
Area, Parallel Transport 

and Intrinsic Curvature

PROBLEM 5.1. The Area of a Triangle on a Sphere

a.

Consider ∆ABC, a triangle that does not self-intersect and that has no collinear vertices. Let A´, B´
and C´ be the points on the sphere opposite A, B and C, respectively. We can see that the corresponding
angles of these triangles are congruent by using the Vertical Angle Theorem twice, and by the fact that a
lune has congruent angles. We can conclude that  ∆ABC ≅ ∆A´B´C´, since the triangles satisfy the condi-
tions of AAA, or because the sphere has central symmetry. 
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Figure 5.A. Lunes and triangles.

Furthermore, given that ∆ABC can be seen as the intersection of three lunes namely, L(β1), L(β2),
L(β3), ∆A´B´C´ can also be seen as the intersection of the opposite lunes. (See Figure 5.A.) Note that the
sphere is covered by these six lunes, which are disjoint except for the fact that both ∆ABC and
∆A´B´C´ are each covered three times. Now, if we let A(∆) denote the area of the congruent triangles,
then the whole area of the sphere A can be expressed in the following way:  A = 2A(L(β1)) + 2A(L(β2)) +
2A(L(β3)) − 4A(∆).  Since the area of a lune is proportional to the area of the whole sphere in direct
relation to its angle, we know:   A(L(θ)) = (θ/2π) A.  Then, combining these equations, we get the follow-
ing intrinsic expression:  A(∆) = [∑ βi − π] (A/4π).  

Now, focusing on the exterior angles (see Figure 5.B), we can also express the sphere as the union
of three lunes (with the αi as angles) plus the two triangles. Thus, we get  A = A(L(α1)) + A(L(α1)) +

SOLUTIONS

Chapter 5



A(L(α1)) + 2A(∆),  and thus,  A(∆) = A/4π[ 2π − ∑ αi ]. We know that the area of the whole sphere is
4πR2, where R is the (extrinsic) radius of the sphere. With this additional information we can rewrite the
formula of Problem 5.1.a:  Area (∆) = [ ∑ βi − π ] R2 = [ 2π − ∑ αi ] R2.

b.
The triangle in the plane is determined by three points. Imagine a large sphere resting on these three

points. Then the three points determine a geodesic triangle of the sphere. Now keeping the three points
fixed let the radius of the sphere goes to infinity, then the area and angles of the geodesic triangle
approaches the area and angles of the original plane triangle. For a small triangle on a large sphere,
Area(∆)/R2 is very small and thus ∑ βi is very close to π and ∑αi is very close to 2π. Since the Area(∆) is
finite and approaches the area of the plane triangle for a planar triangle, we can conclude that for the
plane triangle ∑ βi is equal to π and ∑ αi is equal to 2π.

c.
On the plane the sum of the interior angles of a triangle is always equal to π, but on the sphere the

sum of the interior angles of a triangle is always greater than π.

PROBLEM 5.2. Dissection of Polygons into Triangles

In the literature there are many incorrect descriptions of dissections of polygons, several by well-
known mathematicians. For a discussion of these errors see the article:  Chung-Wu Ho, Decomposition of
a Polygon into Triangles, Mathematical Gazette, vol. 60 (1976), 132-134. You may want to point this out
to the students at an appropriate time. 

Dissecting convex polygons:  A polygon is convex if any two points on it can be joined by a
geodesic segment lying entirely in its interior. To dissect a convex polygon, pick any vertex and join it to
all the others that are not adjacent. This will dissect the convex polygon into triangles. On a sphere if
these triangles are not small then dissect them further.

Figure 5.B. Dissecting convex polygons.

Figure 5.C. Concave polygon.
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Dissecting concave vertices:  If the polygon is not convex, then it has at least one concave vertex.
We say that a vertex is concave if its (interior) angle is greater than a straight angle. To dissect a polygon
that has concave vertices, at each concave vertex cut along a segment which divides the interior angle
into two convex (less than or equal to a straight angle) angles. Now the polygon will be dissected into a
finite number of convex polygons, and then each of the convex polygons can be dissected into (small)
triangles.

Parallel cuts:  Pick any line (great circle) l. For each vertex of the polygon draw a line (great circle)
through the vertex and perpendicular to l. If you now cut along the intersection of these lines with the
interior of the polygon, the polygon will be dissected into triangles and quadrilaterals, each of which can
be dissected into two triangles.

p

Exterior of polygon

Figure 5.D. Large polygon on sphere.

Dissecting into triangles without adding any new vertices:  On a sphere, if there are no convex verti-
ces then the exterior of the polygon is convex. In this case, pick a point p that is the opposite pole of
some point in the exterior of the polygon and cut along all the short great circle segments joining p to the
vertices of the polygon. See Figure 5.D.

If there is a convex vertex v, then let l be a geodesic joining the two adjacent vertices. In the diagram
below, v´ and v´´ are adjacent to v. If the segment of l between the two vertices lies totally inside the
polygon, then make a cut along it. If not, then parallel transport l toward v along vv´ until the portion of l
within ∆vv´v´´ intersects only interior portions of the area of the polygon except for vertices, such as w,
which lies on the polygon’s perimeter. Now, l must contain a vertex w of the polygon (lying in the

interior of ∆vv´v´´). Cut along the segment vw. See Figure 5.E.

v

v'

v"

w l

Figure 5.E. Finding vertex to join to v.
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In both cases, we have cut the polygon into two polygons each with fewer vertices. Continue until only
triangles are left.

You can check that this method dissects the polygon into n−2 triangles where n is the number of
sides of the polygon. Then, one can use Problem 5.2 to show that:

On the plane, the sum of the angles of a polygon with  n  sides is  (n−2)π.

PROBLEM 5.3. Gauss-Bonnet for Polygons on a Sphere

Divide the polygon into small triangles, ∆i . It is possible to do this by constructing geodesic span-
ning segments in the interior of the polygon (see Problem 5.2). Now we proceed in two steps:  

First, check directly that  HHHH(Γ) = 2π−Σ αi  by parallel transporting a vector tangent to the initial edge
of Γ (as depicted in Figure 5.2 of the text, in the case Γ is a triangle, and then extending to arbitrary
polygons as in Figure 5.5). Where at each vertex the amount of the exterior angle is added to the angle
between the transported vector and the tangent vector of the polygon.

Second, we will show that HHHH(Γ) = Σi HHHH(∆i) and thus HHHH(Γ) = Σi HHHH(∆i) = Σi A(∆i)4π/A = A(Γ)4π/A.  If
there is only one triangle then it follows from Problem 5.1. Consider one of the geodesic spanning
segments, γ, constructing using Problem 5.2. This segment γ separates the interior of Γ into two pieces
bounded by polygons Γ1 and Γ2 , where the edges of Γi are γ plus some of the edges of Γ. (See Figure
5.F.)

              HHHH(Γ2)         HHHH(Γ1)

Figure 5.F. Holonomy adds.

Now, we determine the holonomies by parallel transporting a vector around the polygons. Remember that
it does not matter which vertex or which vector we start with. First we parallel transport a vector V

around Γ1 in a counterclockwise direction starting at p, one of the endpoints of γ as indicated in the
picture. Call the result of this parallel transport, V1. Next parallel transport V1 counterclockwise around
Γ2 starting again at p. Call the resulting vector V2. Now, if we parallel transport V counterclockwise
around Γ except at q (the opposite end of γ from p) we detour along γ to p and then immediate back along
γ to q before continue to parallel transport around Γ. Clearly, this detour does not affect the final parallel
transport and, thus, we conclude that Γ2 is also the parallel transport of V around Γ. Thus, we conclude
that HHHH(Γ) = HHHH(Γ1) + HHHH(Γ2). Proceed likewise with the other geodesic spanning segments until we have
divided the polygon into triangles and there are no geodesic spanning segments left. We will then have
the conclusion that HHHH(Γ) = Σi HHHH(∆i).

PROBLEM 5.4. Parallel Fields and Intrinsic Curvature

a.
i. ⇒ ii.  Note that the derivative  is the same as the directional derivative 

d

ds V(s)

(γ ′(s))V = . limhd0
1
h [V(s + h) −V(s)]
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At the corners of a piecewise geodesic curve use one sided derivatives:

  and   . d

ds+ V(s) = limhd0+
1
h [V(s + h) −V(s)] d

ds− V(s) = limhd0−
1
h [V(s + h) −V(s)]

On a geodesic the angle between the transported vector and the velocity vector is constant. 

If V(s) is parallel to γ ′(s) then their derivatives are parallel. But the derivative of γ ′(s) with respect
to arclength is exactly the (extrinsic) curvature vector, which is perpendicular to tangent plane at γ(s)
because γ is a geodesic. 

If V(s) is not parallel to γ ′(s), then 〈V(s),γ ′(s)〉 is a constant along each geodesics segment and
therefore,    because V(s),0 = d

dt
…V(s), � ∏(s)  = d

ds V(s), � ∏(s) + V(s), d

ds �
∏(s) = d

dt V(t), � ∏(s) + 0
being in the tangent space, is perpendicular to the curvature vector . Thus  is perpendiculard

ds �
∏(s) d

ds V(s)

to γ ′(s), and it is also perpendicular to V(s) since the length of V(s) is constant. But then  isd

ds V(s)

perpendicular to the tangent space Tγ(s)M which is the span of V(s) and γ ′(s).

ii. ⇒ i.  If   is perpendicular to the tangent space Tγ(s)M, then along each geodesic segmentd

ds V(s)

,d

ds
…V(s), � ∏(s)  = d

ds V(s), � ∏(s) + V(s), d

ds �
∏(s) = 0

and, thus, there is a constant angle between V(s) and γ ′(s).

b.
First we differentiate:                     

  …V(s), � ∏(s)  = |V(s)| cos�
d

ds
…V(s), � ∏(s)  = d

ds V(s), � ∏(s) + …V(s), � ∏∏(s)  = |V(s)| d

ds cos� = |V(s)|(− sin�) d

ds �(s)

          ,|V(s)|(− sin�) d

ds �(s) =
d

ds V(s), � ∏(s) + …V(s), � ∏∏(s)  =
d

ds V(s), � ∏(s) + V(s), ����g(s)

since γ′′(s) = κ(s) = κg(s) + κn(s) and  . From Figure 5.7 in the text, we see that …V(s), ����n(s)  = 0
, positive if γ is turning counterclockwise.V(s), ����g(s) = !(− sin�) ����g

i. ⇒ ii.   If  is perpendicular to the tangent plane at γ(s), then  and, thus,d

ds V(s)
d

ds V(s), � ∏(s) = 0
, positive if γ is turning counterclockwise. Also  is positive if γ is turning counter-d

ds �(s) = ! �g(s)
d

ds �
clockwise and, thus,  .d

ds �(s) = �g(s)

ii.  ⇒ i.  If , then . But also, since the magnitude of V(s) is constant, d

ds �(s) = �g(s)
d

ds V(s), � ∏(s) = 0

 must be perpendicular to V(s). If V(s) and γ ′(s) are not parallel, then they span the tangent planed

ds V(s)

and, thus, it follows that  must be perpendicular to that tangent plane. If V(s) and γ ′(s) are paralleld

ds V(s)

in an interval, then  and in that interval γ is a geodesic and  which0 =
d

ds �(s) = �g(s)
d

ds V(s) = � ∏∏(s) = ����(s)

is perpendicular to the tangent plane. Because  is continuous, we conclude that it must always bed

ds V(s)

perpendicular to the tangent plane at γ(s).

c.

Let V(s) ≡ lim Vi(s). Then, by Part a, each Vi′(s) is perpendicular to the tangent plane at γi(s) and,
thus, (since the tangent planes vary continuously)  is perpendicular to the tangent plane Tp. If W(s)d

ds V(s)

is the parallel transport of V along γ then, from Part b, we know that both W(s) and V(s) must have the
same angle with γ ′(s) and thus they are equal. 

d.

i. If γ is geodesic, then  and, thus, if we parallel transport γ ′(a) along γ,0 = �g(s) =
d

ds �(s)

then at every point the transported vector will remain γ ′(s) and, thus, γ ′(s) is a paral-
lel vector field along γ. Conversely, if γ ′(s) is a parallel vector field along γ, then 

 and, thus, γ is a geodesic.0 =
d

ds �(s) = �g(s)
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ii. Start with a tangent vector V at p on γ and parallel transport V around γ. Along the
smooth segments the angle θ(s) between γ ′(s) and V(s) will change by ∫ κg(s) ds,
where the integral is along the smooth segment. At the vertices (junctures between
successive geodesic segments) the angle between γ ′(s) and V(s) will change by an
amount equal to the exterior angle at that vertex. This leads to the formula.

We can now extend the notion of holonomy and the Gauss-Bonnet formula (Problem 5.3) on the
sphere to piecewise smooth curves.

PROBLEM 5.5. Holonomy on Surfaces
a.

Since such geodesic triangle can be flattened into plane triangles, their holonomy's must be zero.

b.
Since there are no exterior angles the holonomy is the integral of the geodesic curvature which is

1/r, where r is the intrinsic radius of the circle. Thus, using 5.4.d.ii, HHHH(γ) = 2π − ∫γ κg(s) ds = 2π −
(1/r)(rα) = 2π − α. When α < 2π then the holonomy is positive and when α > 2π then the holonomy is
negative. When α = 2π, then the holonomy is equal to zero as expected because then the cone is the
plane.

c.
The curves α, δ, and γ are extrinsic circles with their (extrinsic) curvature vectors pointing perpen-

dicular to the surface, thus, they are geodesics and therefore the only contribution to the holonomy is
from β. The extrinsic curvature of β is 1/r and, thus, so is its geodesic curvature. Therefore the integral of
the geodesic curvature along half of β is (1/r)(πr) = π. In the case of the region B this is negative
(because β is turning clockwise when we go counterclockwise around B) and for the region A is positive
(because β is turning counterclockwise when we go around A counterclockwise). All four vertices have
exterior angles π/2. Thus,  HHHH(A) = 2π − [ 4(π/2) + π] = −π, and HHHH(B) = 2π − [4(π/2) − π] = π.   

d.
Note that the straight horizontal coordinate curves are geodesics, and that the helical coordinate

curves have their extrinsic curvatures equal to their intrinsic curvatures, since their extrinsic curvatures
are parallel to the surface. Since the four exterior angles are each π/2, the holonomy of this region on the
strake is equal to the negative of the integral of the geodesic (and, thus, extrinsic) curvature. From
Problem 2.5.b, we have that the curvature of the helix is , and the arclength s for a change in θ of4�2r

h2+(2�r)2

∆ is given by  or . In going counterclockwise around the region the outer� =
2�s

h2+(2�r)2
s = �

2� h2 + (2�r)2

helix is curving counterclockwise and, thus, its κg is positive and, thus, it contributes negatively to the
holonomy; the reverse situation happens on the inner helix, thus, for this region on the strake the holon-
omy is

4�2r

h2+(2�r)2
�
2� h2 + (2�r)2

−
4�2(r+�)

h2+(2�(r+�))2
�
2� h2 + (2�(r + �))2

=

.2�� r

h2+(2�r)2
− r+�

h2+(2�(r+�))2
= 2�� 1

(h/r)2
+(2�)2

− 1

(h/(r+�))2
+(2�)2

< 0

Thus, the strake has negative curvature and cannot possible be locally isomorphic to the plane.

PROBLEM 5.6. Holonomy Explains Foucault's Pendulum
a.

The only significant force acting on the pendulum is perpendicular to the surface and, thus, any
effect of this force to change the direction of the swing of the pendulum will be perpendicular to the
surface. Thus, the derivative of the pendulum's direction is perpendicular to the surface and the swing
direction of the pendulum is a parallel vector field. Therefore the counterclockwise angle between the
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starting and ending positions of the swing plane after 24 hours is the holonomy of the latitude circle, but
the observed rotation (relative to the latitude circle) is the holonomy minus 2π.

b.
The holonomy is  2π−(circuference)(intrinsic curvature) = 2π−(2πR cos φ)/(R cot φ) = 2π(1−sin φ),

and, thus, the observed rotation (relative to the latitude circle) is −2π sin φ.

c.
Since the Pendulum rotates (with respect to the latitude circle) −2π sin φ radians in 24 hours, the

period is  .2�
2� sin� 24 = 24

sin� hours

d.
At the North Pole the period will be 24 hours and the pendulum will act exactly like the hand of a 24

hour clock. At the Equator, the swing plane of the pendulum will not change relative to the equator.

e.

Since HHHH(γ) = A(γ)/R2, the area on the earth above the latitude φ is (6360)2(2π)(1 − sin φ).

PROBLEM 5.7. Intrinsic Curvature of a Surface

a.
The intrinsic curvature of the cylinder is zero, because the holonomy is always zero.

On the cone the intrinsic curvature is also zero for the same reason except at the cone point. At the
cone point we can calculate the intrinsic curvature using circles with centers at the cone point. From
Problem 5.5.b the holonomy of these circles is  = 2π − α, where α is the cone angle. The2� − ¶0

�
(1/r)r d�

area of these circles is (α/2π)(πr2). Thus, the intrinsic curvature is  ,  unless α = 2π inlimrd0
(2�−�)
�

2� (�r2)
= !∞

which case we have the plane with curvature zero.

b.
We use the results of Problems 5.6.b and 4.5.b (noting carefully that φ in Problem 5.6 measures

from the Equator and φ in Problem 4.5 measures from the North Pole) and measure φ from the North
Pole. Then the intrinsic curvature of the sphere is  .lim�d�/2

2�(1−cos�)

R22�(1−cos�) = 1
R2

*c.
Use Problems 4.5.d and 5.5.d, remembering that k = h/(2π). Instead of the closed form expression

for the area we will leave it (at least partially) in its integral form and then evaluate the limit by using
L’Hôpital’s Rule.

.R(x(�, r)) = lim�d0

2�� 1

(h/r)2+(2�)2
− 1

(h/(r+�))2+(2�)2

¶�
�+�

d� ¶
r

r+�
r2+k2 dr

= lim�d0

1

(h/2�r)2+1
− 1

(h/(2�(r+�)))2+1

¶
r

r+�
r2+k2 dr

Now apply L’Hôpital’s Rule to get

 .R(p) = lim�d0
1

(r+�)2
+k2

−( −1
2 ) k2(−2)(r+�)−3

[(k2)(r2+�)−2+1]3/2 = 1

r2+k2
( 1

2
) k2(−2)(r)−3

((k2)(r)−2+1)3/2 =
−k2(1/r)

(r2+k2 )2 < 0

d.

Note that since the surface is constructed the same everywhere (as δ → 0) it is homogeneous (that
is, intrinsically and geometrically every point has a neighborhood isometric to a neighborhood of any
other point). Thus, the intrinsic curvature is constant. There are (at least) two solution methods:

1. Using 4.5e and 5.4d.  See Figure 5.10 in text. By 1.8c the annular curve marked ‘?’ has length
c exp(−d/r) thus (by 4.5e) the area is  A = cr − [c exp(−d/r)]r.  The geodesic curvature κg of the annular
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curves is 1/r  because the extrinsic curvature is tangent to the surface. Then, by 5.4d, the holonomy is
HHHH = (1/r)[c − (c exp(−d/r))]. We conclude that the intrinsic curvature is  HHHH/A = −1/r2 .

2. Using annular definition.  Pick a region that crosses the circular edge between two strips and
then let δ → 0. See the Figure 5.11 in the text. Note that the inner and outer bounding arcs on this region
both have radii equal to r + (δ/2). In calculating the holonomy the exterior angles add up to 2π and, thus,
the holonomy is determined by the geodesic curvatures on the two bounding arcs. But the bottom arc is
shorter and contributes positively to the holonomy and the upper arc is longer and contributes negatively
to the holonomy. Therefore the holonomy (and intrinsic curvature) is negative.

Note that . Then, the area of the region is the sum of the areas of two annular sectors:m

l = r+�
r+�/2

A =  =l

2�(r+�/2) �(r + �)
2

− �(r + �/2)2
+ m

2�r �(r + �/2)2
− �r2

 == l

2(r+�/2)
[((r + �)2

− (r + �/2)2 ) +
r+�

r ((r + �/2)2
− r2 )]

 == l

2(r+�/2) r2 + 2r� + �2 − (r2 + r� + (�/2)2
) +

r+�
r (r2 + r� + (�/2)2 − r2 )

 = .= l

2(r+�/2)
[r� +

3
4 �

2 +
r+�

r (r� + (�/2)2 )] = �l
2(r+�/2)

[r + 3
4 � + r+�

r (r + �/4)]

The holonomy is (note that  )n = (l r+�
r )

HHHH = .2� − 4(�/2) − (l r+�
r ) 1

r+�/2 − l
1

r+�/2 = l(1 − r+�
r ) 1

r+�/2 = −l�
r(r+�/2)

Then

HHHH/A = ; −2
r [r + 3

4 � + r+�
r (r + �/4)]−1

and, thus, the intrinsic curvature is 

.lim�d0
−2
r [r + 3

4 � + r+�
r (r + �/4)]−1

= −1
r2
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