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CHAPTER II

Wedderburn–Artin Ring Theory

Abstract. This chapter studies finite-dimensional associative division algebras, as well as other
finite-dimensional associative algebras and closely related rings. The chapter is in two parts that
overlap slightly in Section 6. The first part gives the structure theory of the rings in question, and
the second part aims at understanding limitations imposed by the structure of a division ring.
Section 1 briefly summarizes the structure theory for finite-dimensional (nonassociative) Lie

algebras that was the primary historical motivation for structure theory in the associative case. All
the algebras in this chapter except those explicitly calledLie algebras are understood to be associative.
Section 2 introduces left semisimple rings, defined as rings R with identity such that the left

R module R is semisimple. Wedderburn’s Theorem says that such a ring is the finite product of
full matrix rings over division rings. The number of factors, the size of each matrix ring, and the
isomorphism class of each division ring are uniquely determined. It follows that left semisimple
and right semisimple are the same. If the ring is a finite-dimensional algebra over a field F , then the
various division rings are finite-dimensional division algebras over F . The factors of semisimple
rings are simple, i.e., are nonzero and have no nontrivial two-sided ideals, but an example is given
to show that a simple ring need not be semisimple. Every finite-dimensional simple algebra is
semisimple.
Section 3 introduces chain conditions into the discussion as a useful generalization of finite

dimensionality. A ring R with identity is left Artinian if the left ideals of the ring satisfy the
descending chain condition. Artin’s Theorem for simple rings is that left Artinian is equivalent to
semisimplicity, hence to the condition that the given ring be a full matrix ring over a division ring.
Sections 4–6 concern what happens when the assumption of semisimplicity is dropped but some

finiteness condition is maintained. Section 4 introduces the Wedderburn–Artin radical rad R of a
left Artinian ring R as the sum of all nilpotent left ideals. The radical is a two-sided nilpotent ideal.
It is 0 if and only if the ring is semisimple. More generally R/ rad R is always semisimple if R is
left Artinian. Sections 5–6 state and prove Wedderburn’s Main Theorem—that a finite-dimensional
algebra R with identity over a field F of characteristic 0 has a semisimple subalgebra S such that R
is isomorphic as a vector space to S ⊕ rad R. The semisimple algebra S is isomorphic to R/ rad R.
Section 5 gives the hard part of the proof, which handles the special case that R/ rad R is isomorphic
to a product of full matrix algebras over F . The remainder of the proof, which appears in Section 6,
follows relatively quickly from the special case in Section 5 and an investigation of circumstances
under which the tensor product over F of two semisimple algebras is semisimple. Such a tensor
product is not always semisimple, but it is semisimple in characteristic 0.
The results about tensor products in Section 6, but with other hypotheses in place of the condition

of characteristic 0, play a role in the remainder of the chapter, which is aimed at identifying certain
division rings. Sections 7–8 provide general tools. Section 7 begins with further results about tensor
products. Then the Skolem–NoetherTheoremgives a relationship between any two homomorphisms
of a simple subalgebra into a simple algebra whose center coincides with the underlying field of
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1. Historical Motivation 77

scalars. Section 8 proves the Double Centralizer Theorem, which says for this situation that the
centralizer of the simple subalgebra in the whole algebra is simple and that the product of the
dimensions of the subalgebra and the centralizer is the dimension of the whole algebra.
Sections 9–10 apply the results of Sections 6–8 to obtain two celebrated theorems—Wedderburn’s

Theorem about finite division rings and Frobenius’s Theorem classifying the finite-dimensional
associative division algebras over the reals.

1. Historical Motivation

Elementary ring theory came from several sources historically and was already in
place by 1880. Someof the sources are field theory (studied byGalois and others),
rings of algebraic integers (studied by Gauss, Dirichlet, Kummer, Kronecker,
Dedekind, and others), and matrices (studied by Cayley, Hamilton, and others).
More advanced general ring theory arose initially not on its own but as an effort
to imitate the theory of “Lie algebras,” which began about 1880.
A brief summary of some early theorems about Lie algebras will put matters

in perspective. The term “algebra” in connection with a field F refers at least to
an F vector space with a multiplication that is F bilinear. This chapter will deal
only with two kinds of such algebras, the Lie algebras and those algebras whose
multiplication is associative. If the modifier “Lie” is absent, the understanding is
that the algebra is associative.
Lie algebras arose originally from “Lie groups”—which we can regard for

current purposes as connected groups with finitely many smooth parameters—
by a process of taking derivatives along curves at the identity element of the
group. Precise knowledge of that process will be unnecessary in our treatment,
but we describe one example: The vector spaceMn(R) of all n-by-nmatrices over
R becomes a Lie algebra with multiplication defined by the “bracket product”
[X,Y ] = XY − Y X . If G is a closed subgroup of the matrix group GL(n, R)
and g is the set of all members of Mn(R) of the form X = c0(0), where c is a
smooth curve in G with c(0) equal to the identity, then it turns out that the vector
space g is closed under the bracket product and is a Lie algebra. Although one
might expect the Lie algebra g to give information about the Lie group G only
infinitesimally at the identity, it turns out that g determines the multiplication rule
for G in a whole open neighborhood of the identity. Thus the Lie group and Lie
algebra are much more closely related than one might at first expect.

We turn to the underlying definitions and early main theorems about Lie alge-
bras. Let F be a field. A vector space A over F with an F bilinear multiplication
(X,Y ) 7→ [X,Y ] is a Lie algebra if the multiplication has the two properties

(i) [X, X] = 0 for all X ∈ A,
(ii) (Jacobi identity) [X, [Y, Z ]] + [Y, [Z , X]] + [Z , [X,Y ]] = 0 for all

X,Y, Z ∈ A.
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Multiplication is often referred to as bracket. It is usually not associative. The
vector space Mn(F) with [X,Y ] = XY − Y X is a Lie algebra, as one easily
checks by expanding out the various brackets that are involved; it is denoted by
gl(n, F).
The elementary structural definitions with Lie algebras run parallel to those

with rings. A Lie subalgebra S of A is a vector subspace closed under brackets,
an ideal I of A is a vector subspace such that [X,Y ] is in I for X ∈ I and Y ∈ A,
a homomorphism ϕ : A1 → A2 of Lie algebras is a linear mapping respecting
brackets in the sense that ϕ[X,Y ] = [ϕ(X), ϕ(Y )] for all X,Y ∈ A1, and an
isomorphism is an invertible homomorphism. Every ideal is a Lie subalgebra.
In contrast to the case of rings, there is no distinction between “left ideals” and
“right ideals” because the bracket product is skew symmetric. Under the passage
from Lie groups to Lie algebras, abelian Lie groups yield Lie algebras with all
brackets 0, and thus one says that a Lie algebra is abelian if all its brackets are 0.
Examples of Lie subalgebras of gl(n, F) are the subalgebra sl(n, F) of all

matrices of trace 0, the subalgebra so(n, F) of all skew-symmetric matrices, and
the subalgebra of all upper-triangular matrices.
The elementary properties of subalgebras, homomorphisms, and so on for Lie

algebras mimic what is true for rings: The kernel of a homomorphism is an
ideal. Any ideal is the kernel of a quotient homomorphism. If I is an ideal in
A, then the ideals of A/I correspond to the ideals of A containing I , just as
in the First Isomorphism Theorem for rings. If I and J are ideals in A, then
(I + J )/I ∼= J/(I ∩ J ), just as in the Second Isomorphism Theorem for rings.
The connection of Lie algebras to Lie groups makes one want to introduce

definitions that lead toward classifying all Lie algebras that are finite-dimensional.
We therefore assume for the remainder of this section that all Lie algebras under
discussion are finite-dimensional over F . Some of the steps require conditions
on F , and we shall assume that F has characteristic 0.
Group theory already had a notion of “solvable group” from Galois, and this

leads to the notion of solvable Lie algebra. In A, let [A, A] denote the linear span
of all [X,Y ] with X,Y ∈ A; [A, A] is called the commutator ideal of A, and
A/[A, A] is abelian. In fact, [A, A] is the smallest ideal I in A such that A/I
is abelian. Starting from A, let us form successive commutator ideals. Thus put
A0 = A, A1 = [A0, A0], . . . , An = [An−1, An−1], so that

A = A0 ⊇ A1 ⊇ · · · ⊇ An ⊇ · · · .

The terms of this sequence are all the same from some point on, by finite dimen-
sionality, and we say that A is solvable if the terms are ultimately 0. One easily
checks that the sum I + J of two solvable ideals in A, i.e., the set of sums, is
a solvable ideal. By finite dimensionality, there exists a unique largest solvable
ideal. This is called the radical of A and is denoted by rad A. The Lie algebra



1. Historical Motivation 79

A is said to be semisimple if rad A = 0. It is easy to use the First Isomorphism
Theorem to check that A/ rad A is always semisimple.
In the direction of classifyingLie algebras, onemight thereforewant to see how

all solvable Lie algebras can be constructed by successive extensions, identify
all semisimple Lie algebras, and determine how a general Lie algebra can be
constructed from a semisimple Lie algebra and a solvable Lie algebra by an
extension.
The first step in this direction historically concerned identifying semisimple

Lie algebras. We say that the Lie algebra A is simple if dim A > 1 and if A
contains no nonzero proper ideals.
Working with the field C but in a way that applies to other fields of

characteristic 0, W. Killing proved in 1888 that A is semisimple if and only
if A is the (internal) direct sum of simple ideals. In this case the direct summands
are unique, and the only ideals in A are the partial direct sums.
This result is strikingly different from what happens for abelian Lie algebras,

for which the theory reduces to the theory of vector spaces. A 2-dimensional
vector space is the internal direct sum of two 1-dimensional subspaces in many
ways. But Killing’s theorem says that the decomposition of semisimple Lie
algebras into simple ideals is unique, not just unique up to some isomorphism.
É. Cartan in his 1894 thesis classified the simple Lie algebras, up to isomor-

phism, for the case that the field is C. The Lie algebras sl(n, C) for n ∏ 2 and
so(n, C) for n = 3 and n ∏ 5 were in his list, and there were others. Killing had
come close to this classification in his 1888 work, but he had made a number of
errors in both his statements and his proofs.
E. E. Levi in 1905 addressed the extension problem for obtaining all finite-

dimensional Lie algebras over C from semisimple ones and solvable ones. His
theorem is that for any Lie algebra A, there exists a subalgebra S isomorphic to
A/ rad A such that A = S ⊕ rad A as vector spaces. In essence, this result says
that the extension defining A is given by a semidirect product.
The final theorem in this vein at this time in history was a 1914 result of Cartan

classifying the simple Lie algebras when the field F is R. This classification is a
good bit more complicated than the classification when F is C.

With this background in mind, we can put into context the corresponding
developments for associative algebras. Although others had done some earlier
work, J. H. M. Wedderburn made the first big advance for associative algebras in
1905. Wedderburn’s theory in a certain sense is more complicated than the theory
for Lie algebras because left ideals in the associative case are not necessarily two-
sided ideals. Let us sketch this theory.
For the remainder of this section until the last paragraph, Awill denote a finite-

dimensional associative algebra over a field F of characteristic 0, possibly the 0
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algebra. We shall always assume that A has an identity. Although we shall make
some definitions here, we shall repeat them later in the chapter at the appropriate
times. For many results later in the chapter, the field F will not be assumed to be
of characteristic 0.
As in Chapter X ofBasic Algebra, a unital left AmoduleM is said to be simple

if it is nonzero and it has no proper nonzero A submodules, semisimple if it is the
sum (or equivalently the direct sum) of simple A submodules. The algebra A is
semisimple if the left A module A is a semisimple module, i.e., if A is the direct
sum of simple left ideals; A is simple if it is nonzero and has no nontrivial two-
sided ideals. In contrast to the setting of Lie algebras, we make no exception for
the 1-dimensional case; this distinction is necessary and is continually responsible
for subtle differences between the two theories.
Wedderburn’s first theoremhas twoparts to it, thefirst onemodeledonKilling’s

theorem for Lie algebras and the second one modeled on Cartan’s thesis:
(i) The algebra A is semisimple if and only if it is the (internal) direct sum
of simple two-sided ideals. In this case the direct summands are unique,
and the only two-sided ideals of A are the partial direct sums.

(ii) The algebra A is simple if and only if A ∼= Mn(D) for some integer n ∏ 1
and some division algebra D over F . In particular, if F is algebraically
closed, then A ∼= Mn(F) for some n.

E. Artin generalized the Wedderburn theory to a suitable kind of “semisimple
ring.” For part of the theory, he introduced a notion of “radical” for the associative
case—the radical of a finite-dimensional associative algebra A being the sum of
the “nilpotent” left ideals of A. Here a left ideal I is called nilpotent if I k = 0
for some k. The radical rad A is a two-sided ideal, and A/ rad A is a semisimple
ring.
Wedderburn’s Main Theorem, proved later in time and definitely assuming

characteristic 0, is an analog for associative algebras of Levi’s result about Lie
algebras. The result for associative algebras is that A decomposes as a vector-
space direct sum A = S⊕ rad A, where S is a semisimple subalgebra isomorphic
to A/ rad A.

The remaining structural question for finite-dimensional associative algebras
is to say something about simple algebras when the field is not algebraically
closed. Such a result may be regarded as an analog of the 1914 work by Cartan.
In the associative case one then wants to knowwhat the F isomorphism classes of
finite-dimensional associative division algebras D are for a given field F . We now
drop the assumption that the field F has characteristic 0. In asking this question,
one does not want to repeat the theory of field extensions. Consequently one
looks only for classes of division algebras whose center is F . If F is algebraically
closed, the only such D is F itself, as we shall observe in more detail in Section 2.
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If F is a finite field, one is led to another theorem ofWedderburn’s, saying that D
has to be commutative and hence that D = F ; this theorem appears in Section 9.
If F is R, one is led to a theorem of Frobenius saying that there are just two such
D’s up to R isomorphism, namely R itself and the quaternions H; this theorem
appears in Section 10. For a general field F , it turns out that the set of classes
of finite-dimensional division algebras with center F forms an abelian group.
The group is called the “Brauer group” of F . Its multiplication is defined by the
condition that the class of D1 times D2 is the class of a division algebra D3 such
that D1 ⊗F D2 ∼= Mn(D3) for some n; the inverse of the class of D is the class
of the opposite algebra Do, and the identity is the class of F . The study of the
Brauer group is postponed toChapter III. This group has an interpretation in terms
of cohomology of groups, and it has applications to algebraic number theory.

2. Semisimple Rings and Wedderburn’s Theorem
We now begin our detailed investigation of associative algebras over a field. In
this section we shall address the first theorem of Wedderburn’s that is mentioned
in the previous section. It has two parts, one dealing with semisimple algebras
and one dealing with finite-dimensional simple algebras. The first part does not
need the finite dimensionality as a hypothesis, and we begin with that one.
Let R be a ring with identity. The ring R is left semisimple if the left R

module R is a semisimple module, i.e., if R is the direct sum of minimal left
ideals.1 In this case R =

L
i∈S Ii for some set S and suitable minimal left

ideals Ii . Since R has an identity, we can decompose the identity according to
the direct sum as 1 = 1i1 + · · · + 1in for some finite subset {i1, . . . , in} of S,
where 1ik is the component of 1 in Iik . Multiplying by r ∈ R on the left, we
see that R ⊆

Ln
k=1 Iik . Consequently R has to be a finite sum of minimal left

ideals. A ring R with identity is right semisimple if the right R module R is a
semisimple module. We shall see later in this section that left semisimple and
right semisimple are equivalent.
EXAMPLES OF SEMISIMPLE RINGS.
(1) If D is a division ring, then we saw in Example 4 in Section X.1 of Basic

Algebra that the ring R = Mn(D) is left semisimple in the sense of the above
definition. Actually, that example showed more. It showed that R as a left R
module is given by Mn(D) ∼= Dn ⊕ · · · ⊕ Dn , where each Dn is a simple left R
module and the j th summand Dn corresponds to the matrices whose only nonzero
entries are in the j th column. The left R module Mn(D) has a composition series
whose terms are the partial sums of the n summands Dn . If M is any simple
left Mn(D) module and if x 6= 0 is in M , then M = Mn(D)x . If we set
I = {r ∈ Mn(D) | r x = 0}, then I is a left ideal in Mn(D) and M ∼= Mn(D)/I

1By convention, a “minimal left ideal” always means a “minimal nonzero left ideal.”
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as a left Mn(D) module. In other words, M is an irreducible quotient module
of the left Mn(D) module Mn(D). By the Jordan–Hölder Theorem (Corollary
10.7 of Basic Algebra), M occurs as a composition factor. Hence M ∼= Dn as
a left Mn(D) module. Hence every simple left Mn(D) module is isomorphic to
Dn . We shall use this style of argument repeatedly but will ordinarily include
less detail.
(2) If R1, . . . , Rn are left semisimple rings, then the direct product R =Qn
i=1 Ri is left semisimple.2 In fact, each minimal left ideal of Ri , when included

into R, is a minimal left ideal of R. Hence R is the sum of minimal left ideals
and is left semisimple. By the same kind of argument as for Example 1, every
simple left R module is isomorphic to one of these minimal left ideals.

Lemma 2.1. Let D be a division ring, let R = Mn(D), and let Dn be the
simple left R module of column vectors. Each member of D acts on Dn by
scalar multiplication on the right side, yielding a member of EndR(Dn). In turn,
EndR(Dn) is a ring, and this identification therefore is an inclusionof themembers
of D into the right D module EndR(Dn). The inclusion is in fact an isomorphism
of rings: Do ∼= EndR(Dn), where Do is the opposite ring of D.
PROOF. Let ϕ : D → EndR(Dn) be the function given by ϕ(d)(v) = vd.

Then ϕ(dd 0)(v) = v(dd 0) = (vd)d 0 = ϕ(d 0)(vd) = ϕ(d 0)(ϕ(d)(v)). Since the
order of multiplication in D is reversed by ϕ, ϕ is a ring homomorphism of Do

into EndR(Dn). It is one-one because Do is a division ring and has no nontrivial
two-sided ideals. To see that it is onto EndR(Dn), let f be in EndR(Dn). Put

f





1
0
...
0



 =






d
d2
...
dn




. Since f is an R module homomorphism,

f





a1
a2
...
an



 = f









a1 0 ··· 0
a2 0 ··· 0
...
an 0 ··· 0









1
0
...
0







 =





a1 0 ··· 0
a2 0 ··· 0
...
an 0 ··· 0



 f





1
0
...
0





=





a1 0 ··· 0
a2 0 ··· 0
...
an 0 ··· 0










d
d2
...
dn




 =





a1d
a2d
...
and



 = ϕ(d)





a1
a2
...
an



 .

Therefore ϕ(d) = f , and ϕ is onto. §

2Some comment is appropriate about the notation R =
Qn

i=1 Ri and the terminology “direct
product.” Indeed,

Qn
i=1 Ri is a product in the sense of category theory within the category of rings

or the category of rings with identity. Sometimes one views R alternatively as built from n two-sided
ideals, each corresponding to one of the n coordinates; in this case, one may say that R is the “direct
sum” of these ideals. This direct sum is to be regarded as a direct sum of abelian groups, or perhaps
vector spaces or R modules, but it is not a coproduct within the category of rings with identity.
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Theorem 2.2 (Wedderburn). If R is any left semisimple ring, then

R ∼= Mn1(D1) × · · · × Mnr (Dr )

for suitable division rings D1, . . . , Dn and positive integers n1, . . . , nr . The num-
ber r is uniquely determined by R, and the ordered pairs (n1, D1), . . . , (nr , Dr )
are determined up to a permutation of {1, . . . , r} and an isomorphism of each
Dj . There are exactly r mutually nonisomorphic simple left R modules, namely
(D1)n1, . . . , (Dr )

nr .

PROOF. Write R as the direct sum of minimal left ideals, and then regroup
the summands according to their R isomorphism type as R ∼=

Lr
j=1 nj Vj , where

nj Vj is the direct sum of nj submodules R isomorphic to Vj and where Vi ¿ Vj
for i 6= j . The isomorphism is one of unital left R modules. Put Do

i = EndR(Vi ).
This is a division ring by Schur’s Lemma (Proposition 10.4b of Basic Algebra).
Using Proposition 10.14 of Basic Algebra, we obtain an isomorphism of rings

Ro ∼= EndR R ∼= HomR

≥ rL

i=1
niVi ,

rL

j=1
nj Vj

¥
. (∗)

Define pi :
Lr

j=1 nj Vj → niVi to be the i th projection and qi : niVi →
Lr

j=1 nj Vj to be the i th inclusion. Let us see that the right side of (∗) is iso-
morphic as a ring to

Q
i EndR(niVi ) via the mapping f 7→ (p1 f q1, . . . , pr f qr ).

What is to be shown is that pj f qi = 0 for i 6= j . Here pj f qi is a member
of HomR(niVi , nj Vj ). The abelian group HomR(niVi , nj Vj ) is the direct sum
of abelian groups isomorphic to HomR(Vi , Vj ) by Proposition 10.12, and each
HomR(Vi , Vj ) is 0 by Schur’s Lemma (Proposition 10.4a).
Referring to (∗), we therefore obtain ring isomorphisms

Ro ∼=
rQ

i=1
HomR(niVi , niVi ) =

rQ

i=1
EndR(niVi )

∼=
rQ

i=1
Mni (EndR(Vi )) by Corollary 10.13

∼=
rQ

i=1
Mni (Do

i ) by definition of Do
i .

Reversing the order of multiplication in Ro and using the transpose map to
reverse the order of multiplication in each Mni (Do

i ), we conclude that R ∼=Qr
i=1 Mni (Di ). This proves existence of the decomposition in the theorem.
We still have to identify the simple left R modules and prove an appropriate

uniqueness statement. As we recalled in Example 1, we have a decomposition



84 II. Wedderburn-Artin Ring Theory

Mni (Di ) ∼= Dni
i ⊕ · · · ⊕ Dni

i of left Mni (Di ) modules, and each term Dni
i is a

simple left Mni (Di ) module. The decomposition just proved allows us to regard
each term Dni

i as a simple left R module, 1 ≤ i ≤ r . Each of these modules
is acted upon by a different coordinate of R, and hence we have produced at
least r nonisomorphic simple left R modules. Any simple left R module must
be a quotient of R by a maximal left ideal, as we observed in Example 2, hence
a composition factor as a consequence of the Jordan–Hölder Theorem. Thus
it must be one of the Vj ’s in the previous part of the proof. There are only
r nonisomorphic such Vj ’s, and we conclude that the number of simple left R
modules, up to isomorphism, is exactly r .
For uniqueness suppose that R ∼= Mn0

1
(D0

1) × · · · × Mn0
s (D

0
s) as rings. Let

V 0
j = (D0

j )
n0
j be the unique simple left Mn0

j
(D0

j ) module up to isomorphism, and
regard V 0

j as a simple left R module. Then we have R ∼=
Ls

j=1 n0
j V

0
j as left

R modules. By the Jordan–Hölder Theorem we must have r = s and, after a
suitable renumbering, ni = n0

i and Vi ∼= V 0
i for 1 ≤ i ≤ r . Thus we have ring

isomorphisms

(D0
i )
o ∼= EndMn0i

(D0
i )
(V 0

i ) by Lemma 2.1
∼= EndR(V 0

i )

∼= EndR(Vi ) since Vi ∼= V 0
i

∼= Do
i .

Reversing the order of multiplication gives D0
i
∼= Di , and the proof is complete.

§

Corollary 2.3. For a ring R, left semisimple coincides with right semisimple.
REMARK. Therefore we can henceforth refer to left semisimple rings unam-

biguously as semisimple.
PROOF. The theorem gives the form of any left semisimple ring, and each ring

of this form is certainly right semisimple. §

Wedderburn’s original formulation of Theorem 2.2 was for algebras over a
field F , and he assumed finite dimensionality. The theorem in this case gives

R ∼= Mn1(D1) × · · · × Mnr (Dr ),

and the proof shows that Do
i

∼= EndR(Vi ), where Vi is a minimal left ideal of
R of the i th isomorphism type. The field F lies inside EndR(Vi ), each member
of F yielding a scalar mapping, and hence each Di is a division algebra over
F . Each Di is necessarily finite-dimensional over F , since R was assumed to be
finite-dimensional.
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We shall make occasional use in this chapter of the fact that if D is a finite-
dimensional division algebra over an algebraically closed field F , then D = F .
To see this equality, suppose that x is a member of D but not of F , i.e., is not an
F multiple of the identity. Then x and F together generate a subfield F(x) of D
that is a nontrivial algebraic extension of F , contradiction. Consequently every
finite-dimensional semisimple algebra R over an algebraically closed field F is
of the form

R ∼= Mn1(F) × · · · × Mnr (F),

for suitable integers n1, . . . , nr .
As we saw, the finite dimensionality plays no role in decomposing semisim-

ple rings as the finite product of rings that we shall call “simple.” The place
where finite dimensionality enters the discussion is in identifying simple rings
as semisimple, hence in establishing a converse theorem that every finite direct
product of simple rings, each equal to an ideal of the given ring, is necessarily
semisimple. We say that a nonzero ring R with identity is simple if its only
two-sided ideals are 0 and R.

EXAMPLES OF SIMPLE RINGS.
(1) If D is a division ring, then Mn(D) is a simple ring. In fact, let J be a

two-sided ideal in Mn(D), fix an ordered pair (i, j) of indices, and let

I = {x ∈ D | some member X of J has Xi j = x}.

Multiplying X in this definition on each side by scalar matrices with entries in
D, we see that I is a two-sided ideal in D. If I = 0 for all (i, j), then J = 0.
So assume for some (i, j) that I 6= 0. Then I = D for that (i, j), and we may
suppose that some X in J has Xi j = 1. If Ekl denotes the matrix that is 1 in
the (k, l)th place and is 0 elsewhere, then Eii X Ej j = Ei j has to be in J . Hence
Ekl = Eki Ei j Ejl has to be in J , and J = Mn(D).
(2) Let R be theWeyl algebra over C in one variable, namely

R =
nX

n∏0
Pn(x)

≥ d
dx

¥n Ø
Ø
Ø each Pn is in C[x], and the sum is finite

o
.

To give a more abstract construction of R, we can view R as C
£
x, d

dx
§
subject to

the relation d
dx x = x d

dx + 1; this is not to be a quotient of a polynomial algebra
in two variables but a quotient of a tensor algebra in two variables. We omit the
details. We shall now prove that the ring R is simple but not semisimple.
To see that R is a simple ring, we easily check the two identities
(i) d

dx
°
xm dn

dxn
¢

= mxm−1 dn
dxn + xm dn+1

dxn+1 by the product rule,

(ii) dn
dxn x = n dn−1

dxn−1 + x dn
dxn by induction when applied to a polynomial f (x).
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Let I be a nonzero two-sided ideal in R, and fix an element X 6= 0 in I . Let xm
be the highest power of x appearing in X , and let dn

dxn be the highest power of
d
dx

appearing in terms of X involving xm . Let l and r denote “left multiplication by”
and “right multiplication by,” and apply

°
l
° d
dx

¢
− r

° d
dx

¢¢m to X . Since (i) shows
that °

l
° d
dx

¢
− r

° d
dx

¢¢
xk

° d
dx

¢l
= kxk−1

° d
dx

¢l
,

the result of computing
°
l
° d
dx

¢
− r

° d
dx

¢¢mX is a polynomial in d
dx of degree

exactly n with no x’s. Application of (r(x) − l(x))n to the result, using (ii),
yields a nonzero constant. We conclude that 1 is in I and therefore that I = R.
Hence R is simple.
To show that R is not semisimple, first note that C[x] is a natural unital left R

module. We shall show that R has infinite length as a left R module, in the sense
of the length of finite filtrations. In fact,

R ⊇ R
° d
dx

¢
⊇ R

° d
dx

¢2
⊇ · · · ⊇ R

° d
dx

¢n (∗)

is a finite filtration of left R submodules of R. If R
° d
dx

¢k
= R

° d
dx

¢k+1, then
° d
dx

¢k
= r

° d
dx

¢k+1 for some r ∈ R. Applying these two equal expressions for
a member of R to the member xk of the left R module C[x], we arrive at a
contradiction and conclude that every inclusion in (∗) is strict. Therefore R has
infinite length and is not semisimple.

The extra hypothesis that Wedderburn imposed so that simple rings would
turn out to be semisimple is finite dimensionality. Wedderburn’s result in this
direction is Theorem 2.4 below. This hypothesis is quite natural to the extent
that the subject was originally motivated by the theory of Lie algebras. E. Artin
found a substitute for the assumption of finite dimensionality that takes the result
beyond the realm of algebras, and we take up Artin’s idea in the next section.

Theorem 2.4 (Wedderburn). Let R be a finite-dimensional algebra with
identity over a field F . If R is a simple ring, then R is semisimple and hence
is isomorphic to Mn(D) for some integer n ∏ 1 and some finite-dimensional
division algebra D over F . The integer n is uniquely determined by R, and D is
unique up to isomorphism.
PROOF. By finite dimensionality, R has a minimal left ideal V . For r in R,

form the set Vr . This is a left ideal, and we claim that it is minimal or is 0. In
fact, the function v 7→ vr is R linear from V onto Vr . Since V is simple as a
left R module, Vr is simple or 0. The sum I =

P
r with Vr 6=0 Vr is a two-sided

ideal in R, and it is not 0 because V1 6= 0. Since R is simple, I = R. Then the
left R module R is exhibited as the sum of simple left R modules and is therefore
semisimple. The isomorphism with Mn(D) and the uniqueness now follow from
Theorem 2.2. §
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3. Rings with Chain Condition and Artin’s Theorem

Parts of Chapters VIII and IX of Basic Algebra made considerable use of a
hypothesis that certain commutative rings are “Noetherian,” and we now extend
this notion to noncommutative rings. A ring R with identity is left Noetherian if
the left R module R satisfies the ascending chain condition for its left ideals. It is
left Artinian if the left R module R satisfies the descending chain condition for
its left ideals. The notions of right Noetherian and right Artinian are defined
similarly.
We saw many examples of Noetherian rings in the commutative case in Basic

Algebra. The ring of integers Z is Noetherian, and so is the ring of polynomials
R[X] in an indeterminate over a nonzero Noetherian ring R. It follows from the
latter example that the ring F[X1, . . . , Xn] in finitely many indeterminates over
a field is a Noetherian ring. Other examples arose in connection with extensions
of Dedekind domains.
Any finite direct product of fields is Noetherian and Artinian because it has a

composition series and because its ideals therefore satisfy both chain conditions.
If p is any prime, the ring Z/p2Z is Noetherian and Artinian for the same reason,
and it is not a direct product of fields.
In the noncommutative setting, any semisimple ring is necessarily left Noe-

therian and left Artinian because it has a composition series for its left ideals and
the left ideals therefore satisfy both chain conditions.

Proposition 2.5. Let R be a ringwith identity, and letM be a finitely generated
unital left R module. If R is left Noetherian, then M satisfies the ascending
chain condition for its R submodules; if R is left Artinian, then M satisfies the
descending chain condition for its R submodules.

PROOF. Weprove thefirst conclusionby inductionon the number of generators,
and the proof of the second conclusion is completely similar. The result is trivial
if M has 0 generators. If M = Rx , then M is a quotient of the left R module
R and satisfies the ascending chain condition for its R submodules, according to
Proposition 10.10 of Basic Algebra. For the inductive step with ∏ 2 generators,
write M = Rx1 + · · · + Rxn and N = Rx1 + · · · + Rxn−1. Then N satisfies
the ascending chain condition for its R submodules by the inductive hypothesis,
and M/N is isomorphic to Rxn/(N ∩ Rxn), which satisfies the ascending chain
condition for its R submodules by the inductive hypothesis. ThereforeM satisfies
the ascending chain condition for its R submodules by application of the converse
direction of Proposition 10.10. §

Artin’s theorem (Theorem 2.6 below) will make use of the hypothesis “left
Artinian” in identifying those simple rings that are semisimple. The hypothesis
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left Artinian may therefore be regarded as a useful generalization of finite dimen-
sionality. Before we come to that theorem, we give a construction that produces
large numbers of nontrivial examples of such rings.

EXAMPLE (triangular rings). Let R and S be nonzero rings with identity, and
let M be an (R, S) bimodule.3 Define a set A and operations of addition and
multiplication symbolically by

A =

µ
R M
0 S

∂
=

Ωµ
r m
0 s

∂ Ø
Ø
Ø
Ø r ∈ R, m ∈ M, s ∈ S

æ

with
µ
r m
0 s

∂µ
r 0 m0

0 s 0
∂

=

µ
rr 0 rm0 + ms 0
0 ss 0

∂
.

Then A is a ring with identity, the bimodule property entering the proof of
associativity of multiplication in A. We can identify R, M , and S with the
additive subgroups of A given by

≥
R 0
0 0

¥
,
≥
0 M
0 0

¥
, and

≥
0 0
0 S

¥
. Problems 8–11 at

the end of the chapter ask one to check the following facts:
(i) The left ideals in A are of the form I1 ⊕ I2, where I2 is a left ideal in S
and I1 is a left R submodule of R ⊕ M containing MI2.

(ii) The right ideals in A are of the form J1 ⊕ J2, where J1 is a right ideal in
R and J2 is a right S submodule of M ⊕ S containing J1M .

(iii) The ring A is left Noetherian if and only if R and S are left Noetherian
and M satisfies the ascending chain condition for its left R submodules.
The ring A is right Noetherian if and only if R and S are right Noetherian
and M satisfies the ascending chain condition for its right S submodules.

(iv) The previous item remains valid if “Noetherian” is replaced by
“Artinian” and “ascending” is replaced by “descending.”

(v) If A =
≥
R R
0 S

¥
is a ring such as

≥
Q Q
0 Z

¥
in which S is a (commutative)

Noetherian integral domain with field of fractions R and if S 6= R, then
A is left Noetherian and not right Noetherian, and A is neither left nor
right Artinian.

(vi) If A =
≥
R R
0 S

¥
is a ring suchas

≥
Q(x) Q(x)
0 Q

¥
inwhich R and S arefieldswith

S ⊆ R and dimS R infinite, then A is left Noetherian and left Artinian,
and A is neither right Noetherian nor right Artinian.

From these examples we see, among other things, that “left” and “right” are
somewhat independent for both the Noetherian and the Artinian conditions. We

3This means that M is an abelian group with the structure of a unital left R module and the
structure of a unital right S module in such a way that (rm)s = r(ms) for all r ∈ R, m ∈ M , and
s ∈ S.
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already know from the commutative case thatNoetherian does not implyArtinian,
Z being a counterexample. We shall see in Theorem 2.15 later that left Artinian
implies left Noetherian and that right Artinian implies right Noetherian.

Theorem 2.6 (E. Artin). If R is a simple ring, then the following conditions
are equivalent:

(a) R is left Artinian,
(b) R is semisimple,
(c) R has a minimal left ideal,
(d) R ∼= Mn(D) for some integer n ∏ 1 and some division ring D.

In particular, a left Artinian simple ring is right Artinian.

REMARK. Theorem 2.4 is a special case of the assertion that (a) implies
(d). In fact, if R is a finite-dimensional algebra over a field F , then the finite
dimensionality forces R to be left Artinian.

PROOF. It is evident from Wedderburn’s Theorem (Theorem 2.2) that (b) and
(d) are equivalent. For the rest we prove that (a) implies (c), that (c) implies (b),
and that (b) implies (a).
Suppose that (a) holds. Applying the minimum condition for left ideals in R,

we obtain a minimal left ideal. Thus (c) holds.
Suppose that (c) holds. Let V be a minimal left ideal. Then the sum I =P
r∈R Vr is a two-sided ideal in R, and it is nonzero because the term for r = 1

is nonzero. Since R is simple, I = R. Then the left R module R is spanned by
the simple left R modules Vr , and R is semisimple. Thus (b) holds.
Suppose that (b) holds. Since R is semisimple, the left R module R has a

composition series. Then the left ideals in R satisfy both chain conditions, and it
follows that R is left Artinian. Thus (a) holds. §

4. Wedderburn–Artin Radical

In this section we introduce one notion of “radical” for certain rings with identity,
and we show how it is related to semisimplicity. This notion, the “Wedderburn–
Artin radical,” is defined under the hypothesis that the ring is left Artinian. It is
not the only notion of radical studied by ring theorists, however. There is a useful
generalization, known as the “Jacobson radical,” that is defined for arbitrary rings
with identity. We shall not define and use the Jacobson radical in this text.
Fix a ring R with identity. A nilpotent element in R is an element a with

an = 0 for some integer n ∏ 1. A nil left ideal is a left ideal in which every
element is nilpotent; nil right ideals and nil two-sided ideals are defined similarly.
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A nilpotent left ideal is a left ideal I such that I n = 0 for some integer n ∏ 1,
i.e., for which a1 · · · an = 0 for all n-fold products of elements from I ; nilpotent
right ideals and nilpotent two-sided ideals are defined similarly.

Lemma 2.7. If I1 and I2 are nilpotent left ideals in a ring R with identity, then
I1 + I2 is nilpotent.

PROOF. Let I r1 = 0 and I s2 = 0. Expand (I1+ I2)k as
P

Ii1 Ii2 · · · Iik with each
i j equal to 1 or 2. Take k = r + s. In any term of the sum, there are∏ r indices 1
or ∏ s indices 2. In the first case let there be t indices 2 at the right end. Since
I2 I1 ⊆ I1, we can absorb all other indices 2, and the term of the sum is contained
in I r1 I

t
2 = 0. Similarly in the second case if there are t 0 indices 1 at the right end,

then the term is contained in I s2 I
t 0
1 = 0. §

Lemma 2.8. If I is a nilpotent left ideal in a ring R with identity, then I is
contained in a nilpotent two-sided ideal J .

PROOF. Put J =
P

r∈R Ir . This is a two-sided ideal. For any integer k ∏ 0,
J k =

°P
r∈R Ir

¢k
⊆

P
r1,...,rk I r1 I r2 · · · I rk ⊆

P
rk I

krk . If I k = 0, then
J k = 0. §

Lemma 2.9. If R is a ring with identity, then the sum of all nilpotent left ideals
in a nil two-sided ideal.

PROOF. Let K be the sum of all nilpotent left ideals in R, and let a be amember
of K . Write a = a1 + · · · + an with ai ∈ Ii for a nilpotent left ideal Ii . Lemma
2.7 shows that I =

Pn
i=1 Ii is a nilpotent left ideal. Since a is in I , a is a nilpotent

element.
The set K is certainly a left ideal, and we need to see that aR is in K in order to

see that K is a two-sided ideal. Lemma 2.8 shows that I ⊆ J for some nilpotent
two-sided ideal J . Then J ⊆ K because J is one of the nilpotent left ideals
whose sum is K . Since a is in I and therefore in J and since J is a two-sided
ideal, aR is contained in J . Therefore aR is contained in K , and K is a two-sided
ideal. §

Theorem 2.10. If R is a left Artinian ring, then any nil left ideal in R is
nilpotent.

REMARK. Readers familiar with a little structure theory for finite-dimensional
Lie algebras will recognize this theorem as an analog for associative algebras of
Engel’s Theorem.

PROOF. Let I be a nil left ideal of R, and form the filtration

I ⊇ I 2 ⊇ I 3 ⊇ · · · .
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Since R is left Artinian, this filtration is constant from some point on, and we
have I k = I k+1 = I k+2 = · · · for some k ∏ 1. Put J = I k . We shall show that
J = 0, and then we shall have proved that I is a nilpotent ideal.
Suppose that J 6= 0. Since J 2 = I 2k = I k = J , we have J 2 = J . Thus the

left ideal J has the property that J J 6= 0. Since R is left Artinian, the set of left
ideals K ⊆ J with J K 6= 0 has a minimal element K0. Choose a ∈ K0 with
Ja 6= 0. Since Ja ⊆ J K0 ⊆ K0 and J (Ja) = J 2a = Ja 6= 0, the minimality
of K0 implies that Ja = K0. Thus there exists x ∈ J with xa = a. Applying
powers of x , we obtain xna = a for every integer n ∏ 1. But x is a nilpotent
element, being in I , and thus we have a contradiction. §

Corollary 2.11. If R is a left Artinian ring, then there exists a unique largest
nilpotent two-sided ideal I in R. This ideal is the sum of all nilpotent left ideals
and also is the sum of all nilpotent right ideals.

REMARKS. The two-sided ideal I of the corollary is called theWedderburn–
Artin radical of R andwill be denoted by rad R. This exists under the hypothesis
that R is left Artinian.

PROOF. By Lemma 2.9 and Theorem 2.10 the sum of all nilpotent left ideals in
R is a two-sided nilpotent ideal I . Lemma 2.8 shows that any nilpotent right ideal
is contained in a nilpotent two-sided ideal J . Since J is in particular a nilpotent
left ideal, the definition of I forces J ⊆ I . Hence the sum of all nilpotent right
ideals is contained in I . But I itself is a nilpotent right ideal and hence equals
the sum of all the nilpotent right ideals. §

Lemma 2.12 (Brauer’s Lemma). If R is any ring with identity and if V is a
minimal left ideal in R, then either V 2 = 0 or V = Re for some element e of V
with e2 = e.

REMARK. An element ewith the property that e2 = e is said to be idempotent.

PROOF. Being a minimal left ideal, V is a simple left R module. Schur’s
Lemma (Proposition 10.4b of Basic Algebra) shows that EndR V is a division
ring. If a is in V , then the map v 7→ va of V into itself lies in EndR V and hence
is the 0 map or is one-one onto. If it is the 0 map for all a ∈ V , then V 2 = 0.
Otherwise suppose that a is an element for which v 7→ va is one-one onto. Then
there exists e ∈ V with ea = a. Multiplying on the left by e gives e2a = ea and
therefore (e2 − e)a = 0. Since the map v 7→ va is assumed to be one-one onto,
we must have e2 − e = 0 and e2 = e. §

Theorem 2.13. If R is a left Artinian ring and if theWedderburn–Artin radical
of R is 0, then R is a semisimple ring.
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REMARKS. Conversely semisimple rings are left Artinian and have radical 0.
In fact, we already know that semisimple rings have a composition series for
their left ideals and hence are left Artinian. To see that the radical is 0, apply
Theorem 2.2 and write the ring as R = Mn1(D1)×· · ·×Mnr (Dr ). The two-sided
ideals of R are the various subproducts, with 0 in the missing coordinates. Such a
subproduct cannot be nilpotent as an ideal unless it is 0, since the identity element
in any factor is not a nilpotent element in R.

PROOF. Let us see that any minimal left ideal I of R is a direct summand as a
left R submodule. Since rad R = 0, I is not nilpotent. Thus I 2 6= 0, and Lemma
2.12 shows that I contains an idempotent e. This element satisfies I = Re. Put
I 0 = {r ∈ R | re = 0}. Then I 0 is a left ideal in R. Since I 0 ∩ I ⊆ I and e is
not in I 0, the minimality of I forces I 0 ∩ I = 0. Writing r = re+ (r − re) with
re ∈ I and r − re ∈ I 0, we see that R = I + I 0. Therefore R = I ⊕ I 0.
Now put I1 = I . If I 0 is not 0, choose a minimal left ideal I2 ⊆ I 0 by the

minimum condition for left ideals in R. Arguing as in the previous paragraph, we
have I2 = Re2 for some element e2 with e22 = e2. The argument in the previous
paragraph shows that R = I2 ⊕ I 0

2, where I 0
2 = {r ∈ R | re2 = 0}. Define I 00 =

{r ∈ R | re1 = re2 = 0} = I 0 ∩ I 0
2. Since I2 is contained in I 0, we can intersect

R = I2 ⊕ I 0
2 with I 0 and obtain I 0 = I2 ⊕ I 00. Then R = I1 ⊕ I 0 = I1 ⊕ I2 ⊕ I 00.

Continuing in this way, we obtain R = I1⊕ I2⊕ I3⊕ I 000, etc. As this construction
continues, we have I 0 ⊇ I 00 ⊇ I 000 ⊇ · · · . Since R is left Artinian, this sequence
must terminate, evidently in 0. Then R is exhibited as the sum of simple left R
modules and is semisimple. §

Corollary 2.14. If R is a left Artinian ring, then R/ rad R is a semisimple ring.

PROOF. Let I = rad R, and let ϕ : R → R/I be the quotient homomorphism.
Arguing by contradiction, let J be a nonzero nilpotent left ideal in R/I , and let
J = ϕ−1(J ) ⊆ R. Since J is nilpotent, J k ⊆ I for some integer k ∏ 1. But
I , being the radical, is nilpotent, say with I l = 0, and hence J k+l ⊆ I l = 0.
Therefore J is a nilpotent left ideal in R strictly containing I , in contradiction to
themaximality of I . We conclude that no such J exists. Then rad(R/ rad R) = 0.
Since R/ rad R is left Artinian as a quotient of a left Artinian ring, Theorem 2.13
shows that R/ rad R is a semisimple ring. §

We shall use this corollary to prove that left Artinian rings are left Noetherian.
We state the theorem, state and prove a lemma, and then prove the theorem.

Theorem 2.15 (Hopkins). If R is a left Artinian ring, then R is left Noetherian.
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Lemma 2.16. If R is a semisimple ring, then every unital left R module M
is semisimple. Consequently any unital left R module satisfying the descending
chain condition has a composition series and therefore satisfies the ascending
chain condition.
PROOF. For each m ∈ M , let Rm be a copy of the left R module R, and

define eM =
L

m∈M Rm as a left R module. Since each Rm is semisimple, eM is
semisimple. Define a function ϕ : eM → M as follows: if rm1 +· · ·+rmk is given
with rmj in Rmj for each j , let ϕ(rm1 + · · · + rmk ) =

Pk
j=1 rmjmj . Then ϕ is an

R module map with the property that ϕ(1m) = m, and consequently ϕ carries eM
onto M . As the image of a semisimple R module under an R module map, M is
semisimple.
Now suppose that M is a unital left R module satisfying the descending chain

condition. We have just seen that M is semisimple, and thus we can write
M =

L
i∈S Mi as a direct sum over a set S of simple left R modules Mi . Let us

see that S is a finite set. If S were not a finite set, then we could choose an infinite
sequence i1, i2, . . . of distinct members of S, and we would obtain

M %
L

i 6=i1
Mi %

L

i 6=i1,i2
Mi % · · · ,

in contradiction to the fact that the R submodules of M satisfy the descending
chain condition. §

PROOF OF THEOREM 2.15. Let I = rad R. Since I is nilpotent, I n = 0 for
some n. Each I k for k ∏ 0 is a left R submodule of R. Since R is left Artinian,
its left R submodules satisfy the descending chain condition, and the same thing
is true of the R submodules of each I k . Consequently the R submodules of each
I k/I k+1 satisfy the descending chain condition.
In the action of R on I k/I k+1 on the left, I acts as 0. Hence I k/I k+1 becomes

a left R/I module, and the R/I submodules of this left R/I module must satisfy
the descending chain condition. Corollary 2.14 shows that R/I = R/ rad R is
a semisimple ring. Since the R/I submodules of I k/I k+1 satisfy the descend-
ing chain condition, Lemma 2.16 shows that these R/I submodules satisfy the
ascending chain condition. Therefore the R submodules of each left R module
I k/I k+1 satisfy the ascending chain condition.
We shall show inductively for k ∏ 0 that the R submodules of R/I k+1 satisfy

the ascending chain condition. Since I n = 0, this conclusion will establish that
R is left Noetherian, as required. The case k = 0 was shown in the previous
paragraph. Assume inductively that the R submodules of R/I k satisfy the
ascending chain condition. Since R/I k ∼= (R/I k+1)

±
(I k/I k+1) and since the

R submodules of R/I k and of I k/I k+1 satisfy the ascending chain condition, the
same is true for R/I k+1. This completes the proof. §
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5. Wedderburn’s Main Theorem

Wedderburn’s Main Theorem is an analog for finite-dimensional associative
algebras over a field of characteristic 0 of the Levi decomposition of a finite-
dimensional Lie algebra over a field of characteristic 0. Each of these results says
that the given algebra is a “semidirect product” of the radical and a semisimple
subalgebra isomorphic to the quotient of the given algebra by the radical. In other
words, the whole algebra, as a vector space, is the direct sum of the radical and a
vector subspace that is closed under multiplication.
An example of this phenomenon occurs with a block upper-triangular subal-

gebra A of Mn(D) whenever D is a finite-dimensional division algebra over the
given field. Let the diagonal blocks be of sizes n1, . . . , nr with n1+· · ·+nr = n.
The radical rad A is the nilpotent ideal of all matrices whose only nonzero entries
are above and to the right of the diagonal blocks, and the semisimple subalgebra
consists of all matrices whose only nonzero entries lie within the diagonal blocks.

Theorem 2.17 (Wedderburn’s Main Theorem). Let A be a finite-dimensional
associative algebra with identity over a field F of characteristic 0, and let rad A be
the Wedderburn–Artin radical. Then there exists a subalgebra S of A isomorphic
as an F algebra to A/ rad A such that A = S ⊕ rad A as vector spaces.

REMARKS. The finite dimensionality implies that A is left Artinian, and
Corollary 2.14 shows that A/ rad A is a semisimple algebra. The decomposition
A = S⊕ rad A is different in nature from the one in Theorem 2.2, which involves
complementary ideals. When there are complementary ideals, the identity of A
decomposes as the sum of the identities for each summand. Here the identity of
A is the identity of S and has 0 component in rad A. To see this, write 1 = a+ b
with a ∈ S and b ∈ rad A. Multiplying 1 = a + b on the left and right by s ∈ S,
we see that as = s = sa and that bs = sb = 0. Hence a = 1S is the identity of
S. Then b2 = (1− 1S)2 = 1− 2 · 1S + 12S = 1− 2 · 1S + 1S = 1− 1S = b, and
bn = b for all n ∏ 1. Since rad A is nilpotent, bn = 0 for some n. Thus b = 0,
and 1 = 1S as asserted.

Theorem 2.17 is a deep result, and the proof will occupy all of the present
section and the next. The key special case to understand occurs when A/ rad A ∼=
Mn1(F) × · · · × Mnr (F). We shall handle this case by means of Theorem 2.18
below, whose proofwill be themain goal of the present section. Corollary 2.27 (of
Theorem 2.18) near the end of this section will show that Theorem 2.18 implies
this special case of Theorem 2.17 for r = 1, and Corollary 2.28 will deduce this
special case of Theorem 2.17 for general r from Corollary 2.27.
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Theorem 2.18. Let A be a left Artinian ring with Wedderburn–Artin radical
rad A, and suppose that A/ rad A is simple, i.e., is of the form A/ rad A ∼= Mn(D)
for some division ring D. Then A is isomorphic as a ring to Mn(R) for some left
Artinian ring R such that R/ rad R ∼= D.

The idea behind the proof of Theorem 2.18 is to give an abstract characteri-
zation of a ring of matrices in terms of the elements Ei j that are 1 in the (i, j)th
place and are 0 elsewhere. In turn, these elements arise from the diagonal such
elements Eii , which are idempotents, i.e., have E2i i = Eii . The critical issue in
the proof of Theorem 2.18 is to show that each idempotent of A/ rad A, which is
assumed to be a full matrix ring Mn(D), has an idempotent in its preimage in A.
The lifted idempotents then point to Mn(R) for a certain R.
Thus we begin with some discussion of idempotents. We shall intersperse

facts about general rings with facts about left Artinian rings as we go along. For
the moment let R be any ring with identity, and let e be an idempotent. Then
1− e is an idempotent, and we have the three Peirce4 decompositions

R = Re ⊕ R(1− e),
R = eR ⊕ (1− e)R,

R = eRe ⊕ eR(1− e) ⊕ (1− e)Re ⊕ (1− e)R(1− e).

All the direct sums may be regarded as direct sums of abelian groups. The two
members of the right side in the first case are left ideals, and the two members of
the right side in the second case are right ideals. If r ∈ R is given, then the first
decomposition is as r = re + r(1 − e); the decomposition is direct because if
r1e = r2(1− e), then right multiplication by e gives r1e = 0 since e2 = e. The
second decomposition is proved similarly, and the third decomposition follows
by combining the first two. In the third decomposition, eRe is a ring with e as
identity, and (1− e)R(1− e) is a ring with 1− e as identity.

EXAMPLE. Let R = Mn(F), and let

e =









1
...

1
0

...
0









, so that 1− e =









0
...

0
1

...
1









.

4Pronounced “purse.” Charles Sanders Peirce (1839–1914).
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In block form we then have

eRe =

µ
∗ 0
0 0

∂
, eR(1− e) =

µ
0 ∗
0 0

∂
,

(1− e)Re =

µ
0 0
∗ 0

∂
, (1− e)R(1− e) =

µ
0 0
0 ∗

∂
.

Proposition 2.19. In a ring R with identity, let e be an element of R with
e2 = e.
(a) If I is a left ideal in eRe, then eRI = I . Hence I 7→ RI is a one-one

inclusion-preserving map of the left ideals of eRe to those of R.
(b) If J is a two-sided ideal of eRe, then e(RJ R)e = J . Hence J 7→ RJ R

is a one-one inclusion-preserving map of the two-sided ideals of eRe to those of
R. This map respects multiplication of ideals.
(c) If eJ is a two-sided ideal of R, then eeJe is a two-sided ideal of eRe, and

eRe ∩ eJ = eeJe.

PROOF. For (a), we have eRI = eR(eI ) = (eRe)I = I , the first equality
holding because e is the identity in eRe and the third equality holding because
eRe contains its identity e. The rest of (a) then follows.
For (b), J satisfies J = eJe, since ej = je = j for every j ∈ eRe, and

therefore eRJ Re = eReJeRe = (eRe)J (eRe) = J , the last equality holding
because eRe contains its identity e. To see that J 7→ RJ R respects multi-
plication, we compute that (RJ R)(RJ 0R) = RJ RJ 0R = R(Je)R(eJ 0)R =
RJ (eRe)J 0R = RJ J 0R.
For (c), eRe∩ eJ ⊇ eeJe certainly. In the reverse direction, let j be in eRe∩ eJ .

Then j = ere for some r ∈ R, and hence eje = e2re2 = ere = j shows that j
is in eeJe. §

Corollary 2.20. In a left Artinian ring R, let e be an element with e2 = e.
Then the ring eRe is left Artinian, and

rad(eRe) = eRe ∩ rad R = e(rad R)e.

If R denotes the quotient ring R/ rad R and ē denotes the element e+ rad R of the
quotient, then the quotient map carries eRe onto ēRē and has kernel rad(eRe).
Consequently

eRe/ rad(eRe) ∼= ēRē.

PROOF. The ring eRe is left Artinian as an immediate consequence of Propo-
sition 2.19a. For the first display we may assume that R and eRe are both left
Artinian. Then eRe ∩ rad R is a two-sided ideal of eRe, and (eRe ∩ rad R)n ⊆
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(rad R)n for every n. Since (rad R)N = 0 for some N , eRe ∩ rad R is nilpotent,
and eRe ∩ rad R ⊆ rad(eRe). Since the reverse inclusion is evident, we obtain
rad(eRe) = eRe ∩ rad R. The equality eRe ∩ rad R = e(rad R)e is the special
case of Proposition 2.19c in which eJ = rad R. This proves the equalities in the
first display.
For the isomorphism in the second display, the quotient mapping carries ere

to ere + rad R = (e + rad R)(r + rad R)(e + rad R) = ē(r + rad R)ē. Thus
the quotient map R → R carries eRe onto ēRē. The kernel is eRe ∩ rad R,
which we have just proved is rad(eRe). Therefore the quotient map exhibits an
isomorphism of rings eRe/ rad(eRe) ∼= ēRē. §

Proposition 2.21. In a ring R with identity, let e1 and e2 be idempotents. Then
the unital left R modules Re1 and Re2 are isomorphic as left R modules if and
only if there exist elements e12 and e21 in R such that

e1e12e2 = e12, e2e21e1 = e21,
e12e21 = e1, e21e12 = e2.

REMARK. In this case we shall say that e1 and e2 are isomorphic idempotents,
and we shall write e1 ∼= e2.

PROOF. Let ϕ : Re1 → Re2 be an R isomorphism. Define e12 = ϕ(e1)
and e21 = ϕ−1(e2). Every element s of Re2 has the property that se2 = s
because e22 = e2; since e12 lies in Re2, e12e2 = e12. Meanwhile, e12 = ϕ(e1) =
ϕ(e21) = e1ϕ(e1) = e1e12. Putting these two facts together gives e12 = e12e2 =
e1e12e2. This proves the first equality in the display, and the equality e21 =
e2e21e1 is proved similarly. Also, e1 = ϕ−1(ϕ(e1)) = ϕ−1(e12) = ϕ−1(e12e2) =
e12ϕ−1(e2) = e12e21, and similarly e21e12 = e2. This completes the proof that
an R isomorphism Re1 ∼= Re2 leads to elements e12 and e21 such that the four
displayed identities hold.
For the converse, suppose that e12 and e21 exist and satisfy the four displayed

identities. Define ϕ : Re1 → R by ϕ(re1) = re12. To see that this map is well
defined, suppose that re1 = 0; then re12 = r(e1e12e2) = (re1)e12e2 = 0, as
required. Similarly we can define √ : Re2 → R by √(re2) = re21. Then

√ϕ(e1) = √(e12) = √(e12e2) = e12√(e2) = e12e21 = e1,

and similarly ϕ√(e2) = e2. Since √ϕ and ϕ√ are R module homomorphisms,
each is the identity on its domain. §

Corollary 2.22. Let R be a left Artinian ring. For each r in R, let r̄ be the coset
r + rad R in R/ rad R. If e1 and e2 are idempotents in R, then e1 and e2 are
isomorphic if and only if ē1 and ē2 are isomorphic.
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PROOF. If e1 and e2 are given as isomorphic in R, let e12 and e21 be as in
Proposition 2.21, and pass to R/ rad R by the quotient homomorphism to obtain
elements ē12 and ē21 that exhibit ē1 and ē2 as isomorphic idempotents.
Conversely let ē1 and ē2 be isomorphic idempotents in R/ rad R, and use

Proposition 2.21 to produce elements ū12 and ū21 in R/ rad R such that

ē1ū12ē2 = ū12, ē2ū21ē1 = ū21, ū12ū21 = ē1, ū21ū12 = ē2.

Letu12 andu21 bepreimagesof ū12 and ū21 in R. Possibly replacingu12 by e1u12e2
and u21 by e2u21e1, we may assume that e1u12e2 = u12 and e2u21e1 = u21. Our
construction is such that u12u21 = e1− z1 with z1 in rad R and e1z1 = z1 = z1e1.
Since z1 is a nilpotent element,

(e1 − z1)(e1 + z1 + z21 + · · · + zn1) = e1

as soon as zn+11 = 0. Thus we have u12u21(e1 + z1 + z21 + · · · + zn1) = e1.
Define e12 = u12 and e21 = u21(e1 + z1 + z21 + · · · + zn1). Then it is immediate
that ē12 = ū12, ē21 = ū21, and e12e21 = e1. Also, the equality e1u12e2 = u12
implies that e1e12e2 = e12, and the equality e2u21e1(e1 + z1 + z21 + · · · + zn1) =
u21(e1 + z1 + z21 + · · · + zn1) implies that e2e21e1 = e21 since e1z1 = z1 = z1e1.
In view of Proposition 2.21, we are left with checking the value of e21e12. We

know that ē21ē12 = ū21ū12 = ē2, and hence e21e12 = e2− z2 for some z2 in rad R.
Multiplying by e2 on both sides, we see that

e2z2 = z2 = z2e2. (∗)

Now (e21e12)(e21e12) = e21e1e12 = e21e12, and thus (e2 − z2)2 = e2 − z2.
Expanding out this equality and using (∗) gives e2 − 2z2 + z22 = e2 − z2 and
therefore gives z22 = z2. Hence zn2 = z2 for every n ∏ 1. But z2 is in rad R, and
every element of rad R is nilpotent. Thus z2 = 0, and e12e21 = e1 as required. §

The proof of Corollary 2.22 shows a little more than the statement asserts,
and we shall use this little extra conclusion when we finally get to the proof of
Theorem 2.18. The extra fact is that any elements ū12 and ū21 exhibiting ē1 and
ē2 have lifts to elements e12 and e21 exhibiting e1 and e2 as isomorphic.
The critical step of lifting a single idempotent from A/ rad A to A is accom-

plished by the following proposition.

Proposition 2.23. Let R be a left Artinian ring. For each r in R, let r̄ be the
element r + rad R of R/ rad R. If a is an element of R such that ā is idempotent
in R/ rad R, then there exists an idempotent e in R such that ē = ā.
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PROOF. Set b = 1 − a. The elements a and b commute, and ab = a(1 − a)
maps to ā− ā2 = 0 in R/ rad R, since ā is idempotent. Therefore ab lies in rad R
and must satisfy (ab)n = 0 for some n. Since a and b commute, we can apply
the Binomial Theorem to obtain

1 = (a + b)2n =
2nP

k=0

°2n
k
¢
a2n−kbk .

Define e =
nP

k=0

°2n
k
¢
a2n−kbk and f =

2nP

k=n+1

°2n
k
¢
a2n−kbk .

Each term of e contains at least the nth power of a, and each term of b contains at
least the nth power of b. Thus each term of e f contains at least a factor anbn =
(ab)n = 0, and we see that e f = 0. Therefore e = e1 = e(e+ f ) = e2+0 = e2,
and e is an idempotent. Each term of e except the one for k = 0 contains a factor
ab, and thus e ≡ a2n mod rad R. Since ā is idempotent, a2n ≡ a mod rad R, and
therefore ē = ā. §

For the proof of Theorem 2.18, we need to lift an entire matrix ring to obtain a
matrix ring, and this involves lifting more than a single idempotent. In effect, we
have to lift compatibly an entire system ēi j that behaves like the usual system of
Ei j for matrices. The idea is that if R/ rad R is a matrix ring Mn(K ) with some
ring of coefficients K , then the i th and j th columns of Mn(K ) may be described
compatibly as Mn(K )ēi i and Mn(K )ēj j . Proposition 2.23 allows us to lift ēi i
and ēj j to idempotents eii and ej j , and Corollary 2.22 shows that an isomorphism
ēi i ∼= ēj j implies an isomorphism eii ∼= ej j . The isomorphism gives us elements
ei j and eji , and then we can piece these together to form matrices.
Two idempotents e and f in a ring R with identity are said to be orthogonal

if e f = 0 = f e. Suppose that e1, . . . , en are mutually orthogonal idempotents
such that

Pn
i=1 ei = 1. Let us see in this case that

R = Re1 ⊕ · · · ⊕ Ren

as left R modules. In fact, the condition
Pn

i=1 ei = 1 shows that r =
Pn

i=1 rei
for each r ∈ R, and thus R = Re1+ · · ·+ Ren . If r lies in Rej ∩

P
i 6= j Rei , then

r = sej and r =
P

i 6= j ri ei . Multiplying the first of these equalities on the right
by ej gives rej = se2j = sej = r . Hence the second of these equalities, upon
multiplication by ej , yields r = rej =

P
i 6= j ri ei ej = 0. In other words, the sum

is direct, as asserted.

Corollary 2.24. Let R be a left Artinian ring. For each r in R, let r̄ be the coset
r + rad R in R/ rad R. If x and y are orthogonal idempotents in R = R/ rad R
and if e is an idempotent in R with ē = x , then there exists an idempotent f in
R with f̄ = y and e f = f e = 0.
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PROOF. By Proposition 2.23 choose an idempotent f0 in R with f̄0 = y. Then
f0e has f0e = yx = 0. Hence f0e is in rad R, and ( f0e)n+1 = 0 for some n.
Consequently 1+ f0e+ ( f0e)2 + · · · + ( f0e)n is a two-sided inverse to 1− f0e.
Define

f = (1− e)
°
1+ f0e + ( f0e)2 + · · · + ( f0e)n

¢
f0(1− f0e).

Then f̄ = (1−x)(y+0+· · ·+0)y(1−0) = (1−x)y = y−xy = y. Moreover,

f e = (1− e)
°
1+ f0e + ( f0e)2 + · · · + ( f0e)n

¢
( f0e − f 20 e

2) = 0

since f0e − f 20 e2 = f0e − f0e = 0, and

e f = e(1− e)
°
1+ f0e + ( f0e)2 + · · · + ( f0e)n

¢
f0(1− f0e) = 0

since e(1− e) = 0.
We still need to see that f 2 = 0. Since f0(1− f0e) = f0(1− e), we can write

f = (1− e)(1+ f0e + · · · ) f0(1− e) and

f 2 = (1− e)(1+ f0e + · · · ) f0(1− e)(1+ f0e + · · · ) f0(1− e)
= (1− e)(1+ f0e + · · · ) f0(1− f0e)(1+ f0e + · · · ) f0(1− e)
= (1− e)(1+ f0e + · · · ) f0 · 1 · f0(1− e)
= (1− e)(1+ f0e + · · · ) f0(1− f0e)
= f,

as required. §

Corollary 2.25. Let R be a left Artinian ring. For each r in R, let r̄ be the coset
r + rad R in R/ rad R. If {x1, . . . , xN } is a finite set of mutually orthogonal
idempotents in R = R/ rad R, then there exists a set of mutually orthogonal
idempotents {e1, . . . , eN } in R such that ēi = xi for all i . If

PN
i=1 xi = 1, then

PN
i=1 ei = 1.

PROOF. For the existence of {x1, . . . , xN }, we proceed by induction on N , the
case N = 1 being Proposition 2.23. Suppose we have found e1, . . . , en and we
want to find en+1. Let e be the idempotent e1 + · · · + en , and apply Corollary
2.24 to the idempotent e in R and the idempotent xn+1 in R/ rad R. The corollary
gives us en+1 orthogonal to e with ēn+1 = xn+1. Since ei = ei e = eei for i ≤ n,
we obtain en+1ei = en+1(eei ) = (en+1e)ei = 0 and similarly ei en+1 = 0 for
those i’s, and the induction is complete.
Finally

P
i xi = 1 implies that

P
i ei = 1 + r for some r in rad R. Then

the idempotent 1 −
P

i ei is exhibited as in rad R and must be 0 because every
element of rad R is nilpotent. §
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In a nonzero ring R with identity, a finite subset
©
ei j | i, j ∈ {1, . . . , n}

™
is

called a set of matrix units in R if
Pn

i=1 eii = 1 and ei j ekl = δjkeil for all
i, j, k, l. It follows from these conditions that the eii are mutually orthogonal
idempotents with sum 1, since eii ej j = δi j ei j = δi j eii . In view of the remarks
before Corollary 2.24, we automatically have R =

Ln
i=1 Reii . In addition, the

product rule gives eii ei j ej j = ei j , ej j eji eii = eji , ei j eji = eii , and eji ei j = ej j ;
by Proposition 2.21 the idempotents eii and ej j are isomorphic in the sense that
there is a left R module isomorphism Reii ∼= Rej j .
If A = Mn(R), define Ei j to be the matrix that is 1 in the (i, j)th place and

is 0 elsewhere. Then it is immediate that {Ei j } is a set of matrix units in A. To
recognize matrix rings, we prove the following converse.

Proposition 2.26. For a nonzero ring A with identity, suppose that
©
ei j | i, j ∈ {1, . . . , n}

™

is a set of matrix units in A. Let R be the subring of A of all elements of A
commuting with all ei j . Then every element of A can be written in one and only
one way as

P
i, j ri j ei j with ri j ∈ R for all i and j , and the map A → Mn(R)

given by a 7→ [ri j ] is a ring isomorphism. The ring R can be recovered from A
by means of the isomorphism R ∼= e11Ae11.

PROOF. To each a ∈ A, associate the matrix [ri j ] in Mn(A) whose entries are
given by ri j =

P
k ekiaejk . Then

ri j elm =
P

k
ekiaejkelm =

P

k
ekiaδklejm = eliaejm, (∗)

and elmri j =
P

k
elmekiaejk =

P

k
δmkeliaejk = eliaejm .

Thus ri j elm = eliaejm = elmri j . Because of the definition of R, this equality
shows that ri j is in R. In particular, [ri j ] is in Mn(R). A special case of (∗) is
that ri j ei j = eiiaej j . Hence

P

i, j
ri j ei j =

P

i, j
eii aej j = 1a1 = a.

This proves that a can be expanded as a =
P

i, j ri j ei j .
For uniqueness, suppose that a =

P
i, j si j ei j is given with each si j in R.

Multiplication on the left by ekp and right by eqk , followed by addition, gives

rpq =
P

k
ekpaeqk =

P

k
ekp

°P

i, j
si j ei j

¢
eqk =

P

i, j,k
si j ekpei j eqk =

P

k
spqekk = spq .
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This proves that the map A → Mn(R) is one-one onto.
To see that the map A → Mn(R) respects multiplication, let a and a0 be in

A, and let the effect of the map on a, a0, and aa0 be a 7→ [ri j ], a0 7→ [r 0
i j ], and

aa0 7→ [si j ]. Then we have
P

l
rilr 0

l j =
P

l,k,k0
ekiaelkek0la0ejk0 =

P

l,k
ekiaella0ejk =

P

k
ekiaa0ejk = si j ,

and the matrix product of the images of a and a0 coincides with the image of aa0.
Finally consider the image E11 = [ri j ] of the element a = e11 of A. It has

ri j =
P

k eki e11ejk = δi1δ1 j
P

k ekk = δi1δ1 j . If a is a general element of A and
its image is [ri j ], then the result of the previous paragraph shows that e11ae11
maps to E11[ri j ]E11 = r11E11. Hence the map e11ae11 7→ r11 is an isomorphism
of e11Ae11 with R. §

PROOF OF THEOREM 2.18. Let
©
xi j | i, j ∈ {1, . . . , n}

™
be a set of matrix

units for the matrix ring A/ rad A ∼= Mn(D). Then x11, . . . , xnn are mutually
orthogonal idempotents in A/ rad A with sum 1. By Corollary 2.25 we can
choose mutually orthogonal idempotents e11, . . . , enn in A with

Pn
i=1 eii = 1

and with ēi i = xii .
We observed at the time of defining matrix units that x11, . . . , xnn are isomor-

phic as idempotents. Corollary 2.22 shows as a consequence that e11, . . . , enn
are isomorphic as idempotents. The remarks following Corollary 2.22 show that
the isomorphism of Re11 with Reii can be exhibited by elements e1i and ei1 in A
satisfying the usual properties

e11e1i eii = e1i , eii ei1e11 = ei1, e1i ei1 = e11, ei1e1i = eii

and also the properties ē1i = x1i and ēi1 = xi1. Here ā is shorthand for a+ rad A.
Define ei j = ei1e1 j . Then ēi j = ēi1ē1 j = xi1x1 j = xi j , and we readily check that
{ei j } is a set of matrix units for A.
By Proposition 2.26, A ∼= Mn(R) with R ∼= e11Ae11. From Corollary 2.20

we know that e11Ae11/ rad(e11Ae11) ∼= ē11(A/ rad A)ē11, where ē11 denotes the
element e11 + rad A of A/ rad A. Hence

R/ rad R ∼= ē11(A/ rad A)ē11 ∼= ē11Mn(D)ē11 ∼= D,

and the proof is complete. §

Corollary 2.27. If A is a finite-dimensional algebra with identity over a field
F and if A/ rad A ∼= Mn(F) as algebras, then there is a subalgebra S isomorphic
to Mn(F) such that A ∼= S ⊕ rad A as vector spaces.
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REMARKS. This corollary shows that Theorem 2.18 implies Theorem 2.17
under the additional assumption that the algebra A of Theorem 2.17 satisfies
A/ rad A ∼= Mn(F). It is not necessary to assume characteristic 0.
PROOF. Suppose that A is a finite-dimensional algebra with identity over

F such that A/ rad A ∼= Mn(F). Then A is left Artinian, and Theorem 2.18
produces a certain ring R with A ∼= Mn(R). Here Proposition 2.26 shows
that R is isomorphic as a ring to e11Ae11 for a certain idempotent e11 in A. It
follows that R is an algebra with identity over F , necessarily finite-dimensional
because A is finite-dimensional. The algebra R, according to Theorem 2.18, has
R/ rad R ∼= F . Therefore R ∼= F ⊕ rad R as F vector spaces. If we allow
Mn( · ) to be defined even for rings without identity, then we have F algebra
isomorphisms

A ∼= Mn(R) ∼= Mn(F ⊕ rad R) ∼= Mn(F) ⊕ Mn(rad R)

in which the direct sums are understood to be direct sums of vector spaces. We
shall show that

rad(Mn(R)) = Mn(rad R), (∗)

and then the decomposition A = S ⊕ rad A will have been proved with S ∼=
Mn(F).
To prove (∗), let Ei j be the member of Mn(R) that is 1 in the (i, j)th place

and is 0 elsewhere. Suppose that J is a two-sided ideal in Mn(R). Let I ⊆ R
be the set of all elements x11 for x ∈ J . If r is in R, then r E11 is a member of
Mn(R), and the (1, 1)th entry of the element (r E11)x of J is r x11. Thus r x11 is
in I . Similarly x11r is in I , and I is a two-sided ideal in R. Let us see that

J = Mn(I ). (∗∗)

If x is in J , then so is Ei1xE1 j = x11Ei j , and hence I Ei j is in J ; taking sums
over i and j shows that Mn(I ) ⊆ J . In the reverse direction if x is in J , then so
is E1i x Ej1 = xi j E11, and hence xi j is in I ; therefore J ⊆ Mn(I ). This proves
(∗∗). Let us apply (∗∗) with J = rad(Mn(R)). The corresponding ideal I of R
consists of all entries x11 of members x of J . Using Corollary 2.20, we obtain

I E11=E11 J E11 = E11 rad(Mn(R))E11 = rad(E11Mn(R)E11) = rad(RE11).

Thus I = rad R. Taking Mn( · ) of both sides and applying (∗∗), we arrive at (∗).
This completes the proof. §

Corollary 2.28. If A is a finite-dimensional associative algebra with identity
over a field F and if A/ rad A ∼= Mn1(F)×· · ·×Mnr (F), then there is a subalgebra
S of A isomorphic as an algebra to A/ rad A such that A ∼= S ⊕ rad A as vector
spaces.
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REMARKS. This corollary gives the conclusion of Theorem 2.17 under the
additional assumption that the semisimple algebra A/ rad A over F is of the form
A/ rad A ∼= Mn1(F) × · · · × Mnr (F). If F is algebraically closed, then the
division rings Dk in Theorem 2.2 are finite-dimensional division algebras over
F and necessarily equal F , as was observed in the discussion after Corollary
2.3. Thus Theorem 2.2 shows that the additional assumption about the form of
A/ rad A is automatically satisfied if F is algebraically closed. In other words,
Corollary 2.28 completes the proof of Theorem 2.17 if F is algebraically closed.

PROOF. For 1 ≤ j ≤ r , let xj be the identity matrix of Mnj (F) when
Mnj (F) is regarded as a subalgebra of A/ rad A. The elements xj are orthogonal
idempotents in A/ rad A with sum 1, and Corollary 2.25 shows that they lift to
orthogonal idempotents ej of Awith sum 1. For each j , Corollary 2.20 shows that
ej Aej/ rad(ej Aej ) = xj (A/ rad A)xj ∼= Mnj (F). By Corollary 2.27, ej Aej has
a subalgebra Sj ∼= Mnj (F) with ej Aej = Sj ⊕ rad(ej Aej ) as vector spaces. Put
S =

Lr
j=1 Sj , the direct sum being understood in the sense of vector spaces. The

subalgebra Sj has identity ej , and the product of ej with any other Si is 0 because
ei ej = ej ei = 0 when i 6= j . If s =

P
j sj and s 0 =

P
j s 0j are two elements of S,

then ss 0 =
°P

i si ei
¢°P

j ej s 0j
¢

=
P

i, j si ei ej s 0j =
P

j sj ej s 0j =
P

j sj s 0j . Hence
S is a subalgebra. The element

Pr
j=1 ej is a two-sided identity in S.

Let us prove that S∩ rad A = 0. If s =
P

j sj is in S∩ rad A, then sj = ej sej is
in Sj = ej Sej and is in ej (rad A)ej , which equals rad(ej Aej ) by Corollary 2.20.
Since Sj ∩ rad(ej Aej ) = 0 by construction, sj = 0. Thus s =

P
j sj = 0.

Consequently S∩rad A = 0. A count of dimensions gives dim S =
P

j dim Sj
=

P
j n2j = dim(A/ rad A). Thus dim A = dim S+dim(rad A), andwe conclude

that A = S ⊕ rad A as vector spaces. §

6. Semisimplicity and Tensor Products

In this section we shall complete the proof of Wedderburn’s Main Theorem
(Theorem 2.17). In the previous section we proved in Corollary 2.28 the special
case in which A/ rad A is isomorphic to a product of full matrix rings over the
base field F . This special case includes all cases of Theorem 2.17 in which F is
algebraically closed.
The idea for the general case is to make a change of rings by tensoring A with

the algebraic closure of the underlying field F , or at least with a large enough
finite extension K of F for Corollary 2.28 to be applicable. That is, we first
consider AK = A⊗F K and (A/ rad A)⊗F K in place of A and A/ rad A. Inside
AK we can recognize (rad A) ⊗F K as a subalgebra defined over K , and we
expect that it is rad AK and that we can find a complementary subalgebra S over
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K ; then the question is one of showing that S is of the form S0 ⊗F K for some
semisimple subalgebra S0 of A defined over F . The trouble with this style of
argument is that the tensor product (A/ rad A)⊗F K need not be semisimple and
there need not be a candidate for S. Some question about separability of field
extensions plays a role, as the following example shows, and the assumption of
characteristic 0 will ensure this separability.

EXAMPLE. We exhibit two extension fields K and L of a base field F such that
K ⊗F L is not a semisimple algebra over F . The field extensions are each 1-by-1
matrix algebras over an extension field of F and hence are simple algebras, yet
the tensor product is not semisimple. Fix a prime field Fp, and let F = Fp(x p) be
a simple transcendental extension of Fp. Define K = L = Fp(x) = F( p

p
x p ).

Both K and L are field extensions of F of degree p. Thus K ⊗F L is a finite-
dimensional commutative algebra with identity over F , by the construction in
Proposition 10.24 of Basic Algebra. The element z = x ⊗ 1− 1⊗ x in K ⊗F L
is nonzero but has z p = x p ⊗1−1⊗ x p = x p ⊗1− x p ⊗1 = 0, the next-to-last
equality following because x p lies in the base field F . Consequently K ⊗F L has
a nonzero nilpotent element. If K ⊗F L were semisimple, Theorem 2.2 would
show that it was the direct product of fields, and it could not have any nonzero
nilpotent elements. We conclude that K ⊗F L is not a semisimple algebra.

Proposition 2.29. Let F be a field, let K = F(α) be a simple algebraic
extension, let g(X) be the minimal polynomial of α over F , and let L be another
field extension of F . Then

(a) K ⊗F L ∼= L[X]/(g(X)) as associative algebras over L ,
(b) K ⊗F L is a semisimple algebra if the polynomial g(X) is separable.

REMARKS. Proposition 10.24 of Basic Algebra shows that the tensor product
A⊗F B of two associative algebras with identity over F has a unique associative
algebra structure such that (a1 ⊗ b1)(a2 ⊗ b2) = a1a2 ⊗ b1b2. Problem 8 at the
end of Chapter X shows that if B is an extension field of F , then A⊗F B is in fact
an associative algebra with identity over B, the multiplication by b ∈ B being
given by the mapping 1⊗ (left by b).

PROOF. For (a), letn = [K : F]. Form the F bilinearmappingof F[X]×L into
L[X] given by (P(X), `) 7→ `P(X). Corresponding to this F bilinear mapping
is a unique F linear map ϕ : F[X]⊗F L → L[X] carrying P(X) ⊗ ` to `P(X)
for P(X) ∈ F[X] and ` ∈ L . The F vector space F[X]⊗F L is an L vector space
with multiplication by `0 ∈ L given by the linear mapping 1⊗ (left by `0). Since
ϕ
°
(1⊗(left by `0))(P(X)⊗`)

¢
= `0`P(X) = `0ϕ(P(X)⊗`)), ϕ is L linear. In

addition, ϕ((P(X)⊗`)(Q(X)⊗`0)) = ϕ(P(X)Q(X)⊗``0) = ``0P(X)Q(X) =
ϕ(P(X) ⊗ `)ϕ(Q(X) ⊗ `0), and therefore ϕ is an algebra homomorphism.
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We follow ϕ with the quotient homomorphism √ : L[X] → L[X]/(g(X)),
and the composition√ϕ is 0 on the ideal (g(x)) ⊗F L of F[X]⊗F L . Therefore
√ϕ descends to a homomorphism (F[X]/(g(X)))⊗F L → L[X]/(g(X)), hence
to a homomorphism η : K ⊗F L → L[X]/(g(X)). Since ϕ and √ are onto, so
is η.
It is enough to prove that η is one-one. Thus suppose that η

°P
i ki ⊗ `i

¢
= 0

with all ki in K , all `i in L , and the `i linearly independent over F . Write
ki = Pi (X)+(g(X))with deg Pi (X) < nwhenever Pi 6= 0. Then

P
i `i Pi (X) ≡

0 mod g(X). Since g(X) has degree n and each nonzero Pi (X) has degree at
most n,

P
i `i Pi (X) = 0. Write Pi (X) =

P
j ci j X j with each ci j in F . ThenP

j
°P

i `i ci j
¢
X j = 0, and

P
i `i ci j = 0 for all j . Since the `i are linearly

independent over F , ci j = 0 for all i and j . Thus ki = 0 for all i ,
P

i ki ⊗`i = 0,
and η is one-one. This proves (a).
For (b), factor g(X) over L as g1(X) · · · gm(X) for polynomials gj (X) irre-

ducible over L . Since the separability of g forces g1, . . . , gm to be relatively
prime in pairs, the Chinese Remainder Theorem implies that

L[X]/(g1(X) · · · gm(X)) ∼= L[X]/(g1(X)) × · · · × L[X]/(gm(X)).

Each L[X]/(gj (X)) is a field, and thus L[X]/(g(X)) is exhibited as a product of
fields and is semisimple. §

Corollary 2.30. Let F be a field, let K be a finite separable algebraic extension
of F , and let L be another field extension of F . Then the algebra K ⊗F L is
semisimple.

REMARKS. The condition of separability of the extension K/F is automatic
in characteristic 0. The two field extensions K and L in the example before
Proposition 2.29 both failed to be separable extensions of the base field F .

PROOF. The Theorem of the Primitive Element (Theorem 9.34 of Basic Al-
gebra) shows that K/F is a simple extension, say with K = F(α). Since this
extension is assumed separable, theminimal polynomial over F of any element of
K is a separable polynomial. The hypotheses of Proposition 2.29b are therefore
satisfied, and K ⊗F L is semisimple. §

Proposition 2.31. Suppose that A and B are algebras with identity over a field
F , that B is simple, and that B has center F . Then the two-sided ideals of the
tensor-product algebra A⊗F B are all subsets I ⊗F B such that I is a two-sided
ideal of A.

PROOF. The set I ⊗F B is a two-sided ideal of A⊗F B, since (a⊗b)(i⊗b0) =
ai ⊗ bb0 and since a similar identity applies to multiplication in the other order.
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Conversely suppose that J is an ideal in A⊗F B. Let 1B be the identity of B,
and define I = {a ∈ A | a ⊗ 1B ∈ J }. Then I is a two-sided ideal of A, and we
shall prove that J = I ⊗F B. The easy inclusion is I ⊗F B ⊆ J . For this, let
i be in I and b be in B. Then i ⊗ 1B is in J and 1A ⊗ b is in A ⊗F B. Their
product i ⊗ b has to be in J , and thus I ⊗F B ⊆ J .
For the reverse inclusion, take a basis {xi } of I over F and extend it to a basis

of A by adjoining some vectors {yj }. It is enough to show that any finite sumP
j yj ⊗ bj in J necessarily has all bj equal to 0. Arguing by contradiction,

suppose that
Pm

k=1 yjk ⊗ bjk is a nonzero sum in J with m as small as possible
and in particular with all bjk nonzero. Let H be the subset of B defined by

H =
n
cj1

Ø
Ø
Ø

mP

k=1
yjk ⊗ cjk ∈ J for some m-tuple {cjk } ⊆ B

o
.

The set H is a two-sided ideal of B containing the nonzero element bj1 of B.
Since B is simple by assumption, H = B. Thus 1B is in H . Therefore some
element

yj1 ⊗ 1B +
mP

k=2
yjk ⊗ cjk

is in J . Let b ∈ B be arbitrary. Multiplying the displayed element on the left and
right by 1A ⊗ b and subtracting the results shows that

yj2 ⊗ (bcj2 − cj2b) + · · · + yjm ⊗ (bcjm − cjmb)

is in J . Sincem was chosen to be minimal, this element must be 0 for all choices
of b. Then all coefficients are 0, and the conclusion is that all coefficients cjk are
in the center of B, which is F by assumption. Consequently we can rewrite our
element of J as

yj1⊗1B+
mP

k=2
yjk⊗cjk = yj1⊗1B+

mP

k=2
cjk yjk⊗1B =

°
yj1+cj2 yj2+· · ·+cjm yjm

¢
⊗1B .

The definition of I shows that the factor yj1+cj2 yj2+· · ·+cjm yjm in the pure tensor
on the right is in I . Since the yj ’s form a basis of a vector-space complement to
I , this vector must be 0. The linear independence of the yj ’s over F forces each
coefficient to be 0, and we have arrived at a contradiction because the coefficient
of yj1 is 1, not 0. §

Lemma 2.32. The center of a finite-dimensional simple algebra A over a field
F is a field that is a finite extension of F .
PROOF. By Theorem 2.4, A ∼= Mn(D) for some finite-dimensional division

algebra D over F . Let Z be the center of A. By inspection this consists of the
scalar matrices whose entries lie in the center of D. The center of D is a field.
Hence Z is a field, necessarily a finite extension of F . §
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Proposition 2.33. Let A be a finite-dimensional semisimple algebra over a
field F of characteristic 0, and suppose that K is a field containing F . Then the
algebra A ⊗F K over K is semisimple.

PROOF. Since the tensor product of a finite direct sum is the direct sumof tensor
products, wemay assumewithout loss of generality that A is simple. Lemma2.32
shows that the center Z of A is a finite extension field of F . By Corollary 2.30
and the assumption that F has characteristic 0, the algebra Z⊗F K is semisimple.
Being commutative, it must be of the form K1 ⊕ · · · ⊕ Ks with each ideal Ki
equal to a field, by Theorem 2.2.
Each ideal Ki is a unital Z ⊗F K module, hence is both a unital Z module and

a unital K module. Thus we can regard each Ki as an extension field of Z or of
K , whichever we choose. First let us regard Ki as an extension field of Z . Since
Ki has no nontrivial ideals and A has center Z , Proposition 2.31 shows that the
Z algebra A ⊗Z Ki is simple as a ring.
Next let us regard Ki as an extension field of K ; since A is finite-dimensional

over F , so is Z . Therefore Z ⊗F K is finite-dimensional over K , and Ki is a
finite extension of K . Hence A ⊗Z Ki is a finite-dimensional algebra over K ,
and it is left Artinian as a ring.
By Theorem 2.6, any left Artinian simple ring such as A ⊗Z Ki is neces-

sarily semisimple. Using the associativity formula for tensor products given in
Proposition 10.22 of Basic Algebra, we obtain an isomorphism of rings

A ⊗F K ∼= (A ⊗Z Z) ⊗F K ∼= A ⊗Z (Z ⊗F K )

∼= A ⊗Z (K1 ⊕ · · · ⊕ Ks) ∼=
sL

j=1
(A ⊗Z Kj ),

the summands being two-sided ideals in each case. Since each A ⊗Z Kj is a
finite-dimensional simple algebra over K , A⊗F K is a semisimple algebra over
K by Theorem 2.4. §

Let us digress for a moment, returning in Lemma 2.34 to the argument that
leads to the proof of Theorem 2.17. In the next section we shall want to know
circumstances under which we can draw the same conclusion as in Proposition
2.33 without assuming that the characteristic is 0. Write the finite-dimensional
semisimple algebra A as A = Mn1(D1) × · · · × Mnr (Dr ), where each Dr is a
division algebra over F . Let Z1, . . . , Zr be the respective centers of the simple
factors of A. Lemma 2.32 observes that each Zj is a finite extension field of F .
The proof of Proposition 2.33 appealed to Corollary 2.30 to conclude from the
condition characteristic 0 that Zj ⊗F K is semisimple. Instead, by rereading the
statement of Corollary 2.30, we see that it would have been enough for each Zj to
be a finite separable field extension of F , even if F did not have characteristic 0.
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Then the rest of the above proof goes through without change. Accordingly we
define a finite-dimensional semisimple algebra A over a field F to be a separable
semisimple algebra if the center of each simple component of A is a separable
extension field of F . In terms of this definition, we obtain the following improved
version of Proposition 2.33.

Proposition 2.330. Let A be a finite-dimensional separable semisimple algebra
over a field F , and suppose that K is a field containing F . Then the algebra A⊗F K
over K is semisimple.

Lemma 2.34. Suppose that A is a finite-dimensional algebra with identity
over a field F , and suppose that N is a nilpotent two-sided ideal of A such that
the algebra A/N is semisimple. Then N = rad A.

PROOF. The algebra A is left Artinian, being finite-dimensional. Since N
is nilpotent, we must have N ⊆ rad A. The two-sided ideal (rad A)/N of the
semisimple algebra A/N is nilpotent and hencemust be 0. Therefore N = rad A.

§

PROOF OF THEOREM 2.17. Let A be the given finite-dimensional algebra of the
field F of characteristic0, andwrite N for rad A and A for A/N . For any extension
field K of F , we write AK = A ⊗F K , NK = N ⊗F K , and AK = A ⊗F K .
For most of the proof, we shall treat the special case that N 2 = 0. Let

F be an algebraic closure of F . Then AF = A ⊗F F = (A/N ) ⊗F F ∼=
(A⊗F F)/(N ⊗F F) = AF/NF . Proposition 2.33 shows that AF = A⊗F F is
a semisimple algebra over F , and the claim is that the two-sided ideal NF of AF
is nilpotent. In fact, any element of NF is a finite sum of the form

P
i (ai ⊗ ci )

with each ai in N and each ci in F . The product of this element with
P

j (a0
j ⊗c0

j )

is
P

i, j (aia0
j ⊗ ci c0

j ), and this is 0 because the assumption N 2 = 0 implies that
aia0

j = 0 for all i and j . Thus N 2F = 0, and NF is nilpotent.
Since AF/NF is semisimple and NF is nilpotent, Lemma 2.34 shows that

NF = rad(AF). Corollary 2.28 (a special case of Theorem 2.17) is applicable to
AF because F is algebraically closed, and it follows that there exists a subalgebra
eS of AF such that AF = eS⊕ NF as vector spaces. HereeS is a product of finitely
many algebras Mnj (F). The embedded matrix units ei j of eS obtained from each
Mnj (F) are members of AF = A ⊗F F and hence are of the form

P
l xl ⊗ cl ,

where {xl}nl=1 is a vector-space basis of A over F and each cl is in F . Only finitely
many such cl’s are needed to handle all ei j ’s, and we let K be a finite extension
of F within F containing all of them. Let ρ0 = 1, ρ1, . . . , ρs be a vector-space
basis of K over F .
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Relative to this K , we form AK , NK , and AK as in the first paragraph of the
proof. The same argument as with F shows that AK ∼= AK /NK is semisimple
and that NK is nilpotent. By Lemma 2.34, NK = rad AK . The formulas for the
ei j ’s in the previous paragraph are valid in AK and give us a system of matrix
units. As in the previous paragraph, Corollary 2.28 produces a subalgebra S of
AK isomorphic to some Mn1(K ) × · · · × Mnr (K ) such that AK = S ⊕ NK as
vector spaces.
In the basis {xi }ni=1 of A over F , we may assume that the first t vectors form

a basis of N = rad A and the remaining vectors form a basis of a vector-space
complement to N . We identify members a of A with members a ⊗ 1 of AK .
With this identification in force, we decompose each basis vector xi for i > t
according to AK = S ⊕ NK as xi = yi − zi with yi ∈ S and zi ∈ NK . Since the
xi ’s for i ≤ t are in N ⊆ NK , the vectors yi with i > t form a vector-space basis
of S over K . For i > t , write zi =

Ps
j=0 zi j ⊗ ρj with zi j in N . Then we have

yi = xi + zi = (xi + zi0) +
sP

j=1
zi j ⊗ ρj for i > t.

Put
x 0
i = xi + zi0 and z0i =

sP

j=1
zi j ⊗ ρj for i > t.

Then {xi }ti=1 ∪ {x 0
i }
n
i=t+1 is a basis of A over F . We shall show that S0 =Pn

i=t+1 Fx 0
i is a subalgebra of A, and then A = S0 ⊕ N will be the required

decomposition.
Let x 0

i and x 0
j be given with i > t and j > t , and write

x 0
i x

0
j =

P
k ∞ki j x 0

k + vi j with ∞ki j ∈ F and vi j ∈ N .

Substituting x 0
i = yi − z0i and taking into account that NK is an ideal in AK , we

have
yi yj ≡

P

k
∞ki j x 0

k mod NK ≡
P

k
∞ki j yk mod NK .

Then yi yj =
P

k ∞ki j yk + ui j with each ui j ∈ NK . Since the yi are in S and S
is a subalgebra, ui j = 0. Thus yi yj =

P
k ∞ki j yk . Let us resubstitute into this

equality from yi = x 0
i + z0i . Taking into account that z0i z0j = 0 because N 2K = 0,

we obtain
x 0
i x

0
j + x 0

i z
0
j + z0i x

0
j =

P

k
∞ki j x 0

k +
P

k
∞ki j z0k .

Substituting from z0i =
Ps

j=1 zi j ⊗ ρj gives

x 0
i x

0
j ⊗ 1+

sP

l=1
x 0
i z jl ⊗ ρl +

sP

l=1
zil x 0

j ⊗ ρl =
P

k
∞ki j x 0

k ⊗ 1+
P

k

sP

l=1
∞ki j zkl ⊗ ρl .
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The coefficients of ρ0 = 1 must be equal, and therefore

x 0
i x

0
j =

P

k
∞ki j x 0

k .

This equation shows that S0 is a subalgebra and completes the proof under the
hypothesis that N 2 = 0.
Now we drop the assumption that N 2 = 0. We shall prove the theorem

by induction on dimF A, the base cases of the induction being dimF A = 0
and dimF A = 1, for which the theorem is immediate by inspection. For the
inductive case, let A be given, and assume the theorem to be known for algebras of
dimension< dimF A. If N 2 = 0, thenwe are done. Thuswemay assume that the
product ideal N 2 is nonzero and therefore that dimF(A/N 2) < dimF A. The First
Isomorphism Theorem shows that (A/N 2)

±
(N/N 2) ∼= A/N = A. The quotient

A/N is semisimple, and N/N 2 is a nilpotent ideal in A/N 2. By Lemma 2.34,
N/N 2 = rad(A/N 2). The inductive hypothesis gives A/N = S1/N 2 ⊕ N/N 2
for a subalgebra S1 of A with S1 ⊇ N 2. This means that A = S1 + N and
S1 ∩ N = N 2. Here

dimF A = dimF(S1 + N ) = dimF S1 + dimF N − dimF(S1 ∩ N )

= dimF S1 + dimF N − dimF N 2 = dimF S1 + dimF(N/N 2),

and N/N 2 6= 0 implies dimF S1 < dimF A. The Second Isomorphism Theorem
gives A/N = (S1+N )/N ∼= S1/(S1∩N ) = S1/N 2. Thus S1/N 2 is semisimple.
Since N 2 is nilpotent, Lemma 2.34 shows that N 2 = rad S1. The inductive
hypothesis gives S1 = S ⊕ N 2 for a semisimple subalgebra S. Substituting
into A = S1 + N , we obtain A = (S ⊕ N 2) + N = S + N . Meanwhile,
S ∩ N = (S ∩ S1) ∩ N = S ∩ (S1 ∩ N ) = S ∩ N 2 = 0. Therefore A = S ⊕ N ,
and the induction is complete. §

7. Skolem–Noether Theorem

In this section we begin an investigation of division algebras that are finite-
dimensional over a given field F . A nonzero algebra A with identity over a field
F will be called central if the center of A consists exactly of the scalar multiples
of the identity, i.e., if center(A) = F . Of special interest will be algebras with
identity that are central simple, i.e., are both central and simple.

Lemma 2.35. Let A and B be algebras with identity over a field F , and
suppose that B is central. Then

(a) the members of A⊗F B commutingwith 1⊗B are themembers of A⊗1,
(b) center(A ⊗F B) = (center A) ⊗F 1.
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PROOF. For (a), suppose that z =
P

i ai ⊗ bi commutes with 1⊗ B and that
the ai are linearly independent over F . If b is in B, then

0 = (1⊗ b)z − z(1⊗ b) =
P

i
ai ⊗ (bbi − bib),

from which it follows that bbi − bib = 0 for all b and all i . Since B is central,
each bi is in F , and we can write z as

z =
P

i
ai ⊗ bi =

P

i
(aibi ⊗ 1) =

°P

i
aibi

¢
⊗ 1.

In other words, z is of the form z = a ⊗ 1.
For (b), we need to prove the inclusion ⊆. Thus let z be in center(A ⊗F B).

By (a), z is of the form z = a ⊗ 1 for some a ∈ A. Now suppose that a0 is in A.
Then 0 = (a0 ⊗ 1)z − z(a0 ⊗ 1) = (a0a − aa0) ⊗ 1. Hence a0a = aa0, and we
conclude that a is in center(A). §

Proposition 2.36. Let A and B be algebras with identity over a field F , and
suppose that B is central simple. Then

(a) A simple implies A ⊗F B simple,
(b) A central simple implies A ⊗F B central simple.

PROOF. For (a), Proposition 2.31 shows that any two-sided ideal of A⊗F B is
of the form I ⊗F B for some two-sided ideal I of A. Since A is assumed simple,
the only I ’s are 0 and A. Thus the only ideals in A⊗F B are 0 and A⊗F B, and
A ⊗F B is simple.
For (b), conclusion (a) shows that A ⊗F B is simple. By Lemma 2.35b the

center of A ⊗F B is (center A) ⊗ 1 = F1⊗ 1 = F(1⊗ 1), and hence A ⊗F B
is central. §

Corollary 2.37. If A and B are finite-dimensional semisimple algebras over a
field F and at least one of them is separable over F , then A⊗F B is semisimple.

REMARK. The definition of separability of A or B appears betweenProposition
2.33 and Proposition 2.330.

PROOF. Without loss of generality, we may assume that A and B are simple.
For definiteness let us say that A is the given separable algebra over F . Let
K = center(B). Lemma 2.32 shows that K is a field, and associativity of tensor
products allows us to write

A ⊗F B ∼= A ⊗F (K ⊗K B) ∼= (A ⊗F K ) ⊗K B.

Here A ⊗F K is semisimple by Proposition 2.330, and B is central simple over
K . Thus Proposition 2.36a applies and shows that (A⊗F K ) ⊗K B is simple. §
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Corollary 2.38. Let A be a central simple algebra of finite dimension n over
a field F , and let Ao be the opposite algebra. Then A ⊗F Ao ∼= Mn(F).

EXAMPLE. Take F = R and A = H, the algebra of quaternions. Then
conjugation, with 1 7→ 1 and i, j, k 7→ −i,− j,−k, is an antiautomorphism of
H. ConsequentlyHo ∼= H . The corollary says in this case thatH⊗RH ∼= M4(R).

PROOF. LetV be A considered as a vector space. For eacha0 ∈ A, we associate
the members l(a0) and r(a0) of EndF(V ) given by l(a0)a = a0a and r(a0)a =
aa0. Then l(a0a0

0) = l(a0)l(a0
0) and r(a0a0

0) = r(a0
0)r(a0), and it follows

that l : A → EndF(V ) and r : Ao → EndF(V ) are algebra homomorphisms
sending 1 to 1.
Meanwhile, the map A × Ao → EndF(V ) given by (a, a0) 7→ l(a)r(a0) is F

bilinear and extends to an F linearmapϕ : A⊗F Ao → EndF(V ). Because of the
homomorphismproperties of l and r , themappingϕ is an algebra homomorphism
sending 1 to 1. Proposition 2.36 shows that A ⊗F Ao is simple, and it follows
that ϕ is one-one. Since dimF(A ⊗F Ao) = (dimF A)2 = dimF EndF(V ), ϕ is
onto. §

Corollary 2.39. Let A be a central simple algebra of finite dimension d over
a field F . Then d is the square of an integer.

PROOF. Let F be an algebraic closure of F . Proposition 2.36a shows that
the algebra F ⊗F A is simple, and its dimension over F is d. A simple finite-
dimensional algebra over an algebraically closed field is a full matrix algebra over
that field, and thus F ⊗F A ∼= Mn(F). Comparing dimensions over F , we see
that d = n2. §

Corollary 2.40. If D is a division algebra finite-dimensional over its center
F , then dimF D is the square of an integer.

PROOF. The algebra D is central simple over its center F , and the result is
immediate from Corollary 2.39. §

Theorem 2.41 (Skolem–Noether Theorem). Let A be a finite-dimensional
central simple algebra over the field F , and let B be any simple algebra over F .
Suppose that f and g are F algebra homomorphisms of B into A carrying the
identity to the identity. Then there exists an x ∈ A with f (b) = xg(b)x−1 for all
b in B.

PROOF. Let us observe that the homomorphisms f and g are one-one because
B is simple, and the finite dimensionality of A therefore forces B to be finite-
dimensional.
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We consider first the special case that A = Mn(F) for some n. The homomor-
phism f makes the space Fn of column vectors into a unital left B module by
the definition bv = f (b)v, and similarly the homomorphism g makes Fn into a
unital left Bmodule. Since B is finite-dimensional and simple, an argument given
with Example 1 of semisimple rings in Section 2 shows that there is only one
simple left B module up to isomorphism and that every unital left B module is a
direct sum of copies of this simple left B module. Consequently the isomorphism
classes of the B modules determined by f and g depend only on their dimension.
The dimension is n in both cases, and hence there exists an invertible F linear
map L : Fn → Fn such that L f (b)v = g(b)Lv for all v ∈ Fn . If L is given by
the matrix x−1 in Mn(F), then x−1 f (b) = g(b)x−1, and the theorem is therefore
proved in this special case.
For the general case we form the tensor products B ⊗F Ao and A⊗F Ao. The

maps f ⊗ 1 and g ⊗ 1 are F algebra homomorphisms between these algebras,
B⊗F Ao is simple by Proposition 2.36a, and Corollary 2.38 shows that A⊗F Ao
is isomorphic toMn(F) for the integer n = dim A. The special case is applicable,
and we obtain an invertible element X of A ⊗F Ao such that

( f ⊗ 1)(b ⊗ ao) = X (g ⊗ 1)(b ⊗ ao)X−1 for all b ∈ B and ao ∈ Ao. (∗)

Taking b = 1, we see that 1⊗ ao = X (1⊗ ao)X−1 for all ao ∈ Ao. By Lemma
2.35a, X lies in A⊗1, hence is of the form X = x⊗1 for some x in A. Substituting
for X in (∗), we obtain f (b) = xg(b)x−1 as required. §

Corollary 2.42. If A is a finite-dimensional central simple algebra over the
field F , then every F automorphism of A is inner in the sense of being given by
conjugation by an invertible element of A.

PROOF. This is the special case of Theorem 2.41 in which B = A and g is the
identity map on B. §

8. Double Centralizer Theorem

We saw in Corollary 2.40 that if D is a division algebra finite-dimensional over
its center F , then dimF D is the square of an integer. In this section we shall
prove a theorem from which we can conclude that the positive integer of which
dimF D is the square is the dimension of any maximal subfield of D. We state the
theorem, establish two lemmas, prove the theorem, and then derive two corollaries
concerning maximal subfields of division algebras.
If A is an algebra with identity and B is a subalgebra containing the identity,

then the centralizer of B in A is the subalgebra of all members of A commuting
with every element of B.
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Theorem 2.43 (Double Centralizer Theorem). Let A be a finite-dimensional
central simple algebra over a field F , let B be a simple subalgebra of A, and let
C be the centralizer of B in A. Then C is simple, B is the centralizer of C in A,
and (dimF B)(dimF C) = dimF A.

Lemma 2.44. Let A and A0 be algebras with identity over a field F , let B and
B 0 be subalgebras of them, and let C and C 0 be the centralizers of B and B 0 in A
and A0, respectively. Then the centralizer of B ⊗F B 0 in A ⊗F A0 is C ⊗F C 0.

PROOF. Expand an element of A⊗F A0 for the moment as x =
P

i ai ⊗a0
i with

the elements a0
i linearly independent over F . If x satisfies x(b ⊗ 1) = (b ⊗ 1)x

for all b in B, then
P

i (aib − bai ) ⊗ a0
i = 0. Since the a0

i ’s are independent,
aib − bai = 0 for all i , and each ai is in C . Thus the centralizer of B ⊗F 1 is
C ⊗F A0.
Rewriting x with the ai ’s assumed independent, we see similarly that the

centralizer of 1⊗F B 0 is A⊗F C 0. Putting these conclusions together, we see that

centralizer(B ⊗F B 0) ⊆ centralizer(B ⊗F 1) ∩ centralizer(1⊗F B 0)

= (C ⊗F A0) ∩ (A ⊗F C 0) = C ⊗F C 0.

The reverse inclusion, namely centralizer(B ⊗F B 0) ⊇ C ⊗F C 0, is immediate,
and the lemma follows. §

Lemma 2.45. Let B be a finite-dimensional simple algebra over a field F , and
write V for the algebra B considered as a vector space. For b in B and v in V ,
define members l(b) and r(b) of EndF(V ) by l(b)v = bv and r(b)v = vb. Then
the centralizer in EndF(V ) of l(B) is r(B).

PROOF. Let K be the center of B. This is an extension field of F by Lemma
2.32, and B is central simple over K . Let us see that any member a of EndF(V )
that centralizes l(B) is actually in EndK (V ). If c is in K , then c is in particular
in B, and therefore al(c) = l(c)a. Applying this equality to v ∈ V yields
a(cv) = ca(v), and this equality for all c ∈ K says that a is in EndK (V ).
Thus it is enough to show that the centralizer of l(B) in EndK (V ) is r(B).

We argue as in the proof of Corollary 2.38: The definitions of l and r make V
into a unital left B module and a unital right B module, and the members of K
operate consistently on either side of V because K lies in the center of B. The
function (b, b0) 7→ l(b)r(b0) is therefore K bilinear, and it extends to the tensor
product B⊗K Bo as an algebra homomorphism ϕ : B⊗K Bo 7→ EndK (V ). The
homomorphismϕ is one-one, sinceProposition2.36a shows B⊗K Bo to be simple.
The dimensional equality dimK (B ⊗K Bo) = (dimK B)2 = dimK (EndK (V ))
allows us to conclude that ϕ is onto, hence is an isomorphism.
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Lemma 2.35a shows that the centralizer of B ⊗K 1 in B ⊗K Bo is 1⊗K Bo.
If this statement is translated from the context of B ⊗K Bo into the isomorphic
context of EndK (V ), then the centralizer of l(B) in EndK (V ) is r(B), and we
saw that this fact is sufficient to imply the lemma. §

PROOF OF THEOREM 2.43. Let V be the algebra B considered as a vector
space over F , and let l(B) and r(B) be the sets of those members of EndF(V )
that are given by left multiplication and right multiplication by members of B.
The algebra A is central simple by assumption, and EndF(V ) is central simple,
being isomorphic to Mn(F) for the integer n = dimF(V ). By Proposition 2.36b,
A⊗F EndF(V ) is central simple. We define two algebra homomorphisms f and
g of B into A ⊗F EndF(V ) by f (b) = l(b) ⊗ 1 and g(b) = 1⊗ l(b).
The Skolem–Noether Theorem (Theorem 2.41) produces an element x of

A ⊗F EndF(V ) with f (b) = xg(b)x−1 for all b ∈ B. Hence

B ⊗F 1 = x(1⊗F l(B))x−1. (∗)

Lemma 2.44 shows that the centralizer of B ⊗F 1 in A ⊗F EndF(V ) is
C ⊗F EndF(V ) and that the centralizer of 1 ⊗F l(B) is A ⊗F r(B). From
the latter identification the centralizer of x(1⊗F l(B))x−1 is x(A⊗F r(B))x−1.
Combining (∗) with these computations of centralizers, we see that

C ⊗F EndF(V ) = x(A ⊗F r(B))x−1. (∗∗)

The algebra A⊗F r(B) is isomorphic to A⊗F Bo, which is simple by Proposition
2.36a. Therefore C ⊗F EndF(V ) is simple, and C has to be simple.
Equating the dimensions of the two sides of (∗∗) gives

(dimF C)(dimF B)2 = (dimF C)(dimF EndF(V )) = dimF(C ⊗F EndF(V ))

= dimF(A ⊗F r(B)) = (dimF A)(dimF B),

and hence
(dimF C)(dimF B) = dimF A.

Finally the centralizer D ofC contains B, and two applications of the dimensional
equality gives

(dimF D)(dimF C) = dimF A = (dimF C)(dimF B).

Thus dimF D = dimF B, and we must have D = B. In other words, B is the
centralizer of C . §
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Corollary 2.46. Let D be a central finite-dimensional division algebra over
the field F . If K is any maximal subfield of D, then dimF D = (dimF K )2.

PROOF. Apply the Double Centralizer Theorem (Theorem 2.43) with A =
D. Let Z(K ) be the centralizer of the simple subalgebra K in D. Since K is
commutative, K ⊆ Z(K ). If a is in Z(K ) but not K , then K (a) is a field in D
properly containing K , in contradiction to the assumption that K is a maximal
subfield of D. Hence K = Z(K ). The dimensional equality in the theorem
therefore gives dimF D = (dimF K )(dimF Z(K )) = (dimF K )2. §

Corollary 2.47. Let A be a finite-dimensional central simple algebra over a
field F , and let K be a subfield of A. Then the following are equivalent:

(a) K is its own centralizer,
(b) dimF A = (dimF K )2,
(c) K is a maximal commutative subalgebra of A.

PROOF. Let Z(K ) be the centralizer of K in A. The Double Centralizer
Theorem (Theorem 2.43) gives the equality

dimF A = (dimF K )(dimF Z(K )). (∗)

If (a) holds, then Z(K ) = K , and (∗) yields (b).
If (b) holds, then (∗) and the equality dimF A = (dimF K )2 together imply

that dimF Z(K ) = dimF K . Since K is commutative, Z(K ) ⊇ K . The equality
of dimensions implies that Z(K ) = K , and then (c) follows.
If (c) holds, we start from the inclusion K ⊆ Z(K ). If x is in Z(K ) but

not K , then K (x) is a field strictly larger than K , in contradiction to (c). Thus
K = Z(K ), and (a) holds. §

9. Wedderburn’s Theorem about Finite Division Rings

The theorem of this section is as follows.

Theorem 2.48 (Wedderburn). Every finite division ring is a field.

The proof will be preceded by a lemma.

Lemma 2.49. If G is a finite group and H is a proper subgroup, thenS
g∈G gHg−1 does not exhaust G.
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PROOF. In the union
S

g∈G gHg−1, the terms corresponding to g and to gh, for
h in H , are the same because (gh)H(gh)−1 = g(hHh−1)g−1 = gHg−1. Thus
the union can be rewritten as

S
gH gHg−1, it being understood that only one g is

used from each coset gH . From this rewritten form of the union, we see that the
number of elements other than the identity in the union is

≤ [G : H ](|H | − 1) = [G : H ]|H | − [G : H ] = |G| − [G : H ] < |G| − 1,

and the lemma follows. §

PROOF OF THEOREM 2.48. Let D be a finite division ring, and let F be the
center. Then F is a field, say of q elements. Maximal subfields of D certainly
exist. Any such subfield K has dimF D = (dimF K )2 by Corollary 2.46, and
hence any two such subfields K and K 0 are isomorphic. The Skolem–Noether
Theorem (Theorem 2.41) shows that K 0 = xK x−1 for some invertible x in the
group D× of invertible elements of D.
On the other hand, F and any element of D generate a subfield of D, and this

subfield is contained in a maximal subfield. Consequently any element of D is
contained in some such K 0, and D =

S
x∈D× xK x−1. Discarding the element 0

from both sides, we obtain D× =
S

x∈D× xK×x−1. Applying Lemma 2.49 to the
group G = D× and the subgroup H = K×, we see that K× cannot be a proper
subgroup of D×. Therefore D = K , and D is commutative. §

10. Frobenius’s Theorem about Division Algebras over the Reals

We conclude this chapter by bringing together our results to prove the following
celebrated theorem of Frobenius.

Theorem 2.50 (Frobenius). Up toR isomorphism the only finite-dimensional
associative division algebras over R are the algebras R of reals, C of complex
numbers, and H of quaternions.

REMARKS. The text of this chapter has not produced any concrete examples
of noncommutative division rings other than the quaternions. Problems 12–16 at
the end of the chapter produce generalized quaternion algebras in which R can
be replaced by many other fields; there are infinitely many nonisomorphic such
examples when the field is Q. In addition, Problems 17–19 produce examples
of central division algebras of dimension 9 over suitable base fields. The next
chapter will give further insight into the construction of division algebras.
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PROOF. Let D be such a division algebra, and let F be the center. Then
F is a finite extension field of R and must be R or C, since C is algebraically
closed. If F = C, then we have seen that D = C. Thus we may assume that
center(D) = R.
Let K be a maximal subfield of D (existence by finite dimensionality), and let

n = dimR K . Corollary 2.46 shows that dimR D = n2. Since K has to be R or
C, n has to be 1 or 2. If n = 1, we obtain D ∼= R. Thus we may assume that
n = 2, K = C, and dimR D = 4.
The map f : K → D given by f (a + bi) = a − bi , where i is the member

of K corresponding to
p

−1 in C, is an algebra homomorphism into a central
simple algebra overR, and so is themap g : K → D given by g(a+bi) = a+bi .
By the Skolem–Noether Theorem (Theorem 2.41), there exists some x in D with
x(a + bi)x−1 = a − bi for all a and b in R.
This element x has the property that x2 commutes with every element of K

and must lie in K , by Corollary 2.47. Let us see that x2 lies in center(D) = R.
In fact, otherwise 1 and x2 would generate K as anR algebra, and every member
of D commuting with 1 and x2 would commute with all of K ; since x commutes
with 1 and x2, x would have to commute with K , contradiction. Thus x2 lies
in R.
If x2 > 0, then x2 = r2 for some r ∈ R. The elements x and r together lie in

some subfield K 0 of D, and K 0 has no zero divisors. Since (x − r)(x + r) = 0
within K 0, we conclude that x = ±r . Then x commutes with the maximal
subfield K above, and we arrive at a contradiction.
Thus x2 < 0. Write x2 = −y2 for some y ∈ R, and put j = y−1x . The

equation x(a+bi)x−1 = a−bi says that j (a+bi) j−1 = a−bi and in particular
that j i j−1 = −i . Define k = i j .
We have j2 = y−2x2 = −1. Hence k2 = i j i j = i( j i j−1) j2 = i(−i)(−1) =

i2 = −1. Then i jk = −1, and k = −1( j−1)(i−1) = −1(− j)(−i) = − j i ;
hence i j + j i = 0.
Let us show that {1, i, j, k} is a linearly independent set overR. Certainly j is

not an R linear combination of 1 and i . If k = a + bi + cj for some a, b, c ∈ R,
then squaring gives

−1 = k2 = a2 + b2i2 + c2 j2 + 2abi + 2acj + bc(i j + j i)

= a2 − b2 − c2 + 2abi + 2acj.

Equating coefficients of 1, i , and j , we obtain −1 = a2 − b2 − c2, ab = 0,
and ac = 0. We cannot have −1 = a2, and thus at least one of b and c is
nonzero. Then a = 0, and i j = k = bi + cj . Left multiplication by i gives
− j = −b + ci j = −b + c(bi + cj); equating coefficients shows that b = 0.
Hence i j = cj , and we arrive at the contradiction i = c ∈ R. We conclude that
{1, i, j, k} is linearly independent over R.
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To complete the proof that D is isomorphic to H, we have only to verify that
{1, i, j, k} satisfies the usual multiplication table forH. We know that i2 = j2 =
k2 = −1, that k = i j , and that k = − j i . The last of these says that j i = −k.
The other verifications are

jk = j i j = ( j i j−1) j2 = (−i)(−1) = i,
k j = i j j = i(−1) = −i,

ki = i j i = i( j i j−1) j = i(−i) j = j,
ik = i i j = (−1) j = − j,

and the proof is complete. §

11. Problems

In all the problems below, all algebras are assumed to be associative.
1. Let G be a finite group, and let CG be its complex group algebra. Prove that

CG is a semisimple ring, and identify the constituent matrix algebras that arise
for CG in Theorem 2.2 in terms of the irreducible representations of G.

2. Wedderburn’s Main Theorem (Theorem 2.17) decomposes finite-dimensional
algebras A in characteristic 0 as A = S ⊕ rad A for some subalgebra S.
(a) What explicitly is a decomposition A = S ⊕ rad A for the complex algebra

C[X]/(X2 + 1)2 ?
(b) Is the subalgebra S in (a) unique? Prove that it is, or give a counterexample.
(c) Answer the same questions as for (a) and (b) in the case of the real algebra

R[X]/(X2 + 1)2.
3. Let A and B be finite-dimensional algebras with identity over a field F , and

suppose that B is central simple. Prove that rad(A ⊗F B) = (rad A) ⊗F B.
Problems 4–7 concern commutative Artinian rings. Let R be such a ring.
4. Prove that

(a) R has only finitely many maximal ideals,
(b) rad R is the set of all nilpotent elements in R,
(c) R is semisimple if and only if it has no nonzero nilpotent elements,
(d) R semisimple implies that R is the direct product of fields.

5. Let ē be an idempotent in R/ rad R. Prove that the idempotent e ∈ R in
Proposition 2.23 with ē = e + rad R is unique.

6. Problem 4a shows that R has only finitely many maximal ideals. Let N be their
product. Use Nakayama’s Lemma (Lemma 8.51 of Basic Algebra, restated in
the present book on page xxv) to prove that N is a nilpotent ideal in R.

7. Deduce from the previous problem that any prime ideal in R contains one of the
finitely many maximal ideals, hence that every prime ideal in R is maximal.
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Problems 8–11 concern triangular rings, which were introduced in an example after
Proposition 2.5. The problems ask for verifications for some assertions that were
made in that example without proof. The notation is as follows: R and S are rings
with identity, and M is a unital (R, S) bimodule. Define a set A and operations of
addition and multiplication symbolically by

A =

µ
R M
0 S

∂
=

Ωµ
r m
0 s

∂ Ø
Ø
Ø
Ø r ∈ R, m ∈ M, s ∈ S

æ

with
µ
r m
0 s

∂µ
r 0 m0

0 s0
∂

=

µ
rr 0 rm0 + ms0
0 ss0

∂
.

8. Prove that the left ideals in A are of the form I1 ⊕ I2, where I2 is a left ideal in
S and I1 is a left R submodule of R ⊕ M containing MI2. (Educational note:
Then similarly the right ideals in A are of the form J1 ⊕ J2, where J1 is a right
ideal in R and J2 is a right S submodule of M ⊕ S containing J1M .)

9. (a) Prove that the ring A is left Noetherian if and only if R and S are left
Noetherian and M satisfies the ascending chain condition for its left R
submodules.

(b) Prove that the ring A is right Noetherian if and only if R and S are right
Noetherian and M satisfies the ascending chain condition for its right S
submodules. (Educational note: By similar arguments the conclusions
of (a) and (b) remain valid if “Noetherian” is replaced by “Artinian” and
“ascending” is replaced by “descending.”)

10. If A =
≥
R R
0 S

¥
is any ring such as

≥
Q Q
0 Z

¥
in which S is a (commutative) Noe-

therian integral domain with field of fractions R and if S 6= R, prove that A is
left Noetherian and not right Noetherian, and A is neither left nor right Artinian.

11. If A =
≥
R R
0 S

¥
is a ring such as

≥
Q(x) Q(x)
0 Q

¥
in which R and S are fields with

S ⊆ R and dimS R is infinite, prove that A is left Noetherian and left Artinian,
and A is neither right Noetherian nor right Artinian.

Problems 12–16 concern generalized quaternion algebras. Let F be a field of
characteristic other than 2, let K be a quadratic extension field, and let σ be the
nontrivial element in the Galois group. The field K is necessarily of the form K =
F(

p
m ) for some nonsquare m ∈ F , and the elements c of K for which σ(c) = −c

are the F multiples of
p
m. Fix an element r 6= 0 of F , and let A be the subset of

M2(K ) given by
≥

a b
rσ(b) σ (a)

¥
.

12. (a) Prove that A is a 4-dimensional algebra over F .
(b) Prove that A is central simple by examining cx − xc for c =

≥ p
m 0
0 −

p
m

¥

when x 6= 0 is in a two-sided ideal I and is not in K ∼=
n≥

a 0
0 σ(a)

¥o
.
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13. Prove that A is a division algebra if and only if r is not of the form NK/F (c) for
some c ∈ K . Why must A be isomorphic to M2(F) when A is not a division
algebra?

14. Prove that if r and r 0 are two members of F such that r = r 0NK/F (c) for some c
in K , then the algebra A associated to r is isomorphic to the algebra associated
to r 0.

15. Let {1, i, j, k} be the F basis of A consisting of the matrices

1 =
≥
1 0
0 1

¥
, i =

≥ p
m 0
0 −

p
m

¥
, j =

≥
0 1
r 0

¥
, k =

≥
0

p
m

−r
p
m 0

¥
.

Prove that these satisfy i2 = m1, j2 = r1, k2 = −rm1, i j = k = − j i ,
jk = −ri = −k j , and ki = −mj = −ik.

16. By going over the proof of Theorem 2.50 and using the relations of the previous
problem, prove that every central simple algebra of dimension 4 over F is of the
same kind as A for some quadratic extension K = F(

p
m ) and some member

r 6= 0 of F .
Problems 17–19 concern cyclic algebras, which were introduced by L. E. Dickson.
These extend the theory of generalized quaternion algebras to other sizes of matrices.
The analogy with the theory in Problems 12–16 is tightest when the size is a prime.
For notational simplicity this set of problems asks about size 3. Let F be any field, and
let K be a finite Galois extension of F with cyclic Galois group. It is assumed in these
problems that K has degree 3 over F and that {1, σ, σ 2} is the Galois group. Fix an

element r 6= 0 of F , and let A be the subset of M3(K ) given by
µ a b c

rσ(c) σ (a) σ (b)
rσ 2(b) rσ 2(c) σ 2(a)

∂
.

Identifying a ∈ K with the member
µ a 0 0
0 σ(a) 0
0 0 σ 2(a)

∂
of A and letting j be the member

µ 0 1 0
0 0 1
r 0 0

∂
of A allows one to view A as the set of all matrices a + bj + cj2 with

a, b, c ∈ K . The element j satisfies ja j−1 = σ(a) for a ∈ K and j3 = r .
17. Arguing as for Problem 12, show that A is an algebra over F and that it is central

simple of dimension 9.
18. Using the general theory, prove that A either is a division algebra over F or is

isomorphic toM3(F), and that A ∼= M3(F) if and only if there is a 3-dimensional
vector subspace of A that is a left A submodule of A. (Educational note: This
problem makes crucial use of the fact that the size 3 is a prime.)

19. (a) Prove that if r = NK/F (d) for some d ∈ K , then the 3-dimensional vector
subspace K (1+ d−1 j + d−1σ(d)−1 j2) of A is a left A submodule.

(b) Prove that any 3-dimensional left K submodule of A is necessarily of the
form K (a0 + b0 j + c0 j2) for some nonzero a0 + b0 j + c0 j2 in A and that
this left K submodule is a left A submodule only if there exists an element
d ∈ K with NK/F (d) = r , da0 = rσ(c0), db0 = σ(a0), and dc0 = σ(b0).


