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HINTS FOR SOLUTIONS OF PROBLEMS

Chapter I

1. The interior of Kj+1 contains Kj for all j , and the union of the Kj equals M .
The interiors of the sets Kj+1 therefore form an open cover of C . A finite subcover
suffices by compactness of C , and a single Kj+1 suffices because the sets are nested.
2. The smooth manifolds will be the same if it is shown that their maximal atlases

coincide, and this will happen if it is shown that the charts C1 and C2 are smoothly
compatible with the atlas {M1,M2} and that the charts M1 and M2 are smoothly
compatible with the atlas {C1,C2}. One step in the verification is to check that
ϕ1 ◦√−1

1 is smooth from√1(M1∩C1) to ϕ1(M1∩C1). The function ϕ1 ◦√−1
1 carries

t to (cos t, sin t) and then to (cos t)/(1− sin t)) for−π < t < −π and t 6= π/2, and
the result is a smooth function.
3. For (a), the triangle inequality needs to be checked. Thus we are to show that

min{|x − y|, |x + y|} ≤ min{|x − z|, |x + z|} +min{|z − y|, |z + y|}.

Since

|x − y| ≤ |x − z| + |z − y| and |x + y| ≤ |x − z| + |z + y|,

we have
min{|x − y|, |x + y|} ≤ |x − z| +min{|z − y|, |z + y|}.

Replacing z by −z yields

min{|x − y|, |x + y|} ≤ |x + z| +min{|z − y|, |z + y|}.

Then it follows that

min{|x − y|, |x + y|} ≤ min{|x − z|, |x + z|} +min{|z − y|, |z + y|},

as required. The continuity of x 7→ [x] is immediate from the inequalityd([x], [y]) ≤
|x − y|. If x is given, then the image of the set of y such that |x − y| < ε is the set
of [y] with d([x], [y]) < ε, and thus open sets map to open sets.
For (b), the checking of the compatibility of the charts is similar to that in Section 1

for the sphere. The continuity of x 7→ [x] was proved in (a), and the smoothness is
straightforward.
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4. Let the manifold be M . Fix a point p0 in M and consider the set of all points
p in M for which there is a diffeomorphism of M carrying p0 to p. This set is
nonempty since it contains p0, and we prove it is open and closed. Matters come
down to considering an open neighborhood of a single point p, which may assume
in local coordinates is a cube centered at the origin. It is then enough to produce
a diffeomorphism of the open unit cube that is the identity near the boundary and
carries the origin to any other point. We give the construction in R1, and then the
general case follows by using a product of the functions of one variable. Thus we are
to produce a smooth monotone function carrying (−1, 1) onto itself, fixing all points
near−1 and 1, and carrying 0 to some specified point p0 in (−1, 1). Subtracting the
function g(x) = x , we see that it is enough to produce a smooth function f of compact
support in (−1, 1) such that −1 < f 0(x) < 1 everywhere and such that f (0) = p0.
The assumption about p0 is that p0 is in the interval (−1, 1). Constructing such a
function out of standard smooth functions of compact support is easy.
5. This is elementary.
6. These are special cases of the formula d2 = 0 of Proposition 1.23b. See

Example 2 in Section 4.
7. This problem was addressed in Basic Real Analysis in another guise. Let

ω =
P

j Pj dxj . The condition that dω = 0 is the condition that @Pj/@xi = @Pi/@xj
for all i and j . In the language of Section III.12 of Basic Real Analysis, the function
F = (P1, . . . , Pm) is a conservative vector field, and Proposition 3.48 of that book
shows that F is the gradient of a function f , proceedingby inductionon the dimension.
This f is the required function.
8. Part (a) comes down to observing that @

@x
°
x/(x2 + y2)

¢
= − @

@y
°
y/(x2 + y2)

¢

away from (0, 0). Part (b) is a routine computation with several cases. The domain of
θ is the complement in R2 of the nonnegative x-axis. For (c), it has been shown that
f and θ have matching first partial derivatives on the complement of the nonegative
real axis. This set is connected, and therefore f and θ differ by a constant there.
Since this set is dense in R2 − {(0, 0)}, the existence of a smooth f on R2 − {(0, 0)}
of this type would imply that θ has a continuous extension to R2 − {(0, 0)}. There is
no continuous extension, and therefore no smooth solution f to d f = ω exists.
9. Choose disjoint open sets A and B such that E ⊆ A and F ⊆ B. Next choose

by Theorem 1.25 a smooth partition of unity { f, g} subordinate to the open cover
{A, B} of E ∪ F . Then f and g take values in [0, 1], f equals 0 off a compact subset
of A, g equals 0 off a compact subset of B, and f + g = 1 on E ∪ F . Hence f and
g have the required properties.
10. For (a), take η = ϕ1 dϕ2 ∧ · · · ∧ dϕk , for example. In (b), for each j with

1 ≤ j ≤ k, the function f j is a smooth function of one variable defined on the subset
of xj ∈ R1 such that (x1, . . . , xm) is in U for some value of the variables other than
xj . This subset is a union of open sets in R1 and is therefore open. For such an open
set in R1, we define a function Fj component by component so that F 0

j = f j on each
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component. Then the expansion ω = dF1 ∧ · · · ∧ dFk exhibits ω as elementary.
11. We refer to Examples 2 and 3 in Section 3 and find that ϕ∗(dx) = d81 =

d(r + s+ t) = dr + ds+ dt and ϕ∗(dy) = d82 = d(rs+ st + rt) = r ds+ s dr +
s dt + t ds + r dt + t dr . Thus ϕ∗(dx ∧ dy) equals ϕ∗(dx) ∧ ϕ∗(dy), which is

= (dr + ds + dt) ∧ (r ds + s dr + s dt + t ds + r dt + t dr)
= (r+ t− s −t)(dr ∧ ds) + (r+ s− r− t)(ds ∧ dt) + (s+ r− s− t)(dr ∧ dt)
= (r − s)(dr ∧ ds) + (s − t)(ds ∧ dt) + (r − t)(dr ∧ dt).

12. This is straightforward.
13. For (a), the left side on (X2, . . . , Xk) equals k(ω1∧· · ·∧ωk)(X, X2, . . . , Xk),

which by Corollary 1.16 equals

k
k!
det







ω1(X) ω2(X) · · · ωk(X)

ω1(X2) ω2(X2) · · · ωk(X2)
...

ω1(Xk) ω2(Xk) · · · ωk(Xk)





 .

When this determinant is expanded in cofactors about the first row and account is
taken of the coefficient, the i th term of the expansion is exactly

(−1)i−1ωi (X)(ω1 ∧ · · · ∧ bωi ∧ · · · ∧ ωk)(X2, . . . , Xk).

The result follows.
For (b), we may assume without loss of generality that ω = ω1∧· · ·∧ωk and that

η = ωk+1 ∧ · · · ∧ ωk+l . Applying (a) to each yields

cX (ω) =
kP

i=1
(−1)i−1ωi (X)(ω1 ∧ · · · bωi ∧ · · · ∧ ωk)

and

cX (η) =
lP

j=1
(−1) j−1ωk+ j (X)(ωk+1 ∧ · · · [ωk+ j ∧ · · · ∧ ωk+l)

=
k+lP

m=k+1
(−1)m−k−1ωm(X)(ωk+1 ∧ · · · cωm ∧ · · · ∧ ωk+l).

Therefore

cX (ω) ∧ η + (−1)k(ω ∧ cX (η)) =
k+lP

i=1
(−1)i−1ωi (X)(ω1 ∧ · · · bωi ∧ · · · ∧ ωk+l)

= cX (ω ∧ η).
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14. The expanded formula for i∗(ω) is

i∗(ω)p((X1)p, . . . , (Xk)p) = ωi(p)
°
(Di)p X1)i(p), . . . , (Di)p Xk)i(p)

¢
,

where (X1)p, . . . , (Xk)p are in Tp(S), (Di)p is the derivative of i at p, ω is an
alternating kmultilinear formonM , and i∗(ω) is the pullback alternating kmultilinear
form on S. The derivative (Di)p may be regarded as an inclusion of Tp(S) into
Ti(p)(M), and the arguments of ωi(p) within Ti(p)(M) are obtained by taking the
arguments of i∗(ω)p and regarding them as included in Ti(p)(M). Inclusions and
restrictions are the same thing from a different point of view.
15. We go back to the definition of “orientable” near the beginning of Section 6.

Let the two charts be (M1, ϕ1) and M2, ϕ2). The condition of orientability is that
det(ϕ2 ◦ ϕ−1

1 ) and det(ϕ1 ◦ ϕ−1
2 ) are both positive. The second determinant is the

reciprocal of the first. If they are positive, we are done. If they are negative, then
we redefine ϕ1 by following ϕ1 with the map (x1, x2, . . . , xm) 7→ (−x1, x2, . . . , xm);
use of the composition changes the determinants from negative to positive.
16. For (a), a point in Sn may be identified with a vector in Rn+1. As a vector,

p = (x1, . . . , xn+1) is orthogonal to the tangent space at the point of tangency p on
the sphere. Thus the tangent space consists of all p + x ∈ Rn+1 with x · p = 0.
Viewed as through the origin, the tangent space is simply {x ∈ Rn+1 | x · p = 0}, i.e.,
the orthogonal complement (Rp)⊥ of the 1 dimensional space Rp. Any subspace
of a finite dimensional inner product vector space is the direct sum of itself and its
orthogonal complement. With these identifications, Rn+1 = (Rp)⊥ ⊕ Tp(Sn).
In (b), the derivation property of f 7→ d

dt f (∞r (t))
Ø
Ø
t=0 is immediate from the

one-variable rule for differentiating products. Write ∞r (t) in coordinates as ∞r (t) =°
(x1(t), . . . , xn+1(t)

¢
, and expand the derivative in question as

d
dt

(∞r (t))
Ø
Ø
t=0 =

@ f
@x1

(p)
dx1
dt

(0) + · · · +
@ f

@xn+1
(p)

dxn+1
dt

(0).

To compute this, we write

∞r (t) =
p + tr

|p + tr |
=

p + tr
p

(p + tr) · (p + tr)
.

Since p · p = 1 and p · r = 0, ∞r (t) simplifies to p+trp
1+t2|r |2

, whose derivative at t = 0
is r since there are no first-order terms in t in the denominator. The result follows.
17. For (X1)p, . . . , (Xn)p in Tp(Sn), we have

i∗(cX (ω))p((X1)p, . . . , (Xn)p) = ωi(p)(X, i(X1)p, . . . , i(Xn)p),

where i(Xj )p means the effect of the derivative Di on (Xj )p, namely (Di)p(Xj )p.
Take {(X1)p, . . . , (Xn)p} at p to be a basis of Tp(Sn). Then {i(X1)p, . . . , i(Xn)p} is
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a basis of the vector space iTp(Sn), which we know from Problem 16 to equal (Rp)⊥.
Since Xp = p, {Xp, i(X1)p, . . . , i(Xn)p} at p is a basis of iTp(Sn) ⊕ Rp = Rn+1.
Since the given ω is nonzero at p, its value at p does not vanish on any basis ofRn+1.
Therefore i∗(cX (ω))p((X1)p, . . . , (Xn)p) 6= 0.
18. Corollary 1.16 yields

cX (ω) = (n + 1)(dx1 ∧ · · · ∧ dxn+1)(X, X1, . . . , Xn)

=
n + 1

(n + 1)!
det






dx1(X) dx1(X1) · · · dx1(Xn)
dx2(X) dx2(X1) · · · dx2(Xn)

· · ·
dxn+1(X) dxn+1(X1) · · · dxn+1(Xn)




 .

We can evaluate the entries in the first column as follows. For the i th entry we have
dxi (X) =

P

k
xk dxi

°
@

@xk

¢
= xi . Then we expand the whole determinant by cofactors

about the first column. With the coefficient (n!)−1 in place, the expansion gives a sum
over i of an alternating sign (−1)i−1 times the coefficient xi , times the complementary
determinant, which is

(dx1 ∧ · · · ∧ ddxj ∧ · · · ∧ dxn+1)(X1, . . . , Xn).

Thus cX (ω) =
P

i (−1)i−1 (dx1 ∧ · · · ∧ ddxj ∧ · · · ∧ dxn+1) as required.
19. In (a), symmetry of ∼ follows from the fact that h2 = 1. For the transitive

property, we observe that if y = h(x) and z = h(y), then z = h2(x) = x and hence
z ∼ x . In (b), the argument is similar to that for Problem 3, which deals with a special
case. In (c) to define a chart about x in M , use the open ball about x of each radius
less than half the distance from x to h(x),
20. With the proof of Proposition 1.33 as a guide, this is easy.
21. With the proof of Proposition 1.33 as a guide, this is easy.
22. For (b), a nowhere vanishing n form for Sn can be taken to be a restriction of

n+1P

j=1
xj dx1 ∧ · · · ∧ ddxj ∧ · · · ∧ dxn+1.

The anitpodal map has the effect of sending each xi into its negative and each dxj
into its negative. Thus it has the effect of introducing n+ 1 minus signs in each term,
thus of multiplying the whole expression by (−1)n+1. Consequently the n form is
preserved by the antipodal map if n is odd and is reversed if n is even. The n form
gives the orientation, up to an everywhere positive factor, and so the orientation is
preserved if n is odd and is reversed if n is even.
23. This is immediate.
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24. In (a), the mapping α and its inverse are continuous because f is continuous.
For smoothness of σ and its inverse, we are to compose before and after with the chart
mappings, and we end up with the identity, which is smooth. In (b), the mappings α

and p are smooth, and so is the composition α ◦ I ◦ p; thus the inclusion map I must
not be smooth.
25. In (a), ϕ is smooth, and its inverse is ϕ−1(u, v) = (u, v + f (u)), which is

smooth. Then (b) is an observation.
26. The derivative is (2 cos 2t,− sin t). For this to be (0, 0), sin t must be 0, which

means that t is a multiple of π . Then 2t is a multiple of 2π , and cos 2t = 1. Thus
both entries cannot be 0 for the same t , and ∞ is an immersion. It is easy to check
that ∞ is one-one over an interval of length 2π . Finally its image is compact, being
closed and bounded. Specifically it contains all its limit points, since the only point
that needs checking is (0, 0), which is ∞ (π/2) = (0, 0) and is therefore already in
the image. The topology of the domain of ∞ is that of an open interval, which is not
compact, and the topology of the image is compact. Thus the two topologies do not
coincide, and the immersion is not an embedding.
27. In (a), ∞ 0(t) = (2π ie2π i t , 2π ice2π ict ), and neither coordinate is ever 0. So

∞ 0(t)nowherevanishing, and∞ is an immersion. If∞ (t1) = ∞ (t2), then e2π i t1 = e2π i t2
and e2π ict1 = e2π ict2 . Hence t1 − t2 is an integer, and so is c(t1 − t2). Since c is
irrational, this is possible only if t1 − t2 = 0. Hence ∞ is one-one.
For (b), it follows from (a) that {∞ (k) | k ∈ Z} is an infinite set. Thus it has a limit

point in C, say z. Choose a sequence {kn} such that limn ∞ (kn) = z. Given ε > 0,
choose two distinct integers r and s in the sequence such that |∞ (r) − ∞ (s)| < ε.
Then k = r − s is a nonzero integer with |∞ (k) − ∞ (0)| < ε.
For (c), repeating this construction for a sequence of values of ε tending to 0 shows

that there is a sequence of points in ∞ (Z) tending to 1 but not equal to 1. Hence ∞ (Z)

does not have the discrete topology, and ∞ is not an embedding.
28. In (a), since the function x(t) is smooth near t0 and its derivative is nonzero

there, the one-variable Inverse Function Theorem says that near the point t0, x(t) can
in principle be inverted to give a unique smooth inverse function t = t (x). This result
can be substituted into the expression y(t) to yield y(t) = y(t (x)) as a function of
x near x(t0). More specifically put x(t0) = x0. Then the set of points

≥
x(t)
y(t)

¥
in a

suitably small rectangle in R2 about
≥
x(t0)
y(t0)

¥
is the embedded graph of the smooth

function g( f (t)).
In (b), fix x0, and suppose that n of the columns of J (x0) are linearly independent.

Possibly by permuting the variables, we may assume that the first n columns are
linearly independent. Write F =

≥
F1
F2

¥
, so that the n-by-n square matrix

©° @(F1)i
@xj

¢™

is invertible at x = x0. By the Inverse Function Theorem, we can in principle solve
uniquely in a neighborhood of (x0, F(x0)) to write x as a smooth function x = x(F1)
there. Then the set of points in a suitably small rectangular neighborhood of

≥ x0
F(x0)

¥
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in Rn+k is the embedded graph of the smooth function F2(x(F1)).
29. For (a), the Jacobian matrix of (x, y, z) with respect to (s, t) is




− sin s − 1

2 t cos(s/2) sin s − 1
4 t sin(s/2) cos s

1
2 cos(s/2) cos s

cos s + 1
2 t cos(s/2) cos s − 1

4 t sin(s/2) sin s
1
2 cos(s/2) sin s

1
4 t cos(s/2)

1
2 sin(s/2)



 .

The 2-by-2 determinant from the first two rows is

= − 1
2 cos(s/2) sin

2 s − 1
4 t cos

2(s/2) sin2 s − 1
8 t sin(s/2) cos(s/2) sin s cos s

− 1
2 cos(s/2) sin

2 s − 1
4 t cos

2(s/2) cos2 s + 1
8 t sin(s/2)

= − 1
2 cos(s/2) − 1

4 t cos
2(s/2)

= − 1
2 cos(s/2)

°
1− 1

2 t cos(s/2)
¢
,

and this has the same sign as − 1
2 cos(s/2). When cos(s/2) = 0, the Jacobian matrix

simplifies to 


− sin s − 1

4 t sin(s/2) cos s 0
cos s − 1

4 t sin(s/2) sin s 0
0 1

2 sin(s/2)



 .

When cos(s/2) = 0, we see that sin(s/2) is ±1, sin s is 0, and cos s is ±1. Thus the
determinant from the first and third rows equals (± 1

2 )(±
1
4 t), which is nonzero unless

t = 0. When cos(s/2) = 0 and t = 0, then the determinant from the second and
third rows equals (± 1

2 ) cos s, which is not zero. Thus the Jacobian matrix has rank
two for every pair (s, t) under consideration.
Part (b) is clear. For (c), the image of the smooth function is locally a smooth

function, by the Inverse Function Theorem. Since the function is only two-to-one, it
is locally invertible. Hence the image is a smooth manifold.
30. In (a), the function F(x, y) = x2 + y2 − 1 is smooth near the point (x0, y0),

which has F(x0, y0) = 0, and the assumption is that @F
@x (x0, y0) 6= 0. That is, the

1-by-1 matrix with entry @F
@x (x0, y0) 6= 0 is invertible. The theorem says that in a

suitable rectangular neighborhood I × J of (x0, y0)with I ⊆ R1 and J ⊆ R1, each y
value yields a unique x value with F(x, y) = 0 and the resulting function x = f (y)
for x ∈ I is smooth and satisfies F( f (y), y) = 0 for all y in J . Then the open subset
I × J of R2 contains the embedded graph of a smooth function, as in Problem 25.
In (b), the same procedure is to be applied to the function F(x1, . . . , xn+1) − 1

and the point ((x1)0), . . . , (xn+1)0) on Sn under the assumption that
°

@F
@x1

¢
((x1)0, . . . , (xn+1)0),

namely 2(x1)0, is nonzero. The Implicit Function Theorem yields a rectangular open
neighborhood I × J of ((x1)0, . . . , (xn+1)0)with I ⊆ R1 and J ⊆ Rn such that each



Chapter II 133

value of (x2, . . . , xn+1) in J yields a unique x1 in I with F(x1, . . . , xn+1) = 0 and
the resulting function x1 = f (x2, . . . , xn+1) is smooth and satisfies

F( f (x2, . . . , xn+1), x2, . . . , xn+1) = 0 for all (x2, . . . , xn+1) ∈ J.

Then the open subset I × J of Rn+1 contains the embedded graph of a smooth
function, as in Problem 25.
In (c), fix x0, and suppose that k of the columns of J (x0) are linearly independent.

Possibly by permuting the variables, we may assume that the first k of the columns
are linearly independent. Regard F as a function of n variables whose entries
(F1, . . . , Fk) are members of Rk . The assumption is that the matrix

©
@Fi
@xj (x0)

™
is

nonsingular. The Implicit Function Theorem yields a rectangular set I × J ⊆
Rk × Rn−k centered at ((x1)0, . . . (xn)0) and a smooth function f (xk+1, . . . , xn)
defined in J such that for each (xk+1, . . . , xn) in J , there is a unique (x1, . . . , xk) in I
with F(x1, . . . , xn) = 0 and the resulting function (x1, . . . , xk) = f (xk+1, . . . , xn)
is smooth and satisfies F( f (xk+1, . . . , xn), xk+1, . . . , xn) = 0 for all (x2, . . . , xn+1)
in J . Then the open subset I × J of Rn contains the embedded graph of a smooth
function, as in Problem 25.

Chapter II
1. Straightforward calculation.
2. Two ways of proving this result that generalize to all dimensions are to make

use of Corollary 1.16 of the present text and to proceed via row reduction of matrices
as outlined in Section III.10 of Basic Real Analysis.
For dimension 3 an argument is available that makes use of cross product, as

follows: We compute the volume of the parallelepiped spanned by u, v, and w as the
area of the base spanned by u and v, times the height. The area of the base we know
to be |u × v| = |u||v|| sin θ |. The height is the magnitude of the projection of w in
the direction perpendicular to the base, i.e., in the direction of u× v. Thus the height

is
Ø
Ø
Ø
w · (u × v)

|u × v|2
(u × v)

Ø
Ø
Ø =

|w · (u × v)|

|u × v|
. Then the product of the base and height is

|w · (u × v)|, which is the determinant in question.
3. The first, fourth, and fifth are equal. The second, third, and sixth are the negative

of these.
4. For (a), div F = 2xy and curl F = (8y − 3z2)i− (x2 + 3x)k.
For (b), div F = 2+ 2x3y and curl F = (4z − 7)j+ (3x2y2)k.
5. Without loss of generality we may assume that M is connected. If a smooth

m−1 form η exists with dη = ω, then Stokes’s Theorem says that
R
@M η =

R
M dη =R

M ω. In a connected compatible chart α = (x1, . . . , xm), α∗(ω) can be written as
Fα dx1 ∧ · · · ∧ dxm for some nowhere-vanishing smooth function Fα . Then Fα does
not change sign, and

R
M ω is not zero. Consequently

R
@M η 6= 0. But this contradicts

Theorem 2.1 since @M is a smooth manifold without boundary.
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6. For (a), we can take ω = (dx1 ∧ dx2) + (dx3 ∧ dx4).
For (b), we have ω = dη with η = α ∧ dα ∧ · · · ∧ dα since d2 = 0. Then the

previous problem shows that ω has to vanish somewhere.
7. In (a), the value of dω is the sum of (@/@x)

°
x(x2+ t2+ z2)−3/2) (dx∧dy∧dz)

and two similar terms. The coefficient of dx ∧ dy ∧ dz is

(x2 + y2 + z2)−3/2 + x(−3/2)(x2 + y2 + z2)−5/2(2x)

= (x2 + y2 + z2)−5/2(x2 + y2 + z2 − 3x2)(x2 + y2 + z2)−1.

The contributions from the other two terms are similar except that x is to be replaced
by y and then z. The sum of the three terms is then

(x2 + y2 + z2)−5/2(3(x2 + y2 + z2) − 3x2 − 3y2 − 3z2) = 0.

In (b), letM be the “inside” of T . We can apply Stokes’s Theorem (Theorem4.7) to
T since ω is smooth everywhere inside and on T . Then we have

R
T ω =

R
M dω = 0.

8. Part (a) is a restatement of Problem 7a.
In (b), the Divergence Theorem gives

R
S F · dS = 0 since div F = 0. The

orientation on S is given by an outward normal from M , which is then outward on S1
and in toward the origin on Sa . Hence 0 =

R
S F · dS =

R
S1 F · dS−

R
Sa F · dS.

9. Take ω = 1
n

nP

j=1
(−1) j−1dx1 ∧ · · · ∧ ddxj ∧ · · · ∧ dxn and f (x1, . . . , xn) =

(x21 + · · · + x2n)n/2.
10. In Section 3 the paragraph beginning “The traditional procedure” is irrelevant

and can be omitted. In the statement of Proposition 2.6, (−1)mα∗(dx1∧· · ·∧dxm−1)
is to be replaced by−α∗(dx1∧· · ·∧dxm). (Note the sign!) The proof of Proposition
2.6 is unchanged down to the paragraph beginning “Thus we have constructed.” For
the case m = 1, we still have Fαp as it is, positive or negative. The orientation at p
is still the sign of Fαp (0).
In Section 4, formulas (∗) and (∗∗) are unchanged. In the paragraph beginning

“On @Hm ,” some changes are needed. We have

ω = F1(0, x2, . . . , xm) dx2 ∧ · · · ∧ dxm .

For the casem ∏ 2 the proof becomes, “Since−dx2∧· · ·∧dxm is positively oriented
in the orientation of the boundary that we are using, application of Theorem1.29 gives

R
@Hm ω = −

R
@Hm F1(0, x2, . . . , xm) dxm · · · dx2

= −
R b2
a2 · · ·

R bm
am F1(0, x2, . . . , xm) dxm · · · dx2. (†)

For m = 1, we get
R
@Hm ω = −F1(0). So (†) holds for all m ∏ 1.
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Formula (††) is still valid, and we still do the integration in the variable xr first.
For r ∏ 1, we get 0 from the inside integral. For r = 1, the inside integral is

R c
0

°
@F1
@x1

¢
dx1 = F1(c, x2, . . . , xm) − F1(0, x2, . . . , xm)

with F(c, x2, . . . , xm) = 0 by the support condition. Therefore (††) boils down to

−
R b2
a2 · · ·

R bm
am F1(0, x2, . . . , xm) dxm · · · dx2,

which equals (†). Thus we get (‡), and the remainder of the proof is unchanged.
11. We can parametrize the surface by using s and t as parameters, with s standing

for x and t standing for y. Then the parametrization is (s, t) 7→

µ s
t

s2+t2

∂
with

derivative
µ 1 0
0 1
2s 2t

∂
. Then we have

@(x, y)
@(s, t)

= 1,
@(y, z)
@(s, t)

= −2s, and
@(z, x)
@(s, t)

= −2t .

The integrand F = xi · dS is x dy ∧ dz = x(−2s) ds dt = −2s2 ds dt . There
is no natural orientation on the surface, but we are told to orient the surface by
using an outward/downward vector. That is, we are to consider the basis of the
tangent space at a point of the surface, include an outward/downward vector before
it (a vector with third component negative), and see whether our parametrization is
consistent with this basis of R3. To fix the ideas, take (s, t) = (0, 0). Then the

basis we choose of R3 can be
µ 0

0
−1

∂
,

µ 1
0
0

∂
,

µ 0
1
0

∂
. The matrix formed from these

basis vectors has determinant−1, and our parametrization is the opposite of what we

need. Let us therefore start over, using (s, t) 7→

µ t
s

s2+t2

∂
with derivative

µ 0 1
1 0
2s 2t

∂

as parametrization. Then
@(y, z)
@(s, t)

= 2t . With this parametrization the integrand

becomes F = xi · dS = x dy ∧ dz = x(2t) ds dt = 2t2 ds dt . The integration
extends over the set where s2 + t2 ≤ 4. Switching to polar coordinates in the s-t
plane shows that the integral is

R 2
0

R 2π
0 2r2(sin2 θ) r dr dθ = π

R 2
0 2r

3 dr = 8π .
As it should, this orientationgivesminus the answerwewould getwith the opposite

orientation. Had we not taken the orientation into account properly, we would have
integrated −2s2 ds dt over the set where s2 + t2 ≤ 4 and gotten −8π as the answer.
12. The boundary curve of S is given by the subset of points (x, y, z) that satisfy

both conditions, namely x2 + y2 + z2 = 4 and x2 + y2 = 1, and have z ∏ 0.
Substitution gives z2 = 3. Thus the intersection is the circle with z =

p
3 and

x2+ y2 = 1. Stokes’s Theorem says that the integral is equal to
R
C F · ds, but we have

to orientC properly. Since the orientation of S is upward, this situation is like looking
at the ordinary unit circle in the x-y plane. The circle is therefore to be traversed with
S on the left, and the parametrization can be taken as t 7→ (

p
3 cos t,

p
3 sin t,

p
3).



136 Hints for Solutions of Problems

The derivative is (−
p
3 sin t,

p
3 cos t, 0). On the circle the value of F in terms of

the parameter t is (yz, 0, xy) = (3 sin t, 0, cos t sin t) Thus the integral is

=
R 2π
0 (3 sin t, 0, 3 cos t sin t) · (−

p
3 sin t,

p
3 cos t, 0) dt

=
R 2π
0 −3

p
3 sin2 t dt = −3π

p
3

13. A direct attack on the line integral leads to an unpleasant term e3 sin t because of
the presence of ez of F . In preparation for using the Kelvin–Stokes Theorem, direct
computation gives curl F = (x,−2y, y) with the ez gone. By the Kelvin–Stokes
Theorem the integral equals

R
S(curl F) · dS when S is any oriented smooth surface

with boundary curve C , provided the orientations match properly. An example of
such a surface is the disk given by x2+ y2 ≤ 9 and y = 4 with a suitable orientation.
By the same token the surface integral equals the line integral

R
C G · ds, where

G = (−yz, 0, xy), since curlG = curl F . (In changing F into G, we can drop pure
x terms from the first entry, pure y terms from the second entry, and pure z terms
from the third entry without changing the curl.) Since s0(t) = (−3 sin t, 0, 3 cos t),
the given line integral is

=
R 2π
0

£
(−4(3 sin t))(−3 sin t) + 4(3 cos t)(3 cos t)

§
dt

=
R 2π
0 (36 sin2 t + 36 cos2 t) dt =

R 2π
0 36 dt = 72π

14. The boundary is the circle C in the plane z = 0 with x2 + y2 = 16. Since S
is oriented upward, the induced orientation on C is clockwise (with the hemisphere
on the left). Thus C can be parametrized as t 7→ (4 cos t, 4 sin t, 0) with derivative
−4 sin t, 4 cos t, 0). The given integral is therefore

=
R
f ·ds =

R 2π
0

°
y(−4 sin t)− x(4 cos t)+0

¢
dt =

R 2π
0 (−16 sin2 t−16 cos2 t) dt,

which equals −32π

15. In (a), the circle can be parametrized as θ 7→

µ cos θ
sin θ

2−sin θ

∂
for 0 ≤ θ ≤ 2π . We

are given F(x, y, z) = –y2i+ xj+ z2k, and we have

ds = − sin θ i+ cos θ j+ (− cos θ)k.

Then
R
C F ·ds =

R 2π
0 (− sin2 θ)(− sin θ)+ (cos θ)(cos θ)+ (2− sin θ)2(− cos θ) dθ = π.

In (b), the filled ellipse is to be oriented upward. We can parametrize it as (r, θ) 7→µ r cos θ
r sin θ

2−r sin θ

∂
with derivative

µ cos θ −r sin θ

sin θ r cos θ
− sin θ −r cos θ

∂
. Then

@(x, y)
@(r, θ)

= r,
@(x, z)
@(r, θ)

= r(sin2 θ − cos2 θ),
@(y, z)
@(r, θ)

= 0.
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Direct calculation gives curl F = (1+2y)k, and then curl F ·dS = (1+2y) @(x,y)
@(r,θ) =

r(1 + 2r sin θ) = r + 2r2 sin θ . Thus the integral is
R 1
0

R 2π
0 (r + 2r2 sin θ) dθ dr =

2π
R 1
0 r dr = π .
16. The leftmost inequality sign follows from the fact thatω is nowhere vanishing,

the argument being like the one for Problem 5. The first of the three equalities follows
because the fact that r is a retraction shows up on the level of pullbacks as meaning
that r∗ is the identity on forms located where r is the identity, i.e., on @B. The second
equality is by Stokes’s Theorem, Theorem 4.7. The third equality is by Proposition
1.24, which says that exterior derivative commutes with pullback.
17. In the previous problem, there is some virtue in making explicit the role of the

inclusion i : @B → B is the computation. The fact that r is a retraction means that
f ◦ i = 1@B , and this translates into the identity i∗ f ∗ = 1 on forms of each degree.
The computation is less ambiguous if it is written as

0 <
R
@B ω =

R
@B i

∗r∗(ω) =
R
B dr

∗(ω) =
R
B r

∗(dω).

Remembering that pullbacks preserve degree and that r∗ therefore carries ƒk(@B)

into ƒk(B) for each k, we can track down the degrees of the various forms in the
computation. The ω on the left is in ƒn−1(@B), i∗r∗(ω) is in ƒn−1(@B), dr∗(ω) is
in ƒn(B) by Stokes’s Theorem, and r∗(dω) is in ƒn(B). Since r∗(dω) ends up in
ƒn(B), r∗ must have been acting on something inƒn(@B). This space is 0 since @B
has dimension n − 1, and thus r∗(dω) = r∗(0) = 0.
18. For any point p in B, the fact that f (p) 6= p implies that there is a unique

line passing through p and f (p). This line meets the sphere @B in two points, and
we define r(p) to be the point that is closer to f (p). (To complete the definition,
we define r to be the identity on points of @B.) Let us write the definition of r is
symbols, and then we can see that f is smooth. The parametrically defined line
t 7→ (1− t)p + t f (p) passes through p when t = 0 and passes through f (p) when
t = 1. From the geometry it is evident that it meets @B twice, once for some negative
value of t and once for some value of t greater than 1. We seek an expression for the
value of t greater than 1. Thus we set |(1− t)p+ t f (p)|2 = 1 and solve the resulting
quadratic equation for t . The coefficient of t2 is

|p|2 − 2p · f (p) + | f (p)|2 = |p − f (p)|2,

and this is positive since f (p) 6= p. The constant term is |p|2 − 1, which is negative
since p is in B. Thus the two roots t have opposite sign, and our desired root t is
the one with the plus sign in the quadratic formula. Consequently we can obtain an
explicit formula for r(p), and its dependence on p is smooth if f is smooth. The
function r is a smooth retraction, which the previous problem shows cannot exist.
Therefore f must have a fixed point.
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19. Regard f as extended toRn by extending it as 0 outside B. Choose a member
ϕ ∏ 0 of C∞

com(Rn) of total integral 1, let ϕε(x) = ε−nϕ(ε−1x) for ε > 0, and
convolve the scalar-valued function ϕε with each entry of f . Then ϕε ∗ f converges
uniformly to f on Rn as ε tends to 0. Thus the sequence { fk} may be taken to be the
sequence of restrictions to B of the functions ϕ1/k ∗ f .
20. We are assuming that { fk} is a sequence of smooth functions carrying B to

itself such that fk(xk) = xk for all k and such that { fk} converges uniformly to f on
B. The Bolzano-Weierstrass Theorem produces a limit point x0 in B for the sequence
{xk}. Passing to a subsequence and renumbering, we may assume that limk xk = x0.
Then we have

| f (x0) − x0| ≤ | f (x0) − f (xk)| + | f (xk) − fk(xk)| + | fk(xk) − xk | + |xk − x0|.

On the right side, the first term tends to 0 by continuity of f , the second term tends
to 0 by the uniformity of the convergence, the third term is 0 because xk is a fixed
point of fk , and the fourth term tends to 0 since limk xk = x0. Since the left side is
independent of k, it must be 0.

Chapter III

1. For (a), let S be the set of vertices. We proceed by induction on the cardinality
V of S, the base case of the induction being the case V = 4 of a tetrahedron.
For a tetrahedron the assertion is clear. Let a polyhedron be given with n ∏ 5
faces, and assume that a triangulation exists whenever a compact convex polyhedron
has ≤ n − 1 faces. We shall attempt to introduce a plane that divides S into two
proper but overlapping subsets; if we can do this, then by induction we can do the
triangulation for the polyhedron associated to each subset of vertices, and the union
of the triangulations will be a triangulation of the given polyhedron. We fix attention
on any three vertices and consider the unique plane that contains them. Let this plane
be the set where some linear functional L is 0. One subset of S will consist of those
vertices for which L ∏ 0, and the other subset will consist of those vertices for which
L ≤ 0. We have seen that we are done if both these subsets are proper.
Thus suppose that one or the other of the subsets is all of S. Then the plane that

passes through our three vertices is completely on one side of our polyhedron and
those three vertices must span a face. In other words, we have associated a unique
face to to each triple of vertices. On the other hand, if a face is given, then the vertices
of that (triangular) face are a triple of vertices. We conclude the F equals the number
of triples of vertices, which is 16V (V − 1)(V − 2).
Meanwhile to each edge we can associate two vertices, and distinct edges yield

distinct pairs of vertices. Thus E ≤ 1
2V (V − 1). Substituting into Euler’s formula,

we obtain 1
6V (V − 1)(V − 2) + V = F + V = E + 2 ≤ 1

2V (V − 1) + 2, and
we are led to the inequality V 3 − 6V 2 + 11V − 12 ≤ 0. The derivative of the
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polynomial P(V ) on the left is 3V 2 − 12V + 11, whose larger root is 16 (12+
p
23),

which is less than 4. Thus P(V ) is an increasing function for V ∏ 4. Computation
gives P(4) = 0. Therefore P(V ) > 0 for V > 4, and we cannot have our required
inequality P(V ) ≤ 0 for V > 4. Tracing back, we see we are forced to conclude that
when V ∏ 5, it is possible to divide S into two proper subsets by some plane and
thereby to complete the induction.
2. For each p in M , let (Mp, αp) be a compatible chart about p for the manifold-

with-corners M of dimensionm; here Mp is an open neighborhood of p, and αp(Mp)
is open in Qm . We may assume that no point of Mp has larger index than p does.
Now let F : M → Rm be an embedding. Since F is continuous and M is compact,
F(M) is bounded. Since F is an embedding, F is a homeomorphism of M+ onto its
image in Rm . DefineU to be the open set F(M+), let B = U cl−U , and let E be the
image under F of all points in M of index ∏ 2. We are to see that U ∪ (B − E) is a
smoothmanifold-with-boundary, that E is compact, and that E hasm−1 dimensional
Minkowski content 0 in Rm . Proposition 3.6c shows that the set of points of index
∏ 2 is closed in M . Hence it is compact, and its image E in Rm is compact. We
have arranged that F(M+) = U , and hence F carries the set of points of index 1 onto
B − E .
For each point p inM of index 0 or 1, the open subsetMp ofM consists completely

of points of index 0 or 1. Hence F carries Mp into U ∪ (B − E). The pairs
(F(Mp), αp ◦ F−1) form an atlas for U ∪ (B − E) and exhibit U − (B − E) as a
manifold-with-boundary.
Finally we are to see that E has m − 1 dimensional Minkowski content 0 in Rm .

This step follows from Corollary 3.12.
3. This is a routine adaptation of the argument for Example 3. The condition for

the first partial derivative of the (i, j)th entry of x to vanish is that the (i, j)th minor of
x should vanish. The set where all these 3-by-3 minors vanish is the set of matrices
of rank ≤ 2. Call this set E .
We shall exhibit E as the union of 16 compact subsets of vector subspaces of R16

of dimension 12. Each of these will have 15 dimensional Minkowski content 0; then
we can conclude that E has 15 dimensional Minkowski content 0, and the set where
det x ≤ 0 is a Whitney domain.
Consider a matrix x for which the upper left 2-by-2 determinant is nonzero.

The vector subspace of R16 corresponding to this choice of entries has dimension
8 + 2 + 2 = 12, and x lies in this subspace. Thus all matrices of rank 2 lie in the
union of 16 vector subspaces of R16 of dimension 12. The matrices of rank < 2 lie
in this same finite union, and we see that E has 15 dimensional Mnkowski content 0.
Thus the set where det x ≤ 0 is a Whitney domain in R16.
4. All of them. In (a), the respective first partial derivatives are −yz, −xz, and

2z − xy. If these are simultaneously all 0, then z = 0 and also x = 0 or y = 0; also
the converse is true. Thus U is the set where z(z − xy) < 0, i.e., the set where z and
z − xy are nonzero quantities of the same sign. Also B is the set where z = 0 or
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z = xy, and E is the set where z = 0 and xy = 0.
In (b), write x =

≥
a b
c d

¥
, so that det(x) = ad− bc. The setU in question is where

Re (ad − bc) < 0. There are eight variables, namely the real and imaginary parts of
a, b, c, d. If all eight first partial derivatives are 0, we are led to a = b = c = d = 0.
Thus b is the set where Re (ad − bc) = 0, and E = {0}.

In (c), we proceed somewhat as in Algebraic Example 3 in Section 5. We study
the set of 4-by-4 skew-symmetric matrices with det x ≤ 0. We want to know where
det x = 0, and we want to identify the singular set. We can use each entry function
above the diagonal as coordinates. The partial derivative in question with respect to
the variable in the first row and second column is

d
dt
det




0 x12+t x13 x14

−x12−t 0 −x23 x24
−x13 −x23 0 a34
−x14 −x24 −x34 0




Ø
Ø
Ø
t=0

In this expression will appear constant terms, terms with t , and terms with t2. We
use the multilinearity of the determinant to isolate the cofficient of t and find that it
equals the sum of two 3-by-3 determinants. Some of the terms cancel, and we find
that the derivative at t = 0 is the determinant of the 2-by-2 matrix in positions 3 and
4. At any singular point all such derivatives at t = 0 have to be 0. The bottom line is
that the only singular point is x = 0. So again E = {0}.
5. For (a), V is the intersection of two closed balls. Each of them is a manifold-

with-boundary. Then for each point where one or both of the inequalities are strict
has an open neighborhood of the kind in a manifold-with-boundary. Each point
where both equalities hold has an open neighborhood diffeomorphic to an open
neighborhood of (1, 0, 0) in Q3, and thus we have a manifold-with-corners.
For (b), we are working with F = x2i, for which div F = 2x . The Divergence

Theorem (Theorem 3.7) gives
R
S x

2y dy ∧ dx =
R
V 2x dx dy dz. Since V is sym-

metric about 0 in the x variable and the integrand is odd in the x variable, the integral
is 0.

6. For F = 3yi + 2xj + (z − 8)k, div F = 1. Thus the given surface integral
equals the volume of the tetrahedron that is decribed. The maximum values of x , y,
and z subject to 4x + 2y+ z = 8 with all variables∏ 0 are x = 2, y = 4, and z = 8.
The volume in question is 1/6 of the volume of a parallelepiped with sides 2, 4, and
8. It is therefore 64/6 = 32/3 .

7. Here F = xi+ yj+ zk and div F = 3. Thus the integral equals 3 · 7 = 21 .

8. For this F , div F = 5. Since the volume of a closed half ball of radius 2 is
2
3π2

3, the integral equals 5 · ( 23π2
3) = 80π/3 .

9. In (b),
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U = {(x, y, z)
Ø
Ø (x, y) ∈ M+ and f (x, y) < z < g(x, y)},

B = {(x, y, z)
Ø
Ø (x, y) ∈ @M and f (x, y) ≤ z ≤ g(x, y)}

∪ {(x, y, z)
Ø
Ø (x, y) ∈ M+ and z = f (x, y)}

∪ {(x, y, z)
Ø
Ø (x, y) ∈ M+ and z = g(x, y)},

E = {(x, y, z)
Ø
Ø (x, y) ∈ @M and z = f (x, y)}

∪ {(x, y, z)
Ø
Ø (x, y) ∈ @M and z = g(x, y)}.

10. In (a), we apply the Fundamental Theorem of Calculus on each subinterval
Ij , completely ignoring the other subintervals, and there is no problem. Then we
add the results and obtain

R b
a f 0(t) dt =

Pk
j=1

R
I f

0(t) dt =
Pk

j=1
R
Ij f

0
j (t) dt =

Pk
j=1( f j (tj )− f j (tj−1)) = fk(tk)− f0(t0) = f (b)− f (a) because the (finite) series

before the next-to-last equality sign telescopes.
In (b) and (c), we can indeed interpret the j th equality as saying the 0 form f j

and the 1 form d fj = f 0
j (t) dt together satisfy

R
{aj ,bj } f j =

R
Ij d fj under a certain

orientation. Combining these equalities into a single equality for f requires a certain
consistency for the orientations, so that the series in (a) can be seen to telescope at the
last step. The orientations on the two-point sets {aj , bj } are the induced orientations
from the various intervals [aj , bj ], and these are arranged so that each intermediate
point a1, . . . , ak−1 occurs with opposite orientations the two times it occurs.
When this framework is applied to a closed triangle—that is, when the t interval

is regarded as parametrizing the edge of the triangle—consistent orientations are
obtained by orienting the triangle and giving each edge the induced orientation. In
this case the expression f (b)− f (a) on the right is 0, since a = b. Thus the theorem
is that the integral of the derivative is 0; in other words, the result is a version of
Theorem 2.1.
11. The definition of a piecewise smooth 1 form on the (closed) faces and edges

of a tetrahedron can be taken to be that it is continuous function from the union of the
faces and edges of the tetrahedron whose restriction to each face is a smooth 1 form
on the closed face. Stokes’s Theorem applies to each face as a manifold-with-corners,
and we obtain the usual formula

R
edges ω =

R
face dω. The 3 dimensional part of the

tetrahedron is not present, but if it were and if we were to orient it, then we could
use the induced orientation on each face. With this choice when we take all the faces
into account, we again have cancellation in pairs for the contributions from the lower
dimensional integrals, and the conclusion is that

PR
faces dω = 0.

12. No.
13. Since E is compact and F is continuous, F(E) is compact. Choose compatible

charts (Mα1, α1), . . . , (Mαr , αr ) in M such that E ⊆ Mα1 ∪ · · · ∪ Mαr , and choose
by Lemma 1.26b an open cover {Pα1, . . . , Pαr } of E such that Pclαi

⊆ Mαi for each i .
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Then E = (Pclα1
∩ E) ∪ · · · ∪ (Pclαr

∩ E) exhibits E as the union of the respective
compact subsets Pclαi

∩ E of Mαi ∩ E . The set αi (Pclαi
∩ E) is a compact subset of

αi (Mαi ∩ E) and by hypothesis has ` dimenional Minkowski content 0 in Rm . It is
enough to show that the compact set F(Pclαi

∩ E) = (F ◦ α−1
i )(αi (Mαi ∩ E)) has `

dimensional Minkowski content 0 in N .
In other words we may assume from the outset that M is an open subset of Rm ,

that we are given a compact subset E of M of ` dimensional Minkowski content 0,
and that we are to show that F(E) has ` dimensional Minkowski content 0 in N .
Choose charts (Nβ1, β1), . . . , (Nβs , βs) in N so that F(E) ⊆ Nβ1 ∪ · · ·∪ Nβs , and

then choose by Lemma 1.26b an open cover {Qβ1, . . . , Qβs } of F(E) such that each
Qclj is compact and Q

cl
βj

⊆ Nβj for each j .
For each p in E , choose an open neighborhood Mp of p such that F(Mp) is

contained in a single Qβj . These open neighborhoods cover E , and finitely many of
them, say Mp1, . . . ,Mpt , suffice to cover E . Choose by Lemma 1.26b an open cover
{Rp1, . . . , Rpt } of E such that Rclpk ⊆ Mpk for each k.
The restriction F

Ø
Ø
Mpk

of F is smooth from Mpk into some Qβj , say Qβj (k) . When
it is followed by βj (k), the result is a smooth function from an open subset of Rm

into a Eucldiean space. Proposition 3.11 applies to this function and shows that it
carries compact sets of ` dimensional Minkowski content 0 into compact sets of `

dimensional Minkowski content 0. From the inclusions

(βj (k) ◦ F)(Rpk ) ⊆ (βj (k) ◦ F)(Rclpk ) ⊆ βj (k)(Qβj (k) ),

we see that (βj (k) ◦ F)(Rclpk ) has ` dimensional Minkowski content 0 in Euclidean
space. Thus F(Rclpk ) has ` dimensional Minkowski content 0 in N . We combine this
fact with the chain of inclusions

F(E) ⊆ F(Rp1 ∪ · · · ∪ Rpt ) = F(Rp1) ∪ · · · ∪ F(Rpt ) ⊆ F(Rclp1) ∪ · · · ∪ F(Rclpt ),

and we conclude that F(E) has ` dimensional Minkowski content 0 in N .
14. Arguing as in Problem 13, we see that it is enough to see that the smooth image

in N of any compact subset E of a Euclidean space Rd of dimension d ≤ n − 2 has
n−1 dimensionalMinkowski content 0. A compact subset E ofRd has d dimensional
Minkowski content equal to its Lebesgue measure, and then E has d+1 dimensional
Minkowski content equal to 0. Since d + 1 ≤ n − 1, E has n − 1 dimensional
Minkowski content 0. Problem 13 then allows us to conclude that that the smooth
image of E in any smooth manifold of dimension ∏ n − 1 has n − 1 dimensional
Minkowski content 0.
15. This is similar to Problem 2. The relevance of the assumption of compactness

is in proving that the (closed) set of points of index ∏ 2 is compact.
16. This equivalence is essentially the content of Proposition 3.10. In one

direction suppose that E has ` dimensional Minkowski content 0 and therefore that
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lim
δ↓0

δ`N (E, δ) = 0. Then for any ≤ > 0, there is a δ0 such that δ < δ0 implies

δ`N (E, δ) < ≤. Take k = N (E, δ), and let B1, . . . , Bk have diam(Bi ) < δ. Then
kδ` < ≤, and E is of zero ` extent. In the converse direction suppose E is of zero
` extent. Let ≤ > 0 be given, and choose ≥0 according to that condition. Whenever
≥ < ≥0 is given, choose k so that E ⊆ B1 ∪ · · · ∪ Bk , diam(Bi ) ≤ ≥ , and k≥ ` < ≤.
Then ≥ `N (E, ≥0) < ≤, and ≥ `

0 N (E, ≥0) ≤ ≤. In other words, lim
≥0↓0

≥ `
0 N (E, ≥0) = 0,

and then E has ` dimensional Minkowski content 0 by Proposition 3.10.
17. As in Section 5, let

Nsep(E, δ) =
nmaximum number of points of E
at distance ∏ δ from one another

o
.

Suppose we have a configuration of N1 points x1 of E1 that are at distance ∏ δ from
one another, and suppose also that we have a configuration of N2 points x2 of E2 that
are at distance ∏ δ from one another. Then the corresponding set of points (x1, x2)
in E1 × E2 has the property that any two distinct members of the product set have

|(x1, x2) − (x 0
1, x

0
2)| ∏ max{|x1 − x 0

1|, |x2 − x 0
2|} ∏ δ.

Therefore there exist N1N2 points of E1 × E2 at distance ∏ δ from one another, and
the definition of Nsep gives

Nsep(E1 × E2, δ) ≤ N1N2.

Taking the minimum over all such configurations allows us to conclude that

Nsep(E1 × E2, δ) ≤ Nsep(E1, δ)Nsep(E2, δ).

Combining ths inequality with the first two conclusions of Lemma 3.9 yields

N (E1 × E2, δ) ≤ Nsep(E1 × E2, δ)
≤ Nsep(E1, δ)
≤ Nsep(E2, δ)
≤ N (E1, δ/2)N (E2, δ/2),

and the result follows.
18. We know that a dimensional Minkowski content coincides with Lebesgue

measure for compact subsets of Ra . Also Lemma 3.9 shows that |Eδ| is comparable
in size to δaN (E, δ). As δ tends to 0, |Eδ| tends to |E | by complete additivity of
Lebesgue measure, and this limit is finite since E is compact. Thus δaN (E, δ) is
bounded as δ tends to 0.
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19. In both parts of the problem, Problem 17 gives

N (E1 × E2, δ) ≤ N (E1, δ)N (E2, δ). (∗)

We multiply through by δ`1+`2 for (a) and by δ`1+m2 for (b). Then we let δ tend to 0.
In (a), Proposition 3.10 shows that δ`1N (E1, δ) and δ`2N (E2, δ) tend to 0. By

(∗), δ`1+`2N (E1× E2, δ) tends to 0. Thus the converse direction of Proposition 3.10
shows that E1 × E2 has `1 + `2 dimensional Minkowski content 0.
For (b), we argue in the same way except that we use Problem 18 to see that

δa2N (E2, δ) is bounded as δ tends to 0. This bounded quantity is multiplied by
δ`1N (E1, δ), which tends to 0, and the product thus tends to 0. We conclude that
δ`1+m2N (E1× E2, δ) tends to 0, and it follows that E1× E2 has `1+m2 dimensional
Minkowski content 0.
20. For (a), we are to show that (U, B, E) has the properties of a Whitney domain

in Rm1+m2 . The set U is open in Rm1+m2 because its factors are open in Rm1 and
Rm2 , and B is closed and is the boundary ofU because B equalsU cl−U . The setU
is bounded in Rm1+m2 becauseU1 is bounded in Rm1 and M is compact in Rm2 . The
set E is compact as the product of two compact sets. What needs to be shown is that
E has m1 + m2 − 1 dimensional Minkowski content 0.
It is enough to prove that each of E1×M and B1×@M hasm1+m2−1 dimensional

Minkowski content 0. Consider E1×M . Since E1 hasm1−1 dimensionalMinkowski
content 0 and M is compact inRm2 , Problem 19b shows that E1×M hasm1+m2−1
dimensional Minkowski content 0.
Consider B1 × @M . The subset B1 of Rm1 by assumption is a closed bounded

portion of the set in Rm1 where a nonzero real-valued polynomial in m1 variables
equals 0. Problem 10 of Chapter VI of Basic Real Analysis shows that the compact
set B1 has m1 dimensional Lebesgue measure 0. It therefore has m1 dimensional
Minkowski content 0. The set @M is a compact manifold of dimension m2 − 1.
Using the style of argument in Problems 13 and 14 and applying Problem 19, we see
that B1 × @M is a compact set of m1 + m2 − 1 dimensional Minkowski content 0.
At this writing, the author does not know the answer to (b).


