
Chapter 2 

STRAIGHTNESS  ON SPHERES

... 

[I]t will readily be seen how much space lies between the two places themselves on the

circumference of the large circle which is drawn through them around the earth. ... [W]e 

grant that it has been demonstrated by mathematics that the surface of the land and water  is 

in its entirety a sphere, ... and that any plane which passes through the center makes at its 

surface, that is, at the surface of the earth and of the sky, great circles, and that the angles of 

the planes, which angles are at the center, cut the circumferences of the circles which they 

intercept proportionately, ... 

 — Ptolemy, Geographia (ca. 150 A.D.) Book One, Chapter II 

This chapter asks you to investigate the notion of straightness on a sphere, drawing 

on the understandings about straightness you developed in Problem 1.1. 

EARLY HISTORY OF SPHERICAL GEOMETRY

Observations of heavenly bodies were carried out in ancient Egypt and Babylon, mainly 

for astrological purposes and for making a calendar, which was important for organizing 

society. Claudius Ptolemy (c. 100–178), in his Almagest, cites Babylonian observations 

of eclipses and stars dating back to the 8th century B.C. The Babylonians originated the 

notion of dividing a circle into 360 degrees — speculations as to why 360 include that it 
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was close to the number of days in a year, it was convenient to use in their hexadecimal 

system of counting, and 360 is the number of ways that seven points can be placed on a 

circle without regard to orientation (for the ancients there were seven “wandering bodies” 

— sun, moon, Mercury, Venus, Mars, Saturn, and Jupiter). But, more important, the 

Babylonians developed a coordinate system (essentially the same as what we now call 

“spherical coordinates”) for the celestial sphere (the apparent sphere on which the stars, 

sun, moon, and planets appear to move) with its pole at the north star. Thus, it is a 

misconception to think that the use of coordinates originated with Descartes in the 17th

century. As a fun fact it can be mentioned the use of spherical coordinates in modern 

times. One way to ensure that electronic message is not garbled is to use a geometric way 

of packing information called a “spherical code” – that is a way of translating a message 

written in binary code, into a point on a high-dimensional sphere by the way of relating 

each letter to a coordinate on a sphere. 

Figure 2.1 Armillary sphere (1687) showing (from inside out): 
earth, celestial sphere, ecliptic, and the horizon 

The ancient Greeks became familiar with Babylonian astronomy around 4th century 

B.C. Eudoxus (408–355 B.C.) developed the “two-sphere model” for astronomy. In this

model the stars are considered to be on the celestial sphere (which rotates one revolution

a day westward about its pole, the north star) and the sun is on the sphere of the ecliptic,

whose equator is the path of the sun and which is inclined to the equator of the celestial

sphere at an angle that was about 24° in Eudoxus’ time and is about 23½° now. The

sphere of the ecliptic is considered to be attached to the celestial sphere and has an

apparent rotation eastward of one revolution in a year. Both of these spheres appear to

rotate about their poles. See Figure 2.1.

Autolycus, in On the Rotating Spheres (333–300 B.C.), introduced a third sphere 

whose pole is the point directly overhead a particular observer and whose equator is the 

visible horizon. Thus, the angle between the horizon and the celestial equator is equal to 

the angle (measure at the center of the earth) between the observer and the north pole. 

Autolycus showed that, for a particular observer, some points (stars) of the celestial 
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sphere are “always visible,” some are “always invisible,” and some “rise and set.” 

The earliest known mathematical works that mention spherical geometry are 

Autolycus’ book just mentioned and Euclid’s Phaenomena [AT: Berggren] (300 B.C.). 

Both of these books use theorems from spherical geometry to solve astrological problems 

such as What is the length of daylight on a particular date at a particular latitude? Euclid 

used throughout definitions and propositions from spherical geometry. The definitions 

include A great circle is the intersection of the sphere by a plane through its center and 

the intersection of the sphere by a plane not through the center forms a (small) circle that 

is parallel to a unique great circle. The assumed propositions include, for example, 

Suppose two circles are parallel to the same great circle C but on opposite sides; then the 

two circles are equal if and only if they cut off from some other great circle equal arcs on 

either side of C. (We will see similar results in Chapter 10.) There are other more 

complicated results assumed, including one about the comparison of angles in a spherical 

triangle; see [AT: Berggren], page 25. Thus, it is implied by Autolycus’ and Euclid’s 

writings that there were previous works on spherical geometry available to their readers. 

Hipparchus of Bithynia (190–120 B.C.) took the spherical coordinates of the 

Babylonians and applied them to the three spheres (celestial, ecliptic, and horizon). The 

solution to navigational and astrological problems (such as When will a particular star 

cross my horizon?) necessitated relating the coordinates on one sphere with the 

coordinates on the other spheres. This change of coordinates necessitates what we now 

call spherical trigonometry, and it appears that it was this astronomical problem with 

spherical coordinates that initiated the study of trigonometry. Plane trigonometry, 

apparently studied systematically first by Hipparchus, seems to have been originally 

developed in order to help with spherical trigonometry, which we will study in Chapter 

20. 

The first systematic account of spherical geometry was Sphaerica of Theodosius 

(around 200 B.C.) It consisted of three books of theorems and construction problems. 

Most of the propositions of Sphaerica were extrinsic theorems and constructions about a 

sphere as it sits with its center in Euclidean 3-space; but there were also propositions 

formulated in terms of the intrinsic geometry on the surface of a sphere without reference 

to either its center or 3-space. We will discuss the distinction between intrinsic and 

extrinsic later in this chapter. 

A more advanced treatise on spherical trigonometry was On the Sphere by Menelaus 

(about 100 A.D.) There exist only edited Arabic versions of this work. In the introduction 

Menelaus defined a spherical triangle as part of a spherical surface bounded by three arcs 

of great circles, each less than a semicircle; and he defined the angles of these triangles. 

Menelaus’ treatise expounds geometry on the surface of a sphere in a way analogous to 

Euclid’s exposition of plane geometry in his Elements. 

Ptolemy (100–178 A.D.) worked in Alexandria and wrote a book on geography, 

Geographia (quoted at the beginning of this chapter), and Mathematiki Syntaxis 

(Mathematical Collections), which was the result of centuries of knowledge from 
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Babylonian astronomers and Greek geometers. It became the standard Western work on 

mathematical astronomy for the next 1400 years. The Mathematiki Syntaxis in generally 

known as the Almagest, which is a Latin distortion of the book’s name in Arabic that was 

derived from one of its Greek names. The Almagest is important because it is the earliest 

existing work containing a study of spherical trigonometry, including specific functions, 

inverse functions, and the computational study of continuous phenomena. 

More aspects of the history of spherical geometry will appear later in this book in the 

appropriate places. For more readings (and references to the primary literature) on this 

history, see [HI: Katz], Chapter 4, and [HI: Rosenfeld], Chapter 1. 

PROBLEM 2.1 WHAT IS STRAIGHT ON A SPHERE? 

Drawing on the understandings about straightness you developed in Problem 1.1, this 

problem asks you to investigate the notion of straightness on a sphere. It is important for 

you to realize that, if you are not building a notion of straightness for yourself (for 

example, if you are taking ideas from books without thinking deeply about them), then 

you will have difficulty building a concept of straightness on surfaces other than a plane. 

Only by developing a personal meaning of straightness for yourself does it become part 

of your active intuition. We say active intuition to emphasize that intuition is in a process 

of constant change and enrichment, that it is not static. 

a. Imagine yourself to be a bug crawling around on a sphere. (This bug can

neither fly nor burrow into the sphere.) The bug’s universe is just the surface;

it never leaves it. What is “straight” for this bug? What will the bug see or

experience as straight? How can you convince yourself of this? Use the

properties of straightness (such as symmetries) that you talked about in

Problem 1.1.

b. Show (that is, convince yourself, and give an argument to convince others)

that the great circles on a sphere are straight with respect to the sphere, and

that no other circles on the sphere are straight with respect to the sphere.

SUGGESTIONS 

Great circles are those circles that are the intersection of the sphere with a plane through 

the center of the sphere. Examples include longitude lines and the equator on the earth. 

Any pair of opposite points can be considered as the poles, and thus the equator and 

longitudes with respect to any pair of opposite points will be great circles. See Figure 2.2. 
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Figure 2.2 Great circles 

The first step to understanding this problem is to convince yourself that great circles 

are straight lines on a sphere. Think what it is about the great circles that would make the 

bug experience them as straight. To better visualize what is happening on a sphere (or 

any other surface, for that matter), you must use models. This is a point we cannot stress 

enough. The use of models will become increasingly important in later problems, 

especially those involving more than one line. You must make lines on a sphere to fully 

understand what is straight and why. An orange or an old, worn tennis ball work well as 

spheres, and rubber bands make good lines. Also, you can use ribbon or strips of paper. 

Try placing these items on the sphere along different curves to see what happens. 

Also look at the symmetries from Problem 1.1 to see if they hold for straight lines on 

the sphere. The important thing here is to think in terms of the surface of the sphere, 

not the solid 3-dimensional ball. Always try to imagine how things would look from the 

bug’s point of view. A good example of how this type of thinking works is to look at an 

insect called a water strider. The water strider walks on the surface of a pond and has a 

very 2-dimensional perception of the world around it — to the water strider, there is no 

up or down; its whole world consists of the 2-dimensional plane of the water. The water 

strider is very sensitive to motion and vibration on the water’s surface, but it can be 

approached from above or below without its knowledge. Hungry birds and fish take 

advantage of this fact. This is the type of thinking needed to visualize adequately 

properties of straight lines on the sphere. For more discussion of water striders and other 

animals with their own varieties of intrinsic observations, see the delightful book The 

View from the Oak, by Judith and Herbert Kohl [NA: Kohl and Kohl]. 

Water striders (Wikimedia Creative Commons) 
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DEFINITION. Paths that are intrinsically straight on a sphere (or other surfaces) 

are called geodesics. 

This leads us to consider the concept of intrinsic or geodesic curvature versus 

extrinsic curvature. We all have what Felix Klein called “naïve intuition” — we speak 

without hesitancy of the direction and curvature of a river or a road the same way in 

geometry we talk about, for example, curvature of a circle, although the “line” in this 

case has certainly considerable width. As an outside observer looking at the sphere in 3-

space, all paths on the sphere, even the great circles, are curved — that is, they exhibit 

extrinsic curvature. But relative to the surface of the sphere (intrinsically), the lines may 

be straight and thus have intrinsic curvature zero. See the last section of this chapter, 

Intrinsic Curvature. Be sure to understand this difference and to see why all symmetries 

(such as reflections) must be carried out intrinsically, or from the bug’s point of view. 

It is natural for you to have some difficulty experiencing straightness on surfaces 

other than the 2-dimensional plane; it is likely that you will start to look at spheres and 

the curves on spheres as 3-dimensional objects. Imagining that you are a 2-dimensional 

bug walking on a sphere helps you to shed your limiting extrinsic 3-dimensional vision of 

the curves on a sphere and to experience straightness intrinsically. Ask yourself the 

following: 

 What does the bug have to do, when walking on a non-planar surface, in order

to walk in a straight line?

 How can the bug check if it is going straight?

Experimentation with models plays an important role here. Working with models 

that you create helps you to experience great circles as, in fact, the only straight lines on 

the surface of a sphere. Convincing yourself of this notion will involve recognizing that 

straightness on the plane and straightness on a sphere have common elements. When you 

are comfortable with “great-circle-straightness,” you will be ready to transfer the 

symmetries of straight lines on the plane to great circles on a sphere and, later, to 

geodesics on other surfaces. Here are some activities that you can try, or visualize, to help 

you experience great circles and their intrinsic straightness on a sphere. However, it is 

better for you to come up with your own experiences. 

 Stretch something elastic on a sphere. It will stay in place on a great circle, but

it will not stay on a small circle if the sphere is slippery. Here, the elastic

follows a path that is approximately the shortest because a stretched elastic

always moves so that it will be shorter. This a very useful practical criterion of

straightness.

 Roll a ball on a straight chalk line (or straight on a freshly painted floor!). The

chalk (or paint) will mark the line of contact on the sphere, and it will form a

great circle.
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 Take a narrow stiff ribbon or strip of paper that does not stretch and lay it

“flat” on a sphere. It will only lie (without folds and creases) along a great

circle. Do you see how this property is related to local symmetry? This is

sometimes called the Ribbon Test. (For further discussion of the Ribbon Test,

see Problems 3.4 and 7.6 of [DG: Henderson].)

 The feeling of turning and “non-turning” comes up. Why is it that on a great

circle there is no turning and on a latitude line there is turning? Physically, in

order to avoid turning, the bug has to move its left feet the same distance as its

right feet. On a non-great circle (for example, a latitude line that is not the

equator), the bug has to walk faster with the legs that are on the side closer to

the equator. This same idea can be experienced by taking a small toy car with

its wheels fixed to parallel axes so that, on a plane, it rolls along a straight line.

On a sphere, the car will roll around a great circle; but it will not roll around

other curves.

 Also notice that, on a sphere, straight lines are intrinsic circles (points on the

surface a fixed distance along the surface away from a given point on the

surface) — special circles whose circumferences are straight! Note that the

equator is a circle with two intrinsic centers: the north pole and the south pole.

In fact, any circle (such as a latitude circle) on a sphere has two intrinsic

centers.

These activities will provide you with an opportunity to investigate the relationships 

between a sphere and the geodesics of that sphere. Along the way, your experiences 

should help you to discover how great circles on a sphere have most of the same 

symmetries as straight lines on a plane. 

You should pause and not read further until you have expressed your thinking 

and ideas about this problem. 

SYMMETRIES OF GREAT CIRCLES

Reflection-through-itself symmetry: We can see this globally by placing a 

hemisphere on a flat mirror. The hemisphere together with the image in the mirror 

exactly recreates a whole sphere. Figure 2.3 shows a reflection through the great circle g. 

Reflection-perpendicular-to-itself symmetry: A reflection through any great circle 

will take any great circle (for example, g´ in Figure 2.3) perpendicular to the original 

great circle onto itself. 
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              Figure 2.3 Reflection-through-itself symmetry – half sphere reflected in the mirror 
 

Half-turn symmetry: A rotation through half of a full revolution about any point P on 

a great circle interchanges the part of the great circle on one side of P with the part on the 

other side of P. See Figure 2.4. 

   

 
Figure 2.4 Half-turn symmetry 

Rigid-motion-along-itself symmetry: For great circles on a sphere, we call this a translation along 

the great circle or a rotation around the poles of that great circle. This property of being able to move rigidly along 
itself is not unique to great circles because any circle on the sphere will also have the same symmetry. See Figure 
2.5. 

 
 

Figure 2.5 Rigid-motion-along-itself symmetry 
 

Central symmetry or point symmetry: Viewed intrinsically (from the 2-dimensional 

bug’s point-of-view), central symmetry through a point P on the sphere sends any point A 

to the point at the same great circle distance from P but on the opposite side. See Figure 

g
' 

g 

P 
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2.6. 

  A’ 

Intrinsically Extrinsically 

Figure 2.6 Central symmetry through P 

Extrinsically (viewing the sphere in 3-space) central symmetry through P would send 

A to a point off the surface of the sphere as shown in Figure 2.6. The only extrinsic 

central symmetry of the sphere (and the only one for great circles on the sphere) is 

through the center of the sphere (which is not on the sphere). The transformation that is 

intrinsically central symmetry is extrinsically half-turn symmetry (about the diameter 

through P). Intrinsically, as on a plane, central symmetry does not differ from half-turn 

symmetry with respect to the end result. This distinction between intrinsic and extrinsic is 

important to experience at this point. 

3-dimensional-rotation symmetry: This symmetry does not hold for great circles

in 3-space; however, it does hold for great circles in a 3-sphere. See Problem 22.5.

You will probably notice that other objects on the sphere, besides great circles, have 

some of the symmetries mentioned here. It is important for you to construct such 

examples. This will help you to realize that straightness and the symmetries discussed 

here are intimately related. 

EVERY  GEODESIC IS A GREAT CIRCLE 

Notice that you were not asked to prove that every geodesic (intrinsic straight line) on the 

sphere is a great circle. This is true but more difficult to prove. Many texts simply define 

the great circles to be the “straight lines” (geodesics) on the sphere. We have not taken 

that approach. We have shown that the great circles are intrinsically straight (geodesics), 

and it is clear that two points on the sphere are always joined by a great circle arc, which 

shows that there are sufficient great- circle geodesics to do the geometry we wish. 

To show that great circles are the only geodesics involves some notions from 

differential geometry. In Problem 3.2b of [DG: Henderson] this is proved using special 

properties of plane curves. More generally, a geodesic satisfies a differential equation 

with the initial condition being a point on the geodesic and the direction of the geodesic 

at that point (see Problem 8.4b of [DG: Henderson]). Thus, it follows from the analysis 

A 
P 

A' 

A P 

Center 
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theorem on the existence and uniqueness of solutions to differential equations that 

THEOREM 2.1. At every point and in every direction on a smooth surface 

 there is a unique geodesic going from that point in that direction. 
 

From this it follows that all geodesics on a sphere are great circles. Do you see why? 

 

 

INTRINSIC  CURVATURE 

 

You have tried wrapping the sphere with a ribbon and noticed that the ribbon will only lie 

flat along a great circle. (If you haven’t experienced this yet, then do it now before you 

go on.) Arcs of great circles are the only paths on a sphere’s surface that are tangent to a 

straight line on a piece of paper wrapped around the sphere. 

If you wrap a piece of paper tangent to the sphere around a latitude circle (see Figure 

2.7), then, extrinsically, the paper will form a portion of a cone and the curve on the 

paper will be an arc of a circle when the paper is flattened. The intrinsic curvature of a 

path on the surface of a sphere can be defined as the curvature (1/radius) that one gets 

when one “unwraps” the path onto a plane. For more details, see Chapter 3 of [DG: 

Henderson]. 

 
 
 

 
 

Figure 2.7 Finding the intrinsic curvature 
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Differential geometers often talk about intrinsically straight paths (geodesics) in 

terms of the velocity vector of the motion as one travels at a constant speed along that 

path. (The velocity vector is tangent to the curve along which the bug walks.) For 

example, as you walk along a great circle, the velocity vector to the circle changes 

direction, extrinsically, in 3-space where the change in direction is toward the center of 

the sphere. “Toward the center” is not a direction that makes sense to a 2-dimensional 

bug whose whole universe is the surface of the sphere. Thus, the bug does not experience 

the velocity vectors as changing direction at points along the great circle; however, along 

non-great circles the velocity vector will be experienced as changing in the direction of 

the closest center of the circle. In differential geometry, the rate of change, from the bug’s 

point of view, is called the covariant (or intrinsic) deriva- tive. As the bug traverses a 

geodesic, the covariant derivative of the velocity vector is zero. This can also be 

expressed in terms of parallel transport, which is discussed in Chapters 7, 8, and 10 of 

this text. See [DG: Henderson] for discussions of these ideas in differential geometry. 
 




