
Chapter 6 

TRIANGLES AND CONGRUENCIES 

 

Polygons are those figures whose boundaries are made of straight lines: 

triangles being those contained by three, ... 

Things which coincide with one another are equal to one another. 

— Euclid, Elements, Definition 19 & Common Notion 4  

 

At this point, you should be thinking intrinsically about the surfaces of spheres, 

cylinders, cones, and hyperbolic planes. In the problems to come you will have 

opportunities to apply your intrinsic thinking when you make your own definitions for 

triangle on these surfaces and investigate congruence properties of triangles. 

In this chapter we will begin our study of triangles and their congruencies on all the 

surfaces that you have studied: plane, spheres, cones, cylinders, and hyperbolic spaces. (If 

you skipped any of these surfaces, you should find that this and the succeeding chapters 

will still make sense, but you will want to limit your investigations to triangles on the 

surfaces you studied.) 

 

Before starting with triangles, we must first discuss a little more general information 

about geodesics. 
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GEODESICS ARE LOCALLY UNIQUE 

In previous chapters we have studied geodesics, intrinsically straight paths. Our 

main criterion has been (in Chapter 2, 4, and 5) that a path is intrinsically straight (and thus, 

a geodesic) if it has local intrinsic reflection-through-itself symmetry. Using this notion, 

we found that joining any pair of points there is a geodesic that, on a sphere, is a great circle 

and, on a hyperbolic space, has reflection-through-itself symmetry. However, on more 

general surfaces, which may have no (even local) reflections, it is necessary to have a 

deeper definition of geodesic in terms of intrinsic curvature. (See for example, Chapter 3 

of [DG: Henderson].) Then, to be precise, we must prove that the geodesics we found on 

spheres and hyperbolic planes are the only geodesics on these surfaces. It is easy to see that 

these geodesics that we have found are enough to give, for every point and every direction 

from that point, one geodesic proceeding from that point in that direction. To prove that 

these are the only geodesics, it is necessary (as we have mentioned before) to involve some 

notions from differential geometry. In particular, we must first define a notion of geodesic 

that will work on general surfaces that have no (even local) intrinsic reflections. Then we 

show that a geodesic satisfies a second-order (nonlinear) differential equation (see Problem 

8.4b of [DG: Henderson]). Thus, it follows from the analysis theorem on the existence and 

uniqueness of differential equations, with the initial conditions being a point on the 

geodesic and the direction of the geodesic at that point, that 

THEOREM 6.0. For any given point and any direction at that point on a smooth 

surface there is a unique geodesic starting at that point and going in the given 

direction. 

 

From this it follows that the geodesics with local intrinsic reflection-in- itself 

symmetry, which we found in Problems 2.1, 4.1, and 5.1, are all the geodesics on spheres, 

cylinders, cones, and hyperbolic planes. 

 

PROBLEM 6.1 PROPERTIES OF GEODESICS 

In this problem we ask you to pull together a summary of the properties of geodesics on 

the plane, spheres, and hyperbolic planes. Mostly, you have already argued that these are 

true, but we summarize the results here to remind us what we have seen and so that you 

can reflect again about why these are true. Remember that cylinders and cones (not at the 

cone point) are locally the same geometrically as (locally isometric to) the plane; thus, 

geodesics on the cone and cylinder are locally (but not globally) the same as straight lines 

on the plane. 

 

a. For every geodesic on the plane, sphere, and hyperbolic plane there is a reflection 

of the whole space through the geodesic.  
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b. Every geodesic on the plane, sphere, and hyperbolic plane can be extended 

indefinitely (in the sense that the bug can walk straight ahead indefinitely along any 

geodesic). 
 

c. For every pair of distinct points on the plane, sphere, and hyperbolic plane there is 

a (not necessarily unique) geodesic containing them. 

 

d. Every pair of distinct points on the plane or hyperbolic plane determines a unique 

geodesic segment joining them. On the sphere there are always at least two such 

segments. 

 

e. On the plane or on a hyperbolic plane, two geodesics either coincide or are disjoint 

or they intersect in one point. On a sphere, two geodesics either coincide or intersect 

exactly twice. 

 

Note that for the plane and hyperbolic plane, parts d and e are equivalent in the sense that 

they each imply the other. 

Notice that these properties distinguish a sphere from both the Euclidean plane and 

from a hyperbolic plane; however, these properties do not distinguish the plane from a 

hyperbolic plane. 

 

PROBLEM 6.2   ISOSCELES TRIANGLE THEOREM (ITT) 

In order to start out with some common ground, let us agree on some terminology: 

A triangle is a geometric figure formed of three points (vertices) joined by three straight 

line (geodesic) segments (sides). A triangle divides the surface into two regions (the 

interior and exterior). The (interior) angles of the triangle are the angles between the sides 

in the interior of the triangle. (As we will discuss below, on a sphere you must decide which 

region you are going to call the interior — often the choice is arbitrary.) 

We will find the Isosceles Triangle Theorem very useful in studying circles and the 

other congruence properties of triangles because the two congruent sides can be considered 

to be radii of a circle. 

a. (ITT) Given a triangle with two of its sides congruent, then are the two angles 

 opposite those sides also congruent? See Figure 6.1. Look at this on all five of the 

 surfaces we are studying. 

 

Figure 6.1 ITT 



Chapter 6 Triangles and Congruencies    86  

Use symmetries to solve this problem. First, look at this on the plane and note what 

properties of the plane you use. Then look on other surfaces. Look for counterexamples — 

if there were counterexamples, what could they look like? If you think that ITT is not true 

for all triangles on a particular surface, then describe a counterexample and look for a 

smaller class of triangles that do satisfy ITT on that surface. In the process of these 

investigations you will need to use properties of geodesics on the various surfaces (see 

Problem 6.1). State explicitly what properties you are using. Hint: On a sphere two given 

points do not determine a unique geodesic segment but two given points plus a third point 

collinear to the given two do determine a unique geodesic segment. 

In your proof of Part a, try to see that you have also proved the following very useful 

result: 

b. COROLLARY. The bisector of the top angle of an isosceles triangle is also the 

 perpendicular bisector of the base of that triangle. 

 

You may also want to prove a converse of ITT, but we will use it in this book only 

in Problem 14.4: 
 

c. CONVERSE OF ITT. If two angles of a triangle are congruent, then are the sides 

 opposite these angles also congruent? 

 

Use symmetry and look out for counterexamples — they do exist for the converse. 

CIRCLES 

To study congruencies of triangles, we will need to know something about circles and 

constructions of bisectors and perpendicular bisectors. 

We define a circle intrinsically: A circle with center P and radius PQ is the 

collection of all points X which are connected to P by a segment PX which is congruent to 

PQ. 

Note that on a sphere every circle has two (intrinsic) centers that are antipodal (and, 

in general, two different radii). See Figure 6.2. 
 

     

Figure 6.2 Circles on a sphere have two centers 

' 

' 
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Now ITT can be used to prove theorems about circles. For example, 

THEOREM 6.2. On the plane, spheres, hyperbolic planes, and locally on cylinders 

and cones, if the centers of two circles are disjoint (and not antipodal), then the 

circles intersect in either 0, 1, or 2 points. If the centers of the two circles coincide 

(or are antipodal), then the circles either coincide or are disjoint. 

Proof: Because cylinders and cones are locally isometric to the plane, locally and 

intrinsically circles will behave the same as on the plane. Thus, we limit the remainder of 

this proof to the plane, spheres, and hyperbolic planes. Let C and C' denote the centers of 

the circles. See Figure 6.3. 

If C and C' are antipodal on a sphere and the two circles intersect at P, then a 

(extrinsic) plane through P (perpendicular to the extrinsic diameter CC') will intersect the 

sphere in a circle that must coincide with the two given circles. If C and C' coincide on a 

sphere and the circles intersect, then pick the antipodal point to C as the center of the first 

circle, which reduces this to the case we just considered. If C and C' coincide on the plane 

and hyperbolic planes and the circles intersect, then the circles have the same radii because 

two points are joined by only one-line segment. Thus, if the centers coincide or are 

antipodal, the circles coincide or are disjoint. 
 

 

Figure 6.3 Intersection of two circles 

Thus, we can now assume that C and C' are disjoint and not antipodal, so there is a 

unique geodesic joining the centers. If A and B are two points of intersection of the circles, 

then ∆ACB and ∆AC'B are isosceles triangles. 

But given that ∆ACB and ∆AC'B are isosceles, the Corollary to ITT asserts that the 

bisectors of ACB and AC'B must be perpendicular bisectors of their common base. 

Thus, the union of the two angle bisectors is straight and joins C and C'. So, the union must 

be contained in the unique geodesic determined by C and C'. Therefore, any pair of 

intersections of the two circles, such as A and B, must lie on opposite sides of this unique 

geodesic. Immediately, it follows that there cannot be more than two intersections. 
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TRIANGLE INEQUALITY 

On the plane, we have the following well-known result: 

Triangle Inequality on Plane or a Hyperbolic Plane: The combined length of any 

 two sides of a triangle is greater than the length of the third side. 

Do you see how this follows from our discussion of circles? See Figure 6.3. 
 

 

The Triangle Inequality is a partial expression of the statement that “a straight line 

is the shortest distance between two points” and because of that we might expect that the 

triangle inequality is false on spheres (and cylinders and cones). Can you find a 

counterexample? But we can make a simple change that makes it work on the sphere: 

 

Triangle Inequality on a Sphere: The combined lengths of any two sides is not less 

than the (shortest) distance between the end points of the third side. 

 

This leads to a definition that will be useful in some later chapters: 
 

Definition. For any line segment, l, with endpoints, A, B, we define the (special) 

 absolute value of l (in symbols, |l|S ) to be the shortest distance from A to B. 

 

Note that on the plane (or in a vector space) this is the same as the usual “absolute value” 

(or “norm”). 
 

PROBLEM 6.3   BISECTOR CONSTRUCTIONS 

a. Show how to use a compass and straightedge to construct the perpendicular 

bisector of a straight-line segment. How do you know it is actually the 

perpendicular bisector? How does it work on the sphere and hyperbolic plane? 

 

Use ITT and Theorem 6.2. Be sure that you have considered all segment lengths on the 

sphere. Hint: Use Figures 6.3 and the arguments in the section Circles. 

 

b. Show how to use a compass and straightedge to find the bisector of any planar 

angle. How do you know it actually is the angle bisector? How does it work on 

the sphere and hyperbolic plane? 

 

Use ITT and part a. Be sure that you have considered all sizes of angles. 

 

It is a part of mathematical folklore that it is impossible to trisect an angle with 

compass and straightedge; however, you will show in Problem 15.4 that, in fact, it is 

possible. In addition, we will discuss what is a correct statement of the impossibility of 

trisecting angles. 
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PROBLEM 6.4   SIDE-ANGLE-SIDE (SAS) 

We now investigate properties that will allow us to say that two triangles are “the 

same”. Let us clarify some terminology that we have found to be helpful for discussing 

SAS and other theorems. Two triangles are said to be congruent if, through a combination 

of translations, rotations, and reflections, one of them can be made to coincide with the 

other. In fact (as we will prove in Chapter 11), we only need to use reflections. If an even 

number of reflections are needed, then the triangles are said to be directly congruent, 

because in this case (as we show in Problem 11.3) the reflections can be replaced pairwise 

by rotations and translations. In this text we will focus on congruence and not specifically 

on direct congruence; however, some readers may wish to keep track of the distinction as 

we go along. 

 

Figure 6.4 Direct congruence and congruence 

In Figure 6.4, ∆ABC is directly congruent to ∆A'B'C' but ∆ABC   is not directly 

congruent to ∆A"B"C". However, ∆ABC is congruent to both ∆A'B'C' and ∆A"B"C" and we 

write: ∆ABC  ∆A'B'C'  ∆A"B"C". 

 

 

Figure 6.5 SAS 

a. Are two triangles congruent if two sides and the included angle of one are 

congruent to two sides and the included angle of the other? See Figure 6.5. 

 

In some textbooks SAS is listed as an axiom; in others it is listed as the definition of 

congruency of triangles, and in others as a theorem to be proved. But no matter how one 

considers SAS, it still makes sense and is important to ask, Why is SAS true on the plane? 

 

b. Is SAS true on spheres, cylinders, cones, and hyperbolic planes? 

 

c. If you find that SAS is not true for all triangles on a sphere or another surface, 

is it true for sufficiently small triangles? Come up with a definition for “small 

triangles” for which SAS does hold. 
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SUGGESTIONS 

Be as precise as possible but use your intuition. In trying to prove SAS on a sphere 

you will realize that SAS does not hold unless some restrictions are made on the triangles. 

Keep in mind that everyone sees things differently, so there are many possible definitions 

of “small.” Some may be more restrictive than others (that is, they don’t allow as many 

triangles as other definitions). Use whatever definition makes sense for you. 

Remember that it is not enough to simply state what a small triangle is; you must 

also prove that SAS is true for the small triangles under your definition — explain why the 

counterexamples you found before are now ruled out and explain why the condition(s) you 

list is (are) sufficient to prove SAS. Also, try to come up with a basic, general proof that 

can be applied to all surfaces. 

And remember what we said before: By “proof” we mean what most 

mathematicians use in their everyday practice, that is, a convincing communication that 

answers — Why? We do not ask for the two-column proofs that used to be common in high 

schools (unless, of course, you find the two-column proof is sufficiently convincing and 

answers — Why?). Your proof should convey the meaning you are experiencing in the 

situation. Think about why SAS is true on the plane — think about what it means for 

actual physical triangles — then try to translate these ideas to the other surfaces. 

So why is SAS true on the plane? We will now illustrate one way of looking at this 

question. Referring to Figure 6.6, suppose that ∆ABC     and ∆A'B'C' are two triangles such 

that BAC  B'A'C', AB  A'B' and AC  A'C'. Reflect ∆A'B'C' about the perpendicular 

bisector (Problem 6.3)   of AA' so that A' coincides with A. Because the sides AC and A'C' 

are congruent, we can now reflect about the angle bisector of C'AC. Now C' coincides 

with C. (Why?) If after this reflection B and B' are not coincident, then a reflection 

(about AC = A'C') will complete the process and all three vertices, the two given sides, and 

the included angle of the two triangles will coincide. So why is it that, on the plane, the 

third sides (BC and B'C') must now be the same? 

 

        
 

   Figure 6.6 SAS on plane 

 

Because the third sides (BC and B'C') coincide, ∆ABC is congruent ∆A'B'C'. (In the 

case that only two reflections are needed, the two triangles are directly congruent.) 

The proof of SAS on the plane is not directly applicable to the other surfaces because 

properties of geodesics differ on the various surfaces. In particular, the number of geodesics 
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joining two points varies from surface to surface and is also relative to the location of the 

points on the surface. On a sphere, for example, there are always at least two straight paths 

joining any two points. As we saw in Chapter 4, the number of geodesics joining two points 

on a cylinder is infinite. On a cone the number of geodesics is dependent on the cone 

angle, but for cones with angles less than 180° there is more than one geodesic joining two 

points. It follows that the argument made for SAS on the plane is not valid on cylinders, 

cones, or spheres. The question then arises: Is SAS ever true on those surfaces? 

Look for triangles for which SAS is not true. Some of the properties that you found 

for geodesics on spheres, cones, cylinders, and hyperbolic planes will come into play. As 

you look closely at the features of triangles on those surfaces, you may find that they 

challenge your notions of triangle. Your intuitive notion of triangle may go beyond what 

can be put into a traditional definition of triangle. When you look for a definition of small 

triangle for which SAS will hold on these surfaces, you should try to stay close to your 

intuitive notion. In the process of exploring different triangles you may come up with 

examples of triangles that seem very strange. Let us look at some unusual triangles. 
 

 

Figure 6.7 Two counterexamples for SAS on sphere 

For instance, keep in mind the examples in Figure 6.7. All the lines shown in Figure 

6.7 are geodesic segments of the sphere. The two sides and their included angle for SAS 

are marked. As you can see, there are two possible geodesics that can be drawn for the third 

side — the short one in front and the long one that goes around the back of the sphere. 

Remember that on a sphere, any two points define at least two geodesics (an infinite 

number if the points are at opposite poles). 

Look for similar examples on a cone and cylinder. You may decide to accept the 

smaller triangle into your definition of “small triangle” but to exclude the large triangle 

from your definition. But what is a large triangle? To answer this, let us go back to the 

plane. What is a triangle on the plane? What do we choose as a triangle on the plane? 

 



Chapter 6 Triangles and Congruencies    92 

Figure 6.8 We choose the interior of a plane triangle to have finite area 

On the plane, a figure that we want to call a triangle has all of its angles on the 

“inside.” Also, there is a clear choice for inside on the plane; it is the side that has finite 

area. See Figure 6.8. But what is the inside of a triangle on a sphere? 

The restriction that the area on the inside has to be finite does not work for the 

spherical triangles because all areas on a sphere are finite. So, what is it about the large 

triangle that challenges our view of triangle? You might try to resolve the triangle 

definition problem by specifying that each side must be the shortest geodesic between the 

endpoints. However, be aware that antipodal points (that is, a pair of points that are at 

diametrically opposite poles) on a sphere do not have a unique shortest geodesic joining 

them. On a cylinder we can have a triangle whose all sides are the shortest possible 

segments, yet the triangle does not have finite area.  Try to find such an example. A triangle 

on a cone will always bound one region that has finite area, but a triangle that encirclesthe 

cone point may cause problems. 

PROBLEM 6.5   ANGLE-SIDE-ANGLE (ASA) 

Are two triangles congruent if one side and the adjacent angles of one are congruent 

to one side and the adjacent angles of another? See Figure 6.9 

Figure 6.9 ASA 

SUGGESTIONS

This problem is similar in many ways to the previous one. As before, look for 

counterexamples on all surfaces; and if ASA does not hold for all triangles, see if it works 
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for small triangles. If you find that you must restrict yourself to small triangles, see if your 

previous definition of “small” still works; if it does not work here, then modify it. 

It is also important to keep in mind when considering ASA that both of the angles 

must be on the same side — the interior of the triangle. For example, see Figure 6.10. 

 

Figure 6.10 Angles of a triangle must be on same side 

Let us look at a proof of ASA on the plane as depicted in Figure 6.11. 

The planar proof for ASA does not work on spheres, cylinders, and cones because, 

in general, geodesics on these surfaces intersect in more than one point. But can you make 

the planar proof work on a hyperbolic plane? 

 

Figure 6.11 ASA on the plane 

 

As was the case for SAS, we must ask ourselves if we can find a class of small 

triangles on each of the different surfaces for which the above argument is valid. You 

should check if your previous definitions of small triangle are too weak, too strong, or just 

right to make ASA true on spheres, cylinders, cones, and hyperbolic planes. It is also 

important to look at cases for which ASA does not hold. Just as with SAS, some interesting 

counterexamples arise. 
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Figure 6.12 Possible counterexample to ASA 

 Is the configuration in Figure 6.12 possible on a sphere?  To see what happens you 

will need to try this on an actual sphere. If you extend the two sides to great circles, what 

happens? You may instinctively say that it is not possible for this to be a triangle, and on 

the plane most people would agree, but try it on a physical sphere and see what happens. 

Does it define a unique triangle? Remember that on a sphere two geodesics always intersect 

twice. 

Finally, notice that in our proof of ASA on the plane, we did not use the fact that 

the sum of the angles in a triangle is 180. We avoided this for two reasons. For one thing, 

to use this “fact” we would have to prove it first. This is both time consuming and 

unnecessary. We will prove it later (in different ways) in Chapters 7 and 10. More 

importantly, such a proof will not work on spheres and hyperbolic planes because the sum 

of the angles of triangles on spheres and hyperbolic planes is not always 180 — see the 

triangles depicted in Figures 6.13 and 6.14. We will explore further the sum of the angles 

of a triangle in Chapter 7. 

  

Figure 6.13 Triple-right triangle on a sphere. Check on globe a triangle from North Pole to New Orleans to equator, 

then to prime meridian and through Greenwich back to North Pole 

Remember that it is best to come up with a proof that will work for all surfaces 

because this will be more powerful, and, in general, will tell us more about the relationship 

between the plane and the other surfaces. 

 

Figure 6.14 Hyperbolic triangle 




