order 27 generated 
by two elements a and b satisfying a9 = b3 = b−1aba−4 = 1. Prove that G is 
given by generators and relations as 

G = 
≠
a, b; a9 , b3 , b−1aba−4Æ. 

9. Let Gn be given by generators and a single relation as 

Gn = 
≠
x1, y1, . . . , xn, yn; x1 y1x−1 y−1 · · · xn ynx−1 y−1Æ.1 1 n n 

Prove that Gn/G 0 is free abelian of rank 2n, and conclude that the groups Gn aren
mutually nonisomorphic as n varies. (Educational note related to topology: The 
group Gn may be shown to be the fundamental group of a compact orientable
2-dimensional manifold without boundary and with n handles.) 

10. Prove that a free group of finite rank n cannot be generated by fewer than n 
elements. 
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11. Let F be the free group on generators a, b, c, and let H be the subgroup generated 
by all words of length 2.
(a) Find coset representatives g such that G is the disjoint union of the cosets 

Hg. 
(b) Find a free basis of H . 

12. For the free group on generators x and y, prove that the elements y, xyx−1, 
x2 yx−2, x3 yx−3, . . . , constitute a free basis of the subgroup that they generate.
Conclude that a free group of rank 2 has a free subgroup of infinite rank. 

13. Let G = C2 ∗ C2. Prove that the only quotient groups of G, up to isomorphism, 
are G itself, {1}, C2, C2 × C2, and the dihedral groups Dn for n ∏ 3. 

14. Prove that if every irreducible finite-dimensional representation of a finite group
G is 1-dimensional, then G is abelian. 

15. Let G be a finitely generated group, and let H be a subgroup of finite index. 
Prove that H is finitely generated. 

16. Let N be an abelian group, let G be a group, let τ be an action of G on N by
automorphisms, and let n > 0 be an integer.
(a) Prove that if every element of N has finite order dividing an integer m, then 

every member of Hn(G, N ) has finite order dividing m. 
(b) Suppose that G is finite and that f is an n-cocycle. Define an (n−1)-cochain 

F by 
F(g1, . . . , gn−1) = 

P 
f (g1, . . . , gn−1, g). 

g∈G 

By summing the cocycle condition for f over the last variable, express 
|G| f (g1, . . . , gn) in terms of F , and deduce that |G| f is a coboundary. 
Conclude that every member of Hn(G, N ) has order dividing |G|. 

17. Let G be a finite group. Suppose that G has a normal abelian subgroup N , and 
suppose that GCD(|N |, |G/N |) = 1. Prove that there exists a subgroup H of G 
such that G is the semidirect product of H and N . 

18. Let N be the cyclic group C2, and let G be an arbitrary group of order 4. Identify
up to equivalence all group extensions of N by G. 

= 
L∞19. Let N = C2, and let E n=1 (C2 ⊕ C4). Regard E as an extension of N in 

two ways—first by embedding N as one of the summands C2 of E and then by 
embedding N as a subgroup of one of the summands C4 of E . Show that the 
quotient groups E/N in the two cases are isomorphic, that E/N acts trivially on 
N in both cases, and that the two group extensions are not equivalent. 

Problems 20–23 concern Baer multiplication of extensions. Let N be an abelian 
group, let G be a group, let τ be an action of G on N by automorphisms, and let 
E1 and E2 be two extensions of N by G relative to τ . Write ϕ1 : E1 → G and 
ϕ2 : E2 → G for the quotient mappings. Let (E, E 0) denote the subgroup of all 
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members (e1, e2) of E1 × E2 for which ϕ1(e1) = ϕ2(e2). Writing the operation in 
N multiplicatively, let Q = {(x, x−1) ∈ E1 × E2 | x ∈ N }. The Baer product of E1 
and E2 is defined to be the quotient (E1, E2)/Q. A typical coset of the Baer product 
will be denoted by (e1, e2)Q. 
20. Prove that the homomorphism x 7→ (x, 1)Q is one-one from N into (E1, E2)/Q,

that the homomorphism ϕ : (E1, E2) → G defined by ϕ(e1, e2) = ϕ1(e1) has 
image G and descends to the quotient (E1, E2)/Q, and that the kernel of the 
descended ϕ is the embedded copy of N . (Therefore (E1, E2)/Q is an extension 
of N by G, evidently relative to τ .) 

21. For each u ∈ G, select ū ∈ E1 and u ∈ E2 with ϕ1(ū) = u = ϕ2(u), and 
u)(y ̄ and 

is written multiplicatively. 

e e
define and for and in byb Ga u u u x a u u¯( , v) ( , v) ( v) ( , v)=v v 

. Show that has and that the b b Q Qxu y u u u u u u u¯ ¯( )( v) ( , v) ( , v) ( ) ϕ(( ) )= =e , ,e e ee
associated 2-cocyle for is if the group operation in E E Q b Na u u1 2( )/ ( , v) ( , v) , 

22. Prove that Baermultiplication descends to awell-definedmultiplication of equiv-
alence classes of extensions of by relative to , in the following sense: N G τ 
Suppose that and are equivalent extensions and that and are equiv-E E E E0 0

1 21 2 

is equivalent to . Conclude that if Baer multiplicationE E Q E E Q0 0 0
1 2( )/ ( )/1 2, , 

is imposed on equivalence classes of extensions of by relative to , then theN G τ 
correspondence stated in Proposition 7.40 of equivalence classes to members of

Problems 23–24 derive the Poisson summation formula for finite abelian groups. If G 

.

alent extensions. Let (E1, E2)/Q and (E1
0 , E2

0 )/Q0 be the Baer products. Then 

H2(G, N ) is a group isomorphism. 

is a finite abelian group and Gb is its group of multiplicative characters, then the Fourier 
coefficient at χ ∈ Gb of a function f in C(G, C) is bf (χ) = 

P
g∈G f (g)χ(g). The 

Fourier inversion formula in Theorem 7.17 says that f (g) = |G|−1 P 
G 

bf (χ)χ(g).χ∈b

23. Let G be a finite abelian group, let H be a subgroup, and let G/H be the quotient 
t for the coset of t in G/H . 

.
group. If t is in G, write
and define F(t) = 

P
h∈H f (t + h) as a function on G/H . Suppose that χ is a 

member of Gb that is identically 1 on H , so that χ descends to a member χ of. 

Let f be in C(G, C) 

[G/H . Prove that bf (χ) = F(b . 
χ). 

24. (Poisson summation formula) With f and F as in the previous problem, apply 
the Fourier inversion formula for G/H to the function F , and derive the formula 

1X X
f (t + h) = bf (ω)ω(t). 

|G/H | 
ω∈bh∈H G, ω|H =1 

(Educational note: This formula is often applied with t = 0, in which case it 
1reduces to 

P
h∈H f (h) = |G/H | 

P 
G, ω|H =1 

bf (ω).)ω∈b

http:correspondencestatedinProposition7.40ofequivalenceclassestomembersofProblems23�24derivethePoissonsummationformulaforfiniteabeliangroups.If
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Problems25–28 continue the introduction to error-correctingcodes begun in Problems
63–73 at the end of Chapter IV, combining those results with the Poisson summation
formula in the problems above and with notions from Section VI.1. Let F be the field 
Z/2Z, and form the Hamming space Fn . Define a nondegenerate bilinear form on Fn 

by (a, c) = 
Pn 

=1 ai ci for a and c in Fn . Recall from Chapter IV that a linear code i
C is a vector subspace of Fn . For such a C , let C⊥ as in Section VI.1 be the set of all 
a ∈ Fn such that (a, c) = 0 for all c ∈ C ; the linear code C⊥ is called the dual code. 
A linear code is self dual if C⊥ = C . 

25. (a) Show that the codes 0 and Fn are dual to each other. 
(b) Show that the repetition code and the parity-check code are dual to each

other. 
(c) Show that the Hamming code of order 8 is self dual.
(d) Show that any self-dual linear code C has dim C = n/2, and conclude that 

the Hamming code of order 2r with r > 3 is not self dual. 
(e) Show that any member c of a self-dual linear code C has even weight. 
(f) Show that if a linear code C has C ⊆ C⊥ and if every member c of C has 

even weight, then c 7→ 12wt(c) mod 2 is a group homomorphism of C into 
Z/2Z. Here wt(c) denotes the weight of c. 

26. Regard Fn as an additive group G to which the Fourier inversion formula of 
Section 4 can be applied.
(a) Show that one can map Gb to Fn by χ 7→ aχ with χ(c) = (−1)(aχ ,c) and 

that the result is a group isomorphism. (Therefore if f is in C(Fn , C), we 
can henceforth regard bf as a function on Fn .)

(b) Show under the identification in (a) that if f is in C(Fn , C), then bf (a) = P
f (c)(−1)(a,c) for a in Fn .c∈Fn 

(c) Suppose that the function f ∈ C(Fn , C) is of the special form f (c) = Qn 
i=1 fi (ci ) whenever c = (c1, . . . , cn). Here each fi is a function on 

the 2-element group F. Prove that bf (a) = 
Q

i
n 
=1 

bfi (ai ) whenever a = 
(a1, . . . , an). Here bfi is given by the formula of (b) for the case n = 1: 
bfi (ai ) = 

P
ci ∈F fi (ci )(−1)ai ci . 

27. Fix two complex numbers x and y. Define f0 : F → C to be the function 
with f0(0) = x and f0(1) = y. Define f : F → C to be the function with 
f (c) = 

Qn 
=1 f0(ci ) = xn−wt(c) ywt(c) where wt(c) is the weight of c.i

(a) Show that bf0(0) = x + y and bf0(1) = x − y. 
(b) Show that bf (a) = (x + y)n−wt(a)(x − y)wt(a). 

28. Let C be a linear code in Fn . Take G to be the additive group of Fn and H to be 
the additive group of C . Regard C⊥ as an additive group also. 
(a) Map G[/H to C⊥ by χ 7→ aχ with χ(c) = (−1)(aχ ,c). Show that this 

mapping is a group isomorphism. 
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(b) Applying the Poisson summation formula of Problem 24, prove that 
P 

f (h) = 
1 P bf (a)

|C⊥|h∈C a∈C⊥ 

for all f in C(Fn , C). 
(c) (MacWilliams identity) Let WC (X, Y ) = 

P
k
n 
=0 Nk(C)Xn−kY k , where 

Nk (C) is the number of members of C with weight k, be the weight-
enumerator polynomial of C , and let WC⊥ (X, Y ) be defined similarly. 
By applying (b) to the function f in the previous problem, prove that 
WC (x, y) = |C⊥|

−1WC⊥ (x + y, x − y) for each x and y. Conclude from 
Corollary 4.32 that weight-enumerator polynomials satisfy WC (X, Y ) = 
|C⊥|

−1WC⊥ (X + Y, X − Y ). 
(d) The polynomials WC (X, Y ) were seen in Chapter IV to be Xn for the 0 

code, (X + Y )n for the code Fn , Xn + Yn for the repetition code, 
1 
2 ((X +Y )n +(X −Y )n) for the parity-check code, and X8+14X4Y 4+Y 8 for 
the Hamming code of order 8. Using relationships established in Problem 25,
verify the result of (c) for each of these codes.

(e) Suppose that C is a self-dual linear code. Applying (c) in this case, exhibit 
WC (X, Y ) as being invariant under a copy of the dihedral group D8 of 
order 16. (Educational note: If the polynomial WC (X, Y ) is invariant also 
under X 7→ i X , as is true for the Hamming code of order 8, then WC (X, Y )
is invariant under the group generated by D8 and this transformation, which 
can be shown to have order 192.) 

Problems 29–31 concern an unexpectedly fast method of computation of Fourier
coefficients in the context of finite abelian groups, particularly in the context of cyclic
groups. They show for a cyclic group of order m = pq that the use of the idea 
behind the Poisson summation formula of Problem 24 makes it possible to compute
the Fourier coefficients of a function in about pq(p+q) steps rather than the expected 
m2 = p2q2 steps. This savings may be iterated in the case of a cyclic group of order 
2n so that the Fourier coefficients are computed in about n2n steps rather than the 
expected 22n steps. An organized algorithm to implement this method of computation
is known as the fast Fourier transform. Write the cyclic group Cm as the set 
{0, 1, 2, . . . , m−1} of integers modulo m under addition, and let ≥m = e2π i/m . For k 
in Cm define a multiplicative character χn of Cm by χn(k) = (≥m

n )k . The resulting m 
multiplicative characters satisfy χnχn0 = χn+n0 , and they exhaust Ccm since distinct 
multiplicative characters are orthogonal. It will be convenient to identify χn with 
χn(1) = ≥m

n . 

29. In the setting of Problem 23, suppose that G = Cm with m = pq; here p and q
need not be relatively prime. Let H = {0, q, 2q, . . . , (p−1)q} be the subgroup 
of G isomorphic to Cp, so that G/H = {0, 1, 2, . . . , q − 1} is isomorphic to 

0 p 2p (q−1)pCq . Prove that the characters χ of G identified with ≥m , ≥m , ≥m , . . . , ≥m 
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are the ones that are identically 1 on H and therefore descend to characters 
.of G/H . Verify that the descended characters χ are the ones identified with 

0 1 2 q−1 . 
≥q , ≥q , ≥q , . . . , ≥q . Consequently the formula bf (χ) = Fb(χ) of Problem 23 

p 2p (q−1)pprovides a way of computing bf at ≥m 
0 , ≥m , ≥m , . . . , ≥m from the values of 

F . Show that if Fb is computed from the definition of Fourier coefficients, thenb
the number of steps involved in its computation is about q2, apart from a constant 
factor. Show therefore that the total number of steps in computing bf at these 
special values of χ is therefore on the order of q2 + pq. 

30. In the previous problem show for each k with 0 ≤ k ≤ p−1 that the value of bf at 
k p+k 2p+k (q−1)p+k

≥m , ≥m , ≥m , . . . , ≥m can be handled in the same way with a different 
F by replacing f by a suitable variant of f . Doing so for each k requires p times 
the number of steps detected in the previous problem, and therefore all of bf can 
be computed in about p(q2 + pq) = pq(p + q) steps. 

31. Show how iteration of this process to compute the Fourier coefficients of each F ,
together with further iteration of this process, allows one to compute the Fourier
coefficients for a function on Cm1m2···mr in about m1m2 · · · mr (m1+m2+· · ·+mr ) 
steps. 

Problems 32–36 concern contragredient representations and the decomposition of the
left regular representation of a finite group G. They make use of Problems 24–28 in
Chapter III, which introduce the complex conjugate V of a complex vector space V . In 
the case that V is an inner-product space, those problems define (u, v)V = (v, u)V ,
and they show that if `v ∈ V 0 is given by `v(u) = (u, v)V = (v, u)V , then the 
mapping `v ↔ v is an isomorphism of V 0 with V . 
32. Show that the definition (`v1 , ̀ v2 )V 0 = (v1, v2)V makes the isomorphism of V 0 

with V preserve inner products. 
33. If R is a unitary representation of G on the finite-dimensional complex vector 

space V , define the contragredient representation Rc of G on V 0 by Rc(x) = 
R(x−1)t . Prove that Rc(x)`v = `R(x)v and that Rc is unitary on V 0. 

34. Show that the matrix coefficients of Rc are the complex conjugates of those of 
R and that the characters satisfy χRc = χR . 

35. Give an example of an irreducible representation of a finite group G that is not 
equivalent to its contragredient. 

36. Let ` be the left regular representation of G on C(G, C), and let VR be the linear 
span in C(G, C) of the matrix coefficients of an irreducible representation R of 
dimension d. Prove that the representation (`, VR) of G is equivalent to the direct 
sum of d copies of the contragredient Rc. 

Problems 37–46 concern the free product C2 ∗ C3 and its quotients. The problems 
make use of the group of matrices SL(2, Z/mZ) of determinant 1 over the com-
mutative ring Z/mZ, as discussed in Section V.2. One of the quotients of C2 ∗ C3 
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will be PSL(2, Z) = SL(2, Z)/{scalar matrices}, and these problems show that the
quotient mapping can be arranged to be an isomorphism. Other quotients will be
the groups Gm = hX, Y ; X2 , Y 3, (XY )m i with m ∏ 2. These arise in connection 

∼with tilings in 2-dimensional geometry. The isomorphism C2 ∗ C3 = PSL(2, Z)

leads to a homomorphism that will be called σm carrying Gm onto PSL(2, Z/mZ) = 
SL(2, Z/mZ)/{scalar matrices}, the image group being finite. The problems show 
that the homomorphism σm : Gm → PSL(2, Z/mZ) is an isomorphism for the cases 
in which Gm arises from spherical geometry, namely for 2 ≤ m ≤ 5, and that the 
homomorphism is not an isomorphism for m = 6, the case in which Gm arises from 
Euclidean geometry. 

0 137. Show that the elements 
≥ 
0 −1 

¥ 
and 

≥ ¥ 
generate SL(2, Z) by arguing as 1 0 −1 −1 

follows: if the subgroup 0 of SL(2, Z) generated by these two elements is not 
SL(2, Z), choose an element 

≥ 
a b 

¥ 
outside 0 having max(|a|, |b|) as small as c d 

possible, and derive a contradiction by showing that a suitable right multiple of
it by elements of 0 is in 0. 

≥ 
0 −1 

≥ 
0 138. By mapping X 7→ x = 

¥ 
mod ±I and Y 7→ y = 

¥ 
mod ±I ,1 0 −1 −1 

produce a group homomorphism 8 of C2∗C3 = hX, Y ; X2 , Y 3i onto PSL(2, Z). 

39. Let x , y, and 8 : C2 ∗ C3 → PSL(2, Z) be as in the previous problem. 
(a) For any member 

≥ 
a b 

¥ 
mod ±I of PSL(2, Z), define µ 

≥≥ 
a b 

¥ 
mod ±I 

¥ 

c d c d ≥≥ 
a b = max(|a|, |b|) and ∫ 

¥ 
mod ±I 

¥ 
= max(|c|, |d|). Prove that if c d 

z = 
≥ 
a b 

¥ 
mod ±I in PSL(2, Z) has ab ≤ 0, then µ(zyx) ∏ µ(z) andc d 

µ(zy−1x) ∏ µ(z), while if cd ≤ 0, then ∫(zyx) ∏ ∫(z) and ∫(zy−1x) ∏ 
∫(z). 

(b) Prove that µ(zx) = µ(z) and ∫(zx) = ∫(z) for all z in PSL(2, Z). 
(c) Show that there are only 10 members z of PSL(2, Z) for which the two 

conditions µ(z) = 1 and ∫(z) = 1 both hold. 
(d) A reduced word in C2 ∗ C3 is a finite sequence of factors X , Y , and Y −1,

with no two consecutive factors equal and with no two consecutive factors
YY −1 or Y −1Y . Prove for any reduced word a1 · · · an in C2 ∗ C3, where 
each aj is one of X , Y , and Y −1, that µ(8(a1 · · · an)) ∏ µ(8(a1 · · · an−1)) 
and that ∫(8(a1 · · · an)) ∏ ∫(8(a1 · · · an−1)). 

(e) Deduce that the homomorphism 8 is an isomorphism. 

40. Let 0(m) be the group of all matrices M in SL(2, Z) such that every entry of 
M − I is divisible by m. 
(a) Prove that passage from a matrix in SL(2, Z) to the same matrix with its 

entries considered modulo m gives a homomorphism eσm : SL(2, Z) → 
SL(2, Z/mZ) with kereσm = 0(m). 
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(b) Prove that if α, β, and m are positive integers with GCD(α, β, m) = 1,
then there exists an integer r such that GCD(α + mr, β) = 1. (One
way of proceeding is to use Dirichlet’s theorem on primes in arithmetic
progressions.)

(c) Prove that imageeσm = SL(2, Z/mZ), i.e., eσm is onto. 

41. Let 8m : C2∗C3 → Gm be the homomorphismdefined by the conditions X 7→ X 
and Y 7→ Y . Let Hm be the smallest normal subgroup of PSL(2, Z) containing 
(xy)m mod ±I . Let eσm : SL(2, Z) → SL(2, Z/mZ) be the homomorphism of 
the previous problem.
(a) Why is 8m well defined? 
(b) Why is Hm = 8(ker 8m )? 
(c) Define PSL(Z/mZ) = SL(2, Z/mZ)/{scalar matrices}. Why does the 

composition of eσm followed by passage to the quotient descend to a ho-
momorphism σm of PSL(2, Z) onto PSL(2, Z/mZ)? 

(d) If K ⊆ PSL(2, Z) is the kernel of σm , why is Hm ⊆ Km? 
(e) Show that if t is any integer, then the following members of Km lie in the ≥ 

1 0 
≥ 
1+tm tm subgroup Hm : 

≥ 
1 tm 

¥ 
mod ±I , 

¥ 
mod ±I , 

¥ 
mod ±I ,0 1 tm 1 −tm 1−tm 

−tm and 
≥ 
1+tm 

¥ 
mod ±I .tm 1−tm 

42. With Gm defined as above, exhibit homomorphisms of various groups Gm onto 
the following finite groups:
(a) S3 when m = 2 by sending X 7→ (1 2) and Y 7→ (1 2 3). 
(b) A4 when m = 3 by sending X 7→ (1 2)(3 4) and Y 7→ (1 2 3). 
(c) S4 when m = 4 by sending X 7→ (1 2) and Y 7→ (2 3 4). 
(d) A5 when m = 5 by sending X 7→ (1 2)(3 4) and Y 7→ (1 3 5). 

43. This problem shows how to prove that Hm = Km for 2 ≤ m ≤ 5, and it asks 
that the steps be carried out for m = 2 and m = 3. Recall from the remark 
with Lemma 7.11 that Lemma 7.11 is valid for all groups in determining a set
of generators of a subgroup from generators of the whole group and a system of
coset representatives. The lemma is to be applied to the group PSL(2, Z) and 
the subgroup Km . Generators of PSL(2, Z) are taken as b1 = x mod ±I and 
b2 = y mod ±I . 
(a) For the case m = 2, find members g1, . . . , g6 of PSL(2, Z) such that the six 

cosets of PSL(2, Z)/K2 are exactly K2g1, . . . , K2g6. 
(b) Still for the case m = 2, find gjbi ρ(gjbi )−1 for 1 ≤ i ≤ 2 and 1 ≤ j ≤ 6. 

Lemma 7.11 says that these 12 elements generate K2. 
(c) Using Problem 41e and any necessary variations of it, show that each of

the 12 generators of K2 in (b) lies in the subgroup H2, and conclude that 
H2 = K2. 
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(d) Repeat steps (a), (b), and (c) for m = 3. There are 12 cosets K3gj of 
PSL(2, Z)/K3. (Educational note: There are 24 cosets for PSL(2, Z)/K4 
and 60 cosets for PSL(2, Z)/K5.) 

44. Take for granted that Hm = Km for 2 ≤ m ≤ 5. Deduce the isomorphisms 
(a) G2 ∼ = S3.= PSL(2, Z/2Z) ∼

(b) G3 ∼ = A4. (This group is called the tetrahedral group.)= PSL(2, Z/3Z) ∼

(c) G4 ∼ = S4. (This group is called the octahedral group.)= PSL(2, Z/4Z) ∼

(d) G5 ∼ = A5. (This group is called the icosahedral group.)= PSL(2, Z/5Z) ∼

45. A translation in the Euclidean plane R2 is any function T(a,b)(x, y) = 
(a + x, b + y), the rotation about the origin clockwise through the angle θ 

− sin θis the linear map Rθ given by the matrix 
≥ 
cos θ 

¥
, and the rotation about sin θ cos θ 

(x0, y0) clockwise through the angle θ is the linear map given by (x, y) 7→ 
Rθ (x − x0, y − y0) + (x0, y0). 
(a) Prove that Rθ T(a,b) R−1 = TRθ (a,b).θ 
(b) Prove that the union of the set of translations and all the sets of rotations

about points of R2 is a group by showing that it is the semidirect product
of the subgroup of rotations about the origin and the normal subgroup of
translations. 

46. Fix a triangle T in the Euclidean plane with vertices arranged counterclockwise 
at a, b, c and with angles π/2 at a, π/3 at b, and π/6 at c. Let ra be rotation 
clockwise through π at a, rb be rotation clockwise through 2π/3 at b, and rc be 
rotation counterclockwise through π/3 at c. 
(a) Show that r2 = 1, r3 = 1, r6 = 1, and rc = rarb.a b c 
(b) Show that the member rbrarbrarb of the group generated by ra and rb is a 

nontrivial translation and therefore that the generated group is infinite.
(c) Conclude that G6 ¿ PSL(2, Z/6Z). (Educational note: If Te denotes the 

union of T and the reflection of T in one of the sides of T , it can be shown 
that the group generated by ra and rb is isomorphic to G6 and tiles the plane 
with copies of Te.) 

Problems 47–52 establish a harmonic analysis for arbitrary representations of finite
groups on complex vector spaces, whether finite-dimensional or infinite-dimensional.
Let G be a finite group, and let V be a complex vector space. For any representation 
R of G on V , one defines R( f )v = 

P
x∈G f (x)R(x)v for f in C(G, C) and v in V ,

just as in the case that V is finite-dimensional. The same computation as in Section
VII.4 shows that the formula R( f1 ∗ f2) = R( f1)R( f2) remains valid when V is 
infinite-dimensional. 
47. Let (R1, V1) and (R2, V2) be irreducible finite-dimensional representations of G 

on complex vector spaces, and let χR1 
and χR2 

be their characters. Using Schur 
orthogonality, prove that
(a) χR1 

∗ χR2 
= 0 if R1 and R2 are inequivalent, 
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(b) ∗ χR1 
= |G|d−1 , where dR1 

= dim VR .χR1 R1 
χR1 

48. With (R, V ) given, let (Rα, Vα) be any irreducible finite-dimensional represen-
tation of G, and define Eα : V → V by Eα = |G|−1dα R(χα), where χα is the 
character of Rα and where dα = dim Vα . 
(a) Prove that E2 = Eα .α 
(b) Prove that Eα Eβ = Eβ Eα = 0 if (Rβ, Vβ) is an irreducible finite-

dimensional representation of G such that Rα and Rβ are inequivalent. 
49. Observe for each v in V that {R(x)v | x ∈ G} spans a finite-dimensional invariant 

subspace of V . By Corollary 7.21, each v in V lies in a finite direct sum of finite-
dimensional invariant subspaces of V on each of which R acts irreducibly. Using 
Zorn’s Lemma, prove that V is the direct sum of finite-dimensional subspaces 
on each of which R acts irreducibly. (If V is infinite-dimensional, there will of 
course be infinitely many such subspaces.) 

50. Suppose that V0 is a finite-dimensional invariant subspace of V such that R
Ø
Ø
V0

is equivalent to some Rα , where Rα is as in Problem 48. Prove that Eα is the 
identity on V0. 

51. Deduce that if {(Rβ, Vβ)} is a maximal collection of inequivalent finite-
dimensional irreducible representations of G, then 

P 
Eβ = I on V and the β

image of Eα is the set of all sums of vectors in V lying in some finite-dimensional 
invariant subspace V0 of V such that R

Ø
Ø
V0 
is equivalent to Rα . (Educational note: 

Consequently V is exhibited as the finite direct sum of the spaces image Eα ,
each space image Eα is the direct sum of finite-dimensional irreducible invariant 
subspaces, and the restriction of R to any finite-dimensional irreducible invariant 
subspace of image Eα is equivalent with Rα . 

52. Suppose that (Rα, Vα) is a 1-dimensional representation of G given by a multi-
plicative character ω. Prove that the image of Eα consists of all vectors v in V 
such that R(x)v = ω(x)v for all x in G. 




