
 

 

Chapter 21 

MECHANISMS 

 

The mathematical investigations referred to bring the whole apparatus of a great science to the 

examination of the properties of a given mechanism, and have accumulated in this direction rich 

material, of enduring and increasing value. What is left unexamined is however the other, 

immensely deeper part of the problem, the question: How did the mechanism, or the elements 

of which it is composed, originate? What laws govern its building up? — F. Reuleaux, 

Kinematics (1876), p. 3 

In this chapter we will study mechanisms, which for our purposes we define as collections 

of rigid bodies with moveable connections having the purpose of transforming motion. We 

have already studied two mechanisms: an angle-trisecting mechanism in Problem 15.4d 

and the Peaucellier-Lipkin straight-line mechanism in Problem 16.3. A machine can be 

considered as a combination of mechanisms connected together in a way to do useful work. 

In this chapter we will use the Law of Cosines and the Law of Sines for the plane and 

sphere in Problems 21.1 and 21.2. Otherwise the material demands only basic 

understanding of plane and spheres. 

INTERACTIONS OF MECHANISMS WITH MATHEMATICS 

 We mentioned in Chapter 0 that one of the strands in the history of geometry is the 

Motion/Machines Strand; and we showed in Chapter 1 how this strand led to mechanism 

for producing straight line motion. It is known that the Greeks, in particular Aristotle, 

studied the so-called simple machines: the wheel, lever, pulleys, and inclined plane. He 

also described gear wheel drive in windlasses and pointed out that the direction of rotation 
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is reversed when one gear wheel drives another gear wheel. Archimedes made devices to 

multiply force or torque many times and studied spirals and helices for mechanical 

purposes. Archimedes screw idea is still used. 

Archimede’s screw still in use 

We know Hero’s formula for the area of a triangle but in his time, he was better known as 

an engineer. Most of his inventions are known from the writings of the Roman engineer 

Vitruvius. However, there was little application of Greek natural science to engineering in 

antiquity. In fact, engineering contributed far more to science than science did to 

engineering until the latter half of the 19th century. For more discussion of this history, see 

[ME: Kirby], p. 43. 

One of the simplest mechanisms used in human activities are linkages. Perhaps an idea of 

using linkages came into somebody's mind because a linkage resembles a human arm. We 

can find linkages in old drawings of various machines in 13th century. See Figure 1.3. 

Leonardo da Vinci drawing of machine from Codex Madridi (1493) 

Leonardo da Vinci’s Codex Madridi (1493) contained a collection of machine elements, 

Elementi Macchinali, and he invented a lathe for turning parts with elliptical cross section, 

using a four-bar linkage (see Problem 21.1). Georgius Agricola (1494–1555) is considered 

a founder of geology as a discipline but he gave descriptions of machines used in mining, 
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and that is where we can find pictures of linkages used in these machines. Gigantic 

linkages, principally for mine pumping operations, connected water wheels at the riverbank 

to pumps high up on the hillside. Such linkages consisted mostly of what we call four-bar 

linkages; see Problem 21.1. 

 

Figure 21.1 Mechanism for drawing parabola (1657) 

Mathematicians got interested in linkages first for geometric drawing purposes. We know 

about some such devices from ancient Greek mathematics. (For example, see Problem 15.4 

about devices for trisecting an angle.) When Rene Descartes published his Geometry 

(1637) he did not create a curve by plotting points from an equation. There were always 

first given geometrical methods for drawing each curve with some apparatus, and often 

these apparatuses were linkages. See, for example, in figure above the mechanism for 

drawing a parabola that appear in the works of Franz von Schooten (1615–1660) that were 

a popularization of Descartes’ work. Isaac Newton developed mechanisms for the 

generation of algebraic curves of the third degree. This tradition of seeing curves as the 

result of geometric actions can be found also in works of Roberval, Pascal, and Leibniz. 

Mechanical devices for drawing curves played a fundamental role in creating new symbolic 

languages (for example, calculus) and establishing their viability. The tangents, areas, and 

arc length associated with many curves were known before any algebraic equations were 

written. Critical experiments using curves allowed for the coordination of algebraic 

representations with independently established results from geometry. For more detailed 

discussion of the ideas in the last two paragraphs, see [HI: Dennis], Chapter 2. 

 Linkages are closely related with kinematics or geometry of motion. First it was the 

random growth of machines and mechanisms under the pressure of necessity. Much later, 

algebraic speculations on the generation of curves were applied to physical problems.  

Two great figures appeared in 18th century, Leonard Euler (1707–1783) and James Watt 

(1736–1819). Although their lives overlap there was no known contact between them. But 

both were involved with the “geometry of motion.” Watt, instrument maker and engineer, 

was concerned with designing mechanisms that produce desired motions. Watt’s search for 

a mechanism to relate circular motion with straight-line motion is discussed in the historical 

introduction to Chapter 1. Euler’s theoretical results were unnoticed for a century by the 
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engineers and mathematicians who were devising linkages to compete or supersede Watt’s 

mechanism. 

 

Watt’s steam engine 

The fundamental idea of the geometric analysis of motion (kinematics) stems from Euler, 

who wrote in 1775,  

The investigation of the motion of a rigid body may be conveniently separated into two parts, 

the one geometrical, the other mechanical. In the first part, the transference of the body from a 

given position to any other position must be investigated without respect to the causes of motion, 

and must be represented by analytical formulae, which will define the position of each point of 

the body. This investigation will therefore be referable solely to geometry ... . [Euler, Novi 

commentarii Academiae Petrop., vol. XX, 1775. Translation in Willis, Principles of Mechanism, 

2nd ed., p. viii, 1870.]  

These two parts are sometimes called kinematics (geometry of motion) and kinetics (the 

mechanics of motion). Here we can see beginnings of the separation of the general problem 

of dynamics into kinematics and kinetics.  

 Franz Reuleaux (1829–1905) divided the study of machines into several categories 

and one of them was study of the geometry of motion ([ME: Reuleaux], pp. 36–40). In the 

proliferation of machines at the height of the Industrial Revolution, Reuleaux was 

systematically analyzing and classifying new mechanisms based on the way they 

constrained motion. He hoped to achieve a logical order in engineering. The result would 

be a library of mechanisms that could be combined to create new machines. He laid the 

foundation for a systematic study of machines by determining the basic building blocks 

and developing a system for classifying known mechanism types. Reuleaux created at 

Berlin a collection of over 800 models of mechanisms and authorized a German company, 

Gustav Voigt, Mechanische Werkstatt, in Berlin, to manufacture these models so that 

technical schools could use them for teaching engineers about machines. 
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Figure 21.2 Reuleaux models (photo Prof. F. Moon) 

In 1882, Cornell University acquired 266 of such models, and now the remaining 219 

models is the largest collection of Reuleuax kinematic mechanisms in the world. See 

examples in Figure 21.2. In 2003 a team of Cornell mathematicians, engineers, and 

librarians released a digital Reuleaux kinematic model Web site [ME: KMODDL; 

http://wayback.archive-it.org/2566/20180418122029/http://kmoddl.library.cornell.edu/] 

The Web site contains photos, mathematical descriptions, historical descriptions, moving 

virtual reality images, simulations, learning modules (for middle school through 

undergraduate), and downloadable files for 3D printing. In this chapter we will look at the 

mathematics related to a few of these mechanisms in order to show geometry in 

Machine/Motion Strand.  

There will be discussions of more recent history later in the chapter. 

PROBLEM 21.1   FOUR-BAR LINKAGES 

A four-bar linkage is a mechanism that lies in a plane (or spherical surface) and consists of 

four bars connected by joints that allow rotation only in the plane (or sphere) of the 

mechanism. See Figure 21.3. 

          

Figure 21.3   Reuleaux four-bar linkages: planar and spherical 

In normal practice one of the links is fixed so that it does not move. In Figure 21.4 we 

assume that the link OC is fixed and investigate the possibilities of motion for the other 

three links. We call the link OA the input crank and link CB the output crank. Similarly, 

we call the angle θ the input angle and angle ϕ the output angle. 

http://wayback.archive-it.org/2566/20180418122029/http:/kmoddl.library.cornell.edu/
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Figure 21.4  Four-bar linkage 

a. (Plane) The input crank will be able to swing opposite C (where the input angle is 

π = 180 degrees) only if a + g < b + h. If a + g > b + h, there will be a maximum 

input angle, θmax , satisfying  

cos θmax =[ (g2 +a2)−(h+b)2 ] /2ag 

What happens if a + g = b + h?  

You may find it helpful to experiment with four-bar linkages that you make out of strips 

of cardboard; and/or to play with some online simulations. Apply the Law of Cosines 

(Problem 20.2).  

We can now do the same analysis on the sphere, using the spherical Law of Cosines (20.2) 

and the special absolute value |l|S (see the section Triangle Inequality just before Problem 

6.3). On the plane, |l|S = |l| = length of l. On the sphere, |l|S = (shortest) distance between 

the endpoints of l. 

b. (Sphere) The input crank will be able to swing opposite C (where the input angle 

is π = 180 degrees) only if |a + g|S < b + h. If |a + g|S > b + h, there will be a 

maximum input angle, θmax , satisfying, 

cos θmax =[ cos(h+b)−cos a cos g]/ sin a sin g, 

 where the edge lengths are measured by the radian measure of the angle they 

subtend at the center of the sphere.  What happens if |a + g|S = b + h? 

 

We can now finish this problem working with both the plane and the sphere at the same 

time. 

 

c. (Plane or Sphere) Similarly, whenever |b − h| > |g − a| there will be a minimum 

input angle, θmin , satisfying 

cos θmin= [g2 +a2 −|b−h|2 ] /2ag (plane), 

cos θmin=[ cos|b−h|−cos a cos g]/ sin a sin g (sphere). 

   

The minimum angle is actualized when either B-A-C is straight or A-C-B is                    

straight, as in Figure 21.5.  
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Figure 21.5  Minimum input angles 

Thus, we have four types of input cranks: 

1. A crank if the link OA can freely rotate completely around O. In this case,

b + h > |a + g|S and |a − g| > |b − h|. 

2. A 0-rocker if there is a maximum input angle but the link OA can rotate freely

past θ = 0. Then

b + h < |a + g|S and |a − g| > |b − h|. 

3. A π -rocker if there is a minimum input angle but the link OA can rotate freely

past θ = π. Then

b + h > |a + g|S and |a − g| < |b − h|. 

4. A rocker if there is a maximum input angle and minimum input angle.

In this case,

b + h < |a + g|S and |a − g| < |b − h|. 

The analysis of the output crank is exactly symmetric to above with the lengths a and b 

interchanged. In particular, 

d. If |b + g|S > a + h, then there is a maximum output angle ϕmax that satisfies

cos ϕmax = [(g2 +b2)−(h+a)2 ]/2ag (plane) 

cos ϕmax = [cos(h+a)−cos b cos g]/ sin b sin g  (sphere). 

      If |a − h| > |g − b|, there is a minimum output angle ϕmin min that satisfies 

cos ϕmin = [g2 +b2 −|a−h|2 ]/2bg (plane), 

cos ϕmin =[ cos|a−h|−cos b cos g]/ sin b sin g  (sphere). 

Thus, we have four types of output cranks: 

1. A crank if the link CB can freely rotate completely around C. In this case,

a + h > |b + g|S and |b − g| > |a − h|. 

2. A 0-rocker if there is a maximum output angle but link CB can rotate freely past

ϕ = 0. Then

a + h < |b + g|S and |b − g| > |a − h|. 

3. A π -rocker if there is a minimum output angle but the link CB can rotate freely

past ϕ= π. Then

a + h > |b + g|S and |b − g| < |a − h|. 
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4. A rocker if there is a maximum output angle and minimum output angle. 

In this case,  

a + h < |b + g|S and |b − g| < |a − h|. 

 

e. Putting these together we get eight types of four-bar linkages. 

Make a model of  each type using cardboard strips or explore them with GeoGebra. 
 

1. A double crank in which the input and output links are cranks.  

b + h > |a + g|S, 

|a − g| > |b − h|, a + h > |b + g|S, and |b − g| > |a − h|. 

2. A crank-rocker if the input link is a crank and the output link is a rocker.  

b + h > |a + g|S,  

|a − g| > |b − h|, a + h < |b + g|S, and |b − g| < |a − h|. 

3. A rocker-crank if the input link is a rocker and the output link is a crank.  

b + h < |a + g|S,  

|a − g| < |b − h|, a + h > |b + g|S, and |b − g| > |a − h|. 

4. A rocker-rocker if both the input and the output link are rockers.  

b + h < |a + g|S,  

|a − g| < |b − h|, a + h < |b + g|S, and |b − g| < |a − h|. 

5. A 00 double rocker if there are maximum input and output angles and no 

minimums, thus both cranks move across the fixed OC.  

b + h < |a + g|S,  

|a − g| > |b − h|, a + h < |b + g|S, and |b − g| > |a − h|. 

6. A 0π double rocker if the input angle has a maximum and no minimum but the 

output angle has a minimum but no maximum.  

b + h < |a + g|S, 

 |a − g| > |b − h|, a + h > |b + g|S, and |b − g| < |a − h|. 

7. A π0 double rocker if the input angle has a minimum and no maximum but the 

output angle has a maximum but no minimum.  

b + h > |a + g|S, 

 |a − g| < |b − h|, a + h < |b + g|S, and |b − g| > |a − h|. 

8. A ππ double rocker if the input and output angles both have minimums but no 

maximums and move freely on the ends of OC.  

b + h > |a + g|S,  

|a − g| < |b − h|, a + h > |b + g|S, and |b − g| < |a − h|. 

Check that the other eight combinations (a 0 or π rocker combined with a crank or rocker) 

are not possible. This can be done either analytically (using the inequalities) or 

geometrically (by noting symmetries). 

All the other four-bar linkages are the cases when one or more of the inequalities become 

equalities, in each of these cases the linkage can be folded. That is, the linkage has a 

configuration in which all the links line up with OC. Some four-bar linkages can be folded 
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in more than one way; for example, the linkage with a = h = b = g can be folded in three 

different ways (Try it!). (Examples in GeoGebra created by Steve Phelps 

https://www.geogebra.org/m/xmAST89t) 

PROBLEM 21.2   UNIVERSAL JOINT 

Almost all vehicles with an engine in front that drives the rear wheels have a drive shaft 

that transmits the power from the engine to the rear axle. It is important that the drive shaft 

be able to bend as the vehicle goes over bumps. The usual way to accomplish this 

“bending” is to put in the drive shaft a universal joint (also known as Hooke’s joint or 

Cardan’s joint). See Figure 21.6.  

In 1676, Robert Hooke (1635–1703) published a paper on an optical instrument that could 

be used to study the sun safely. In order to track the sun across the sky, the device featured 

a control handle fitted with a new type of joint that allowed twisting motion in one shaft to 

be passed on to another, no matter how the two shafts were orientated. Hooke gave this the 

name “universal joint.” This joint was earlier suggested by Leonardo da Vinci and also is 

attributed to Girolamo Cardano. Therefore, on the European continent it got name 

“Cardan’s joint,” but in Britain the name of “Hooke’s joint” was used. 

Figure 21.6   Universal joint 

a. The universal joint can be considered to be a spherical four-bar linkage with

a = b = h = π/2. The fixed (grounded) link g is the angle between the input and

output shafts that can be adjusted in the range π/2 < g ≤ π.

The links a, h, and g are not actually links; however, the constraints of the mechanism 

operate as if they were spherical links. See Figure 21.7. 

b. For what lengths of the fixed link (angles between the input and output shafts)

is the universal joint a double crank (see 21.1e)?

https://www.geogebra.org/m/xmAST89t
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This is of utmost importance in its automotive use because as an automobile goes over 

bumps the angle g between the shafts will change.  

 We now look at the relationship between the rotation of the input shaft to the rotation 

of out shaft. One of the problems with the universal joint is that, though one rotation of the 

input shaft results in one rotation of the output shaft, the rotations are not in sync during 

the revolution. 

c. Check that Figure 21.7 is correct. In particular, 

 

     i.  A is the pole for the great circle (dashed in the figure) passing through   

        O and B; and the great circle arcs h and a intersect this great circle   

        at right angles. 

   ii.  Likewise, B is the pole for the great circle passing through A and C; and  

        the great circle arcs h and b also intersect this great circle at right   

        angles. 

    iii. The arc h must bisect the lune determined by these two dashed great   

        circles. The angle of this lune at P must be π/2 as marked. 

    iv. If we use α to label the angle at A and β to label the angle at B, as in the  

        figure, then radian measure of the arc OB is α, and the radian measure of the            

        arc AC is β. 

 
Figure 21.7 Universal joint as a spherical mechanism 

The angle θ measures the rotation of the input shaft and the angle ψ measures the rotation 

of the output shaft. Note that, when θ = 0 then ψ = 0, also. As θ changes in the positive 

counterclockwise direction, ψ will be changing in the negative clockwise direction; thus, 

when θ is positive, ψ will be negative and we will need to use − ψ when denoting the angle 

in the triangle OCA.  

  d. The input and output angles satisfy tan (−ψ)= tan θ/ (−cos g). In practice,  

          g is near π and −cos g  is positive. Note that when g = π, tan (−ψ)= tan θ   

          and thus the two shafts turn in unison.  
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Hint: Apply the Spherical Pythagorean Theorem (Theorem 20.2a) to the right triangle 

OPC, and the Law of Sines (Problem 20.3b) to triangles OCA and OCB. 

PROBLEM 21.3   REULEAUX TRIANGLE AND CONSTANT   

         WIDTH CURVES  

What is this triangle?  If an enormously heavy object must be moved from one spot to 

another, it may not be practical to move it on wheels. Instead the object is placed on a flat 

platform that in turn rests on cylindrical rollers. As the platform is pushed forward, the 

rollers left behind are picked up and put down in front. An object moved this way over flat 

horizontal surface does not bob up and down as it rolls along. The reason is that cylindrical 

rollers have a circular cross section, and a circle is closed curve with constant width. What 

does this mean? If a closed convex curve is placed between two parallel lines and the lines 

are moved together until they touch the curve, the distance between the parallel lines is the 

curve's width in one direction. Because a circle has the same width in all directions, it can 

be rotated between two parallel lines without altering the distance between the lines. 

 

        
 

Figure 21.8  Mechanisms utilizing a Reuleaux triangle: Reauleaux model and rotary (Wankel) engine 

 Is the circle the only curve with constant width? Actually, there are infinitely many 

such curves. The simplest noncircular such curve is named the Reuleaux triangle. 

Mathematicians knew it earlier (some authors refer to Leonard Euler in 18th century), but 

Reuleaux was the first to demonstrate and use its constant width properties. In Figure 21.8 

there is a Reuleaux model using the Reuleaux triangle and an image of inside of a Wankel 

engine (similar to that used in some Mazda automobiles) showing the rotor in the shape of 

a Reuleaux triangle.  

 A Reuleaux triangle can be constructed starting with an equilateral triangle of side 

s and then replacing each side by a circular arc with the other two original sides as radii. 

See Figure 21.9. 

 
Figure 21.9  Circle and Reuleaux triangle of same width 
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a. Why will the Reuleaux triangle make a convenient roller but not a convenient 

wheel? 

 

Figure 21.10 Smoothed Reuleaux triangle 

 The Reuleaux triangle has corners, but if you want to smooth out the corners you 

can extend a Reuleaux triangle a uniform distance d on every side as in Figure 21.10. Then 

you can 

b. Show that the resulting curve has constant width s + 2d. 

 

          
 

Figure 21.11  Constant width coins 

 Other symmetrical curves of constant width result if you start with a regular 

pentagon (or any regular polygon with an odd number of sides) and follow similar 

procedures. See Figure 21.11 for examples of British coins that are the shape of a constant 

width curve based on the heptagon. What advantages would these British coins have due 

to their shape?  

 But here is one surprising method of constructing curves with constant width:  Draw 

as many straight lines as you please such that each line intersects all the others. See Figure 

21.12. On one of the lines start with a point sufficiently far away from the intersections. 

Now draw an arc from this point to an adjacent line, with the compass point at the 

intersection of the two lines. Then, starting from the end of this arc, draw another arc 

connecting to the next line with the compass point at the intersection of these two lines. 

Proceed in this manner from one line to the next, as indicated in Figure 21.12. 
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Figure 21.12 Creating irregular curves of constant width 

  If you do it carefully, the curve will close and will have a constant width. (You can 

try to prove it! It is not difficult at all.) The curves drawn in this way may have arcs of as 

many different circles as you wish. The example in Figure 21.12 shows steps in drawing 

such curves, but you will really enjoy making your own. After you have done that, you can 

make several more copies of it and check that your wheels really roll!  

c. Prove that the procedure in the last paragraph produces a curve of constant 

width as long as all the intersection points are inside the curve. Can you specify 

how far out you have to start in order for this to happen?  

 The Reuleaux triangle has been used to make a drill bit that will drill a (almost) 

square hole. See Figure 21.13. 

 
Figure 21.13  Reuleaux triangle in a square 

 

d. A Reuleaux triangle of width s can be turned completely around within a 

square of side s in such a way that, at each time of the motion, the Reuleaux 

triangle will be tangent simultaneously to all four sides of the square. Describe 

the small spaces in the corners of the square that the Reuleaux triangle will 

not reach. 
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 The interested reader may find more information and references about Reuleaux 

triangles online [http://pi.math.cornell.edu/~dtaimina/Reuleaux/Reuleaux.htm]. Another good 

source is “Mechanical Circle-Squaring” by Barry Cox and Stan Wagon, The College 

Mathematics Journal, vol. 40, No.4, Sept.2009, p. 238-247. 

 To sharpen your interest, we list some further properties of Reuleaux triangles: 

1. The inscribed and circumscribed circles of an arbitrary curve of constant width h 

are concentric and the sum of their radii is equal to h.  

2. Among curves with constant width h, the circle bounds the region of greatest area 

and the Reuleaux triangle bounds the region of least area.  

3. Any curve of constant width h has perimeter equal πh.  

4. The corners of a Reuleaux triangle are the sharpest possible on a curve with 

constant width. 

5. The circle is the only curve of constant width with central symmetry. 

6. For every point on a curve of constant width there exists another point with the 

distance between the two equaling the width of the curve, and the line joining these 

two points is perpendicular to the support lines at both points. (Support lines are 

lines that touch the curve and the curve lies totally on one side of the line.) 

7. There is at least one supporting line through every point of a curve of constant 

width.  

8. If a circle has three (or more) points in common with a curve of constant breadth h, 

then the length of the radius of the circle is at most h. 

INVOLUTES 

Reuleaux used the geometric idea of involutes in the design of several mechanisms 

including a pump (the middle image in Figure 21.2) and gear design (Figure 21.15). Before 

we discuss these, we must describe the geometry of the involute. Focus on one of the four 

arms in the pump in Figure 21.14. 

 
 

Figure 21.14  Involute arm 

http://pi.math.cornell.edu/~dtaimina/Reuleaux/Reuleaux.htm
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Imagine that the outlined circle in picture is a spool that has a black thread with 

white edging wrapped around it in such a way that when fully wound the end of the thread 

is at the point A. Now imagine unwinding the thread, keeping the spool fixed, and keeping 

the thread pulled taut. The end of the thread traces the outer edge of the spiral arm. This 

curve is called the involute of a circle (in this case, the outlined circle). 

Instead of keeping the spool fixed and unwinding the thread, we could rotate the 

spool and pull the thread taut in the same direction. It is this latter view that we will use in 

analyzing the spiral pump.  

Examine the picture of the spiral pump in Figure 21.15. Now imagine that there is 

thread rolled around the left spool and then pulled taut and wrapped around the right spool 

as indicated in the picture. Place a small circle on the thread at the place that two arms 

touch each other. Now, instead of unwrapping the thread, we will turn the two spools at 

the same rate, always keeping the thread taut. Since the spiral arms are in the shape of an 

involute, the small circle will follow the outer edge of both spiral arms. Thus, as the spools 

rotate, the spiral arms will stay in contact. 

Figure 21.15  Spiral pump with thread and small circle 

The two rotors in the spiral pump can be thought of as gears with two teeth. The 

same discussion above illustrates why it is advantageous for gear teeth, in general, to be in 

the shape of an involute curve so that the gear teeth stay in contact throughout uniform 

turning of the gears. If the axes of two engaging gears are parallel, then the involute is a 

planar involute, as described above. However, if the axes are not parallel, then the gears 

can be considered as on a sphere whose center is at the intersection of the two axes. An 

involute of a circle (on plane or sphere) can be described either as unrolling a taut string 

from the circle or as rolling of a straight line along the circle. 
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Figure 21.16 Spherical involute curve 

Reuleaux designed several models to illustrate spherical involutes by rolling a 

straight line (great circle) on a small circle. See Figure 21.16. You can watch a tutorial 

about modelling involute gears https://www.youtube.com/watch?v=DqBOva04lcE 

LINKAGES INTERACT WITH MATHEMATICS 

After Descartes and others used linkages to draw curves, it was natural for mathematicians 

to ask the question of what curves could be drawn by linkages. In [ME: Kempe 1876; 

https://archive.org/details/howtodrawstraigh00kemprich/page/n6], A. B. Kempe gave a proof 

that any algebraic curve may be described by a linkage. 

David’s copy of Todhunter’s How to Draw a Straight Line 

The idea for Kempe’s proof, as discussed in [ME: Artobolevski], is as follows: 

Consider the algebraic curve f(x, y) = 0, which can be expressed in the form Ʃ Amn 

xm yn = 0, where the coefficients Amn are constant. Thus, the generation of the curve reduces 

to a series of mathematical operations. Kempe’s idea was that each of these mathematical 

operations can be fulfilled by individual linkages, which can then be linked together into a 

kinematic chain of linkages. Linkages needed for this are as follows: 

https://www.youtube.com/watch?v=DqBOva04lcE
https://archive.org/details/howtodrawstraigh00kemprich/page/n6
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a. Linkage for translating a point along a given straight line (for example, the

Peaucellier-Lipkin linkage in Problem 16.3);

b. Linkage for projecting a given point onto a given line;

c. Linkage that cuts off on one axis a segment equal to a given segment on the other

axis;

d. Linkage that determines a straight line that passes through a given point and is

parallel to a given line;

e. Linkage that, given two segments r and s on one line and one segment t on

another line, will obtain a second segment u on the second line such that r/s =

t/u (Multiplier);

f. Linkage for the addition of two given segments (Adder).

For more details on this proof, see [ME: Artobolevski; 

https://archive.org/details/ArtobolevskyMechanismsInModernEngineeringDesignVol1/page/n13]

For a different proof with more explicit pictures of the constructions of linkages and their 

combinations, see [ME: Yates, https://archive.org/details/YatesHandbookCurves1947], 

Section 11.  

In a different direction, there was for many years an open question that appeared in 

robotics, topology, discrete geometry, and pattern recognition: 

Given a linear chain of links (each one connected to the next to form a polygonal path without 

self-intersections) or a cycle of links (a linear chain with the first and last links joined), then is it 

possible to find a motion of the chain or cycle during which there continue to be no self-

 intersections and, at the end of the motion, the chain forms a straight line and the cycle forms 

a convex polygon.  [See Figure 21.17.] 

Figure 21.17   Straightening and convexifying linkages 

In 2002, Robert Connelly, Erik D. Demaine, and Günter Rote published a paper, 

“Straightening Polygonal Arcs and Convexifying Polygonal Cycles” [ME: Connelly; 

https://erikdemaine.org/papers/LinkageTR/paper.pdf], in which they solved this problem 

positively and, in addition, proved that their motion is piecewise differentiable, does not 

decrease the distance between any pair of vertices, and preserves any symmetry present in 

the initial configuration. 

https://archive.org/details/ArtobolevskyMechanismsInModernEngineeringDesignVol1/page/n13
https://archive.org/details/YatesHandbookCurves1947
https://erikdemaine.org/papers/LinkageTR/paper.pdf



