
 

 

Chapter 15 

CIRCLES 

 

... the Power of the World always works in circles, and everything tries to be round. 

— Black Elk in Black Elk Speaks [GC: Neihardt] 

Now we will study some important properties (Problem 15.1) of circles in the plane that 

are stated and proved in Euclid’s Elements. These planar results will be used in later 

chapters, and they are also often studied for their own interest. In Problem 15.2, we will 

explore an extension of these results to circles on spheres (and later to hyperbolic planes). 

We will end the chapter with applications of these properties of circles (Problem 15.3) to 

the ancient problem of trisecting angles (Problem 15.4). 

 For Chapter 15, the only results needed from Chapters 9–14 are 
 

 PROBLEM 13.4a: The AAA similarity criterion for triangles on the (Euclidean) 

 plane: If two  triangles are similar (have congruent angles), then the corresponding 

 sides of the triangles are in the same proportion to one another. [Needed 

 throughout this and later chapters.] 

  

 PROBLEM 9.1: Side-Side-Side:  If two triangles (small triangles if on a sphere) have 

 congruent corresponding sides, then the triangles are congruent. [Needed 

 throughout this and later chapters.] 

 

 PROBLEM 14.4: Stereographic projection of a sphere onto a plane preserves angles, 

 takes circles  to circles (or to straight lines). [Needed only for Problem 15.2.] 
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If you are willing to assume these results, then you can work through Chapter 15 without 

Chapters 9–14. 

PROBLEM 15.1   ANGLES AND POWER OF POINTS FOR CIRCLES  

      IN THE PLANE 

These results are all stated and proved in Euclid’s Elements. They are contained in 

Propositions 27, 32, and 35–37 of Euclid’s Book III, which is entirely devoted to properties 

of planar circles. 

a. If an arc of a circle subtends an angle 2α from the center of the circle, then the 

same arc subtends an angle α from any point on the circumference. In particular, 

two angles that subtend (from different points on the circumference) the same arc 

are congruent. 

Use Figures 15.1 and 15.2. Draw a segment from the center of the circle to the point A and 

use ITT. Note the four different locations for A. 

 

 
Figure 15.1 Angles subtended from outside the arc 

 

 
Figure 15.2 Angles subtended from on the arc  

 

b. On a plane, if two lines through a point P intersect a circle at points A, A  

(possibly coincident) and  B, B (possibly coincident), then  

|PA|  |PA| = |PB|  |PB|. 

This product is called the power of the point P with respect to the circle.  
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Use Figures 15.3 and 15.4 and draw the segment joining A to B and the segment joining 

A to B. Then apply part a and look for similar triangles.  

 

 
Figure 15.3 Power of a point outside with respect to a circle 

 

 For more discussion on power of a point on the plane, see the delightful little book 

[EG: Coxeter & Greitzer]. 

 In Problem 15.2 we will state and prove results about the power of a point on spheres 

and hyperbolic planes that were discovered by Robin Hartshorne and published in 2003. 

 ss' = tt' = dd 

Figure 15.4 Power of a point inside with respect to a circle 

 

PROBLEM 15.2 POWER OF POINTS FOR CIRCLES ON SPHERES 
 

There are no similar triangles on spheres and hyperbolic planes, so it seems surprising that 

there could be a notion of power of a point for circles on spheres or hyperbolic planes. 

However, Robin Hartshorne, [SP: Hartshorne], found a way to provide a unified definition 

of power of a point for circles in non-Euclidean geometries — this problem is based on his 

paper. Hartshorne starts by pointing out that the equality of the products |PA|  |PA| = |PB| 

 |PB| in 15.1b that we used to define the power of a point for plane circles can be written 

as an equality of areas of the rectangles with sides, PA, PA, and PB, PB, respectively — 

this is the way Euclid considered the power of a point. Of course, there are no rectangles 
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on spheres and hyperbolic planes. What can we use in their place? In Chapter 12, for our 

work in dissection theory, we introduced Khayyam quadrilaterals as an appropriate 

analogue of rectangles on spheres and hyperbolic planes. Hartshorne instead introduces 

another analogue of a rectangle: A semi-rectangle is a quadrilateral with opposite sides 

equal and at least one right angle.  

 

a. On the plane, semi-rectangles are rectangles. On spheres and hyperbolic 

planes, semi- rectangles have the angle opposite the right angle also right and 

the two remaining angles are congruent. See Figure 15.5. 

 
Figure 15.5 Semi-rectangles 

 

There is a close relationship between semi-rectangles and Khayyam quadrilaterals. In fact, 

the interested reader can show that a semi- rectangle can be dissected, with only one straight 

cut, into a Khayyam quadrilateral whose base angles are the non-right angles in the semi- 

rectangle. 

 

Using semi-rectangles, we can now restate 15.1b as follows: 

 

 THEOREM 15.2 On a plane, sphere, or hyperbolic plane, if two lines through a point 

 P intersect a circle at points A, A (possibly coincident) and B, B (possibly 

 coincident), then the area of the  semi-rectangle with side lengths PA and PA is 

 equal to the area of the semi-rectangle with side lengths PB and PB. This area is 

 called the power of the point P with respect to the circle. 

 

On the plane this theorem reduces directly to 15.1b. Do you see why? We will now prove 

Theorem 15.2 on spheres (part c), but first we need to prove the following result, which is 

interesting in its own right: 

 

b. On a sphere with radius , a spherical right triangle with excess  and legs (sides 

adjacent to the right angle) a and b satisfies the following:  

             tan( /2) = tan(a/2) tan(b/2).  

 Thus, if R is a semi-rectangle with sides a and b and with non-right angles equal to 

 , (as  in Figure 15.5), and if we set let  =  − /2, then  

   Area(R) = 2 2 and tan( /2) = tan(a/2) tan(b/2). 
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The proofs of parts b and c (below) rely on properties of stereographic projection which is 

discussed in Problem 14.4. The properties we need here are that stereographic projection 

preserves all angles and takes circles on the sphere to circles (or lines) on the plane. 

 

OUTLINE OF PROOF OF 15.2B: 

1. Rotate the sphere until the right-angled vertex on the triangle is at the south pole, S. 

Now, using stereographic projection from the north pole, project ∆ onto the plane. 

The image of the triangle on the plane is the figure SHI depicted in Figure 15.6.  The 

sides SH and SI are straight. (Why?) Let  be the image of the great circle that 

contains the hypotenuse of  ∆ and  let  C be the center of . Let  be the image of 

the equator; then  is a circle with center S and radius 2. (Why?) The circle  (that 

contains the arc HI) intersects the circle  at diametrically opposite points DE. 

(Why?) 

 

 

Figure 15.6 Stereographic image of a spherical right triangle 

 

2. Referring to Figure 15.6, show that ICH =  and that  = /2.  

(Hint: Show that FCI = /2 − .) 

3. Show that |SH|  |SH| = |SD|  |SE| and thus |SH| = 42/a*. Conclude that 42 tan( 

/2) = a*b*. Remember that a* and b* are the projections of the sides of our original 

semi-rectangle R and that  2 is the area of the triangle. 

4. Let R be a semi-rectangle (as in Figure 15.5) whose non-right angles are both , then 

use a diagonal to divide R into two congruent right triangles with legs a and b and 

non-right angles  and . Note that + = . This is enough to conclude (Why?) the 

last equations in part b. 

Now we are ready to 

 

c. Prove that Theorem 15.2 is true on a sphere. 
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OUTLINE OF PROOF OF 15.2c 

 

Figure 15.7 Power of a point on a sphere 

1. Now let P, A, A, B, B be as in Theorem 15.2 and Figure 15.7. By rotating the 

sphere, if necessary, we may consider P to be the south pole S. Let  denote the 

given circle on sphere. Project stereographically everything onto the plane and let 

A*, A*, B*, B*, and  denote the corresponding images on the plane after 

stereographic projection. Note that the image of P = S is the same S and that A*-S-

A*, and B*-S-B* are straight lines. (Why?) Using 15.1b, conclude that 

                                         |SA*|  |SA*| = |SB*|  |SB*|. 

2. Putting this together with Steps 3 and 4 of the proof of 15.2b, we conclude (Why?) 

that 

tan( /2) = tan( '/2), 

 where the area of the semi-rectangle on PA and PA' is 2ρ2 and the area of the semi-rectangle 

 on PB and PB' is 2 'ρ2. See Step 1. Thus, the areas are equal. (Why?) 

There is a proof of Theorem 15.3 on a hyperbolic plane that is very similar to the proof 

above on a sphere. Instead of stereographic projection, the proof on a hyperbolic plane uses 

the Poincaré disk model thought of as a projection (see Problem 17.5), which also preserves 

angles and takes circles on the hyperbolic plane to circles (or lines) on the plane. 
 

PROBLEM 15.3 APPLICATIONS OF POWER OF A POINT 
 

Here are a few applications of the notion of power of a point that hold on the plane, spheres, 

and hyperbolic planes. We will meet other applications later, especially in Chapter 16 and 

19, but these will be applied only in the case of the Euclidean plane. The applications here 

relate to the notion of radical axis of two circles, which we define to be the locus of points 

P such that the power of the point P is the same with respect to both circles. You may 

assume that Theorem 15.2 is true on hyperbolic planes. 
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a. If two circles intersect in two points, then their radical axis is the full line determined 

by the two points of intersection. If two circles are tangent, then the radical axis is 

their common tangent line. 

 

b. If P is a point on the radical axis of two circles, C and D, then any circle with center 

P that intersects C at right angles also intersects D at right angles. 

 

c. If three circles intersect each of the other two circles in two points, then the three 

chords so defined intersect in a common point. See Figure 15.8 

 

d. What happens if, in part c, some of the pairs of circles are tangent instead of 

intersecting in two points? 
 

 
Figure 15.8 Intersecting chords 

PROBLEM 15.4 TRISECTING ANGLES AND OTHER    

    CONSTRUCTIONS 
 

In Problem 6.3 you showed how to bisect angles and find the perpendicular bisector of a 

line segment by only using a compass (for drawing circles) and an unmarked straightedge 

(for drawing line segments joining two points but not used for measuring). We will now 

extend these constructions and discuss in what sense angles can and cannot be trisected. 

 

a. Show, using a compass and unmarked straightedge, how to 

  i.   Construct a line from a given point perpendicular to a given line. 

  ii.  Construct the line tangent to a given circle at a given point. 

  iii. Construct the two lines tangent to a given circle from a given point outside the 

        circle. Hint: Use 15.1b.] 

  iv.  Construct a line that is a parallel transport of a given line along a given  

       transversal. 
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b. On the plane, show how to n-sect a given line segment using only a compass and 

(unmarked) straightedge. Will your construction work on spheres or hyperbolic 

planes? 

 

Hint: Look at Figure 15.9, where the given segment is AB and AC1 is any segment forming 

an acute angle with AB. Duplicate AC1 n times. (How?) Draw a line through C1 parallel to 

BCn. In the figure, n = 5. 

 

Figure 15.9 Dividing a given line segment into 5 congruent pieces 

 

It is often stated in popular literature that it is impossible to trisect angles with straightedge 

and compass. See, for example, [TX: Martin], page 49. However, it has been known since 

ancient Greek times that any angle can be trisected using only a (marked) straightedge and 

compass. For example, Archimedes (287–212 B.C.) showed how to trisect any angle (less 

than 135°) using a marked straightedge (a straightedge with two points marked on it). 

 

c. Archimedes Construction (for angles less than 90°): Referring to Figure 15.10, 

let ABC be an angle less than 90°. Assume you have a straightedge with two 

marks on it that are a distance r apart. Draw the circle of radius r with center B 

and, keeping the angle the same, move A to the intersection of BA with the circle. 

Lay the straightedge on the figure so that it passes through A; and one mark, D, is 

on the circle and the other mark, E, is on the extension of BC. Show that AEC is 

1/3 of ABC. 

 

Figure 15.10 Archimedes’ construction: AEC is 1/3 of ABC 
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d. Show that the mechanism in Figure 15.11 will trisect an angle. Will it work on 

spheres? 

 

Figure 15.11 Mechanism to trisect an angle 

Well, maybe it is impossible to trisect angles with a compass and an unmarked 

straightedge? 

 

e. Construct on a transparent sheet the figure on the left in Figure 15.12 with 

compass and unmarked straightedge starting with any two points AB. Lay the 

transparent sheet on the angle  (see the figure on the right in Figure 15.12) so the 

vertex, V, of the angle lies on DB, one side contains C, and the other is tangent to 

the semicircle with center A. Prove that BVC trisects angle  . 

 
Figure 15.12 "Shoemaker's knife" or "tomahawk" trisector 

 

In order to give a correct statement of what is impossible, it is necessary first to define a 

compass and unmarked straightedge sequence to be a finite sequence of points, lines, and 

circles that starts with two distinct given points and such that (1) Each of the other points 

in the sequence is the intersection of lines or circles that occur before it in the sequence. 

(2) Each circle has its center and one point on the boundary occurring before it in the 

sequence. (3) Each line contains two distinct points that occur before it in the sequence. 
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 Theorem 15.4. It is impossible to trisect a 60° angle with a compass and unmarked 

 straightedge  sequence. 

 

For a proof of this theorem and related discussions about various compass and straightedge 

constructions, see [TX: Martin] or [TX: Hartshorne], Section 28. If you get interested to 

read more comprehensive history of four the most famous problems in mathematics, look 

for Tales of Impossibility: The 2000-year Quest to solve the Mathematical Problems of 

Antiquity by David S. Richeson (Princeton University Press, 2019). 
 

 

Model of an angle trisector which David made for his class 

 

 
 

 

 

 

 

 




