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CHAPTER II 

Vector Spaces over Q, R, and C 

Abstract. This chapter introduces vector spaces and linear maps between them, and it goes on
to develop certain constructions of new vector spaces out of old, as well as various properties of
determinants. 
Sections 1–2 define vector spaces, spanning, linear independence, bases, and dimension. The

sections make use of row reduction to establish dimension formulas for certain vector spaces
associated with matrices. They conclude by stressing methods of calculation that have quietly 
been developed in proofs.
Section 3 relates matrices and linear maps to each other, first in the case that the linear map carries

column vectors to column vectors and then in the general finite-dimensional case. Techniques are
developed for working with the matrix of a linear map relative to specified bases and for changing
bases. The section concludes with a discussion of isomorphisms of vector spaces.
Sections 4–6 take up constructions of new vector spaces out of old ones, together with corre-

sponding constructions for linear maps. The four constructions of vector spaces in these sections
are those of the dual of a vector space, the quotient of two vector spaces, and the direct sum and
direct product of two or more vector spaces.
Section 7 introduces determinants of square matrices, together with their calculation and prop-

erties. Some of the results that are established are expansion in cofactors, Cramer’s rule, and the
value of the determinant of a Vandermonde matrix. It is shown that the determinant function is well 
defined on any linear map from a finite-dimensional vector space to itself.
Section 8 introduces eigenvectors and eigenvalues for matrices, along with their computation.

Also, in this section the characteristic polynomial and the trace of a square matrix are defined, and
all these notions are reinterpreted in terms of linear maps.
Section 9 proves the existence of bases for infinite-dimensional vector spaces and discusses the

extent to which the material of the first eight sections extends from the finite-dimensional case to be
valid in the infinite-dimensional case. 

1. Spanning, Linear Independence, and Bases 

This chapter develops a theory of rational, real, and complex vector spaces. Many
readers will already be familiar with some aspects of this theory, particularly in
the case of the vector spaces Qn , Rn , and Cn of column vectors, where the tools
developed from row reduction allow one to introduce geometric notions and to
view geometrically the set of solutions to a set of linear equations. Thus we shall 
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II. Vector Spaces over Q, R, and C 

be brief about many of these matters, concentrating on the algebraic aspects of
the theory. Let F denote any of Q, R, or C. Members of F are called scalars.
A vector space over F is a set V with two operations, addition carrying V × V 

into V and scalar multiplication carrying F × V into V , with the following 
properties: 
(i) the operation of addition, written +, satisfies 
(a) v1 + (v2 + v3) = (v1 + v2) + v3 for all v1, v2, v3 in V (associative law), 
(b) there exists an element 0 in V with v + 0 = 0 + v = v for all v in V ,
(c) to each v in V corresponds an element −v in V such that v + (−v) = 

(−v) + v = 0,
(d) v1 + v2 = v2 + v1 for all v1 and v2 in V (commutative law); 

(ii) the operation of scalar multiplication, written without a sign, satisfies 
(a) a(bv) = (ab)v for all v in V and all scalars a and b,
(b) 1v = v for all v in V and for the scalar 1; 

(iii) the two operations are related by the distributive laws 
(a) a(v1 + v2) = av1 + av2 for all v1 and v2 in V and for all scalars a,
(b) (a + b)v = av + bv for all v in V and all scalars a and b. 

It is immediate from these properties that 
• 0 is unique (since 00 = 00 + 0 = 0), 
• −v is unique (since (−v)0 = (−v)0 + 0 = (−v)0 + (v + (−v)) = 

((−v)0 + v) + (−v) = 0 + (−v) = (−v)), 
• 0v = 0 (since 0v = (0 + 0)v = 0v + 0v), 
• (−1)v = −v (since 0 = 0v = (1+(−1))v = 1v+(−1)v = v+(−1)v), 
• a0 = 0 (since a0 = a(0 + 0) = a0 + a0). 

Members of V are called vectors. 

EXAMPLES. 
(1) V = Mkn(F), the space of all k-by-n matrices. The above properties of a 

vector space over F were already observed in Section I.6. The vector space Fk of 
all k-dimensional column vectors is the special case n = 1, and the vector space 
F of scalars is the special case k = n = 1. 
(2) Let S be any nonempty set, and let V be the set of all functions from S into 

F. Define operations by ( f + g)(s) = f (s) + g(s) and (c f )(s) = c( f (s)). The 
operations on the right sides of these equations are those in F, and the properties 
of a vector space follow from the fact that they hold in F at each s. 

1All the material of this chapter will ultimately be seen to work when F is replaced by any “field.”
This point will not be important for us at this stage, and we postpone considering it further until
Chapter IV. 
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(3) More generally than in Example 2, let S be any nonempty set, let U be a 
vector space over F, and let V be the set of all functions from S into U . Define 
the operations as in Example 2, but interpret the operations on the right sides of
the defining equations as those in U . Then the properties of a vector space follow 
from the fact that they hold in U at each s. 
(4) Let V be any vector space over C, and restrict scalar multiplication to an 

operation R × V → V . Then V becomes a vector space over R. In particular, C 
is a vector space over R. 
(5) Let V = F[X] be the set of all polynomials in one indeterminate with 

coefficients in F, and define addition and scalar multiplication as in Section I.3. 
Then V is a vector space. 
(6) Let V be any vector space over F, and let U be any nonempty subset closed 

under addition and scalar multiplication. Then U is a vector space over F. Such a 
subset U is called a vector subspace of V ; sometimes one says simply subspace
if the context is unambiguous.2 

(7) Let V be any vector space over F, and let U = {vα} be any subset of 
V . A finite linear combination of the members of U is any vector of the form 
cα1 vα1 + · · · + cαn vαn with each cαj in F, each vαj in U , and n ∏ 0. The linear 
span of U is the set of all finite linear combinations of members of U . It is a 
vector subspace of V and is denoted by span{vα}. By convention, span ∅ = 0. 
(8) Many vector subspaces arise in the context of some branch of mathematics

after some additional structure is imposed. For example let V be the vector 
space of all functions from R3 into R, an instance of Example 2. The subset 
U of continuous members of V is a vector subspace; the closure under addition
and scalar multiplication comes down to knowing that addition is a continuous
function from R3 × R3 into R3 and that scalar multiplication from R × R3 

into R3 is continuous as well. Another example is the subset of twice continu-
ously differentiable members f of V satisfying the partial differential equation 
@2 f @2 f @2 f+ + + f = 0 on R3. 
@x2 @x2 @x21 2 3 

The associative and commutative laws in the definition of “vector space” imply
certain more complicated formulas of which the stated laws are special cases.
With associativity of addition, if n vectors v1, . . . , vn are given, then any way of 
inserting parentheses into the expression v1 +v2 +· · ·+vn leads to the same result,
and a similar conclusion applies to the associativity-like formula a(bv) = (ab)v
for scalar multiplication. In the presence of associativity, the commutative law
for addition implies that v1 + v2 + · · · + vn = vσ (1) + vσ (2) + · · · + vσ (n) for any 

2The word “subspace” arises also in the context of metric spaces and more general topological
spaces, and the metric-topological notion of subspace is distinct from the vector notion of subspace. 
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permutation of {1, . . . , n}. All these facts are proved by inductive arguments, and
the details are addressed in Problems 2–3 at the end of the chapter.
Let V be a vector space over F. A subset {vα} of V spans V or is a spanning

set for V if the linear span of {vα}, in the sense of Example 7 above, is all of V . 
A subset {vα} is linearly independent if whenever a finite linear combination 
cα1 vα1 + · · · + cαn vαn equals the 0 vector, then all the coefficients must be 0: 
cα1 = · · · = cαn = 0. By subtraction we see that in this case any equality of two
finite linear combinations 

cα1 vα1 + · · · + cαn vαn = dα1 vα1 + · · · + dαn vαn 

implies that the respective coefficients are equal: cαj = dαj for 1 ≤ j ≤ n. 
A subset {vα} is a basis if it spans V and is linearly independent. In this case 

each member of V has one and only one expansion as a finite linear combination 
of the members of {vα}. 

EXAMPLE. In Fn , the vectors 
 1 

  0 
  0 

  0 
 

0 1 0 0
0 
 

0 
 

1 
 

0 


= = = . . . , =e1   e2   e3   en  
.  , .  , .  , . .  .  .  . . . . . 
0 0 0 1 

form a basis of Fn called the standard basis of Fn . 

Proposition 2.1. Let V be a vector space over F. 
(a) If {vα} is a linearly independent subset of V that is maximal with respect to

the property of being linearly independent (i.e., has the property of being strictly
contained in no linearly independent set), then {vα} is a basis of V . 
(b) If {vα} is a spanning set for V that is minimal with respect to the property

of spanning (i.e., has the property of strictly containing no spanning set), then 
{vα} is a basis of V . 
PROOF. For (a), let v be given. We are to show that v is in the span of {vα}. 

Without loss of generality, we may assume that v is not in the set {vα} itself. 
By the assumed maximality, {vα} ∪ {v} is not linearly independent, and hence 
cv + cα1 vα1 + · · · + cαn vαn = 0 for some scalars c, cα1 , . . . , cαn not all 0. Here 
c 6 · vαn ,= 0 since {vα} is linearly independent. Then v = −c−1cα1 vα1 −· ·−c−1cαn
and v is exhibited as in the linear span of {vα}. 
For (b), suppose that cα1 vα1 +· · ·+ cαn vαn = 0 with cα1 , . . . , cαn not all 0. Say 

cα1 6= 0. Then we can solve for vα1 and see that vα1 is a finite linear combination of 
vα2 , . . . , vαn . Substitution shows that any finite linear combination of the vα’s is a 
finite linear combination of the vα’s other than vα1 , and we obtain a contradiction 
to the assumed minimality of the spanning set. § 
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Proposition 2.2. Let V be a vector space over F. If V has a finite spanning 
set {v1, . . . , vm }, then any linearly independent set in V has ≤ m elements. 
PROOF. It is enough to show that no subset of m + 1 vectors can be linearly 

independent. Arguing by contradiction, suppose that {u1, . . . , un} is a linearly 
independent set with n = m + 1. Write 

u1 = c11v1 + c21v2 + · · · + cm1vm , 

. . . 

un = c1nv1 + c2nv2 + · · · + cmnvm . 

The system of linear equations 

c11x1 + · · · + c1nxn = 0, 
. . . 

cm1x1 + · · · + cmn xn = 0, 

is a homogeneous system of linear equations with more unknowns than equations,
and Proposition 1.26d shows that it has a nonzero solution (x1, . . . , xn). Then 
we have 

x1u1 + · · · + xnun = c11x1v1 + c21x1v2 + · · · + cm1x1vm 

+ + + 

· · · · · · · · · 

+ + + 

c1nxnv1 + c2nxnv2 + · · · + cmn xnvm 

= 0, 

in contradiction to the assumed linear independence of {u1, . . . , un}. § 

Corollary 2.3. If the vector space V has a finite spanning set {v1, . . . , vm},
then 

(a) {v1, . . . , vm} has a subset that is a basis,
(b) any linearly independent set in V can be extended to a basis, 
(c) V has a basis,
(d) any two bases have the same finite number of elements, necessarily ≤ m. 

REMARKS. In this case we say that V is finite-dimensional, and the number 
of elements in a basis is called the dimension of V , written dim V . If V has no 
finite spanning set, we say that V is infinite-dimensional. A suitable analog of
the conclusion in Corollary 2.3 is valid in the infinite-dimensional case, but the
proof is more complicated. We take up the infinite-dimensional case in Section 9. 
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PROOF. By discarding elements of the set {v1, . . . , vm } one at a time if nec-
essary and by applying Proposition 2.1b, we obtain (a). For (b), we see from
Proposition 2.2 that the given linearly independent set has ≤ m elements. If we 
adjoin elements to it one at a time so as to obtain larger linearly independent sets,
Proposition 2.2 shows that there must be a stage at which we can proceed no
further without violating linear independence. Proposition 2.1a then says that we
have a basis. For (c), we observe that (a) has already produced a basis. Any two
bases have the same number of elements, by two applications of Proposition 2.2,
and this proves (d). § 

EXAMPLES. The vector space Mkn(F) of k-by-n matrices has dimension kn. 
The vector space of all polynomials in one indeterminate is infinite-dimensional
because the subspace consisting of 0 and of all polynomials of degree ≤ n has 
dimension n + 1. 

Corollary 2.4. If V is a finite-dimensional vector space with dim V = n, then 
any spanning set of n elements is a basis of V , and any linearly independent set 
of n elements is a basis of V . Consequently any n-dimensional vector subspace 
U of V coincides with V . 

PROOF. These conclusions are immediate from parts (a) and (b) of Corollary
2.3 if we take part (d) into account. § 

Corollary 2.5. If V is a finite-dimensional vector space and U is a vector 
subspace of V , then U is finite-dimensional, and dim U ≤ dim V . 

PROOF. Let {v1, . . . , vm } be a basis of V . According to Proposition 2.2, any 
linearly independent set in U has ≤ m elements, being linearly independent in 
V . We can thus choose a maximal linearly independent subset of U with ≤ m 
elements, and Proposition 2.1a shows that the result is a basis of U . § 

2. Vector Spaces Defined by Matrices 

Let A be a member of Mkn(F), thus a k-by-n matrix. The row space of A is the 
linear span of the rows of A, regarded as a vector subspace of the vector space of 
all n-dimensional row vectors. The column space of A is the linear span of the 
columns, regarded as a vector subspace of k-dimensional column vectors. The 
null space of A is the vector subspace of n-dimensional column vectors v for 
which Av = 0, where Av is the matrix product. The fact that this last space
is a vector subspace follows from the properties A(v1 + v2) = Av1 + Av2 and 
A(cv) = c(Av) of matrix multiplication. 
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We can use matrix multiplication to view the matrix A as defining a function 
v 7→ Av of Fn to Fk . This function satisfies the properties just listed, 

A(v1 + v2) = Av1 + Av2 and A(cv) = c(Av), 

and we shall consider further functions with these two properties starting in the
next section. In terms of this function, the null space of A is the set in the domain 
Fn mapped to 0. Because of these same properties and because the product Aej
of A and the j th standard basis vector ej in Fn is the j th column of A, the column 
space of A is the image of the function v 7→ Av as a subset of the range Fk . 

Theorem 2.6. If A is in Mkn(F), then 

dim(column space(A)) + dim(null space(A)) = #(columns of A) = n. 

PROOF. Corollary 2.5 says that the null space is finite-dimensional, being a
vector subspace of Fn , and Corollary 2.3c shows that the null space has a basis, 
say {v1, . . . , vr }. By Corollary 2.3b we can adjoin vectors vr+1, . . . , vn so that 
{v1, . . . , vn} is a basis of Fn . If v is in Fn , we can expand v in terms of this basis 
as v = c1v1 + · · · + cnvn . Application of A gives 

Av = A(c1v1 + · · · + cnvn) =c1 Av1 + · · · + cr Avr + cr+1 Avr+1 + · · · + cn Avn 

=cr+1 Avr+1 + · · · + cn Avn. 

Therefore the vectors Avr+1, . . . , Avn span the column space.
Let us see that they form a basis for the column space. Thus suppose that 

cr+1 Avr+1 + · · · + cn Avn = 0. Then A(cr+1vr+1 + · · · + cnvn) = 0, and 
cr+1vr+1 +· · ·+ cnvn is in the null space. Since {v1, . . . , vr } is a basis of the null 
space, we have 

cr+1vr+1 + · · · + cnvn = a1v1 + · · · + ar vr 

for suitable scalars a1, . . . , ar . Therefore 

(−a1)v1 + · · · + (−ar )vr + cr+1vr+1 + · · · + cnvn = 0. 

Since v1, . . . , vn are linearly independent, all the cj are 0. We conclude that 
Avr+1, . . . , Avn are linearly independent and therefore form a basis of the column 
space.
As a result, we have established in the identity r + (n − r) = n that n − r 

can be interpreted as dim(column space(A)) and that r can be interpreted as 
dim(null space(A)). The theorem follows. § 
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Proposition 2.7. If A is in Mkn(F), then each elementary row operation on A 
preserves the row space of A. 
PROOF. Let the rows of A be r1, . . . , rk . Their span is unchanged if we

interchange two of them or multiply one of them by a nonzero scalar. If we 
replace the row ri by ri + crj with j 6= i , then the span is unchanged since 

airi + ajrj = ai (ri + crj ) + (aj − aic)rj 

shows that any finite linear combination of the old rows is a finite linear combi-
nation of the new rows and since 

bi (ri + crj ) + bjrj = biri + (bi c + bj )rj 

shows the reverse. § 

Theorem 2.8. If A in Mkn(F) has reduced row-echelon form R, then 

dim(row space(A)) = dim(row space(R)) 

= #(nonzero rows of R) = #(corner variables of R) 

and 

dim(null space(A)) = dim(null space(R)) = #(independent variables of R). 

PROOF. The first equality in the first conclusion is immediate from Proposition
2.7, and the last equality of that conclusion is known from the method of row
reduction. To see the middle equality, we need to see that the nonzero rows of R 
are linearly independent. Let these rows be r1, . . . , rt . For each i with 1 ≤ i ≤ t ,
the index of the first nonzero entry of ri was denoted by j (i) in Section I.5. That 
entry has to be 1, and the other rows have to be 0 in that entry, by definition of
reduced row-echelon form. If a finite linear combination c1r1 + · · · + ctrt is 0, 
then inspection of the j (i)th entry yields the equality ci = 0, and thus we conclude
that all the coefficients are 0. This proves the desired linear independence.
The first equality in the second conclusion is by the solution procedure for ho-

mogeneous systems of equations in Section I.5; the set of solutions is unchanged
by each row operation. To see the second equality, we recall that the form of the
solution is as a finite linear combination of specific vectors, the coefficients being
the independent variables. What the second equality is asserting is that these
vectors form a basis of the space of solutions. We are thus to prove that they are
linearly independent. Let the independent variables be certain xj ’s, and let the 
corresponding vectors be vj ’s. Then we know that the vector vj has j th entry 1 
and that all the other vectors have j th entry 0. If a finite linear combination of the 
vectors is 0, then examination of the j th entry shows that the j th coefficient is 0. 
The result follows. § 
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Corollary 2.9. If A is in Mkn(F), then 

dim(row space(A)) + dim(null space(A)) = #(columns of A) = n. 

PROOF. We add the two formulas in Theorem 2.8 and see that 

dim(row space(A)) + dim(null space(A)) 

equals the sum #(corner variables of R) + #(independent variables of R). Since 
all variables are corner variables or independent variables, this sum is n, and the 
result follows. § 

Corollary 2.10. If A is in Mkn(F), then 

dim(row space(A)) = dim(column space(A)). 

REMARK. The common value of the dimension of the row space of A and the 
dimension of the column space of A is called the rank of A. Some authors use 
the separate terms “row rank” and “column rank” for the two sides, and then the
result is that these integers are equal. 

PROOF. This follows by comparing Theorem 2.6 and Corollary 2.9. § 

Although the above results may seem to have an abstract sound at first, methods
of calculation for all the objects in question have quietly been carried along in
the proofs, with everything rooted in the method of row reduction. All the proofs
have in effect already been given that these methods of calculation do what they
are supposed to do. If A is in Mkn(F), the transpose of A, denoted by At , is the 
member of Mnk (F) with entries (At )i j = Aji . In particular, the transpose of a 
row vector is a column vector, and vice versa. 

METHODS OF CALCULATION. 
(1) Basis of the row space of A. Row reduce A, and use the nonzero rows of 

the reduced row-echelon form. 
(2) Basis of the column space of A. Transpose A, compute a basis of the row 

space of At by Method 1, and transpose the resulting row vectors into column 
vectors. 
(3) Basis of the null space of A. Use the solution procedure for Av = 0 given

in Section I.5. The set of solutions is given as all finite linear combinations of
certain column vectors, the coefficients being the independent variables. The
column vectors that are obtained form a basis of the null space.
(4) Basis of the linear span of the column vectors v1, . . . , vn . Arrange the 

columns into a matrix A. Then the linear span is the column space of A, and a 
basis can be determined by Method 2. 
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(5) Extension of a linearly independent set {v1, . . . , vr } of column vectors in 
Fn to a basis of Fn . Arrange the columns into a matrix, transpose, and row reduce.
Adjoin additional row vectors, one for each independent variable, as follows: if 
xj is an independent variable, then the row vector corresponding to xj is to be 1 
in the j th entry and 0 elsewhere. Transpose these additional row vectors so that
they become column vectors, and these are vectors that may be adjoined to obtain
a basis. 
(6) Shrinking of a set {v1, . . . , vr } of column vectors to a subset that is a 

basis for the linear span of {v1, . . . , vr }. For each i with 0 ≤ i ≤ r , compute 
di = dim(span{v1, . . . , vr }). Retain vi for i ∏ 0 if di−1 < di , and discard vi 
otherwise. 

3. Linear Maps 

In this section we discuss linear maps, first in the setting of functions from Fn to 
Fk and then in the setting of functions between two vector spaces over F. Much of 
the discussion will center on making computations for such functions by means
of matrices. 
We have seen that any k-by-n matrix A defines a function L : Fn to Fk by

L(v) = Av and that this function satisfies 

L(u + v) = L(u) + L(v), 

L(cv) = cL(v), 

for all u and v in Fn and all scalars c. A function L : Fn → Fk satisfying these 
two conditions is said to be linear, or F linear if the scalars need emphasizing. 
Traditional names for such functions are linear maps, linear mappings, and 
linear transformations.3 Thus matrices yield linear maps. Here is a converse. 

Proposition 2.11. If L : Fn → Fk is a linear map, then there exists a unique 
k-by-n matrix A such that L(v) = Av for all v in Fn . 
REMARK. The proof will show how to obtain the matrix A. 
PROOF. For 1 ≤ j ≤ n, let ej be the j th standard basis vector of Fn , having 1 in 

its j th entry and 0’s elsewhere, and let the j th column of A be the k-dimensional 
column vector L(ej ). If v is the column vector (c1, c2, . . . , cn), then 

L(v) = L
°Pn

j=1 cj ej 
¢ 

= 
Pn

j=1 L(cj ej ) 

= 
Pn

j=1 cj L(ej ) = 
Pn

j=1 cj ( j th column of A). 

3The term linear function is particularly appropriate when the emphasis is on the fact that a
certain function is linear. The term linear operator is used also, particularly when the context has 
something to do with analysis. 
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If L(v)i denotes the i th entry of the column vector L(v), this equality says that 

L(v)i = 
Pn

j=1 cj Ai j . 

The right side is the i th entry of Av, and hence L(v) = Av. This proves existence. 
For uniqueness we observe from the formula L(ej ) = Aej that the j th column of 
A has to be L(ej ) for each j , and therefore A is unique. § 

In the special case of linear maps from Fn to Fk , the proof shows that two linear
maps that agree on the members of the standard basis are equal on all vectors.
We shall give a generalization of this fact as Proposition 2.13 below. 

EXAMPLE 1. Let L : R2 → R2 be rotation about the origin counterclockwise 
through the angle θ . Taking L to be defined geometrically, one finds from the
parallelogram rule for addition of vectors that L is linear. Computation shows ¥ ≥ 

cos θ 
¥ ≥ 

− sin θ 
¥

that L 
≥ 
1 = 

¥ 
and that L 

≥ 
0 = . Applying Proposition 2.11 0 sin θ 1 cos θ 

and the prescription for forming the matrix A given in the proof of the proposition, ≥ 
cos θ − sin θ 

¥
we see that L(v) = v for all v in R2.sin θ cos θ 

We can add two linear maps L : Fn → Fk and M : Fn → Fk by adding their 
values at corresponding points: (L + M)(v) = L(v) + M(v). In addition, we
can multiply a linear map by a scalar by multiplying its values. Then L + M 
and cL are linear, and it follows that the set of linear maps from Fn to Fk is a 
vector subspace of the vector space of all functions from Fn to Fk , hence is itself
a vector space. The customary notation for this vector space is HomF(Fn , Fk );
the symbol Hom refers to the validity of the rule L(u + v) = L(u) + L(v), and 
the subscript F refers to the validity of the additional rule L(cv) = cL(v) for all 
c in F. 
If L corresponds to the matrix A and M corresponds to the matrix B, then 

L + M corresponds to A + B and cL corresponds to cA. The next proposition
shows that composition of linear maps corresponds to multiplication of matrices. 

Proposition 2.12. Let L : Fn → Fm be the linear map corresponding to an 
m-by-n matrix A, and let M : Fm → Fk be the linear map corresponding to a 
k-by-m matrix B. Then the composite function M ◦ L : Fn → Fk is linear, and 
it corresponds to the k-by-n matrix BA. 
PROOF. The function M ◦ L satisfies (M ◦ L)(u + v) = M(L(u + v)) = 

M(Lu + Lv) = M(Lu) + M(Lv) = (M ◦ L)(u) + (M ◦ L)(v), and similarly it 
satisfies (M ◦ L)(cv) = c(M ◦ L)(v). Therefore it is linear. The correspondence
of linear maps to matrices and the associativity of matrix multiplication together
give (M ◦ L)(v) = M(L(v)) = (B)(Lv) = B(Av) = (BA)v, and therefore 
M ◦ L corresponds to BA. § 
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Now let us enlarge the setting for our discussion, treating arbitrary linear maps 
L : U → V between vector spaces over F. We say that L : U → V is linear, or 
F linear, if 

L(u + v) = L(u) + L(v), 

L(cv) = cL(v), 

for all u and v in U and all scalars c. As with the special case that U = Fn and 
V = Fk , linear functions are called linear maps, linear mappings, and linear 
transformations. The set of all linear maps L : U → V is a vector space over F 
and is denoted by HomF(U, V ). The following result is fundamental in working 
with linear maps. 

Proposition 2.13. Let U and V be vector spaces over F, and let 0 be a basis 
of U . Then to each function ` : 0 → V corresponds one and only one linear 
map L : U → V whose restriction to 0 has L

Ø
Ø
0 = `. 

REMARK. We refer to L as the linear extension of `. 
PROOF. Suppose that ` : 0 → V is given. Since 0 is a basis of U , each 

element of U has a unique expansion as a finite linear combination of members 
of 0. Say that u = cα1 uα1 + · · · + cαr uαr . Then the requirement of linearity 
on L forces L(u) = L(cα1 uα1 + · · · + cαr uαr ) = cα1 L(uα1 ) + · · · + cαr L(uαr ),
and therefore L is uniquely determined. For existence, define L by this formula. 
Expanding u and v in this way, we readily see that L(u + v) = L(u) + L(v) and 
L(cu) = cL(u). Therefore ` has a linear extension. § 

The definition of linearity and the proposition just proved make sense even if 
U and V are infinite-dimensional, but our objective for now will be to understand
linear maps in terms of matrices. Thus, until further notice at a point later in this
section, we shall assume that U and V are finite-dimensional. Remarks about the 
infinite-dimensional case appear in Section 9.
Since U and V are arbitrary finite-dimensional vector spaces, we no longer

have standard bases at hand, and thus we have no immediate way to associate a
matrix to a linear map L : U → V . What we therefore do is fix arbitrary bases 
of U and V and work with them. It will be important to have an enumeration of
each of these bases, and we therefore let 

0 = (u1, . . . , un) 

and 1 = (v1, . . . , vk ) 

be ordered bases of U and V , respectively.4 If a member u of U may be expanded 

4The notation (u1, . . . , un) for an ordered basis, with each uj equal to a vector, is not to be 
confused with the condensed notation (c1, . . . , cn ) for a single column vector, with each cj equal to 
a scalar. 
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in terms of 0 as u = c1u1 + · · · + cnun , we write 
 c1 


µ 
u 

∂ 
. = . 

0 
 .  , 

cn 

calling this the column vector expressing u in the ordered basis 0. Using our µ 
L 

∂
linear map L : U → V , let us define a k-by-n matrix by requiring that 

10 
the µ 

L 
∂ µ 

L(uj ) 
∂

j th column of be . 
10 1 

The positions in which the ordered bases 1 and 0 are listed in the notation is 
important here; the range basis is to the left of the domain basis.5 

EXAMPLE 2. Let V be the space of all complex-valued solutions on R of the 
differential equation y00(t) = y(t). Then V is a vector subspace of functions,
hence is a vector space in its own right. It is known that V is 2-dimensional with 
solutions c1et + c2e−t . If y(t) is a solution, then differentiation of the equation 
shows that y0(t) is another solution. In other words, the derivative operator d/dt is 
a linear map from V to itself. One ordered basis of V is 0 = (et , e−t ), and another 
is 1 = (cosh t, sinh t), where cosh t = 12 (e

t + e−t ) and sinh t = 12 (e
t − e−t ). To ∂µ 

d/dt find , we need to express (d/dt)(et ) and (d/dt)(e−t ) in terms of cosh t 
10 

and sinh t . We have 
∂ ∂ ∂ ∂µ 

(d/dt)(et ) 
µ 
et 

µ 
cosh t + sinh t 

µ 
1 

= = = 
1 1 1 1 

∂ ∂µ 
(d/dt)(e−t ) 

µ 
−e−t ∂ µ 

− cosh t + sinh t 
µ 

−1 
∂

and = = = . 
1 1 1 1 

∂ ∂µ 
d/dt 

µ 
1 −1Therefore = . 

10 1 1 

Theorem 2.14. If L : U → V is a linear map between finite-dimensional 
vector spaces over F and if 0 and 1 are ordered bases of U and V , respectively, 
then µ 

L(u) 
∂ µ 

L 
∂µ 

u 
∂ 

= 
1 10 0 

for all u in U . 
5This order occurs in a number of analogous situations in mathematics and has the effect of

keeping the notation reasonably consistent with the notation for composition of functions. 
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PROOF. The two sides of the identity in question are linear in u, and Proposition
2.13 shows that it is enough to prove the identity for the members u of some 
ordered basis of U . We choose 0 as this ordered basis. For the basis vector µ 

uj 
∂ 

u equal to the j th member uj of 0, use of the definition shows that is 
0 

the column vector ej that is 1 in the j th entry and is 0 elsewhere. The product µ 
L 

∂ µ 
L 

∂ µ 
L(uj ) 

∂
ej is the j th column of , which was defined to be . Thus 

10 10 1 
the identity in question is valid for uj , and the theorem follows. § 

If we take into account Proposition 2.13, saying that linear maps on U arise 
uniquely from arbitrary functions on a basis of U , then Theorem 2.14 supplies 
a one-one correspondence of linear maps L from U to V with matrices A of 
the appropriate size, once we fix ordered bases in the domain and range. The µ 

L 
∂

correspondence is L ↔ . 
10 

As in the special case with linear maps between spaces of column vectors,
this correspondence respects addition and scalar multiplication. Theorem 2.14
implies that under this correspondence, the image of L corresponds to the column 
space of A. It implies also that the vector subspace of the domain U with L(u) = 
0, which is called the kernel of L and is sometimes denoted by ker L , corresponds 
to the null space of A. The kernel of L has the important property that 

the linear map L is one-one if and only if ker L = 0. 

Another important property comes from this association of kernel with null space
and of image with column space. Namely, we apply Theorem 2.6, and we obtain
the following corollary. 

Corollary 2.15. If L : U → V is a linear map between finite-dimensional 
vector spaces over F, then 

dim(domain(L)) = dim(kernel(L)) + dim(image(L)). 

The next result says that composition corresponds to matrix multiplication
under the correspondence of Theorem 2.14. 

Theorem 2.16. Let L : U → V and M : V → W be linear maps between 
finite-dimensional vector spaces, and let 0, 1, and ƒ be ordered bases of U ,
V , and W . Then the composition ML is linear, and the corresponding matrix is 
given by µ 

ML 
∂ µ 

M 
∂µ 

L 
∂ 

= .
ƒ0 ƒ1 10 
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PROOF. If u is in U , three applications of Theorem 2.14 and one application
of associativity of matrix multiplication give 

∂µ 
ML 

∂µ 
u 

∂ µ 
ML(u) 

∂ µ 
M 

∂µ 
L(u)

= = 
ƒ0 0 ƒ ƒ1 1 

µ 
M 

∂∑µ 
L 

∂µ 
u 

∂∏ ∑µ 
M 

∂µ 
L 

∂∏µ 
u 

∂ 

= = .
ƒ1 10 0 ƒ1 10 0 

Taking u to be the j th member of 0, we see from this equation that the j th column µ 
ML 

∂ µ 
M 

∂µ 
L 

∂
of equals the j th column of . Since j is arbitrary, the 

ƒ0 ƒ1 10 
theorem follows. § 

A computational device that appears at first to be only of theoretical interest
and then, when combined with other things, becomes of practical interest, is to
change one of the ordered bases in computing the matrix of a linear map. A handy µ 

I 
∂

device for this purpose is a change-of-basis matrix since Theorem 2.16 
10 µ 

L 
∂ µ 

I 
∂µ 

L 
∂

gives = . 
10 10 00 

EXAMPLE 2, CONTINUED. Let L be d/dt as a linear map carrying the space of 
solutions of y00(t) = y(t) to itself, with 0 = (et , e−t ) and 1 = (cosh t, sinh t)µ 

d/dt 
∂ µ 

1 0 
∂

as before. Then = . Since et = cosh t + sinh t and e−t = 
00 0 −1 µ 
I 

∂ µ 
1 

∂ µ 
L 

∂
1cosh t − sinh t , = by inspection. The product is = 

10 1 −1 10 µ 
I 

∂µ 
d/dt 

∂ µ 
1 

∂
−1 

= , a result we found before with a little more effort 
10 00 1 1 

by computing matters directly. 

Often in practical applications the domain and the range are the same vector
space, the domain’s ordered basis equals the range’s ordered basis, and the matrix
of a linear map is known in this ordered basis. The problem is to determine the
matrix when the ordered basis is changed in both domain and range—changed in
such a way that the ordered bases in the domain and range are the same. This time µ 

I 
∂ µ 

I 
∂

we use two change-of-basis matrices and , but these are related. 
10 01 µ 

I 
∂µ 

I 
∂ µ 

I 
∂

Since = = I , the two matrices are the inverses of one 
01 10 00 
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another. Thus, except for matrix algebra, the problem is to compute just one ofµ 
I 

∂ µ 
I 

∂
and . 

01 10 
Normally one of these two matrices can be written down by inspection. For

example, if we are working with a linear map from a space of column vectors
to itself, one ordered basis of interest is the standard ordered basis 6. Another 
ordered basis 1 might be determined by special features of the linear map. In
this case the members of 1 are given as column vectors, hence are expressed in µ ∂

Iterms of 6. Thus can be written by inspection. We shall encounter this 
61 

situation later in this chapter when we use “eigenvectors” in order to understand
linear maps better. Here is an example, but without eigenvectors. 

EXAMPLE 1, CONTINUED. We saw that rotation L counterclockwise about ≥ ≥ 
1 
¥ ≥ 

0 
¥ ¥ 

bythe origin in R2 is given in the standard ordered basis 6 = ,0 1 
≥ 
cos θ − sin θ

µ 
L 

∂ 

= 
¥
. Let us compute the matrix of L in the ordered basis 1 = 

66 sin θ cos θ 
µ µ 

1≥ ≥ 
1 
¥ ≥ 

1 I 
∂ 

1 
∂ 

, 
¥ ¥
. The easy change-of-basis matrix to form is = .0 1 61 0 1 

Hence 
µ 

L 
∂ µ 

I 
∂µ 

L 
∂µ 

I 
∂ µ 

1 1 
∂−1µ 

cos θ − sin θ 
∂µ 

1 1 
∂ 

= = ,
11 16 66 61 0 1 sin θ cos θ 0 1 

and the problem is reduced to one of matrix algebra. 

Our computations have proved the following proposition, which, as we shall
see later, motivates much of Chapter V. The matrix C in the statement of the µ 

I 
∂

proposition is . 
01 

Proposition 2.17. Let L : V → V be a linear map on a finite-dimensional 
vector space, and let A be the matrix of L relative to an ordered basis 0 (in domain 
and range). Then the matrix of L in any other ordered basis 1 is of the form 
C−1 AC for some invertible matrix C depending on 1. 

REMARK. If A is a square matrix, any square matrix of the form C−1 AC is said 
to be similar to A. It is immediate that “is similar to” is an equivalence relation. 

Now let us return to the setting in which our vector spaces are allowed to be
infinite-dimensional. Two vector spaces U and V are said to be isomorphic if 
there is a one-one linear map of U onto V . In this case, the linear map in question 
is called an isomorphism, and one often writes U ∼= V . 
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Here is a finite-dimensional example: If U is n-dimensional with an ordered 
basis 0 and V is k-dimensional with an ordered basis 1, then HomF(U, V ) is 
isomorphic to Mnk (F) by the linear map that carries a member L of HomF(U, V )µ 

L 
∂

to the k-by-n matrix . 
10 

The relation “is isomorphic to” is an equivalence relation. In fact, it is reflexive
since the identity map exhibits U as isomorphic to itself. It is transitive since
Theorem 2.16 shows that the composition ML of two linear maps L : U → V 
and M : V → W is linear and since the composition of one-one onto functions
is one-one onto. To see that it is symmetric, we need to observe that the inverse
function L−1 of a one-one onto linear map L : U → V is linear. To see this 
linearity, we observe that L

°
L−1(v1) + L−1(v2)

¢ 
= L(L−1(v1)) + L(L−1(v2)) = 

v1 + v2 = I (v1 + v2) = L
°
L−1(v1 + v2)

¢
. Since L is one-one, 

L−1(v1) + L−1(v2) = L−1(v1 + v2). 

Similarly the facts that L(L−1(cv)) = cv = cL(L−1v) = L(c(L−1(v))) and that 
L is one-one imply that 

L−1(cv) = c(L−1(v)), 

and hence L−1 is linear. Thus “is isomorphic to” is indeed an equivalence relation.
The vector spaces over F are partitioned, according to the basic result about

equivalence relations in Section A2 of the appendix, into equivalence classes.
Each member of an equivalence class is isomorphic to all other members of that
class and to no member of any other class.
An isomorphism preserves all the vector-space structure of a vector space.

Spanning sets are mapped to spanning sets, linearly independent sets are mapped
to linearly independent sets, vector subspaces are mapped to vector subspaces,
dimensions of subspaces are preserved, and so on. In other words, for all purposes
of abstract vector-space theory, isomorphic vector spaces may be regarded as the
same. Let us give a condition for isomorphism that might at first seem to trivialize
all vector-space theory, reducing it to a count of dimensions, but then let us return
to say why this result is not to be considered as so important. 

Proposition 2.18. Two finite-dimensional vector spaces over F are isomorphic 
if and only if they have the same dimension. 
PROOF. If a vector space U is isomorphic to a vector space V , then the 

isomorphism carries any basis of U to a basis of V , and hence U and V have the 
same dimension. Conversely if they have the same dimension, let (u1, . . . , un)
be an ordered basis of U , and let (v1, . . . , vn) be an ordered basis of V . Define 
`(uj ) = vj for 1 ≤ j ≤ n, and let L : U → V be the linear extension of ` 
given by Proposition 2.13. Then L is linear, one-one, and onto, and hence U is 
isomorphic to V . § 
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The proposition does not mean that one should necessarily be eager to make the
identification of two vector spaces that are isomorphic. An important distinction is
the one between “isomorphic” and “isomorphic via a canonically constructed lin-µ 

L 
∂

ear map.” The isomorphism of linear maps with matrices given by L 7→ 
10 

is canonical since no choices are involved once 0 and 1 have been specified.
This is a useful isomorphism because we can track matters down and use the
isomorphism to make computations. On the other hand, it is not very useful to
say merely that HomF(U, V ) and Mkn(F) are isomorphic because they have the 
same dimension. 
What tends to happen in practice is that vector spaces in applications come

equipped with additional structure—some rigid geometry, or a multiplication
operation, or something else. A general vector-space isomorphism has little
chance of having any connection to the additional structure and thereby of being
very helpful. On the other hand, a concrete isomorphism that is built by taking
this additional structure into account may indeed be useful.
In the next section we shall encounter an example of an additional structure

that involves neither a rigid geometry nor a multiplication operation. We shall
introduce the “dual” V 0 of a vector space V , and we shall see that V and V 0 have 
the same dimension if V is finite-dimensional. But no particular isomorphism 
of V with V 0 is singled out as better than other ones, and it is wise not to try
to identify these spaces. By contrast, the double dual V 00 of V , which too will
be constructed in the next section, will be seen to be isomorphic to V in the 
finite-dimensional case via a linear map ∂ : V → V 00 that we define explicitly. 
The function ∂ is an example of a canonical isomorphism that we might want to 
exploit. 

4. Dual Spaces 

Let V be a vector space over F. A linear functional on V is a linear map from 
V into F. The space of all such linear maps, as we saw in Section 3, is a vector
space. We denote it by V 0 and call it the dual space of V . 
The development of Section 3 tells us right away how to compute the dual

space of the space of column vectors Fn . If 6 is the standard ordered basis of Fn 

and if 1 denotes the basis of F consisting of the scalar 1, then we can associate to 
a linear functional v0 on Fn its matrix 

µ 
v0 

∂ 

= ( v0(e1) v0(e2) · · · v0(en) ) , 16 

which is an n-dimensional row vector. The operation of v0 on a column vector 
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√ x1 
! 

. 
v = . is given by Theorem 2.14. Namely, v0(v) is a multiple of the scalar 1, . 

xn
and the theorem tells us how to compute this multiple: 

x1 
  x1 


∂µ 

v0(v)
µ 

v0 
∂

 

. . = .  = ( v0(e1) v0(e2) · · · v0(en) ) ..  . .1 16 
  

xn xn 

Thus the space of all linear functionals on Fn may be identified with the space of 
all n-dimensional row vectors, and the effect of the row vector on a column vector
is given by matrix multiplication. Since the standard ordered basis of Fn and the 
basis 1 of F are singled out as special, this identification is actually canonical,
and it is thus customary to make this identification without further comment.
For a more general vector space V , no natural way of writing down elements 

of V 0 comes to mind. Indeed, if a concrete V is given, it can help considerably 
in understanding V to have an identification of V 0 that does not involve choices. 
For example, in real analysis one proves in a suitable infinite-dimensional setting
that a (continuous) linear functional on the space of integrable functions is given
by integration with a bounded function, and that fact simplifies the handling of
the space of integrable functions.
In any event, the canonical identification of linear functionals that we found

for Fn does not work once we pass to a more general finite-dimensional vector 
space V . To make such an identification in the absence of additional structure,
we first fix an ordered basis (v1, . . . , vn) of V . If we do so, then V 0 is indeed 
identified with the space of n-dimensional row vectors. The members of V 0 that 
correspond to the standard basis of row vectors, i.e., the row vectors that are 1
in one entry and are 0 elsewhere, are of special interest. These are the linear

0functionals vi such that 
0vi (vj ) = δi j , 

where δi j is the Kronecker delta. Since these standard row vectors form a basis of 
0the space of row vectors, (v10 , . . . , vn) is an ordered basis of V 0. If the members 

of the ordered basis (v1, . . . , vn) are permuted in some way, the members of 
0 0 0(v1

0 , . . . , vn) are permuted in the same way. Thus the basis {v1, . . . , vn} depends
0 0only on the basis {v1, . . . , vn}, not on the enumeration.6 The basis {v1, . . . , vn}

is called the dual basis of V relative to {v1, . . . , vn}. A consequence of this 
discussion is the following result. 

Proposition 2.19. If V is a finite-dimensional vector space with dual V 0, then 
V 0 is finite-dimensional with dim V 0 = dim V . 

6Although the enumeration is not important, more structure is present here than simply an
0 0association of an unordered basis of V 0 to an unordered basis of V . Each member of {v1, . . . , vn} is 

matched to a particular member of {v1, . . . , vn }, namely the one on which it takes the value 1. 



52 II. Vector Spaces over Q, R, and C 

Linear functionals play an important role in working with a vector space. To
understand this role, it is helpful to think somewhat geometrically. Imagine the
problem of describing a vector subspace of a given vector space. One way of
describing it is from the inside, so to speak, by giving a spanning set. In this
case we end up by describing the subspace in terms of parameters, the parameters
being the scalar coefficients when we say that the subspace is the set of all finite
linear combinations of members of the spanning set. Another way of describing
the subspace is from the outside, cutting it down by conditions imposed on its
elements. These conditions tend to be linear equations, saying that certain linear
maps on the elements of the subspace give 0. Typically the subspace is then
described as the intersection of the kernels of some set of linear maps. Frequently
these linear maps will be scalar-valued, and then we are in a situation of describing
the subspace by a set of linear functionals.
We know that every vector subspace of a finite-dimensional vector space V 

can be described from the inside in this way; we merely give all its members. A
statement with more content is that we can describe it with finitely many members;
we can do so because we know that every vector subspace of V has a basis. 
For linear functionals really to be useful, we would like to know a correspond-

ing fact about describing subspaces from the outside—that every vector subspace
U of a finite-dimensional V can be described as the intersection of the kernels of 
a finite set of linear functionals. To do so is easy. We take a basis of the vector
subspace U , say {v1, . . . , vr }, extend it to a basis of V by adjoining vectors 

0 0vr+1, . . . , vn , and form the dual basis {v1, . . . , vn} of V 0. The subspace U is then 
0described as the set of all vectors v in V such that vj (v) = 0 for r + 1 ≤ j ≤ n. 

The following proposition expresses this fact in ways that are independent of the
choice of a basis. It uses the terminology annihilator of U , denoted by Ann(U ),
for the vector subspace of all members v0 of V 0 with v0(u) = 0 for all u in U . 

Proposition 2.20. Let V be a finite-dimensional vector space, and let U be a 
vector subspace of V . Then 

(a) dim U + dim Ann(U ) = dim V ,
(b) every linear functional on U extends to a linear functional on V ,
(c) whenever v0 is a member of V that is not in U , there exists a linear 

functional on V that is 0 on U and is 1 on v0. 

PROOF. We retain the notation above, writing {v1, . . . , vr } for a basis of U , 
0 0vr+1, . . . , vn for vectors that are adjoined to form a basis of V , and {v1, . . . , vn}

0 0for the dual basis of V 0. For (a), we check that {vr+1, . . . , vn} is a basis of Ann(U ). 
It is enough to see that they span Ann(U ). These linear functionals are 0 on every 
member of the basis {v1, . . . , vr } of U and hence are in Ann(U ). On the other 

0 0 + cnv0hand, if v0 is a member of Ann(U ), we can certainly write v = c1v1 +· · · n 
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for some scalars c1, . . . , cn . Since v0 is 0 on U , we must have v0(vi ) = 0 for 
i ≤ r . Since v0(vi ) = ci , we obtain ci = 0 for i ≤ r . Therefore v0 is a linear 

0 0combination of vr+1, . . . , v , and (a) is proved.n
0 0For (b), let us observe that the restrictions v1
Ø
Ø
U , . . . , v

Ø
Ø
U form the dual basis r

of U 0 relative to the basis {v1, . . . , vr } of U . If u0 is in U 0, we can therefore write 
u0 0 0 0 0 0= c1v

Ø
Ø
U +· · ·+cr v

Ø
Ø
U for some scalars c1, . . . , cr . Then v = c1v1+· · ·+cr v1 r r

is the required extension of u0 to all of V . 
For (c), we use a special choice of basis of V in the argument above. Namely, 

we still take {v1, . . . , vr } to be a basis of U , and then we let vr+1 = v0. Finally 
0we adjoin vr+2, . . . , vn to obtain a basis {v1, . . . , vn} of V . Then vr+1 has the 

required property. § 

If L : U → V is a linear map between finite-dimensional vector spaces, then 
the formula 

0(Lt (v0))(u) = v (L(u)) for u ∈ U and v 0 ∈ V 0 

defines a linear map Lt : V 0 → U 0. The linear map Lt is called the contragre-
dient of L . The matrix of the contragredient of L is the transpose of the matrix 
of L in the following sense.7 

Proposition 2.21. Let L : U → V be a linear map between finite-dimensional 
vector spaces, let Lt : V 0 → U 0 be its contragredient, let 0 and 1 be respective 
ordered bases of U and V , and let 00 and 10 be their dual ordered bases. Then 

µ 
Lt 

∂ µ 
L 

∂ 

0010 = 
10 

. 

PROOF. Let 0 = (u1, . . . , un), 1 = (v1, . . . , vk), 00 = (u1
0 , . . . , u0 

n), and 
10 = (v1

0 , . . . , vk
0 ). Write B and A for the respective matrices in the formula 

in question. The equations L(uj ) = 
P

i
k 
0=1 Ai 0 j vi 0 and Lt (vi

0) = 
Pn

j 0=1 Bj 0i u0
j 0 

imply that 
0 0vi (L(uj )) = v 

°P
i
k 
0=1 Ai 0 j vi 0 

¢ 
= Ai j i 

and Lt (vi 
0)(uj ) = 

Pn
j 0=1 Bj 0i u0

j 0 (uj ) = Bji . 

0Therefore Bji = Lt (vi
0)(uj ) = vi (L(uj )) = Ai j , as required. § 

7A general principle is involved in the definition of contragredient once we have a definition of
dual vector space, and we shall see further examples of this principle in the next two sections and in
later chapters: whenever a new systematic construction appears for the objects under study, it is well
to look for a corresponding construction with the functions relating these new objects. In language
to be introduced near the end of Chapter IV, the context for the construction will be a “category,” and
the principle says that it is well to see whether the construction is that of a “functor” on the category. 
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With V finite-dimensional, now consider V 00 = (V 0)0, the double dual. In the 
case that V = Fn , we saw that V 0 could be viewed as the space of row vectors, 
and it is reasonable to expect V 00 to involve a second transpose and again be the
space of column vectors. If so, then V gets identified with V 00. In fact, this is true 
in all cases, and we argue as follows. If v is in V , we can define a member ∂(v) 
of V 00 by 

0∂(v)(v0) = v (v) for v ∈ V and v 0 ∈ V 0 . 

This definition makes sense whether or not V is finite-dimensional. The function 
∂ is a linear map from V into V 00 called the canonical map of V into V 00. It is 
independent of any choice of basis. 

Proposition 2.22. If V is any finite-dimensional vector space over F, then the 
canonical map ∂ : V → V 00 is one-one onto. 

REMARKS. In the infinite-dimensional case the canonical map is one-one but
it is not onto. The proof that it is one-one uses the fact that V has a basis, but
we have deferred the proof of this fact about infinite-dimensional vector spaces
to Section 9. Problem 14 at the end of the chapter will give an example of an
infinite-dimensional V for which ∂ does not carry V onto V 00. When combined 
with the first corollary in Section A6 of the appendix, this example shows that ∂ 
never carries V onto V 00 in the infinite-dimensional case. 

PROOF. We saw in Section 3 that a linear map ∂ is one-one if and only if 
ker ∂ = 0. Thus suppose ∂(v) = 0. Then 0 = ∂(v)(v0) = v0(v) for all v0. Arguing 
by contradiction, suppose v 6= 0. Then we can extend {v} to a basis of V , and the 
linear functional v0 that is 1 on v and is 0 on the other members of the basis will 
have v0(v) 6= 0, contradiction. We conclude that ∂ is one-one. By Proposition 
2.19 we have 

dim V = dim V 0 = dim V 00 . (∗) 

Since ∂ is one-one, it carries any basis of V to a linearly independent set in V 00. 
This linearly independent set has to be a basis, by Corollary 2.4 and the dimension
formula (∗). § 

5. Quotients of Vector Spaces 

This section constructs a vector space V /U out of a vector space V and a vector 
subspace U . We begin with the example illustrated in Figure 2.1. In the vector 
space V = R2, let U be a line through the origin. The lines parallel to U are 
of the form v + U = {v + u | u ∈ U}, and we make the set of these lines 
into a vector space by defining (v1 + U ) + (v2 + U ) = (v1 + v2) + U and 
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c(v + U) = cv + U . The figure suggests that if we were to take any other line 
W through the origin, then W would meet all the lines v + U , and the notion of 
addition of lines v + U would correspond exactly to addition in W . Indeed we 
can successfully make such a correspondence, but the advantage of introducing
the vector space of all lines v + U is that it is canonical, independent of the kind
of choice we have to make in selecting W . One example of the utility of having a
canonical construction is the ease with which we obtain correspondence of linear
maps stated in Proposition 2.25 below. Other examples will appear later. 

U 

FIGURE 2.1. The vector space of lines v + U in R2 

parallel to a given line U through the origin. 

Proposition 2.23. Let V be a vector space over F, and let U be a vector 
subspace. The relation defined by saying that v1 ∼ v2 if v1 − v2 is in U is an 
equivalence relation, and the equivalence classes are all sets of the form v + U 
with v ∈ V . The set of equivalence classes V/U is a vector space under the 
definitions 

(v1 + U ) + (v2 + U ) = (v1 + v2) + U, 

c(v + U ) = cv + U, 

and the function q(v) = v + U is linear from V onto V /U with kernel U . 

REMARKS. We say that V /U is the quotient space of V by U . The linear map 
q(v) = v + U is called the quotient map of V onto V /U . 

PROOF. The properties of an equivalence relation are established as follows: 

v1 ∼ v1 because 0 is in U, 
v1 ∼ v2 implies v2 ∼ v1 because U is closed under negatives, 

v1 ∼ v2 and v2 ∼ v3 

together imply v1 ∼ v3 because U is closed under addition. 

Thus we have equivalence classes. The class of v1 consists of all vectors v2 such 
that v2 − v1 is in U , hence consists of all vectors in v1 + U . Thus the equivalence 
classes are indeed the sets v + U . 
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Let us check that addition and scalar multiplication, as given in the statement
of the proposition, are well defined. For addition let v1 ∼ w1 and v2 ∼ w2. 
Then v1 − w1 and v2 − w2 are in U . Since U is a vector subspace, the sum 
(v1 − w1) + (v2 − w2) = (v1 + v2) − (w1 + w2) is in U . Thus v1 + v2 ∼ w1 + w2,
and addition is well defined. For scalar multiplication let v ∼ w, and let a scalar 
c be given. Then v − w is in U , and c(v − w) = cv − cw is in U since U is a 
vector subspace. Hence cv ∼ cw, and scalar multiplication is well defined. 
The vector-space properties of V/U are consequences of the properties for V . 

To illustrate, consider associativity of addition. The argument in this case is that 
((v1 + U ) + (v2 + U )) + (v3 + U ) = ((v1 + v2) + U ) + (v3 + U ) 

= ((v1 + v2) + v3) + U = (v1 + (v2 + v3)) + U 

= (v1 + U ) + ((v2 + v3) + U ) = (v1 + U) + ((v2 + U ) + (v3 + U)). 

Finally the quotient map q : V → V /U given by q(v) = v + U is certainly 
linear. Its kernel is {v | v + U = 0 + U}, and this equals {v | v ∈ U }, as asserted. 
The map q is onto V /U since v + U = q(v). § 

Corollary 2.24. If V is a vector space over F and U is a vector subspace, then 
(a) dim V = dim U + dim(V /U ),
(b) the subspace U is the kernel of some linear map defined on V . 

REMARK. The first conclusion is valid even when all the spaces are not finite-
dimensional. For current purposes it is sufficient to regard dim V as +∞ if V is 
infinite-dimensional; the sum of +∞ and any dimension as +∞. 
PROOF. Let q be the quotient map. The linear map q meets the conditions of 

(b). For (a), take a basis of U and extend to a basis of V . Then the images under 
q of the additional vectors form a basis of V /U . § 

Quotients of vector spaces allow for the factorization of certain linear maps,
as indicated in Proposition 2.25 and Figure 2.2. 

Proposition 2.25. Let L : V → W be a linear map between vector 
spaces over F, let U0 = ker L , let U be a vector subspace of V contained in 
U0, and let q : V → V /U be the quotient map. Then there exists a linear 
map L : V /U → W such that L = Lq. It has the same image as L , and 
ker L = {u0 + U | u0 ∈ U0}. 

LV −−−→ W 

q Ly

V/U 

FIGURE 2.2. Factorization of linear maps via a quotient of vector spaces. 
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REMARK. One says that L factors through V /U or descends to V /U . 

PROOF. The definition of L has to be L(v + U ) = L(v). This forces Lq = L ,
and L will have to be linear. What needs proof is that L is well defined. Thus 
suppose v1 ∼ v2. We are to prove that L(v1 + U) = L(v2 + U), i.e., that 
L(v1) = L(v2). Now v1 − v2 is in U ⊆ U0, and hence L(v1 − v2) = 0. Then 
L(v1) = L(v1 − v2) + L(v2) = L(v2), as required. This proves that L is well 
defined, and the conclusions about the image and the kernel of L are immediate 
from the definition. § 

Corollary 2.26. Let L : V → W be a linear map between vector spaces over 
F, and suppose that L is onto W and has kernel U . Then V/U is canonically 
isomorphic to W . 

PROOF. Take U = U0 in Proposition 2.25, and form L : V /U → W with 
L = Lq. The proposition shows that L is onto W and has trivial kernel, i.e., the 0 
element of V /U . Having trivial kernel, L is one-one. § 

Theorem 2.27 (First Isomorphism Theorem). Let L : V → W be a linear 
map between vector spaces over F, and suppose that L is onto W and has kernel 
U . Then the map S 7→ L(S) gives a one-one correspondence between 

(a) the vector subspaces S of V containing U and 
(b) the vector subspaces of W . 

REMARK. As in Section A1 of the appendix, we write L(S) and L−1(T ) to 
indicate the direct and inverse images of S and T , respectively. 

PROOF. The passage from (a) to (b) is by direct image under L , and the passage 
from (b) to (a) will be by inverse image under L−1. Certainly the direct image
of a vector subspace as in (a) is a vector subspace as in (b). We are to show that
the inverse image of a vector subspace as in (b) is a vector subspace as in (a) and
that these two procedures invert one another.
For any vector subspace T of W , L−1(T ) is a vector subspace of V . In fact, if 

v1 and v2 are in L−1(T ), we can write L(v1) = t1 and L(v2) = t2 with t1 and t2 

in T . Then the equations L(v1 + v2) = t1 + t2 and L(cv1) = cL(v1) = ct1 show 
that v1 + v2 and cv1 are in L−1(T ). 
Moreover, the vector subspace L−1(T ) contains L−1(0) = U . Therefore the 

inverse image under L of a vector subspace as in (b) is a vector subspace as in 
(a). Since L is a function, we have L(L−1(T )) = T . Thus passing from (b) to 
(a) and back recovers the vector subspace of W . 
If S is a vector subspace of V containing U , we still need to see that S = 

L−1(L(S)). Certainly S ⊆ L−1(L(S)). In the reverse direction let v be in 
L−1(L(S)). Then L(v) is in L(S), i.e., L(v) = L(s) for some s in S. Since L 
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is linear, L(v − s) = 0. Thus v − s is in ker L = U , which is contained in S 
by assumption. Then s and v − s are in S, and hence v is in S. We conclude 
that L−1(L(S)) ⊆ S, and thus passing from (a) to (b) and then back recovers the 
vector subspace of V containing U . § 

If V is a vector space and V1 and V2 are vector subspaces, then we write 
V1 + V2 for the set V1 + V2 of all sums v1 + v2 with v1 ∈ V1 and v2 ∈ V2. This 
is again a vector subspace of V and is called the sum of V1 and V2. If we have 
vector subspaces V1, . . . , Vn , we abbreviate ((· · · (V1 + V2) + V3) + · · · + Vn) as 
V1 + · · · + Vn . 

Theorem 2.28 (Second Isomorphism Theorem). Let M and N be vector 
subspaces of a vector space V over F. Then the map n + (M ∩ N ) 7→ n + M is 
a well-defined canonical vector-space isomorphism 

N/(M ∩ N ) ∼= (M + N )/M. 

PROOF. The function L(n +(M ∩ N )) = n + M is well defined since M ∩ N ⊆ 
M , and L is linear. The domain of L is {n + (M ∩ N ) | n ∈ N }, and the kernel is 
the subset of this where n lies in M as well as N . For this to happen, n must be in 
M ∩ N , and thus the kernel is the 0 element of N/(M ∩ N ). Hence L is one-one. 
To see that L is onto (M + N )/M , let (m +n)+ M be given. Then n +(M ∩ N ) 

maps to n + M , which equals (m + n) + M . Hence L is onto. § 

Corollary 2.29. Let M and N be finite-dimensional vector subspaces of a 
vector space V over F. Then 

dim(M + N ) + dim(M ∩ N ) = dim M + dim N . 

PROOF. Theorem 2.28 and two applications of Corollary 2.24a yield 

dim(M + N ) − dim M = dim((M + N )/M) 

= dim(N/(M ∩ N )) = dim N − dim(M ∩ N ), 

and the result follows. § 

6. Direct Sums and Direct Products of Vector Spaces 

In this section we introduce the direct sum and direct product of two or more
vector spaces over F. When there are only finitely many such subspaces, these
constructions come to the same thing, and we call it “direct sum.” We begin with
the case that two vector spaces are given. 
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We define two kinds of direct sums. The external direct sum of two vector 
spaces V1 and V2 over F, written V1 ⊕ V2, is a vector space obtained as follows.
The underlying set is the set-theoretic product, i.e., the set V1 × V2 of ordered 
pairs (v1, v2) with v1 ∈ V1 and v2 ∈ V2. The operations of addition and scalar
multiplication are defined coordinate by coordinate: 

(u1, u2) + (v1, v2) = (u1 + v1, u2 + v2), 

c(v1, v2) = (cv1, cv2), 

and it is immediate that V1 ⊕ V2 satisfies the defining properties of a vector space. 
If {ai } is a basis of V1 and {bj } is a basis of V2, then it follows from the formula 

(v1, v2) = (v1, 0) + (0, v2) that {(ai , 0)} ∪ {(0, bj )} is a basis of V1 ⊕ V2. Con-
sequently if V1 and V2 are finite-dimensional, then V1 ⊕ V2 is finite-dimensional 
with 

dim(V1 ⊕ V2) = dim V1 + dim V2. 

Associated to the construction of the external direct sum of two vector spaces
are four linear maps of interest: 

two “projections,” p1 : V1 ⊕ V2 → V1 with p1(v1, v2) = v1, 

p2 : V1 ⊕ V2 → V2 with p2(v1, v2) = v2, 

two “injections,” i1 : V1 → V1 ⊕ V2 with i1(v1) = (v1, 0), 
i2 : V2 → V1 ⊕ V2 with i2(v2) = (0, v2). 

These have the properties that 
Ω I on Vs if r = s,

pr is = 
0 on Vs if r =6 s, 

i1 p1 + i2 p2 = I on V1 ⊕ V2. 

The second notion of direct sum captures the idea of recognizing a situation as
canonically isomorphic to an external direct sum. This is based on the following
proposition. 

Proposition 2.30. Let V be a vector space over F, and let V1 and V2 be vector 
subspaces of V . Then the following conditions are equivalent: 

(a) every member v of V decomposes uniquely as v = v1 + v2 with v1 ∈ V1 

and v2 ∈ V2,
(b) V1 + V2 = V and V1 ∩ V2 = 0,
(c) the function from the external direct sum V1 ⊕V2 to V given by (v1, v2) 7→ 

v1 + v2 is an isomorphism of vector spaces. 
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REMARKS. 
(1) If V is a vector space with vector subspaces V1 and V2 satisfying the 

equivalent conditions of Proposition 2.30, then we say that V is the internal 
direct sum of V1 and V2. It is customary to write V = V1 ⊕ V2 in this case even 
though what we have is a canonical isomorphism of the two sides, not an equality.
(2) The dimension formula 

dim(V1 ⊕ V2) = dim V1 + dim V2 

for an internal direct sum follows, on the one hand, from the corresponding
formula for external direct sums; it follows, on the other hand, by using (b) and
Corollary 2.29.
(3) In the proposition it is possible to establish a fourth equivalent condition as

follows: there exist linear maps p1 : V → V , p2 : V → V , i1 : image p1 → V ,
and i2 : image p2 → V such that 

• pr is ps equals pr if r 6= s and equals 0 if r = s, 
• i1 p1 + i2 p2 = I , and 
• V1 = image i1 p1 and V2 = image i2 p2. 

PROOF. If (a) holds, then the existence of the decomposition v = v1 + v2 

shows that V1 + V2 = V . If v is in V1 ∩ V2, then 0 = v + (−v) is a decomposition 
of the kind in (a), and the uniqueness forces v = 0. Therefore V1 ∩ V2 = 0. This 
proves (b).
The function in (c) is certainly linear. If (b) holds and v is given in V , then 

the identity V1 + V2 = V allows us to decompose v as v = v1 + v2. This 
proves that the linear map in (c) is onto. To see that it is one-one, suppose that 
v1 + v2 = 0. Then v1 = −v2 shows that v1 is in V1 ∩ V2. By (b), this intersection 
is 0. Therefore v1 = v2 = 0, and the linear map in (c) is one-one.
If (c) holds, then the fact that the linear map in (c) is onto V proves the existence 

of the decomposition in (a). For uniqueness, suppose that v1 + v2 = u1 + u2 

with u1 and v1 in V1 and with u2 and v2 in V2. Then (u1, u2) and (v1, v2) have 
the same image under the linear map in (c). Since the function in (c) is assumed
one-one, we conclude that (u1, u2) = (v1, v2). This proves the uniqueness of the 
decomposition in (a). § 

If V = V1 ⊕ V2 is a direct sum, then we can use the above projections and
injections to pass back and forth between linear maps with V1 and V2 as domain 
or range and linear maps with V as domain or range. This passage back and forth 
is called the universal mapping property of V1 ⊕ V2 and will be seen later in this 
section to characterize V1 ⊕ V2 up to canonical isomorphism. Let us be specific 
about how this property works. 
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To arrange for V to be the range, suppose that U is a vector space over F and 
that L1 : U → V1 and L2 : U → V2 are linear maps. Then we can define a linear 
map L : U → V by L = i1 L1 + i2 L2, i.e., by 

L(u) = (i1 L1 + i2 L2)(u) = (L1(u), L2(u)), 

and we can recover L1 and L2 from L by L1 = p1 L and L2 = p2 L . 
To arrange for V to be the domain, suppose that W is a vector space over F 

and that M1 : V1 → W and M2 : V2 → W are linear maps. Then we can define 
a linear map M : V → W by M = M1 p1 + M2 p2, i.e., by 

M(v1, v2) = M1(v1) + M2(v2), 

and we can recover M1 and M2 from M by M1 = Mi1 and M2 = Mi2. 
The notion of direct sum readily extends to the direct sum of n vector spaces 

over F. The external direct sum V1 ⊕ · · · ⊕ Vn is the set of ordered pairs 
(v1, . . . , vn) with each vj in Vj and with addition and scalar multiplication defined
coordinate by coordinate. In the finite-dimensional case we have 

dim(V1 ⊕ · · · ⊕ Vn) = dim V1 + · · · + dim Vn. 

If V1, . . . , Vn are given as vector subspaces of a vector space V , then we say 
that V is the internal direct sum of V1, . . . , Vn if the equivalent conditions of
Proposition 2.31 below are satisfied. In this case we write V = V1 ⊕ · · · ⊕ Vn 

even though once again we really have a canonical isomorphism rather than an
equality. 

Proposition 2.31. Let V be a vector space over F, and let V1, . . . , Vn be vector 
subspaces of V . Then the following conditions are equivalent: 

(a) every member v of V decomposes uniquely as v = v1 + · · · + vn with 
vj ∈ Vj for 1 ≤ j ≤ n,

(b) V1 +· · ·+ Vn = V and also Vj ∩ (V1 +· · ·+ Vj−1 + Vj+1 +· · ·+ Vn) = 0 
for each j with 1 ≤ j ≤ n,

(c) the function from the external direct sum V1 ⊕ · · · ⊕ Vn to V given by 
(v1, . . . , vn) 7→ v1 + · · · + vn is an isomorphism of vector spaces. 

Proposition 2.31 is proved in the same way as Proposition 2.30, and the
expected analog of Remark 3 with that proposition is valid as well. Notice 
that the second condition in (b) is stronger than the condition that Vi ∩ Vj = 0 for 
all i 6 j . Figure 2.3 illustrates how the condition Vi ∩ Vj = 0 for all i 6 j can= = 
be satisfied even though (b) is not satisfied and even though the vector subspaces
do not therefore form a direct sum. 
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FIGURE 2.3. Three 1-dimensional vector subspaces of R2 

such that each pair has intersection 0. 

If V = V1 ⊕· · ·⊕ Vn is a direct sum, then we can define projections p1, . . . , pn 

and injections i1, . . . , in in the expected way, and we again get a universal mapping
property. That is, we can pass back and forth between linear maps with V1, . . . , Vn 

as domain or range and linear maps with V as domain or range. The argument 
given above for n = 2 is easily adjusted to handle general n, and we omit the 
details. 
To generalize the above notions to infinitely many vector spaces, there are two

quite different ways of proceeding. Let us treat first the external constructions.
Let a nonempty collection of vector spaces Vα over F be given, one for each α ∈ A. 
The external direct sum 

L 
α∈A Vα is the set of all tuples {vα} in the Cartesian 

product ×α∈AVα with all but finitely many vα equal to 0 and with addition and
scalar multiplication defined coordinate by coordinate. For this construction we
obtain a basis as the union of embedded bases of the constituent spaces. The
external direct product 

Q
is the set of all tuples {vα} in ×α∈AVα,α∈A Vα 

again with addition and scalar multiplication defined coordinate by coordinate.
When there are only finitely many factors V1, . . . , Vn , the external direct product,
which manifestly coincides with the external direct sum, is sometimes denoted
by V1 × · · · × Vn . For the external direct product when there are infinitely many
factors, there is no evident way to obtain a basis of the product from bases of the
constituents. 
The projections and injections that we defined in the case of finitely many

vector spaces are still meaningful here. The universal mapping property is still
valid as well, but it splinters into one form for direct sums and another form for
direct products. The formulas given above for using linear maps with the Vα’s 
as domain or range to define linear maps with the direct sum or direct product
as domain or range may involve sums with infinitely many nonzero terms, and
they are not directly usable. Instead, the formulas that continue to make sense
are the ones for recovering linear maps with the Vα’s as domain or range from
linear maps with the direct sum or direct product as domain or range. These turn
out to determine the formulas uniquely for the linear maps with the direct sum
or direct product as domain or range. In other words, the appropriate universal
mapping property uniquely determines the direct sum or direct product up to an 
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isomorphism that respects the relevant projections and injections.
Let us see to the details. We denote typical members of 

Q
and 

L 
α∈A Vα α∈A Vα 

by {vα}α∈A, with the understanding that only finitely many vα can be nonzero in 
the case of the direct sum. The formulas are 

pβ : 
Y 

Vα → Vβ with pβ 
° 
{vα}α∈A

¢ 
= vβ, 

α∈A Ω 
vβ if α = β,

iβ : Vβ → 
M 

Vα with iβ(vβ) = {wα}α∈A and wα = 
0 if α =6 β.

α∈A 

If U is a vector space over F and if a linear map Lβ : U → Vβ is given for each 
β ∈ A, we can obtain a linear map L : U → 

Q
α∈A Vα that satisfies pβ L = Lβ 

for all β. The definition that makes perfectly good sense is 

L(u) = {L(u)α}α∈A = {Lα(u)}α∈A. 

What does not make sense is to try to express the right side in terms of the
injections iα; we cannot write the right side as 

P 
α∈A iα(Lα(u)) because infinitely 

many terms might be nonzero.
If W is a vector space and a linear map Mβ : Vβ → W is given for each β, we 

can obtain a linear map M : 
L 

α∈A Vα → W that satisfies Miβ = Mβ for all β;
the definition that makes perfectly good sense is 

X
M

° 
{vα}α∈A

¢ 
= Mα(vα). 

α∈A 

The right side is meaningful since only finitely many vα can be nonzero. It can 
be misleading to write the formula as M = 

P 
α∈A Mα pα because infinitely many 

of the linear maps Mα pα can be nonzero functions. 
In any event, we have a universal mapping property in both cases—for the direct

product with the projections in place and for the direct sum with the injections
in place. Let us see that these universal mapping properties characterize direct
products and direct sums up to an isomorphism respecting the projections and
injections, and that they allow us to define and recognize “internal” direct products
and direct sums. 
A direct product of a set of vector spaces Vα over F for α ∈ A consists of 

a vector space V and a system of linear maps pα : V → Vα with the following 
universal mapping property: whenever U is a vector space and {Lα} is a system 
of linear maps Lα : U → Vα, then there exists a unique linear map L : U → V 
such that pα L = Lα for all α. See Figure 2.4. The external direct product
establishes existence of a direct product, and Proposition 2.32 below establishes
its uniqueness up to an isomorphism of the V ’s that respects the pα’s. A direct 
product is said to be internal if each Vα is a vector subspace of V and if for each 
α, the restriction pα 

Ø
Ø
Vα 
is the identity map on Vα. Because of the uniqueness, this 
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definition of internal direct product is consistent with the earlier one when there
are only finitely Vα’s. 

LαVα √−−− U 

pα 

x
 L 

V 

FIGURE 2.4. Universal mapping property of a direct product of vector spaces. 

Proposition 2.32. Let A be a nonempty set of vector spaces over F, and let 
Vα be the vector space corresponding to the member α of A. If (V, { pα}) and 
(V ∗ , { p∗}) are two direct products of the Vα’s, then the linear maps pα : V → Vαα

and p∗ : V ∗ → Vα are onto Vα, there exists a unique linear map L : V ∗ → Vα

such that p∗ = pα L for all α ∈ A, and L is invertible. α 

PROOF. In Figure 2.4 let U = V ∗ and Lα = p∗ . If L : V ∗ → V is the linear α

map produced by the fact that V is a direct product, then we have pα L = p∗ forα

all α. Reversing the roles of V and V ∗, we obtain a linear map L∗ : V → V ∗ 

with p∗ L∗ = pα for all α. Therefore pα(LL∗ ) = ( pα L)L∗ = p∗ L∗ = pα.α α

In Figure 2.4 we next let U = V and Lα = pα for all α. Then the identity 
1V on V has the same property pα1V = pα relative to all pα that LL∗ has, and 
the uniqueness says that LL∗ = 1V . Reversing the roles of V and V ∗, we obtain 
L∗ L = 1V ∗ . Therefore L is invertible. 
For uniqueness suppose that 8 : V ∗ → V is another linear map with p∗ = α 

pα8 for all α ∈ A. Then the argument of the previous paragraph shows that 
L∗ 8 = 1V ∗ . Applying L on the left gives 8 = (LL∗ )8 = L(L∗ 8) = L1V ∗ = 
L . Thus 8 = L . 
Finally we have to show that the αth map of a direct product is onto Vα. It 

is enough to show that p∗ is onto Vα. Taking V as the external direct product αQ
with pα equal to the coordinate mapping, form the invertible linear map α∈A Vα 

L∗ : V → V ∗ that has just been proved to exist. This satisfies pα = p∗ L∗ for all α 
α ∈ A. Since pα is onto Vα, p∗ must be onto Vα. §α 

A direct sum of a set of vector spaces Vα over F for α ∈ A consists of a vector 
space V and a system of linear maps iα : Vα → V with the following universal 
mapping property: whenever W is a vector space and {Mα} is a system of linear 
maps Mα : Vα → W , then there exists a unique linear map M : V → W such 
that Miα = Mα for all α. See Figure 2.5. The external direct sum establishes
existence of a direct sum, and Proposition 2.33 below establishes its uniqueness
up to isomorphism of the V ’s that respects the iα’s. A direct sum is said to be 
internal if each Vα is a vector subspace of V and if for each α, the map iα is the 
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inclusion map of Vα into V . Because of the uniqueness, this definition of internal
direct sum is consistent with the earlier one when there are only finitely Vα’s. 

Vα 


iα 

y

V 

FIGURE 2.5. Universal mapping property of a direct sum of vector spaces. 

Proposition 2.33. Let A be a nonempty set of vector spaces over F, and let 
Vα be the vector space corresponding to the member α of A. If (V, {iα}) and 
(V ∗ , {i∗}) are two direct sums of the Vα’s, then the linear maps iα : Vα → V andα

i∗ : Vα → V ∗ are one-one, there exists a unique linear map M : V → V ∗ suchα

that i∗ = Miα for all α ∈ A, and M is invertible. α 

PROOF. In Figure 2.5 let W = V ∗ and Mα = i∗. If M : V → V ∗ is the linear α

map produced by the fact that V is a direct sum, then we have Miα = i∗ for all α 
α. Reversing the roles of V and V ∗, we obtain a linear map M∗ : V ∗ → V with 
M∗i∗ = iα for all α. Therefore (M∗ M)iα = M∗i∗ = iα.α α 

In Figure 2.5 we next let W = V and Mα = iα for all α. Then the identity 1V 

on V has the same property 1V iα = iα relative to all iα that M∗ M has, and the 
uniqueness says that M∗ M = 1V . Reversing the roles of V and V ∗, we obtain 
MM∗ = 1V ∗ . Therefore M is invertible. 
For uniqueness suppose that 8 : V → V ∗ is another linear map with i∗ = 8iαα

for all α ∈ A. Then the argument of the previous paragraph shows that M∗ 8 = 
1V . Applying M on the left gives 8 = (MM∗ )8 = M(M∗ 8) = M1V = M . 
Thus 8 = M . 
Finally we have to show that the αth map of a direct sum is one-one on Vα. It 

is enough to show that i∗ is one-one on Vα. Taking V as the external direct sum αL
s∈S Vα with iα equal to the embedding mapping, form the invertible linear map 

M∗ : V ∗ → V that has just been proved to exist. This satisfies iα = M∗i∗ for all α 
α ∈ A. Since iα is one-one, i∗ must be one-one. §α 

7. Determinants 

A “determinant” is a certain scalar attached initially to any square matrix and
ultimately to any linear map from a finite-dimensional vector space into itself. 

Mα−−−→ W 

M 
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The definition is presumably known from high-school algebra in the case of
2-by-2 and 3-by-3 matrices: 

∂µ 
a bdet = ad − bc,c d 

√ a b c ! 

det d e f = aei + bf g + cdh − a f h − bdi − ceg. 
g h i 

For n-by-n square matrices the determinant function will have the following
important properties: 

(i) det(AB) = det A det B,
(ii) det I = 1,
(iii) det A = 0 if and only if A has no inverse. 
Once we have constructed the determinant function with these properties, we

can then extend the function to be defined on all linear maps L : V → V with V 
finite-dimensional. To do so, we let 0 be any ordered basis of V , and we define µ 

L 
∂

det L = det . If 1 is another ordered basis, then 
00 

µ 
L 

∂ µ 
I 

∂ µ 
L 

∂ µ 
I 

∂
det = det det det ,

11 10 00 01 

µ 
L 

∂ µ 
I 

∂ µ 
I 

∂
and this equals det by (i) since and are inverses of each 

00 10 01 
other and since their determinants, by (i) and (ii), are reciprocals. Hence the
definition of det L is independent of the choice of ordered basis, and determinant
is well defined on the linear map L : V → V . It is then immediate that the 
determinant function on linear maps from V into V satisfies (i), (ii), and (iii) 
above. 
Thus it is enough to establish the determinant function on n-by-n matrices. 

Setting matters up in a useful way involves at least one subtle step, but much of
this step has fortunately already been carried out in the discussion of signs of
permutations in Section I.4. To proceed, we view det on n-by-n matrices over 
F as a function of the n rows of the matrix, rather than the matrix itself. We 
write V for the vector space M1n(F) of all n-dimensional row vectors. A function 
f : V × · · · × V → F defined on ordered k-tuples of members of V is called a 
k-multilinear functional or k-linear functional if it depends linearly on each of 
the k vector variables when the other k − 1 vector variables are held fixed. For 
example, 

f (( a b ) , ( c d )) = ac + b(c + d) + 2
1 ad 
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is a 2-linear functional on M12(F) × M12(F). A little more generally and more 
suggestively, 

g(( a b ) , ( c d )) = `1 ( a b ) `2 ( c d ) + `3 ( a b ) `4 ( c d ) 

is a 2-linear functional on M12(F) × M12(F) whenever `1, . . . , ̀ 4 are linear 
functionals on M12(F). 
Let {v1, . . . , vn} be a basis of V . Then a k-multilinear functional as above 

is determined by its value on all k-tuples of basis vectors (vi1 , . . . , vik ). (Here
i1, . . . , ik are integers between 1 and n.) The reason is that we can fix all but
the first variable and expand out the expression by linearity so that only a basis
vector remains in each term for the first variable; for each resulting term we can
fix all but the second variable and expand out the expression by linearity; and so
on. Conversely if we specify arbitrary scalars for the values on each such k-tuple,
then we can define a k-multilinear functional assuming those values on the tuples 
of basis vectors. 
A k-multilinear functional f on k-tuples from M1n(F) is said to be alternating 

if f is 0 whenever two of the variables are equal. 

EXAMPLE. For k = 2 and n = 2, we use 
©
v1 = ( 1 0 ) , v2 = ( 0 1 ) 

™ 
as ba-

sis. Then a 2-linear multilinear functional f is determined by f (v1, v1), f (v1, v2),
f (v2, v1), and f (v2, v2). If f is alternating, then f (v1, v1) = f (v2, v2) = 0. 
But also f (v1 + v2, v1 + v2) = 0, and expansion via 2-multilinearity gives 

f (v1, v1) + f (v1, v2) + f (v2, v1) + f (v2, v2) = 0. 

We have already seen that the first and last terms on the left side are 0, and thus
f (v2, v1) = − f (v1, v2). Therefore f is completely determined by f (v1, v2). 

The principle involved in the computation within the example is valid more
generally: whenever a multilinear functional f is alternating and two of its 
arguments are interchanged, then the value of f is multiplied by −1. In fact, 
let us suppress all variables except for the i th and the j th. Then we have 

0 = f (v + w, v + w) = f (v + w, v) + f (v + w, w) 

= f (v, v) + f (w, v) + f (v, w) + f (w, w) = f (w, v) + f (v, w). 

Theorem 2.34. For M1n(F), the vector space of alternating n-multilinear 
functionals has dimension 1, and a nonzero such functional has nonzero value on 
(e1
t , . . . , ent ), where {e1, . . . , en} is the standard basis of Fn . Let f0 be the unique 

such alternating n-multilinear functional taking the value 1 on (e1
t , . . . , ent ). If a 

function det : Mnn(F) → F is defined by 

det A = f0(A1· , . . . , An·) 
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when A has rows A1· , . . . , An· , then det has the properties that 
(a) det(AB) = det A det B,
(b) det I = 1,
(c) det A = 0 if and only if A has no inverse, 
(d) det A = 

P 
(sgn σ)A1σ(1) A2σ(2) · · · Anσ(n), the sum being taken over all σ

permutations σ of {1, . . . , n}. 

PROOF OF UNIQUENESS. Let f be an alternating n-multilinear functional, and 
let {u1, . . . , un} be the basis of the space of row vectors defined by ui = ei

t . Since 
f is multilinear, f is determined by its values on all n-tuples (uk1 , . . . , ukn ). 
Since f is alternating, f (uk1 , . . . , ukn ) = 0 unless the uki are distinct, i.e., 
unless (uk1 , . . . , ukn ) is of the form (uσ(1), . . . , uσ(n)) for some permutation 
σ . We have seen that the value of f on an n-tuple of rows is multiplied 
by −1 if two of the rows are interchanged. Corollary 1.22 and Proposition
1.24b consequently together imply that the value of f on an n-tuple is multi-
plied by sgn σ if the members of the n-tuple are permuted by σ . Therefore 
f (uσ(1), . . . , uσ(n)) = (sgn σ) f (u1, . . . , un), and f is completely determined 
by its value on (u1, . . . , un). We conclude that the vector space of alternating 
n-multilinear functionals has dimension at most 1. § 

PROOF OF EXISTENCE. Define det A, and therefore also f0, by (d). Each term 
in this definition is the product of n linear functionals, the kth linear functional 
being applied to the kth argument of f0, and f0 is consequently n-multilinear. 
To see that f0 is alternating, suppose that the i th and j th rows are equal with 
i 6 j . If τ is the transposition of i and j , then A1στ(1) A2στ (2) · · · Anστ (n) = = 
A1σ(1) A2σ(2) · · · Anσ(n), and Lemma 1.23 hence shows that 

(sgn στ )A1στ(1) A2στ (2) · · · Anστ (n) + (sgn σ)A1σ(1) A2σ(2) · · · Anσ(n) = 0. 

Thus if we compute the sum in (d) by grouping pairs of terms, the one for στ and 
the one for σ if sgn σ = +1, we see that the whole sum is 0. Thus f0 is alternating. 
Finally when A is the identity matrix I , we see that A1σ(1) A2σ(2) · · · Anσ(n) = 0 
unless σ is the identity permutation, and then the product is 1. Since sgn 1 = +1,
det I = +1. We conclude that the vector space of alternating n-multilinear 
functionals has dimension exactly 1. § 

PROOF OF PROPERTIES OF det. Fix an n-by-n matrix B. Since f0 is alternating 
n-multilinear, so is (v1, . . . , vn) 7→ f0(v1 B, . . . , vn B). The vector space of 
alternating n-multilinear functionals has been proved to be of dimension 1, and 
therefore f0(v1 B, . . . , vn B) = c(B) f0(v1, . . . , vn) for some scalar c(B). In the 
notation with det, this equation reads det(AB) = c(B) det A. Putting A = I , we 
obtain det B = c(B) det I . Thus c(B) = det B, and (a) follows. We have already 
proved (b), and (d) was the definition of det A. We are left with (c). If A−1 
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exists, then (a) and (b) give det(A−1) det A = det I = 1, and hence det A 6= 0. 
If A−1 does not exist, then Theorem 1.30 and Proposition 1.27c show that the
reduced row-echelon form R of A has a row of 0’s. We combine Proposition 1.29,
conclusion (a), the invertibility of elementary matrices, and the fact that invertible
matrices have nonzero determinant, and we see that det A is the product of det R 
and a nonzero scalar. Since det is linear as a function of each row and since R 
has a row of 0’s, det R = 0. Therefore det A = 0. This completes the proof of 
the theorem. § 

The fast procedure for evaluating determinants is to use row reduction, keeping
track of what happens. The effect of each kind of row operation on a determinant
and the reasons the function det behaves in this way are as follows: 

(i) Interchange two rows. This operation multiplies the determinant by −1 
because of the alternating property.

(ii) Multiply a row by a nonzero scalar c. This operation multiplies the 
determinant by c because of the linearity of determinant as a function of 
that row. 

(iii) Replace the i th row by the sum of it and a multiple of the j th row with 
j 6 i .= This operation leaves the determinant unchanged. In fact, the
matrix whose i th row is replaced by the j th row has determinant 0 by the
alternating property, and the rest follows by linearity in the i th row. 

As with row reduction the number of steps required to compute a determinant
this way is ≤ Cn3 in the n-by-n case. 
A certain savings of computation is possible as compared with full-fledged

row reduction. Namely, we have only to arrange for the reduced matrix to be 0
below the main diagonal, and then the determinant of the reduced matrix will
be the product of the diagonal entries, by inspection of the formula in Theorem
2.34d. 

√ 1 2 3 ! 

EXAMPLE. For the matrix 4 
7 

5 
8 

6 
10 

, we have 

√ 1 
det 4 

2 
5 

3 √ 1! 
(iii)6 = det 0 

2 
−3 

3 ! 

−6 
7 8 10 0 −6 −11 

√ 1
(ii)
= −3 det 0 

2 
1 

3 √ 1! 
(iii)2 = −3 det 0 

2 
1 

3 ! 

2 = −3. 
0 −6 −11 0 0 1 

We conclude this section with a number of formulas for determinants. 
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Proposition 2.35. If A is an n-by-n square matrix, then det At = det A. 

PROOF. Corollary 2.9 says that the row space and the column space of A have 
the same dimension, and A is invertible if and only if the row space has dimension 
n. Thus A is invertible if and only if At is invertible, and Theorem 2.34c thus 
shows that det A = 0 if and only if det At = 0. Now suppose that det A and det At 
are nonzero. Then we can write A = E1 · · · Er with each Ej an elementary matrix 
of one of the three types. Theorem 2.34a shows that det A = 

Qr
j=1 det Ej and 

det At = 
Qr 

=1 det Ej
t , and hence it is enough to prove that det Ej = det Ej

t for 
each j . For 

j
Ej of either of the first two types, Ej = Ej

t and there is nothing to 
prove. For Ej of the third type, we have det Ej = det Ej

t = 1. The result follows. 
§ 

Proposition 2.36 (expansion in cofactors). Let A be an n-by-n matrix, and let 
Ai j be the square matrix of size n − 1 obtained by deleting the i th row and the j thc
column. Then 

(a) for any j , det A = 
Pn 

=1 (−1)i+ j Ai j det Aci j , i.e., det A may be calculated i
by “expansion in cofactors” about the j th column,

(b) for any i , det A = 
Pn

j=1 (−1)i+ j Ai j det Aci j , i.e., det A may be calculated 
by “expansion in cofactors” about the i th row. 

REMARKS. If this formula is iterated, we obtain a procedure for evaluating a
determinant in about Cn! steps. This procedure amounts to using the formula for 
det A in Theorem 2.34d and is ordinarily not of practical use. However, it is of 
theoretical use, and Corollary 2.37 will provide a simple example of a theoretical
application. 

PROOF. It is enough to prove (a) since (b) then follows by combining (a) and
Proposition 2.35. In (a), the right side is 1 when A = I , and it is enough by
Theorem 2.34 to prove that the right side is alternating and n-multilinear. Each 
term on the right side is n-multilinear, and hence so is the whole expression. To
see that the right side is alternating, suppose that the k th and l th rows are equal 
with k < l. The kth and l th rows are both present in Aci j if i is not equal to k or l, 
and thus each det Aci j is 0 for i not equal to k or l. We are left with showing that 

(−1)k+ j Akj det d l+ j Al j det c = 0.Akj + (−1) Al j 

The two matrices d Al j have the same rows but in a different order. TheAk j and c
order is 

1, . . . , k − 1, k + 1, . . . , l − 1, l, l + 1, . . . , n in the case of dAkj , 

1, . . . , k − 1, k, k + 1, . . . , l − 1, l + 1, . . . , n in the case of Acl j . 
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We can transform the first matrix into the second by transposing the index for 
row l to the left one step at a time until it gets to the k th position. The number of 
steps is l − k − 1, and therefore det Acl j = (−1)l−k−1 det dAk j . Consequently 

(−1)k+ j Akj det d l+ j Al j det cAkj + (−1) Al j 
= 

° 
(−1) 2l−k−1+ j Al j 

¢ 
det dk+ jAk j + (−1) Ak j . 

The right side is 0 since Akj = Al j , and the proof is complete. § 

Corollary 2.37 (Vandermonde matrix and determinant). If r1, . . . , rn are 
scalars, then 

 1 1 · · · 1  

r1 r2 · · · rn 
det 

 r1
2 r2

2 · · · rn 
2 

= 
Y 

(rj − ri ).  
. . .

. 
. . . . j>i 
. . . .  

rn−1 rn−1 rn−1· · ·1 2 n 

PROOF. We show that the determinant is 
 1 · · · 1 

 

r2 · · · rnY  
= (rj − r1) det  .. . .. 


 ,. 

.j>1 
 . . 
rn−2 rn−2· · ·2 n 

and then the result follows by induction. In the given matrix, replace the nth row 
by the sum of it and −r1 times the (n − 1)st row, then the (n − 1)st row by the 
sum of it and −r1 times the (n − 2)nd row, and so on. The resulting determinant 
is 

 1 1 · · · 1  

0 r2 − r1 · · · rn − r1 
. . ..det 


. . . . . 


 . . . 


rn−2 


 0 2 − r1r2 
n−3 · · · rnn−2 − r1rnn−3  

0 · · ·r2 
n−1 − r1r2 

n−2 rnn−1 − r1rnn−2 

 r2 − r1 · · · rn − r1 
 

. .. . . . . by Proposition 2.36a. .= det 
 

rn−2 − r1rn−3 · · · rn−2 − r1rn−3 


applied with j = 1 

2 2 n n 
 

rn−1 − r1rn−2 rn−1 − r1rn−2· · ·2 2 n n 
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 1 · · · 1 
 

r2 · · · rn 
· · · (rn − r1) det 

 
= (r2 − r1)  . . . 

. . .  , . . . 
rn−2 rn−2· · ·2 n 

the last step following by multilinearity of the determinant in the columns (as a
consequence of Proposition 2.35 and multilinearity in the rows). § 

The classical adjoint of the square matrix A, denoted by Aadj, is the matrix with 
entries Aadji j = (−1)i+ j det Acj i with Ackl defined as in the statement of Proposition 

2.36: Ackl is the matrix A with the kth row and l th column deleted. ∂adjµ 
a 

µ ∂
b d −bIn the 2-by-2 case, we have = . Thus we have c d −c a 

AAadj = Aadj A = (det A)I in the 2-by-2 case. Cramer’s rule for solving simul-
taneous linear equations results from the n-by-n generalization of this formula. 

Proposition 2.38 (Cramer’s rule). If A is an n-by-n matrix, then AAadj = 
Aadj A = (det A)I , and thus det A =6 0 implies A−1 = (det A)−1 Aadj. Conse-
quently if det A 6 = b= 0, then the unique solution of the simultaneous system Ax  x1 

  b1 
 

. .of n equations in n unknowns, in which x =  ..  and b =  .. , has 
xn bn 

det Bjxj = 
det A 

with Bj equal to the n-by-n matrix obtained from A by replacing the j th column 
of A by b. 

REMARKS. If we think of the calculation of the determinant of an n-by-n matrix 
as requiring about n3 steps, then application of Cramer’s rule, at least if done in
an unthinking fashion, suggests that solving an invertible system requires about 
n3(n + 1) steps, i.e., n + 1 determinants are involved in the explicit solution. Use
of row reduction directly to solve the system is more efficient than proceeding this
way. Thus Cramer’s rule is more important for its theoretical applications than it
is for making computations. One simple theoretical application is the observation
that each entry of the inverse of a matrix is the quotient of a polynomial function
of the entries divided by the determinant. 

PROOF. The (i, j)th entry of Aadj A is 
n n
Aadj(Aadj A)i j = 

X 
ik Akj = 

X 
(−1)i+k (det Acki )Akj . 

k=1 k=1 
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If i = j , then expansion in cofactors about the j th column (Proposition 2.36a) 
identifies the right side as det A. If i 6 j , consider the matrix B obtained from A= 
by replacing the i th column of A by the j th column. Then the i th and j th columns 
of B are equal, and hence det B = 0. Expanding det B in cofactors about the i th 

column (Proposition 2.36a), we obtain 

n nX 
i+k 

X 
i+k0 = det B = (−1) (det Bcki )Bki = (−1) (det Acki )Akj . 

k=1 k=1 

Thus AAadj = (det A)I . A similar argument proves that Aadj A = (det A)I . 
For the application to Ax = b, we multiply both sides on the left by Aadj and 

obtain (det A)x = Aadjb. Hence 

n n
(det A)xj = 

X 
(Aadj)j i bi = 

X 
(−1)i+ j bi det Aci j , 

i=1 i=1 

and the right side equals det Bj by expansion in cofactors of det Bj about the j th 

column (Proposition 2.36a). § 

8. Eigenvectors and Characteristic Polynomials 

A vector v 6 0 in Fn = ∏v= is an eigenvector of the n-by-n matrix A if Av 
for some scalar ∏. We call ∏ the eigenvalue associated with v. When ∏ is an 
eigenvalue, the vector space of all v with Av = ∏v, i.e., the set consisting of the 
eigenvectors and the 0 vector, is called the eigenspace for ∏. 
If we think of A as giving a linear map L from Fn to itself, an eigenvector takes

on geometric significance as a vector mapped to a multiple of itself by L . Another 
geometric way of viewing matters is that the eigenvector yields a 1-dimensional
subspace U = Fv that is invariant, or stable, under L in the sense of satisfying 
L(U ) ⊆ U . 

Proposition 2.39. An n-by-n matrix A has an eigenvector with eigenvalue ∏ 
if and only if det(∏I − A) = 0. In this case the eigenspace for ∏ is the kernel of 
∏I − A. 

PROOF. We have Av = ∏v if and only if (∏I − A)v = 0, if and only if v is in 
ker(∏I − A). This kernel is nonzero if and only if det(∏I − A) = 0. § 
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With A fixed, the expression det(∏I − A) is a polynomial in ∏ of degree n 
and is called the characteristic polynomial8 of A. To see that it is at least a 
polynomial function of ∏, let us expand det(∏I − A) as 

 
∏ − A11 −A12 · · · −A1n 

 


det  

−A21 
. . . 

∏ − A22 
. . . 

· · · 
. . . 

−A2n 
. . . 



 

−An1 −An2 · · · ∏ − Ann 
X

= (sgn σ)term1,σ (1) · · · termn,σ (n) . 
σ 

The term for the permutation σ = 1 has σ(k) = k for every k and gives Qn 
=1 (∏ − Aj j ). All other σ ’s have σ(k) = k for at most n − 2 values of k,j

and ∏ therefore occurs at most n − 2 times. Thus the above expression is 
nY nother terms with powerso 

= (∏ − Aj j ) + of ∏ at most n − 2j=1 

n≥X ¥ nterms with powers of o 
= ∏n − Aj j ∏n−1 + + (−1)n det A. 

∏ from n − 2 to 1 j=1 

The constant term is (−1)n det A as indicated because it is the value of the poly-
nomial at ∏ = 0, which is det(−A). In any event, we now see that characteristic
polynomials are polynomial functions. Starting in Chapter V, we shall treat them
as polynomials in one indeterminate in the sense9 of Section I.3; for now, we are 
calling the indeterminate ∏, but later as our point of view evolves, we shall start 
calling it X . The negative of the coefficient of ∏n−1 is the trace of A, denoted 
by Tr A. Thus Tr A = 

Pn
j=1 Aj j . Trace is a linear functional on the vector space 

Mnn(F) of n-by-n matrices. 
µ 

1 
∂

4EXAMPLE 1. For A = , the characteristic polynomial is 
−2 1 

∂µ 
∏ − 4 −1det(∏I − A) = det 2 ∏ − 1 

= (∏ − 4)(∏ − 1) + 2 = ∏2 − 5∏ + 6 = (∏ − 2)(∏ − 3). 

8Some authors call det(A − ∏I ) the characteristic polynomial. This is the same polynomial as 
det(∏I − A) if n is even and is the negative of it if n is odd. The choice made here has the slight
advantage of always having leading coefficient 1, which is a handy property in some situations.

9In Chapter V we will allow determinants of matrices whose entries are from any “commutative
ring with identity,” C[∏] being an example. Then we can think of det(∏I − A) directly as involving 
an indeterminate ∏ and not initially as a function of a scalar ∏. 
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The roots, and hence the eigenvalues, are ∏ = 2 and ∏ = 3. The eigenvectors for 
∏ = 2 are computed by solving (2I − A)v = 0. The method of row reduction 
gives 

1µ 
0 

∂ µ 
1 0 

∂µ 
2 − 4 −1 0 

∂ 
−2 −1 = .02 2 − 1 0 2 1 0 

7→ 0 0
2

1 − 1Thus we have x1 + 2 x2 = 0 and x1 = 2 x2. So the eigenvectors for ∏ = 2 µ 
x1 

∂ µ 
− 1 

∂
are the nonzero vectors of the form = x2 2 . Similarly we find x2 1 
the eigenvectors for ∏ = 3 by starting from (3I − A)v = 0 and solving. The 
result is that the eigenvectors for ∏ = 3 are the nonzero vectors of the form µ 
x1 

∂ µ 
−1 

∂
= x2 . For this example, there is a basis of eigenvectors. x2 1 

Corollary 2.40. An n-by-n matrix A has at most n eigenvalues. 

PROOF. Since det(∏I − A) is a polynomial of degree n, this follows from 
Proposition 2.39 and Corollary 1.14. § 

It will later be of interest that certain matrices A have a basis of eigenvectors. 
Such a basis exists for A as in Example 1 but not in general. One thing that
can prevent a matrix from having a basis of eigenvectors is the failure of the
characteristic polynomial to factor into first-degree factors. Thus, for example, 

A = 

µ 
0 1 

∂ 

has characteristic polynomial ∏2 + 1, which does not factor 
−1 0 

into first-degree factors when F = R. Even when we do have a factorization 
into first-degree factors, we can still fail to have a basis of eigenvectors, as the
following example shows. 

∂µ 
1 −1EXAMPLE 2. For A = , the characteristic polynomial is given 0 1 ∂µ 

∏ − 1 1by det(∏I − A) = det = (∏ − 1)2. When we solve for 0 ∏ − 1 
0 

∂ ∂ ∂µ 
x1 

µ 
1

µ 
0 1eigenvectors, we get , and x2 = 0. Thus = x1 ,0 x2 0 

and we do not have a basis of eigenvectors. 
0 0 

What happens is that the presence of a factor (∏ − c)k in the characteristic 
polynomial ensures the existence of an r-parameter family of eigenvectors for 
eigenvalue c, with 1 ≤ r ≤ k, but not necessarily with r = k. Example 2 shows 
that r can be strictly less than k. For purposes of deciding whether there is a basis 
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of eigenvectors, the positive result is that the different roots of the characteristic
polynomial do not interfere with each other; this is a consequence of the following
proposition. 

Proposition 2.41. If A is an n-by-n matrix, then eigenvectors for distinct 
eigenvalues are linearly independent. 

REMARK. It follows that if the characteristic polynomial of A has n distinct 
eigenvalues, then it has a basis of eigenvectors. 

PROOF. Let Av1 = ∏1v1, . . . , Avk = ∏k vk with ∏1, . . . , ∏k distinct, and 
suppose that 

c1v1 + · · · + ckvk = 0. 

Applying A repeatedly gives 

c1∏1v1 + · · · + ck ∏k vk = 0, 

c1∏1
2v1 + · · · + ck ∏k 

2 vk = 0, 
. . . 

k−1 k−1c1∏ v1 + · · · + ck ∏ vk = 0.1 k 

If the j th entry of vi is denoted by v( j), this system of vector equations says that i 

 1 · · · 1 
 

( j) c1v1 
  0 

 
∏1 · · · ∏k .. .

 
. for 1 ≤ j ≤ n. . . .   = . . . . 


. 

  
.. .  

( j) 0k−1 k−1 ck vk∏ · · · ∏1 k 

The square matrix on the left side is a Vandermonde matrix, which is invertible
( j)by Corollary 2.37 since ∏1, . . . , ∏k are distinct. Therefore ci v = 0 for all ii 

( j)and j . Each vi is nonzero in some entry v with j perhaps depending on i , and i
hence ci = 0. Since all the coefficients ci have to be 0, v1, . . . , vk are linearly 
independent. § 

The theory of eigenvectors and eigenvalues for square matrices allows us to
develop a corresponding theory for linear maps L : V → V , where V is an 
n-dimensional vector space over F. If L is such a function, a vector v 6= 0 
in V is an eigenvector of L if L(v) = ∏v for some scalar ∏. We call ∏ the 
eigenvalue. When ∏ is an eigenvalue, the vector space of all v with L(v) = ∏v 
is called the eigenspace for ∏ under L . We can compute the eigenvalues and 
eigenvectors of L by working in any ordered basis 0 of V . The equation L(v) = 
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µ 
L 

∂µ 
v 

∂ µ 
v 

∂ 

∏v becomes = ∏ and is satisfied if and only if the column 
00 0 0 µ 

v 
∂ µ 

L 
∂

vector is an eigenvector of the matrix A = with eigenvalue ∏. 
0 00 

Applying Proposition 2.39 and remembering that determinants are well defined
on linear maps L : V → V , we see that L has an eigenvector with eigenvalue ∏ 
if and only if det(∏I − L) = 0 and that in this case the eigenspace is the kernel 
of ∏I − L . 
What happens if we make these computations in a different ordered basis 1? µ 

L 
∂ µ 

L 
∂

We know from Proposition 2.17 that the matrices A = and B = 
00 11 µ 
I 

∂
are similar, related by B = C−1 AC , where C = . Computing with 

01 µ 
v 

∂
A leads to u = as eigenvector for the eigenvalue ∏. The corresponding 

0 
result for B is that B(C−1u) = C−1 ACC−1u = C−1 Au = ∏C−1u. Thus µ 

I 
∂µ 

v 
∂ µ 

v 
∂

C−1u = = is an eigenvector of B with eigenvalue ∏, just 
10 0 1 

as it should be. 
These considerations about eigenvalues suggest some facts about similar ma-

trices that we can observe more directly without first passing from matrices to
linear maps: One is that similar matrices have the same characteristic polynomial.
To see this, suppose that B = C−1 AC ; then 

det(∏I − B) = det(∏I − C−1 AC) = det(C−1(∏I − A)C) 

= (det C−1) det(∏I − A)(det C−1) 

= (det C−1)(det C−1) det(∏I − A) = det(∏I − A). 

A second fact is that similar matrices have the same trace. In fact, the trace is
the negative of the coefficient of ∏n−1 in the characteristic polynomial, and the
characteristic polynomials are the same.
Because of these considerations we are free in the future to speak of the char-

acteristic polynomial, the eigenvalues, and the trace of a linear map from a finite-
dimensional vector space to itself, as well as the determinant, and these notions
do not depend on any choice of ordered basis. We can speak unambiguously also
of the eigenvectors of such a linear map. For this notion the realization of the
eigenvectors in an ordered basis as column vectors depends on the ordered basis,
the dependence being given by the formulas two paragraphs before the present 
one. 
One final remark is in order. When the scalars are taken to be the complex 

numbers C, the Fundamental Theorem of Algebra (Theorem 1.18) is applicable: 
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every polynomial of degree ∏ 1 has at least one root. When applied to the char-
acteristic polynomial of a square matrix or a linear map from a finite-dimensional
vector space to itself, this theorem tells us that the matrix or linear map always
has at least one eigenvalue, hence an eigenvector. We shall make serious use of
this fact in Chapter III. 

9. Bases in the Infinite-Dimensional Case 

So far in this chapter, the use of bases has been limited largely to vector spaces
having a finite spanning set. In this case we know from Corollary 2.3 that the
finite spanning set has a subset that is a basis, any linearly independent set can be
extended to a basis, and any two bases have the same finite number of elements.
We called such spaces finite-dimensional and defined the dimension of the vector
space to be the number of elements in a basis.
The first objective in this section is to prove analogs of these results in the

infinite-dimensional case. We shall make use of Zorn’s Lemma as in Section A5 
of the appendix, as well as the notion of cardinality discussed in Section A6 of the
appendix. Once these analogs are in place, we shall examine the various results
that we proved about finite-dimensional spaces to see the extent to which they
remain valid for infinite-dimensional spaces. 

Theorem 2.42. If V is any vector space over F, then 

(a) any spanning set in V has a subset that is a basis,
(b) any linearly independent set in V can be extended to a basis, 
(c) V has a basis,
(d) any two bases have the same cardinality. 

REMARKS. The common cardinality mentioned in (d) is called the dimension 
of the vector space V . In many applications it is enough to use +∞ in place of
each infinite cardinal in dimension formulas. This was the attitude conveyed in
the remark with Corollary 2.24. 

PROOF. For (b), let E be the given linearly independent set, and let S be the 
collection of all linearly independent subsets of V that contain E . Partially order 
S by inclusion upward. The set S is nonempty because E is in S. Let T be a 
chain in S, and let A be the union of the members of T . We show that A is in 
S, and then A is certainly an upper bound of T . Because of its definition, A 
contains E , and we are to prove that A is linearly independent. For A to fail to 
be linearly independent would mean that there are vectors v1, . . . , vn in A with 
c1v1 + · · · + cnvn = 0 for some system of scalars not all 0. Let vj be in the 
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member Aj of the chain T . Since A1 ⊆ A2 or A2 ⊆ A1, v1 and v2 are both in 
A1 or both in A2. To keep the notation neutral, say they are both in A0

2. Since 
A0
2 ⊆ A3 or A3 ⊆ A0

2, all of v1, v2, v3 are in A2
0 or they are all in A3. Say they 

are all in A0
3. Continuing in this way, we arrive at one of the sets A1, . . . , An , 

say A0 , such that all of v1, . . . , vn are all in A0 . The members of A0 are linearly n n n
independent by assumption, and we obtain the contradiction c1 = · · · = cn = 0. 
We conclude that A is linearly independent. Thus the chain T has an upper bound 
in S. By Zorn’s Lemma, S has a maximal element, say M . By Proposition 2.1a, 
M is a basis of V containing E . 
For (a), let E be the given spanning set, and let S be the collection of all 

linearly independent subsets of V that are contained in E . Partially order S by
inclusion upward. The set S is nonempty because ∅ is in S. Let T be a chain in 
S, and let A be the union of the members of T . We show that A is in S, and then 
A is certainly an upper bound of T . Because of its definition, A is contained in 
E , and the same argument as in the previous paragraph shows that A is linearly 
independent. Thus the chain T has an upper bound in S. By Zorn’s Lemma, S 
has a maximal element, say M . Proposition 2.1a is not applicable, but its proof is
easily adjusted to apply here to show that M spans V and hence is a basis: Given 
v in V , we are to prove that v lies is the linear span of M . First suppose that v 
is in E . If v is in M , there is nothing to prove. Since M ∪ {v} is contained in 
E , the assumed maximality implies that M ∪ {v} is not linearly independent, and 
hence cv + c1v1 + · · · + cnvn = 0 for some scalars c, c1, . . . , cn not all 0 and 
for some vectors v1, . . . , vn in M . The scalar c cannot be 0 since M is linearly 
independent. Thus v = −c−1c1v1 − · · · − c−1cnvn , and v is exhibited as in the 
linear span of M . Consequently every member of E lies in the linear span of M . 
Now suppose that v is not in E . Since every member of V lies in the linear span 
of E , every member of V lies in the linear span of M . 
Conclusion (c) follows from (a) by taking the spanning set to be V ; alternatively 

it follows from (b) by taking the linearly independent set to be ∅. 
For (d), let A = {vα} and B = {wβ } be two bases of V . Each member a of A 

can be written as a = c1wβ1 + · · · + cnwβn uniquely with the scalars c1, . . . , cn 

nonzero and with each wβj in B. Let Ba be the finite subset {wβ1 , . . . , wβn }. Then 
we have associated to each member of A a finite subset Ba of B. Let us see that S

a∈A Ba = B. If b is in B, then the linear span of B − {b} is not all of V . Thus 
some v in V is not in this span. Expand v in terms of A as v = d1vα1 +· · ·+dm vαm

with all dj 6 0. Since v is not in the linear span of B − {b}, some a0= = vαj0
with 1 ≤ j0 ≤ m is not in this linear span. Then b is in Ba0 , and we conclude 
that B = 

S
a∈A Ba . By the corollary near the end of Section A6 of the appendix, 

card B ≤ card A. Reversing the roles of A and B, we obtain card A ≤ card B. 
By the Schroeder–Bernstein Theorem, A and B have the same cardinality. This 
proves (d). § 
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Now let us go through the results of the chapter and see how many of them
extend to the infinite-dimensional case and why. It is possible but not very useful
in the infinite-dimensional case to associate an infinite “matrix” to a linear map
when bases or ordered bases are specified for the domain and range. Because this
association is not very useful, we shall not attempt to extend any of the results
concerning matrices. The facts concerning extensions of results just dealing with
dimensions and linear maps are as follows: 

COROLLARY 2.5. If V is any vector space and U is a vector subspace, then 
dim U ≤ dim V . 
In fact, take a basis of U and extend it to a basis of V ; a basis of U is then 

exhibited as a subset of a basis of V , and the conclusion about cardinal-number 
dimensions follows. 
PROPOSITION 2.13. Let U and V be vector spaces over F, and let 0 be a basis 

of U . Then to each function ` : 0 → V corresponds one and only one linear 
map L : U → V such that L

Ø
Ø
0 = `. 

In fact, the proof given in Section 3 is valid with no assumption about finite
dimensionality. 
COROLLARY 2.15. If L : U → V is a linear map between vector spaces over 

F, then 
dim(domain(L)) = dim(kernel(L)) + dim(image(L)). 

In fact, this formula remains valid, but the earlier proof via matrices has to be
replaced. Instead, take a basis {vα | α ∈ A} of the kernel and extend it to a basis 
{vα | α ∈ S} of the domain. It is routine to check that {L(vα) | α ∈ S − A} is a 
basis of the image of L . 
THEOREM 2.16 (part). The composition of two linear maps is linear. 
In fact, the proof in Section 3 remains valid with no assumption about finite

dimensionality. 
PROPOSITION 2.18. Two vector spaces over F are isomorphic if and only if 

they have the same cardinal-number dimension. 
In fact, this result follows from Proposition 2.13 just as it did in the finite-

dimensional case; the only changes that are needed in the argument in Section 3
are small adjustments of the notation. Of course, one must not overinterpret this
result on the basis of the remark with Theorem 2.42: two vector spaces with
dimension +∞ need not be isomorphic. Despite the apparent definitive sound of
Proposition 2.18, one must not attach too much significance to it; vector spaces
that arise in practice tend to have some additional structure, and an isomorphism
based merely on equality of dimensions need not preserve the additional structure. 
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PROPOSITION 2.19. If V is a vector space and V 0 is its dual, then dim V ≤ 
dim V 0. (In the infinite-dimensional case we do not have equality.) 

0In fact, take a basis {vα} of V . If for each α we define v (vβ) = δαβ and use α
0 0Proposition 2.13 to form the linear extension v , then the set {v } is a linearly α α

independent subset of V 0 that is in one-one correspondence with the basis of V . 
0Extending {v } to a basis of V 0, we obtain the result. α

PROPOSITION 2.20. Let V be a vector space, and let U be a vector subspace of 
V . Then 

(b) every linear functional on U extends to a linear functional on V ,
(c) whenever v0 is a member of V that is not in U , there exists a linear 

functional on V that is 0 on U and is 1 on v0. 
Conclusion (a) of the original Proposition 2.20, which concerns annihilators, does
not extend to the infinite-dimensional case. 

To prove (b) without the finite dimensionality, let u0 be a given linear functional 
on U , let {uα} be a basis of U , and let {vβ } be a subset of V such that {uα} ∪ {vβ }
is a basis of V . Define v0(uα) = u0(uα) for each α and v0(vβ) = 0 for each β. 
Using Proposition 2.13, let v0 be the linear extension to a linear functional on V . 
Then v0 has the required properties.
To prove (c) without the finite dimensionality, we take a basis {uα} of U and 

extend {uα} ∪ {v0} to a basis of V . Define v0 to equal 0 on each uα, to equal 1 on 
v0, and to equal 0 on the remaining members of the basis of V . Then the linear 
extension of v0 to V is the required linear functional. 

PROPOSITION 2.22. If V is any vector space over F, then the canonical map 
∂ : V → V 00 is one-one. The canonical map is not onto V 00 if V is infinite-
dimensional. 

The proof that it is one-one given in Section 4 is applicable in the infinite-
dimensional case since we know from Theorem 2.42 that any linearly independent
subset of V can be extended to a basis. For the second conclusion when V has a 
countably infinite basis, see Problem 31 at the end of the chapter. 

PROPOSITION 2.23 THROUGH COROLLARY 2.29. For these results about quo-
tients, the only place that finite dimensionality played a role was in the dimension
formulas, Corollaries 2.24 and 2.29. We restate these two results separately. 

COROLLARY 2.24. If V is a vector space over F and U is a vector subspace, 
then 

(a) dim V = dim U + dim(V /U ),
(b) the subspace U is the kernel of some linear map defined on V . 
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The proof in Section 5 requires no changes: Let q be the quotient map. The 
linear map q meets the conditions of (b). For (a), take a basis of U and extend to 
a basis of V . Then the images under q of the additional vectors form a basis of 
V/U . 
COROLLARY 2.29. Let M and N be vector subspaces of a vector space V over 

F. Then 
dim(M + N ) + dim(M ∩ N ) = dim M + dim N . 

In fact, Corollary 2.24a gives us dim(M + N ) = dim((M + N )/M) + dim M . 
Substituting dim((M + N )/M) = dim(N/(M ∩ N )) from Theorem 2.28 and 
adding dim(M ∩ N ) to both sides, we obtain dim(M + N ) + dim(M ∩ N ) = 
dim(M ∩ N ) + dim(N/(M ∩ N )) + dim M . The first two terms on the right side 
add to dim N by Corollary 2.24a, and the result follows. 
PROPOSITIONS 2.30 THROUGH 2.33. These results about direct products and

direct sums did not assume any finite dimensionality. 
The determinants of Sections 7–8 have no infinite-dimensional generalization,

and Proposition 2.41 is the only result in those two sections with a valid infinite-
dimensional analog. The valid analog in the infinite-dimensional case is that
eigenvectors for distinct eigenvalues under a linear map are linearly independent.
The proof given for Proposition 2.41 in Section 8 adapts to handle this analog,

( j)provided we interpret components v of a vector vi as the coefficients needed i
to expand vi in a basis of the underlying vector space. 

10. Problems 

1. Determine bases of the following subsets of R3: 
(a) the plane 3x − 2y + 5z = 0,

Ω x = 2t æ
(b) the line y = −t , where −∞ < t < ∞. 

z = 4t 
2. This problem shows that the associativity law in the definition of “vector space”

implies certain more complicated formulas of which the stated law is a special 
case. Let v1, . . . , vn be vectors in a vector space V . The only vector-space
properties that are to be used in this problem are associativity of addition and the
existence of the 0 element. 
(a) Define v(k) inductively upward by v(0) = 0 and v(k) = v(k−1) + vk , and 

define v(l) inductively downward by v(n+1) = 0 and v(l) = vl + v(l+1). 
Prove that v(k) + v(k+1) is always the same element for 0 ≤ k ≤ n. 

(b) Prove that the same element of V results from any way of inserting paren-
theses in the sum v1 + · · · + vn so that each step requires the addition of 
only two members of V . 
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3. This problem shows that the commutative and associative laws in the definition
of “vector space” together imply certain more complicated formulas of which the
stated commutative law is a special case. Let v1, . . . , vn be vectors in a vector 
space V . The only vector-space properties that are to be used in this problem are
commutativity of addition and the properties in the previous problem. Because
of the previous problem, v1 + · · · + vn is a well-defined element of V , and it is 
not necessary to insert any parentheses in it. Prove that v1 + v2 + · · · + vn = 
vσ (1) + vσ (2) + · · · + vσ (n) for each permutation σ of {1, . . . , n}. 

µ 1 2 −1 
∂

4. For the matrix A = 2 4 6 , find 
0 0 −8 

(a) a basis for the row space, 
(b) a basis for the column space, and
(c) the rank of the matrix. 

5. Let A be an n-by-n matrix of rank one. Prove that there exists an n-dimensional 
column vector c and an n-dimensional row vector r such that A = cr . 

6. Let A be a k-by-n matrix, and let R be a reduced row-echelon form of A. 
(a) Prove for each r that the rows of R whose first r entries are 0 form a basis 

for the vector subspace of all members of the row space of A whose first r 
entries are 0. 

(b) Prove that the reduced row-echelon form of A is unique in the sense that any
two sequences of steps of row reduction lead to the same reduced form. 

7. Let E be an finite set of N points, let V be the N -dimensional vector space of 
all real-valued functions on E , and let n be an integer with 0 < n ≤ N . Suppose 
that U is an n-dimensional subspace of V . Prove that there exists a subset D of 
n points in E such that the vector space of restrictions to D of the members of 
U has dimension n. 

8. A linear map L : R2 → R2 is given in the standard ordered basis by the matrix ≥ 
−6 −12 3 

¥ ≥ 
−4 

¥o ¥
. Find the matrix of L in the ordered basis 

n≥ 
, .6 11 −2 3 

9. Let V be the real vector space of all polynomials in x of degree ≤ 2, and let 
L : V → V be the linear map I − D2, where I is the identity and D is the 
differentiation operator d/dx . Prove that L is invertible. 

10. Let A be in Mkm (C) and B be in Mmn(C). Prove that 

rank(AB) ≤ max(rank A, rank B). 

11. Let A be in Mkn(C) with k > n. Prove that there exists no B in Mnk(C) with 
AB = I . 

12. Let A be in Mkn(C) and B be in Mnk (C). Give an example with k = n to show 
that rank(AB) need not equal rank(BA). 
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13. With the differential equation y00(t) = y(t) in Example 2 of Section 3, two
examples of linear functionals on the vector space of solutions are given by 
`1(y) = y(0) and `2(y) = y0(0). Find a basis of the space of solutions such that 
{`1, `2} is the dual basis. 

14. Suppose that a vector space V has a countably infinite basis. Prove that the dual 
V 0 has an uncountable linearly independent set. 

15. (a) Give an example of a vector space and three vector subspaces L , M , and N 
such that L ∩ (M + N ) 6= (L ∩ M) + (L ∩ N ). 

(b) Show that inclusion always holds in one direction in (a).
(c) Show that equality always holds in (a) if L ⊇ M . 

16. Construct three vector subspaces M , N1, and N2 of a vector space V such that 
M ⊕ N1 = M ⊕ N2 = V but N1 6 N2. What is the geometric picture = 
corresponding to this situation? 

17. Suppose that x , y, u, and v are vectors in R4; let M and N be the vector subspaces 
of R4 spanned by {x, y} and {u, v}, respectively. In which of the following cases 
is it true that R4 = M ⊕ N? 
(a) x = (1, 1, 0, 0), y = (1, 0, 1, 0), u = (0, 1, 0, 1), v = (0, 0, 1, 1); 
(b) x = (−1, 1, 1, 0), y = (0, 1, −1, 1), u = (1, 0, 0, 0), v = (0, 0, 0, 1); 
(c) x = (1, 0, 0, 1), y = (0, 1, 1, 0), u = (1, 0, 1, 0), v = (0, 1, 0, 1). 

18. Section 6 gave definitions and properties of projections and injections associated
with the direct sum of two vector spaces. Write down corresponding definitions
and properties for projections and injections in the case of the direct sum of n 
vector spaces, n being an integer > 2. 

19. Let T : Rn → Rn be a linear map with ker T ∩ image T = 0. 
(a) Prove that Rn = ker T ⊕ image T . 
(b) Prove that the condition ker T ∩ image T = 0 is satisfied if T 2 = T . 

20. If V1 and V2 are two vector spaces over F, prove that (V1 ⊕ V2)0 is canonically 
isomorphic to V1

0 ⊕ V2
0. 

21. Suppose that M is a vector subspace of a vector space V and that q : V → V/M 
is the quotient map. Corresponding to each linear functional y on V/M is a 
linear functional z on V given by z = yq. Why is the correspondence y 7→ z an 
isomorphism between (V/M)0 and Ann M? 

22. Let M be a vector subspace of the vector space V , and let q : V → V/M be the 
quotient map. Suppose that N is a vector subspace of V . Prove that V = M ⊕ N 
if and only if the restriction of q to N is an isomorphism of N onto V/M . 

23. For a square matrix A of integers, prove that the inverse has integer entries if and 
only if det A = ±1. 



85 10. Problems 

24. Let A be in Mkn(C), and let r = rank A. Prove that r is the largest integer 
such that there exist r row indices i1, . . . , ir and r column indices j1, . . . , jr 
for which the r-by-r matrix formed from these rows and columns of A has 
nonzero determinant. (Educational note: This problem characterizes the subset
of matrices of rank ≤ r − 1 as the set in which all determinants of r-by-r 
submatrices are zero.) 

25. Suppose that a linear combination of functions t 7→ ect with c real vanishes for 
every integer t ∏ 0. Prove that it vanishes for every real t . 

≥ 
0 1 

¥
26. Find all eigenvalues and eigenvectors of A = .

−6 5 

27. Let A and C be n-by-n matrices with C invertible. By making a direct calculation 
with the entries, prove that Tr(C−1 AC) = Tr A. 

0 1 0 0 0 0 
0 0 1 0 0 0  0 0 0 1 0 0 


0 0 0 0 0 0 


28. Find the characteristicpolynomialof the n-by-n matrix  . 

.
. 


 . 
 

0 0 0 0 ··· 0 1 
 

a0 a1 a2 a3 ··· an−2 an−1 

29. Let A and B be in Mnn(C). 
(a) Prove under the assumption that A is invertible that det(∏I − AB) = 

det(∏I − BA). 
(b) By working with A + ≤ I and letting ≤ tend to 0, show that the assumption 

in (a) that A is invertible can be dropped. 

30. In proving Theorem 2.42a, it is tempting to argue by considering all spanning
subsets of the given set, ordering them by inclusion downward, and seeking a
minimal element by Zorn’s Lemma. Give an example of a chain in this ordering
that has no lower bound, thereby showing that this line of argument cannot work. 

Problems 31–34 concern annihilators. Let V be a vector space, let M and N be vector 
subspaces, and let ∂ : V → V 00 be the canonical map. 

31. If V has an infinite basis, how can we conclude that ∂ does not carry V onto V 00? 

32. Prove that Ann(M + N ) = Ann M ∩ Ann N . 

33. Prove that Ann(M ∩ N ) = Ann M + Ann N . 

34. (a) Prove that ∂(M) ⊆ Ann(Ann M). 
(b) Prove that equality holds in (a) if V is finite-dimensional. 
(c) Give an infinite-dimensional example in which equality fails in (a). 
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Problems 35–39 concern operations by blocks within matrices. 

35. Let A be a k-by-m matrix of the form A = ( A1 A2 ), where A1 has size 
k-by-m1, A2 has size k-by-m2, and m1 + m2 = m. Let B by an m0-by-n matrix µ 

B1 
∂

of the form B = , where B1 has size m0
1-by-n, B2 has size m2

0 -by-n, and B2 

m0
1 + m0 = m0.2

(a) If m1 = m1
0 and m2 = m2

0 , prove that AB = A1 B1 + A2 B2. ∂µ 
B1 A1 B1 A2(b) If k = n, prove that BA = .B2 A2 B2 A2 

(c) Deduce a general rule for block multiplication of matrices that are in 2-by-2
block form. 

36. Let A be in Mkk (C), B be in Mkn(C), and D be in Mnn(C). Prove that µ 
A 

∂
Bdet = det A det D.0 D 

37. Let A, B, C , and D be in Mnn(C). Suppose that A is invertible and that AC = µ 
A B 

∂
CA. Prove that det = det(AD − CB).C D 

38. Let A be in Mkn(C) and B be in Mnk (C) with k ≤ n. Let Ik be the k-by-
k identity, and let In be the n-by-n identity. Using Problem 29, prove that 
det(∏In − BA) = ∏n−k det(∏Ik − AB). 

39. Prove the following block-form generalization of the expansion-in-cofactors
formula. For each subset S of {1, . . . , n}, let Sc be the complementary subset 
within {1, . . . , n}, and let sgn(S, Sc) be the sign of the permutation that carries 
(1, . . . , n) to the members of S in order, followed by the members of Sc in order. 
Fix k with 1 ≤ k ≤ n − 1, and let the subset S have |S| = k. For an n-by-n 
matrix A, define A(S) to be the square matrix of size k obtained by using the 
rows of A indexed by 1, . . . , k and the columns indexed by the members of S. 
Let Ab(S) be the square matrix of size k − 1 obtained by using the rows of A 
indexed by k + 1, . . . , n and the columns indexed by the members of Sc. Prove 
that 

X
det A = sgn(S, Sc) det A(S) det Ab(S). 

S⊆{1,...,n}, 
|S|=k 

Problems 40–44 compute the determinants of certain matrices known as Cartan 
matrices. These have geometric significance in the theory of Lie groups. 
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2 −1 0 0 ··· 0 0  
−1 2 −1 0 ··· 0 0  0 −1 2 −1 ··· 0 0 
0 0 −1 2 ··· 0 0 


40. Let An be the n-by-n matrix  . Using expansion in 

. 
.
. 

 
0 0 0 0 ··· 2 −1 
0 0 0 0 ··· −1 2 

cofactors about the last row, prove that det An = 2 det An−1 − det An−2 for 
n ∏ 3. 

41. Computing det A1 and det A2 directly and using the recursion in Problem 40, 
prove that det An = n + 1 for n ∏ 1. 

42. Let Cn for n ∏ 2 be the matrix An except that the (1, 2)th entry is changed from 
−1 to −2. 
(a) Expanding in cofactors about the last row, prove that the argument of Prob-

lem 40 is still applicable when n ∏ 4 and a recursion formula for det Cn 
results with the same coefficients. 

(b) Computing det C2 and det C3 directly and using the recursion equation in 
(a), prove that det Cn = 2 for n ∏ 2. 

43. Let Dn for n ∏ 3 be the matrix An except that the upper left 3-by-3 piece is 
µ 2 −1 0 

∂ µ 2 0 −1 
∂

changed from −1 2 −1 to 0 2 −1 . 
0 −1 2 −1 −1 2 

(a) Expanding in cofactors about the last row, prove that the argument of Prob-
lem 40 is still applicable when n ∏ 5 and a recursion formula for det Dn 
results with the same coefficients. 

(b) Show that D3 can be transformed into A3 by suitable interchanges of rows
and interchanges of columns, and conclude that det D3 = det A3 = 4. 

(c) Computing det D4 directly and using (b) and the recursion equation in (a), 
prove that det Dn = 4 for n ∏ 3. 

44. Let En for n ∏ 4 be the matrix An except that the upper left 4-by-4 piece is  
2 −1 0 0 

  
2 −1 0 0 

 

−1 2 −1 0 −1 2 0 −1changed from  to . 
0 −1 2 −1 

 
0 0 2 −1 

0 0 −1 2 0 −1 −1 2 

(a) Expanding in cofactors about the last row, prove that the argument of Prob-
lem 40 is still applicable when n ∏ 6 and a recursion formula for det En 
results with the same coefficients. 

(b) Show that E4 can be transformed into A4 by suitable interchanges of rows
and interchanges of columns, and conclude that det E4 = det A4 = 5. 

(c) Show that E5 can be transformed into D5 by suitable interchanges of rows
and interchanges of columns, and conclude that det E5 = det D5 = 4. 

(d) Using (b) and (c) and the recursion equation in (a), prove that det En = 9−n 
for n ∏ 4. 
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Problems 45–48 relate determinants to areas and volumes. They begin by showing
how a computation of an area in R2 leads to a determinant, they then show how
knowledge of the answer and of the method of row reduction illuminate the result,
and finally they indicate how the result extends to R3. If u and v are vectors in R2, let 
us say that the parallelogram determined by u and v is the parallelogram with vertices 
0, u, v, and u + v. If u, v, and w are in R3, the parallelepiped determined by u, v, and 
w is the parallelepiped with vertices 0, u, v, w, u + v, u + w, v + w, and u + v + w. 
45. The area of a trapezoid is the product of the average of the two parallel sides by

the distance between the parallel sides. Compute the area of the parallelogram 

determined by u = 
≥ 
a 
¥ 
and v = 

≥ 
b 
¥ 
in the diagram below as the area of a c d

large rectangle minus the area of two trapezoids minus the area of two triangles, 
recognizing the answer as det 

≥ 
a b 

¥ 
except for a minus sign. To what extent is c d 

the answer dependent on the picture? 

c 

d 

a b 

FIGURE 2.6. Area of a parallelogram as a difference of areas. 

46. What is the geometric effect on the parallelogram of replacing the matrix 
≥ 
a b 

¥ 

¥ ≥ 
1 s 

c d 

by the matrix 
≥ 
a b 

¥
, i.e., of right-multiplying 

≥ 
a b 

¥ 
by 

≥ 
1 s 

¥
? What c d 0 1 c d 0 1 

does this change do to the area? What algebraic operation does this change
correspond to? 

47. Answer the same questions as in Problem 46 for right multiplication by the ¥ ≥ 
0 1 

¥ ≥ 
q 0matrices 

≥ 
1 0 , , 

¥ 
for a nonzero number q, and 

≥ 
1 0 

¥ 
for a nonzero t 1 1 0 0 1 0 r 

number r . 
48. Explain on the basis of Problems 45–47 why if three column vectors u, v, and w 

in R3 are assembled into a 3-by-3 matrix A and A is invertible, then the volume 
of the parallelepiped determined by u, v, and w has to be | det A|. 




