
Chapter 20 

TRIGONOMETRY AND DUALITY 

 

After we have found the equations [The Laws of Cosines and Sines for a Hyperbolic Plane] 

which represent the dependence of the angles and sides of a triangle; when, finally, we have 

given general expressions for elements of lines, areas and volumes of solids, all else in the 

[Hyperbolic] Geometry is a matter of analytics, where calculations must necessarily agree with 

each other, and we cannot discover anything new that is not included in these first equations 

from which must be taken all relations of geometric magnitudes, one to another. ... We note 

however, that these equations become equations of spherical Trigonometry as soon as, instead 

of the sides a, b, c we put ... a √−1 ,b √−1 ,c √−1 …— N. Lobachevsky, quoted in [HY: 

Greenberg] 

In this chapter, we will first derive, geometrically, expressions for the circumference of a 

circle on a sphere, the Law of Cosines on the plane, and its analog on a sphere. Then we 

will talk about duality on a sphere. On a sphere, duality will enable us to derive other laws 

that will help our two-dimensional bug to compute sides and/or angles of a triangle given 

ASA, RLH, SSS, or AAA. Finally, we will look at duality on the plane. 

PROBLEM 20.1   CIRCUMFERENCE OF A CIRCLE 

  a.  Find a simple formula for the circumference of a circle on a sphere in terms of  

      its intrinsic radius and make the formula as intrinsic as possible. 

We suggest that you make an extrinsic drawing (like Figure 20.1) of the circle, its intrinsic 

radius, its extrinsic radius, and the center of the sphere. You may well find it convenient to 

use trigonometric functions to express your answer. Note that the existence of 

trigonometric functions for right triangles follows from the properties of similar triangles 

that were proved in Problem 13.4. 
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In Figure 20.1, rotating the segment of length r´ (the extrinsic radius) through a whole 

revolution produces the same circumference as rotating r, which is an arc of the great circle 

as well as the intrinsic radius of the circle on the sphere. 

 

Figure 20.1    Intrinsic radius r 

 Even though the derivation of the formula this way will be extrinsic, it is possible, 

in the end, to express the circumference only in terms of intrinsic quantities. Thus, also 

think of the following problem: 

 b.  How could our 2-dimensional bug derive this formula?  

By looking at very small circles, the bug could certainly find uses for the trigonometric 

functions they give rise to. Then the bug could discover that the geodesics are actually 

(intrinsic) circles, but circles that do not have the same trigonometric properties as very 

small circles. Then what? 

 Using the expressions of trigonometric and hyperbolic functions in terms of infinite 

series, it is proved (in [HY: Greenberg], p. 337) that 

  THEOREM 20.1.  In a hyperbolic plane of radius 1, a circle with intrinsic radius r 

 has circumference c equal to  

c = 2 π sinh(r). 

 c. Use the theorem to show that on a hyperbolic plane of radius ρ, a circle with  

     intrinsic radius r has circumference c equal to 

c = 2 π ρ sinh(r/ ρ ). 

When going from a hyperbolic plane of radius 1 to a hyperbolic plane of radius ρ, all 

lengths scale by a factor of ρ. Why? 

 The formula in part c should look very much like your formula for part a (possibly 

with some algebraic manipulations). This is precisely what Lobachevsky was talking about 

in the quote at the beginning of this chapter. Check this out with part d. 
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  d.  Show that, if you replace ρ by iρ in the formula of part c, then you will get the  

      formula in part a. 

 Look up the definition of sinh (hyperbolic sine) and express it as a Taylor series and then 

compare with the Taylor series of sine. 

PROBLEM 20.2    LAW OF COSINES 

 If we know two sides and the included angle of a (small) triangle, then according to SAS 

the third side is determined. If we know the lengths of the two sides and the measure of the 

included angle, how can we find the length of the third side? The various formulas that 

give this length are called the Law of Cosines.  

a. Prove the Law of Cosines for triangles in the plane (see Figure 20.2): 

 

c2 = a2 + b2 − 2ab cos θ. 

 

Figure 20.2 Law of Cosines 

For a geometric proof of this “law,” look at the pictures in Figure 20.3. We first saw the 

idea for these pictures in the marvelous book [EG: Valens]. These pictures show the 

squares as rigid with hinges at all the points marked with ○. Note that in the middle picture 

θ is greater than π/2. You must draw a different picture for θ less than π/2. Prove the Law 

of Cosines on the plane using the pictures in Figure 20.3, or in any other way you wish. 

Note the close relationship with the Pythagorean Theorem. 

 

Figure 20.3    Three related geometric proofs 



Chapter 20 Trigonometry and Duality    258 

 

 b.   Prove the law of cosines for small triangles on a sphere with radius ρ: 

  cos c/ ρ = cos a/ ρ cos b/ ρ + sin a/ ρ sin b/ ρ cos θ.  

Hint: One approach that will work is to project the triangle by a gnomic projection onto the 

plane tangent to the sphere at the vertex of the given angle. This projection will preserve 

the size of the given angle (Why?) and, even though it will not preserve the lengths of the 

sides of the triangle, you can determine what effect it has on these lengths. Now apply the 

planar Law of Cosines to this projected triangle and turn the algebra crank. It is very helpful 

to draw a 3-D picture of this projection. 

  c.  Derive a formula for the distance between two points on the earth in terms of the 

      latitude and longitude at the two points. 

 It is sometimes convenient to measure lengths of great circle arcs on the sphere in 

terms of the radian measure:  

radian measure of the arc = (length of the arc)/ ρ, 

 where ρ is the radius of the sphere. For example, the radian measure of one quarter of a 

great circle would be π/2 and the radian measure of half a great circle would be π. In Figure 

20.4, the segment a is subtended by the angle α at the pole and by the same angle α at the 

center of the sphere. The radian measure of a is the radian measure of α. Most other texts 

and articles either use radian measure for lengths or assume that the radius ρ is equal to 1. 

We will most of the time keep the ρ explicit so the connection with the radius will be clearly 

seen. 

 

Figure 20.4    Radian measure of lengths 

 

If we measure lengths in radians, then one possible formula for the spherical triangle of 

radius ρ in part b is  

cos c = cos a cos b + sin a sin b cos θ. 
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 THEOREM 20.2a.  A Law of Cosines for right triangles on a sphere with radius ρ is  

cos c/ ρ = cos a/ ρ cos b/ ρ, 

  or, in radian measure of lengths,  

cos c = cos a cos b, 

      which can be considered as the spherical equivalent of the Pythagorean Theorem. 

 THEOREM 20.2b.  A Law of Cosines for triangles on a hyperbolic plane with 

 radius ρ is   

cosh c/ ρ  =  cosh a/ ρ cosh b/ ρ  +  sinh a/ ρ sinh b/ ρ cos θ . 

 This theorem is proved in [HY: Stahl], p. 125, using analytic techniques, and in 

[HY: Greenberg] using infinite series representations. This is one of the equations that 

Lobachevsky is talking about in the quote at the beginning of the chapter. It is important to 

realize that a study of hyperbolic trigonometric functions was started by V. Riccati (1707–

1775, Italy) and others, and continued by J. H. Lambert (1728–1777, Germany) in 1761–

68 — well before their use in hyperbolic geometry by Lobachevsky. For details on the 

history of hyperbolic functions, see the informative 2004 paper [HI: Barnett]. 

 

PROBLEM 20.3   LAW OF SINES  

Closely related to the Law of Cosines is the Law of Sines. (Figure 20.5) 

 

Figure 20.5 Law of Sines 

a. If ΔABC is a planar triangle with sides, a, b, c, and corresponding opposite angles, 

α , β , γ , then 

a/sin α = b/sin β = c/sin γ . 

The standard proof for the Law of Sines is to drop a perpendicular from the vertex C to the 

side c and then to express the length of this perpendicular as both (b sin α ) and (a sin β ). 

See Figure 20.6. From this the result easily follows. Thus, on the plane the Law of Sines 

follows from an expression for the sine of an angle in a right triangle. 
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Figure 20.6    Standard proof of Law of Sines on plane 

For triangles on the sphere we can find a very similar result. 

b. Show that for a small triangle on a sphere with radius ρ, 

 

(sin a/ ρ )/sin α = (sin b/ ρ )/sin β = (sin c/ ρ )/sin γ . 

If ΔACD is a triangle on the sphere with the angle at D being a right angle, then use gnomic 

projection to project ΔACD onto the plane that is tangent to the sphere at A. Because the 

plane is tangent to the sphere at A, the size of the angle α is preserved under the projection. 

In general, angles on the sphere not at A will not be projected to angles of the same size, 

but in this case the right angle at D will be projected to a right angle. (Be sure you see why 

this is the case. A good drawing and the use of symmetry and similar triangles will help.) 

Now express the sine of α in terms of the sides of this projected triangle. 

When we measure the sides in radians, on the sphere the Law of Sines becomes 

(sin a)/sin α = (sin b)/sin β = (sin c)/sin γ . 

 For a right triangle this becomes (Figure 20.7)  sin α = (sin a)/(sin c). 

 

Figure 20.7 Law of Sines for right triangles on a sphere 

 

DUALITY ON A SPHERE  

We can now ask, Is it possible to find expressions corresponding to the other triangle 

congruence theorems that we proved in Chapters 6 and 9? Let us see how we can be helped 

by a certain concept of duality that we will now develop. When we were looking at SAS 

and ASA, we noticed a certain duality between points and lines (geodesics). SAS was true 

on the plane or open hemisphere because two points determine a unique line segment and 

ASA was true on the plane or open hemisphere because two (intersecting) lines determine 

a unique point. In this section we will make this notion of duality broader and deeper and 
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look at it in such a way that it applies to both the plane and the sphere. On the whole sphere, 

two distinct points determine a unique straight line (great circle) unless the points are 

antipodal. In addition, two distinct great circles determine a unique pair of antipodal points. 

Also, a circle on the sphere has two centers that are antipodal. Remember also that in most 

of the triangle congruence theorems, we had trouble with triangles that contained antipodal 

points. So, our first step is to consider not points on the sphere but rather point-pairs, pairs 

of antipodal points. With this definition in mind, check the following: 

▪  Two distinct point-pairs determine a unique great circle (geodesic). 

 

▪  Two distinct great circles determine a unique point-pair. 

 

▪  The intrinsic center of a circle is a single point-pair. 

 

▪  SAS, ASA, SSS, AAA are true for all triangles not containing any point-pairs. 

Now we can make the duality more definite.  

▪ The dual of a great circle is its poles (the point-pair that is the intrinsic center of the 

great circle). Some books use the term “polar” in place of “dual”.  

 

▪ The dual of a point-pair is its equator (the great circle whose center is the point-

pair).  

Note:  If the point-pair P is on the great circle l, then the dual of l is on the dual of P. See 

Figure 20.8. 

 

Figure 20.8 P is on l implies the dual of l is on the dual of P 

 If k is another great circle through P, then notice that the dual of k is also on the dual 

of P. Because an angle can be viewed as a collection of lines (great circles) emanating from 

a point, the dual of this angle is a collection of point-pairs lying on the dual of the angle’s 

vertex. And, vice versa, the dual of the points on a segment of a great circle are great circles 

emanating from a point-pair that is the dual of the original great circle. Before going on, 

be sure to understand this relationship between an angle and its dual. Draw pictures. Make 

models. 
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PROBLEM 20.4   THE DUAL OF A SMALL TRIANGLE ON A SPHERE  

 The dual of the small triangle ΔABC is the small triangle ΔA*B*C*, where A* is 

that pole of the great circle of BC that is on the same side of BC as the vertex A, similarly 

for B*, C*. See Figure 20.9. 

 

Figure 20.9    The dual of a small triangle 

 a.  Find the relationship between the sizes of the angles and sides of a triangle and 

      the corresponding sides and angles of its dual.  

 b.  Is there a triangle that is its own dual? 

PROBLEM 20.5   TRIGONOMETRY WITH CONGRUENCES  

 a.  Find a dual of the Law of Cosines on the sphere. That is, find a statement that   

      results from replacing in the Law of Cosines every angle and every side by its  

      dual. 

 There is an analogous dual Law of Cosines for a hyperbolic plane, proved in the 

same books cited with Theorem 20.2, the hyperbolic Law of Cosines. 

 b.  For each of ASA, RLH, SSS, AAA, if you know the measures of the given sides   

      and angles, how can you find the measures of the sides and angles that are not  

      given? Do this for both spheres and hyperbolic planes. 

 Use part a and the formulas from Problems 20.1 and 20.2. 

 

DUALITY ON THE PROJECTIVE PLANE 

The gnomic projection, g (Problem 14.2), allows us to transfer the above duality on the 

sphere to a duality on the plane. If P is a point on the plane, then there is a point Q on the 

sphere such that g(Q) = P. The dual of Q is a great circle l on the sphere. If Q is not the 

south pole, then half of l is in the southern hemisphere and its projection onto the plane, 

g(l), is a line we can call the dual of P. This defines a dual for every point on the plane 

except for the point where the south pole of the sphere rests. See Figure 20.10. It is 

convenient to call this point the origin, O, of the plane. 
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Figure 20.10    Duality on the projective plane 

 Note that O is the image of S, the south pole, and that the dual of S is the equator, 

which is projected by G to infinity on the plane. Thus, we define the dual of O to be the 

line at infinity. If l is any line in the plane, then it is the image of a great circle on the 

sphere that intersects the equator in a point-pair. The image of this point-pair is considered 

to be a single point at infinity at the “end” of the line l, the same point at both ends. The 

plane with the line at infinity attached is called the projective plane. This projective plane 

is the same as the real projective plane that we investigated in Problem 18.3b, the only 

difference being that here we are focusing on the gnomic projection onto the plane and in 

Chapter 18 we were considering it as a spherical 2-manifold. 

 

PROBLEM 20.6   PROPERTIES ON THE PROJECTIVE PLANE 

 a. Check that the following hold on the projective plane: 

▪ Two points determine a unique line. 

▪ Two parallel lines share the same point at infinity.  

▪ Two lines determine a unique point.  

▪ If a point is on a line, then the dual of the line is a 

point that is on the dual of the original point. 

 b.  If γ is the circle with center at the origin and with radius the same as the radius 

      of the sphere and if (P,Q) is an inversive pair with respect to γ , then show that  

      the dual of P is the line perpendicular to OP at the point − Q, the point in the  

      plane that is opposite (with respect to O) of Q. See Figure 20.11. 

 

Figure 20.11  Duals/inversions 
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c. Show that the dual of a point P on γ is a line tangent to γ at the diametrically opposite 

point − P.  

DUAL VIEWS OF OUR EXPERIENCE  

Our usual point of view for perceiving our world is from the origin (because in this view 

we are the center of our world). We look out in all directions to observe what is outside 

and we strive to look out as close toward infinity as we can. The dual of this is the point of 

view where we are the line at infinity (the dual of the origin), we view the whole world 

(which is within us), and we strain to look in as close toward the center as we can. 

PERSPECTIVE DRAWING AND HISTORY  

Present-day theories of projective geometry got their start from Euclid’s Optics [AT: 

Euclid Optics] and later from the theories of perspective developed during the Renaissance 

by artists who studied the geometry inherent in perspective drawings. The first 

mathematical rule for getting the correct perspective was invented by Filippo Brunelleschi 

(1377–1455) in or shortly before 1413. In the Renaissance there was no such profession as 

artist. Some of the most famous artists of 14th and 15th centuries were trained as 

goldsmiths and were taught some mathematics from books such as Leonardo of Pisa’s 

(c.1170–c.1240) book Libro d’abaco, mostly known for its use of Arabic numerals and 

origin of Fibonacci numbers, but there is much more mathematics in it. Brunelleschi’s work 

included painting and sculpture as well as the design of stage machinery and buildings. He 

invented his method of “artificial perspective” for drawing different buildings in Rome in 

a way that appeared realistic. But no written descriptions survive from Brunelleschi. 

       

Left: Masaccio, Holy Trinity, fresco; right: perspective diagram of Holy Trinity 

The earliest works to show parallel lines that converge to a point in a more or less 

convincing manner are not paintings, but relief panels by a friend of Brunelleschi’s, the 
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sculptor Donatello (1386–1466). Another younger friend of Brunelleschi’s who was also 

an early user of perspective was the painter Masaccio (1401–c.1428). Masaccio’s fresco 

Trinity (c.1426) in Santa Maria Novella (Florence) provides the best opportunity for 

studying Masaccio’s mathematics and hence making some educated guesses about 

Brunelleschi’s method.    

 

Diagram by Leon Battista Alberti of perspective lines leading to a vanishing point from his treatise Della Pittura 

  

 The first surviving written account of a method of perspective construction is by 

Leon Batista Alberti (1404–1472) in the beginning of a short treatise On Painting in 1435. 

The problem was how to construct the perspective image of a square checkerboard 

pavement. It is clear from later literary evidence, mainly dating from 16th century, that 

Alberti’s construction was not the only one current in 15th century. Among the first 

mathematical treatises on perspective we should mention also Pierro della Francesca 

(1412–1492), De prospectiva pingendi. Pierro della Francesca is acknowledged as one of 

the most important painters of the 15th century, but he had an independent reputation as a 

highly competent mathematician. In Albrecht Dürer’s (1471–1528) Treatise on 

measurement with compasses and straightedge (Nuremberg, 1525) is shown an instrument 

being used to draw a perspective image of a lute.  

 

Man drawing a lute by Albrecht Dürer 

Another mechanical aid described by Dürer goes back to the early 15th century and was 

described also by Alberti and Leonardo da Vinci. It was a veil of coarse netting, which was 
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used to provide something rather like a system of coordinate lines. Such squaring systems 

were familiar to artists also as a method of scaling drawings up for transfer to the painting 

surface. For more discussion on perspective and mathematics in the Renaissance, see [AD: 

Field].  

 

Figure 20.12 Two-point perspective 

 The “vanishing point” where the lines that are parallel on the box intersect on the 

horizon of the drawing is an image on the drawing of the point at infinity on these parallel 

lines. One way to visualize this is to imagine yourself at the center of a transparent sphere 

looking out at the world. If you look at two parallel straight lines and trace these lines on 

the sphere, you will be tracing segments of two great circles. If you followed this tracing 

indefinitely to the ends of the straight lines, you would have a tracing of two half great 

circles on the sphere intersecting in their endpoints. These endpoints of the semicircles are 

the images of the point at infinity that is the common intersection of the two parallel lines. 

If you now use a gnomic projection to project this onto a plane (for example, the artist’s 

canvas), then you will obtain two straight line segments intersecting at one of their 

endpoints as in the Figure 20.12. 

If you are interested in studying more about perspective through connections between 

mathematics and art, see the book Perspective and Projective Geometry by Annalisa 

Crannell, Mark Frantz, and Fumiko Futamura (Princeton University Press, 2019). 

 

Jacques Villon (Gaston Duchamp) Abstract Composition 




