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CHAPTER XIX.

ON SYSTEMS OF PERIODS AND ON GENERAL JACOBIAN FUNCTIONS.

343. THE present chapter contains a brief account of some general ideas
which it is desirable to have in mind in dealing with theta functions in
general and more especially in dealing with the theory of transformation.

Starting with the theta functions it is possible to build up functions
of p variables which have 2p sets of simultaneous periods—as for instance
by forming quotients of integral polynomials of theta functions (Chap. XL,
§ 207), or by taking the second differential coefficients of the logarithm of
a single theta function (Chap. XI., § 216, Chap. XVIL, § 311 (8)). Thereby
is suggested, as a matter for enquiry, along with other questions belonging to
the general theory of functions of several independent variables, the question
whether every such multiply-periodic function can be expressed by means of
~ theta functions*. Leaving aside this general theory, we consider in this
chapter, in the barest outline, (i) the theory of the periods of an analytical
multiply-periodic function, (ii) the expression of the most general single
valued analytical integral function of which the second logarithmic dif-
ferential coefficients are periodic functions.

344. If an uniform analytical function of p independent complex

variables wu,, ..., u, be such that, for every set of values of w,, ..., u,, it
is unaltered by the addition, respectively to wu,, ..., u,, of the constants
P, ..., Py, then P, ..., P, are said to constitute a period column for the

function. Such a column will be denoted by a single letter, P, and P will
denote any one of P, ..., P,. It is clear that if each of P, @, R, ... be
period columns for the function, and A, u, v, ... be any definite integers,
independent of k, then the column of quantities APg+ pQr+ vRi+ ... is
also a period column for the function; we shall denote this column by
AP +uQ+vR+ ..., and say that it is a linear function of the columns
P, Q R, ..., the coefficients A, g, », ..., in this case, but not necessarily

* Cf. Weierstrass, Crelle, LXXXIX. (1880), p- 8.
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always, being integers. The real parts of the new column are the same
linear functions of the real parts of the component columns, as also are the
imaginary parts. More generally, when the p quantities APy + uQx+ vRi +...
are zero for the same values of A, w, v, ..., we say that the columns P,Q, R, ...
are connected by a linear equation; it must be noticed, for the sake of
definiteness, that it does not thence follow that, for instance, P is a linear
function of the other columns, unless it is known that A is not zero.

It is clear moreover that any 2p + 1, or more, columns of periods are
connected by at least one linear equation with real coefficients (that is, an
equation for each of the p positions in the column—p equations in all, with
the same coefficients); for, in order to such an equation, the separation of
real and imaginary gives 2p linear equations to be satisfied by the 2p + 1
real coefficients ; allowing possible zero values for coefficients these equations
can always be satisfied.

For instance the periods 2=0,+12,, 0 =0, +70,;, 0'=0,'+7w,;, are connected by an
equation
12+ 2w+ yo' =0,

in which however, if 0,0, — 0,0,'=0, also {=0.

Thus, for any periodic function, there exists a least number, 7, of period
columns, with » lying between 1 and 2p + 1, which are themselves not
connected by any linear equation with real coefficients, but are such that
every other period column is a linear function of these columns with real
finite coefficients. Denoting such a set* of r period columns by P, ..., P?",
and denoting any other period column by @, we have therefore the p
equations

D= AP +0,P0, k=1,2, ..., p),

wherein A, ..., A, are independent of k, and are real and not infinite. It s
the purpose of whatt follows to shew, in the case of an wniform analytical
Sunction of the independent complex variables w,, ..., u,, (1) that unless the
Sfunction can be expressed in terms of less than p variables which are linear
JSunctions of the arguments w,, ..., u,, the coefficients Ay, ..., N, are rational
numbers, (IL) that, \,, ..., N, being rational numbers, sets of r columns of
periods exist in terms of which every existing period column can be linearly
expressed with integral coefficients.

Two lemmas are employed which may be enunciated thus:—

(2) If an uniform analytical function of the variables u,, ..., u, have a
column of infinitesimal periods, it is expressible as a function of less than
“p variables which are linear functions of w,, ..., u,. And conversely, if such

* It will appear that the number of such sets is infinite; it is the number r which is unique.
+ These propositions are given by Weierstrass. Abhandlungen aus der Functionenlehre
(Berlin, 1886), p. 165 (or Berlin. Monatsber. 1876).
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uniform analytical function of w, ..., u, be expressible as a function of less
than p variables which are linear functions of u,, ..., up, it has columns of
infinitesimal periods.

(B) Of periods of an uniform analytical function of the variables
Uy, ..., Up, Which does not possess any columns of infinitesimal periods,
there is only a finite number of columns of which every period is finite.

345. To prove the first part of lemma (a) it is sufficient to prove that
when the function f(u,, ..., up) is not expressible as a function of less than
p linear functions of u, ..., 4, then it has not any columns of infinitesimal
periods.

We define as an ordinary set of values of the variables w,, ..., u, a set
4y, ..., uy, such that, for absolute values of the differences u, —uy, ..., up — u,’
which are within sufficient (not vanishing) nearness to zero, the function,
S (u, ..., up), can be represented by a converging series of positive integral
powers of these differences—the possibility of such representation being the
distinguishing mark of an analytical function; other sets of values of the
variables are distinguished as singular sets of values*.

Then if the function be not expressible by less than p linear functions of

%, ..., Up, there can exist no set of constants ¢, ..., ¢, such that the
function

c1%+ +cpa%
vanishes for all ordinary sets of values of the variables; for this would
require f to be a function of the p—1 variables ciu,—cu; (t=2, ..., p).
Hence there exist sets of ordinary values such that not all the differential
coefficients 9f/duy, ..., f/ou, are zero; let ul, ..., us be such an ordinary
set of values; for all values of u,, ..., u, in the immediate neighbourhoods
respectively of ", ..., ., the statement remains true that not all the partial
differential coefficients are zero.

Then, similarly, the determinants of two rows and columns formed from

the array oo of
of of of

5—% , au2 3 seey aup

do not all vanish for every ordinary set of values of the variables; let

w ..., u" be an ordinary set for which they do not vanish; for all values of

* The ordinary sets of values constitute a continuum of 2p dimensions, which is necessarily
limited ; the limiting sets of values are the singular sets. Cf. Weierstrass, Crelle, LxxxIx.
(1880), p. 3,
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o . . . . . 2) 2]
Uy, ..., U, in the immediate neighbourhoods respectively of u(l ), vens ui,’, the

statement remains true that not all these determinants are zero.
Proceeding step by step in the way thus indicated we infer that there exist

. . 1 1 )
sets of ordinary values of the variables, (u(l L, u;,’ ) eees u‘l" ., 'u:," ), such

that the determinant, A, of p rows and columns in which the k-th element of
the r-th row is 9f @ ..., ug)) /Bug), does not vanish; and since these are
ordinary sets of values of the arguments, this determinant will remain

different from zero if (for r=1, ..., p) the set «', ..., u’ be replaced
by o vl(,'”, where o' is a value in the immediate neighbourhood of
ul, .

This fact is however inconsistent with the existence of a column of
infinitesimal periods. For if H,, ..., H, be such a column, of which the

constituents are not all zero, we have
0=f(" + Hy, ooy ul + H))—f @&, .., (r=1,...,p),
4 ) 7 7
3 m Y sem, ..+ 6,8,
k=1 Ouy,

where 6,, ..., 0, are quantities whose absolute values are 31, and the
bracket indicates that, after forming 9f/0u,, we are (for m=1, ..., p) to
substitute uﬁ? + 6, H,, for u(,,? ; these p equations, by elimination of H,, ..., H,
give zero as the value of a determinant which is obtainable from A by slight

changes of the sets uﬁ", cees ug) ; we have seen above that such a determinant

i8 not zero.
To prove the converse part of lemma (2) we may proceed as follows.
Suppose that the function is expressible by m arguments v;, ..., v, given by

vk=a,c,,u,+...+a,k,pyp, k=1, ..., m),

wherein m <p. The conditions that %, ..., #, remain unaltered when

Uy, ..., Up are replaced respectively by u, + tQ,, ..., u, + tQ, are satisfied by
taking @, ..., @, so that

g, @+ ... +ar, p@p =0, k=1, ..., m),

and since m < p these conditions can be satisfied by finite values of @, ..., @,
which are not all zero. The additions of the quantities t@Q,, ..., tQ, to
Uy, ..., Up, DOt altering w,, ..., vy, Will not alter the value of the function f.

Hence by supposing ¢ taken infinitesimally small, the function has a column
of infinitesimal periods.

346. As to lemma (8), let Py = p; + oy be one period of any column of
periods, (k=1, ..., p), wherein p;, o} are real, so that, in accordance with the
condition that the function has no column of infinitesimal periods, there
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is an assignable real positive quantity e such that not all the 2p quantities
pr, o are less than e. Then if ug, v be 2p specified positive integers,
there is at most one column of periods satisfying the conditions

medlppi<@u+l)e medlog|<m+le (k=1,...,p);

wherein |pg|, |o%| are the numerical values of pg, ai; for if py + 10y were
one period of another column also satisfying these conditions, the quantities
pr — px + © (o) — o) would form a period column wherein every one of the
2p quantities p;' — pg, 0% — o was numerically less than e.

Hence, since, if g be any assigned real positive quantity, there is only a
finite number of sets of 2p positive integers ug, v; such that each of the
2p quantities pge, vye is within the limits (—g, g), it follows that there
is only a finite number of columns of periods Py = p + 10y, such that each of
Pk, 0% is numerically less than g. And this is the meaning of the lemma.

347. We return now to the expression (§ 344) of the most general
period column of the function f by real linear functions of r period columns,
of finite periods, in the form

Q=MPW+.... + AP0

here the suffix is omitted, and we make the hypothesis that the function
is not expressible by fewer than p linear combinations of uy, ..., u,.

Consider, first, the period columns @ from which A, =N;=... =2, =0
and 0 <X, 3 1. Since there are no columns of infinitesimal periods, there
is a lower limit to the values of \, corresponding to existing period columns
@ satisfying these conditions; and since there is only a finite number of
period columns of wholly finite periods, there is an existing period for which
M\ is equal to this lower limit. Let A, , be this least value of A, and Q@
be the corresponding period column @.

Consider, next, the period columns @ for which Ay=X,=...=2A,=0,
and 03N 31, O<A, 31 As before there are period columns of this
character in which A, has a least value, which we denote by A, ,. If there
exist several corresponding values of A, let A, , denote one of these, and
denote A, ,P® 4+, ,P® by Q®.

In general consider the period columns of the form

MNPO L + Ap P, (m $7r),

wherein
0PN P, ... 0P A b1, O<p $ 1.

Since there are no infinitesimal periods, there is a lower limit to the values
of A corresponding to existing period columns satisfying these conditions;
since there is only a finite number of period columns of wholly finite periods,
there is at least one existing column @ for which A, is equal to this lower
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limit ; denote this value of A,, by )»,,;_m, and denote by A;m, «..; Ap—y,m Values
arising in an actual period column Q™ given by

QM = M,mP“’ +7~2,mP(2’ + ...+ M’mp(fm ;

there may exist more than one period column in which the coefficient of
P i3 Ny

Thus, taking m=1, 2, ..., », we obtain » period columns Q®, ..., Q.
In terms of these any period column @, =XP®+...+\,P®, in which
AL ... A, are real, can be uniquely written in the form

NQY + ...+ N.Q®W + u, PO + . + p, P®,

wherein &, ..., N, are integers, and y,, ..., p, are real quantities which are
zero or positive and respectively less than A, ,, ..., A, ,. For, putting A, into
the form N\, ,+ u,, where N, is an integer and pu,, if not zero, is positive
and less than A, ,, we have

Q=2MPO 4 ...+ N PO
=ANPo4 ...+ X'T_IP(T—I) + Ner +[L,-P(T),
where
N=A— NTXI,T) v N =0 — NTKT—I,T 5
and herein the column @' =X\/P® 4 ...+ N\, P can quite similarly be
expressed in the form

Q, = )\-1” PO+ 4+ )\v”r—ZP(T—g’ + NT_IQ(r—n + h_lp(r—l),

and so on.

But now, if N,Q® + ... + N.Q® + u, P® + ... + u, P® be a period column,
it follows, as N, ..., N, are integers, that also p, P® + ... + p, P® is a period
column; and this in fact is only possible when each of 4, ..., u, is zero.
For, by our definition of @, the coefficient u, is zero; then, by the definition
of @7V, the coefficient u,, is zero; and so on.

On the whole we have the proposition (IL., § 344)—if

Q™ =Ny PY 4 ... + gy, P, (m=1, ...,7),

be that real linear combination of the first m columns from PO, ..., P" ¢
which the m-th coefficient Ay, m has the least existing value greater than zero
and not greater than unity, or be one such combination for which Ay, m satisfies
the same condition, then every period column s expressible as a linear combina-
tion of the columns QW, ..., QW with integral coefficients.

It should be noticed that @), ..., @) are not connected by any linear equation with
real coefficients, or the same would be true of P, ..., P, And it should be borne
in mind that the expression of any period column by means of ¢ntegral coefficients,
in terms of @), ..., @), is a consequence of the fact that the function f(w, ..., u,)
has only a limited number of period columns which consist wholly of finite periods.
Conversely the period columns, of finite periods, obtainable with such integral coefficients,
are limited in number.
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Another result (I, § 344) is thence obvious—The coefficients in the linear
expression of any period column wn terms of PW®, ..., P" are rational
numbers.

For by the demonstration of the last result it follows that the period
columns P®, ..., P®™ can be expressed with integral coefficients in terms of
QW, ..., @ in the form

Pow = N™Qo + ...+ N™Qn,  (m=1,...,7);

from these equations, since the columns P®, ..., P® are not connected by
any linear relation with real coefficients, the columns Q®, ..., @™ can be
expressed as linear combinations of P®, ..., P® with only rational numbers
as coefficients; hence any linear combinations of Q®, ..., Q® with integral
coefficients is a linear combination of P®, ..., P®" with rational-number
coefficients.

It needs scarcely* to be remarked that the set of period columns
QY, ..., @, in terms of which any other column can be expressed with
integral coefficients, is not the only set having this property.

348. We consider briefly the application of the foregoing theory to the case of uniform
analytical functions of a single variable which do not possess any infinitesimal periods. Tt
will be sufficient to take the case when the function has two periods which have not a real
ratio ; this is equivalent to excluding singly periodic functions.

If 20,, 2w, be two periods of the function, whose ratio is not real, and 2@ be any other
period, it is possible to find two real quantities X, A, such that

Q=X\0;+A05;

then of periods of the form 2\;e,, in which 0<A;}1, of which form periods do exist, 20,
itself being one, there is one in which A, has a least value, other than zero—as follows
because the function has only a finite number of finite periods. Denote this least value
by p,, and put ©,=p,@,. Of periods of the form 2\ w, + 2,0, in which 02, F1,0<, +1,
there is a finite number, and therefore one, in which A, has the least value arising, say u,;
let one of the corresponding values of A\; be A; put Q,=Aw,+p,0;. Then any period
20 =2\ 0, + 2\, is of the form 2N,0,+2N,0,+2v 0, + 2vy0,, Where vy, v, are (zero or)
positive and respectively less than u, and u,, and N;, &, are integers, such that Ay=Nppuy+v,,
A\ — N A=Nu, +v,. But the existence of a period @ —2N,0, —2/N;0,=2y,0,+ 2r,0, With
v <py, vo<p is contrary to the definition of u, and p,, unless », and v, be both zero.
Hence every period is expressible in the form

e=2N,0,+2N,9,,
where N, N, are integers.
In other words, a uniform analytical function of a single variable without infinitesimal
periods cannot be more than doubly periodict.

* For the argument compare Weierstrass (1. c., § 344), Jacobi, Ges. Werke, t. ii., p. 27,
Hermite, Crelle, xu. (1850), p. 310, Riemann, Crelle, Lxx1. (1859) or Werke (1876), p. 276. See
also Kronecker, “Die Periodensysteme von Functionen reeller Variabeln,” Sitzungsber. der
Berl. Akad., 1884, (Jun. bis Dec.), p. 1071.

+ Cf. Forsyth, Theory of Functions (1893), §§ 108, 107. It follows from these Articles, in
this order, that any three periods of a uniform function of one variable can be expressed, with

B. : 37
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It follows also that every period is expressible by 2w, 2w, with only rational-number
coefficients.

349. Ex. i. If r quantities be connected by £ homogeneous linear equations with
integral coefficients (r>£), it is possible to find r — £ other quantities, themselves expressible
as linear functions of the r quantities with integral coefficients, in terms of which the »
quantities can be linearly expressed with integral coefficients.

Ez.ii. If PW),,,,, P®) be r columns of real quantities, each containing » — 1 constituents,
a column NPV +...+ NP can be formed, in which &, ..., N, are integers, whose 7 — 1
constituents are within assigned nearness of any r—1 assigned real quantities (cf.
Chap. IX,, § 166, and Clebsch u. Gordan, Abels. Funct., p. 135).

Ez. ili. An uniform analytical function of p variables, having r period columns P,
..., P each of p constituents, and having a further period column expressible in the
form A PO+ ... +A.P), wherein A;, ..., A, are real, will necessarily have a column of
infinitesimal periods if even one of the coefficients A,, ..., A, be irrational.

From this result, taken with Ex. i., another demonstration of the proposition of the
text (§ 347) can be obtained. The result is itself a corollary from the reasoning of the
text.

Ez. iv. If u7% ..., u;® be linearly independent integrals of the first kind, on a

Riemann surface, and the periods, 2w, 20’ Of the integral % be written p,, 420y,

p'r,a 10"y, 5, shew that the vanishing of the determinant of 2p rows and columns which is
denoted by :

i ! ’
Pr,1s <<cy Prypy P11y ooy Pryp
’

N ! !
Iy ++0r Orypy Oy coer Omyp
would involve* the equation

(M~ iNy) U “+ oo+ (M, — IV,) u “ = constant,

where M,, Ny, ..., M,, N, are the minors of the elements of the first column of this
determinant and are supposed not all zero.

The vanishing of this determinant is the condition that the period columns of the
integrals should be connected by a homogeneous linear relation with real coefficients.

350. The argument of the text has important bearings on the theory of the Inversion
Problem discussed in Chap. IX. The functions by which the solution of that problem is
expressed have 2p columns of periods in terms of which all other period columns can be
expressed linearly with integral coefficients ; these 2p columns are not connected by any
linear equation with integral coefficients (§ 165), and, therefore, are not connected by any
linear equation with real coefficients.

It has been remarked (§ 174, Chap. X.) that the Riemann theta functions whereby the
2p-fold periodic functions expressing the solution of the Inversion Problem can be built
up, are not the most general theta functions possible. The same is therefore presumably
true of the 2p-fold periodic functions themselves. Weierstrass has stated a theoremt

integral coefficients, in terms of two periods., These two periods, and any fourth period of the
function, can, in their turn, be expressed integrally by two other periods—and so on. The
- reasoning of the text shews that when the function has no infinitesimal periods, the successive

processes are finite in number, and every period can be expressed, with integral coefficients,
in terms of two periods.

* Forsyth, Theory of Functions (1893), p. 440, Cor. ii.

+ Berlin, Monatsber. Dec. 2, 1869, Crelle, Lxxxix. (1880). For an application to integrals
of radical functions, Cf. Wirtinger, Untersuchungen iiber Thetafunctionen (Leipzig, 1895), p. 77.
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whereby it appears that the most general 2p-fold periodic functions that are possible can

be supposed to arise in the solution of a generalised Inversion Problem ; this Inversion

Problem differs from that of Jacobi in that the solution involves multiform periodic

functions*; the theorems of the text possess therefore an interest, so far as they

hold, in the case of such multiform functions. The reader is referred to Weierstrass,

Abhandlungen aus der Functionenlehre (Berlin, 1886), p. 177, and to Casorati, Acta
Mathematica, t. viii. (1886).

351. We pass now to a brief account of a different theory which is
necessary to make clear the position occupied by the theory of theta
functions. Considering, & prior:, uniform integral analytical functions
which, like the theta functions, are such that their partial logarithmic
differential coefficients of the second order are periodic functions, we in-
vestigate certain relations which must necessarily hold among the periods,
and we prove that all such functions can be expressed by means of theta
functions.

Suppose that to the p variables u,, ..., u, there correspond o columns of
quantities @’ (¢ =1, ...,p,j=1,..., ) and ¢ columns of quantities b'—
according to the scheme

[t} (o) (1) (@) |,
U | A5 o5 Oy ‘blr"xbl 5

1) (@) | 70 (o)
Uy Ay 5 .., Ay 1 bz;»-,bz

) (o) ) (0)
Up | Ay sy @y | by, by

and suppose ¢ (u) to be an uniform, analytical function of u,, ..., u, which
for finite values of uy, ..., 4, is finite and continuous—which further has the
property expressed by the equations

” a‘j) =e2ﬂib(j)[u+§a‘j)]+2ﬂ0(j) uw '=1 G I'
¢ (u+a) ¢ (u), G=L..,9, (1)

wherein b9 is a symbol for a column b, ..., b9 and ¢! is a single quantity
depending only on j. The aggregate of ¢¥,...,c@ will be called the
characteristic or the parameter of ¢ (u); a!? will finally be denoted by a;, ;.
We suppose that the columns a? are independent, in the sense that there
exists no linear equation connecting them of which the coefficients are
rational numbers; but it is not assumed that the columns a? constitute all
the independent columns for which the function ¢ satisfies an equation of
the form (I.). Also we suppose that the equation (I.) is not satisfied for
any column of wholly infinitesimal quantities put in place of a'’. The
reason for this last supposition is that in such case it is possible to express
¢ as the product of an exponential of a quadric function of w, ..., uy,
multiplied into a function of less than p variables, these fewer variables
being linear functions of u,, ..., u,. The function ¢ (u) in the most general

* With a finite number of values.

37—2
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case is a generalisation of a theta function; it will be distinguished by the
name of a Jacobtan function; but, for example, it may be a theta function,
for which, when o < 2p, the columns @ are o of the 2p columns of quasi-
periods, 209,

A consequence of the two suppositions is that in the matrix of o
columns and 2p rows, of which the (2¢—1)th and 2i-th rows are formed
respectively by the real and imaginary parts of the row af", ..., o/, not
every determinant of o rows and columns can vanish. For if with o arbitrary
real variables =, ..., 2, we form 2p linear functions, the (2¢z— 1)th and
2¢-th of these having for coefficients the (2 — 1)th and 2¢-th rows of the
matrix of o columns and 2p rows just described, the condition that every
determinant from this matrix with ¢ rows and columns should vanish, is
that all these 2p linear functions should be expressible as linear functions of
at most ¢ — 1 of them. Now it is possible to choose rational integer values
of ®, ..., x, to make all of these ¢ —1 linear functions infinitesimally
small*; they cannot be made simultaneously zero since the o columns of
periods are independent. Therefore every one of the 2p linear functions
would be infinitesimally small for the same integer values of =, ..., z,.
Thus there would exist a column of infinitesimal quantities expressible in
the form 2,a® +... + z,a. Now it will be shewn to be a consequence of
the coexistence of equations (I.) that also an equation of the form (I.) exists
when a® is replaced by an expression za® + ... + 4,4, wherein z,, ..., z,
are integers. This however is contrary to our second supposition above.

Hence also the matrix of o columns and 2p rows, wherein the (2¢ — 1)th
and 2¢-th rows consist of a{, ..., a!? and the quantities which are the
conjugate complexes of these respectively, is such that not every determinant
of o rows and columns formed therefrom is zero.

And also, by the slightest modification of the argument, o cannot be
>2p. The case when o is equal to 2p is of especial importance; in fact
the case o < 2p can be reduced to thist case.

352. Consider now the equations (I). We proceed to shew that in
order that they should be consistent with the condition that ¢ (v) is an
uniform function, it is necessary, if a, b denote the matrices of p rows and o
columns which occur in the scheme of § 351, that the matrix of o rows and
columns}, expressed by _

@b — ba, (A),

should be a skew symmetrical one of which each element is a rational

* Chap. 1x., § 166.

+ When ¢=2p, the hypothesis of no infinitesimal periods is a consequence of the other
conditions (cf. § 345).

1 The notation already used for square matrices can be extended to rectangular matrices,
See, for example, Appendix 11., at the end of this volume (§ 406).
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integer. Denote it by %, so that k.. =0, kog = — kga. But further also we
shew that it is necessary, if « denote a column of & quantities and #; denote
the column whose elements are the conjugate complexes of those of =, that
for all values, other than zero, satisfying the p equations

ar = 0, (B)v

the expression tkzx, should be positive. We shew that 1kax, cannot be zero
unless, beside ax, also az, be zero: a condition only fulfilled by putting each
of the elements of #=0 (as follows because the o columns of periods are
independent and there are no infinitesimal periods). The condition (B) is in
general inoperative when o <p + 1.

353. Before giving the proof it may be well to illustrate these results by shewing that
they hold for the particular case of the theta functions for which (cf. § 284, Chap. XV.)

o=2p, a=|2w, 20|, 2mwitb=|2n, 2’|,
and therefore

0w =20X+20' X' =0y, bo=-1 Hy,
2w

where X is a column of p quantities, X' a column of p quantities, and x=l§,’. Let
y= l{,, , where, similarly, each of ¥ and Y” is a column of p quantities ; then*

XV - XV= L B0y~ H,0.)=ay. bo—an. by=(ab~ba) ay=hkay,
but
, , 1.p , , 1.p 1..p .
XY'-X'Y= 2 ROLEDE I’;‘]=i2‘i(xiyi+p_xj+pyj)=i,2i [ei+p,i@lispt €, i 407 +0Y5]
where €;4,;=+1= —¢;;+p and ¢, ;=0 when ¢~ is not eqﬁal to p ; thus we may write
kry=XY'—- X'Y=exy,

namely, the matrix % is in the case of the theta functions the matrix ¢, of 2p rows and
columns, which has already been employed (Chap. XVIIL, § 322).

It can be similarly shewn that in the case of theta functions of order 7, k=re.

‘Next if a, b, h denote the matrices occurring in the exponents of the exponential in the

theta series, we havet
hoy=mX+bX',

namely h.or=niX+bX'. Hence the equations ar=0 give X= —%ibX’. If X, X/
denote the conjugate complexes of X, X’ we have therefore X;= %lel’.
Hence thaz, =texz, =i(X X, - X' X|)=— }—r [bX'X)+ b, Xy X ]= - :—r(b +b,) X' X/, since

b=Db and b,=b;. Thus if b=c+4d, b;=c—1d, the quantity —cX'.Y,’ is positive unless
each element of X' is zero, namely, the real part of bX’X,’ is negative for all values of X’
(except zero). If X'=m+in, b (m?+n?) is equal to bm?+bn?; and the condition that this
be negative is just the condition that the theta series converge. .

* For the notation see Appendix 1.
+ Chap. x. § 190, Chap. vir. § 140.
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354. Passing from this case to the proof of equations (A), (B) of § 852,
we have, from equation (L),

Su+a® +a®]= e?ribﬂl[u+a(2)+§a(l)]+21ric(ll¢ (w+ a®)
— 2mib a4+ §a ]+ B+ 2wib®[u-+ a4 2wic® g ()

— 2l + V[ -+ §a + 3]+ 2o+ o] L ().

where Ly,=mi[b0a® — b®q0], =— L,. Since the left-hand side of the
equation is symmetrical in regard to @, and a,, e’» must be =el», and
hence L,./nt is a rational integer, =k, say, such that &, = — k.

Obviously, in &, =a®b® —a®@b®, the part a®b® is formed by compound-
ing the first column of the matrix a (of ¢ columns and p rows) with the
second column of the matrix b. Similarly with a®b®. Namely &, is the
(1, 2)th element of k=ab—ba. Since similar reasoning holds for every
element, it follows that the matrix k£ is a skew symmetrical matrix of
integers. Conversely, if this be so, it is easy to prove by successive steps
the equation

¢(u +aPm +aPmy+ ... + aw)"nu)/d’ (u)

aVm,+ ... +ams

_ e21ri DMmy+... + b'9me] | u+

R 27t (cVmy+ ... +c@mg) + 7riL’ (II)
where
a.<ﬁ
L= 2 k',,p Ma Mg,
a=1, ..., 0
B=2, ..., 0

and my, ..., m, are integers; this equation may be represented * by

. am ) <P
27ibm I:u + T] +2miem+wi 2 kygmgmg

¢(u+am)=¢(u)e

In fact, assuming the equation (IL) to be true for one set mu, ..., mq, We
have, by the equations (L),

é [u+am + ah]= £2mib® [u+am + $aM] + 2ric ¢ (w + am),
= g2mibm[u+3am] + 2wibY [u + am + §aV] + 2wicm + 2wich + wi a§B kogmymg ¢ (u),
= g2mi [bm+ V] [u + dam + 3aV] + 2wi [em + V] + xi ;B kgm,mg+miR é (u),
* For the notation see Appendix 11.—or thus—
m. u:% [Dypmy+ ...... +bigmg]u;
= (?bilui) my+...... + (%bi,ui) Mg
=@ ) mt e (27 m

=tWu.m+ ...... +5u . my
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where R is equal to b® . am —bm . a™®, namely equal to
S50 [@Pmy + ... + a7 m,] — 3 [b}')m1 +. + b}”) m,] a}') =Tnmy + ... + kpm,,
i j
so that
a<f
R + 2 k‘.,pmam,;

=kymo+ ...+ kamo + kymym, + ... + kiemym, + kpmam; + ...+ kggmoame + ...
=2 (kuymy+ ... + koyis) + kyo (Mg + 1) mo + ... + kg (my + 1) mg + kpymgm, + ... ;

hence
TiR+mi = kygm,m Ti = kygm,'mg’
e a«:BaﬁaB"_'e a<5“ﬁ“~ ﬂ’
where
[m, ..., m,]=[m,+ 1, my, ..., mg];
therefore

b+ am'] = O T Bam I+ Brien ki F hagme e b (),
Similarly we can take the case ¢ (u + am — a®), noticing that equation
(1) can be written

— iy — Lai] - 2wrictd
¢(U—a‘ﬁ)=¢(u)e 2midbV v %a‘f’] 2ric ,

where v=1u +a¥.

355. The theorem (A) is thus proved. The theorem (B) is of a different
character, and may be made to depend on the fact that a one-valued
function of a single complex variable cannot remain finite for all values of
the variable.

Consider the expression

L (§) = gmmvt orhah—amieb § (v + a),

wherein §,, ..., &, are real quantities.
Then L (£ + m)/L (£), wherein m;, ..., m, are rational integers, is equal

a<B
to eTikmE+mwi 2 kugMmamp o immediately follows from equation (L), and is
therefore a quantity whose modulus is unity. Now when &, ..., &, are each
between 0 and 1 and v is finite, L (¥) is finite. ~ Its modulus is therefore
finite for all real values of £; let @ be an upper limit to the modulus of L (£);
@ can be determined by considering values of £ between 0 and 1. Let now
@, ..., Z; be such that axz =0, and let x, denote the column of quantities
which are the conjugate complexes of the elements of the column #. Put
E=2z + x, so that af = ax,.
Then
¢ (v+am)=¢@w+af)= gmibk. af+2miletbolé [ (£),

wherein an upper limit of the modulus of L (£) is a positive quantity G whose
value may be taken large enough to be unaffected by replacing z by any
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other solution of az = 0; it is necessary in fact only to consider the modulus
of L (£) when £ is between 0 and 1.

‘We have

bE.af=b(z+z).a(z+ 2)=bx.ar, +bz,.an
=bz.ax, — bz, . ax + bz, . ax, = kxx, + abx?,
(c+b)E =w(z+m), say, =wz + waz, + (w—w) z,

where w=c + bv; therefore
emibE. at+emie+bo £ ], ( f) = ginkze timdbz,2emi (w—w) B, gami wrtwiz) [, ( f) ;
this equation is the same as
e—traba,2—2mi (w—w,) 4, ¢ (v + a/wl) — epK’

where .
K, = L () emitesswn,

has the same modulus as L (§), less than G, and where
p = tmwkxx, .

i+ 125, Y —12; , —
= 'WI‘EICU [.fL'j (:c,)i - &; (wl)j] = Z')TS k‘ij Yi . ir Ui Yi
Yi+ 1z, Yi—12; 1 Yi, — 2
= 2w 3k;; (yj2; — Yiz;) = 2mkyz, is a real quantity (« being equal to y + 2).

= 23kt

Now if # be any solution of the equations az =0, then wx is also a
solution, p being any arbitrary complex quantity and u, its conjugate
complex. Replace 2 throughout by u,z, and therefore & by u,z + uz,. Then
the equation just written becomes

e““’“bl-‘-‘zlz-gm (w—wy) pux, ¢> ('y + Paxl) = gPPH-, K’
K having also its modulus < G.
Herein the- left side, if not independent of u, is, for definite constant
values of v and #, a one-valued continuous (analytical) function of g which is
finite for all finite values of u. Hence it must be infinite for infinite values

of u. Hence p must be positive, viz., values of = such that ax=0 are such

that the real quantity ikxz, is necessarily positive provided only the ex-
pression

e—ug'imibz,’—ewip fw—w,) 2, 4, (v + #aa;l)
is not independent of u.

Now if this expression be independent of g, it is equal to ¢ (v), the value
obtained when p =0, and therefore

e—iﬂuedbﬂ?" ¢ (” + Il'axl)
¢ ()
here the left side is a function of v provided ax be not zero; when a,

is zero its value is unity; we take these possibilities in turn:
(i) Suppose first ax, is not zero,

— p2wip (W—w,) Z, .
_321-‘( |J1,



355] FURTHER DEDUCTIONS. 585

then
(w—w,) &, = (bv — byw,) &, = ba, . v — by, . v,

must, like the left side, be a function of v and therefore a linear function, say

1
ﬁ(Bv + 0), so that
¢ (v + paz,) = ¢ (v) edw*+ Bt O where A =imabz?;

hence pax, represents a column of periods* for the function ¢ (v)—and this
for arbitrary values of u.

In this case however ¢ (v) would be capable of a column of infinitesimal
periods, contrary to our hypothesis.

Hence p must be positive for values of # such that az =0, az, + 0.
(ii) "But in fact as there are ¢ columns of independent periods we cannot
simultaneously have axz=0, az;=0. For the last is equivalent to ¢,z =0;
and az =0, a,z = 0, together, involve that every determinant of o rows and

. . la . . .
columns in the matrix ! is zero—and thence involve the existence of

infinitesimal perlods @§ 351)
Hence kxz, is necessa,rlly positive for values of , other than zero,
satisfying az =0; and this is the theorem (B).

Remark i. From the existence of two matrices @, b of p rows and ¢ columns, for
which a@b—ba is a skew symmetrical matrix of integers £ such that ¢kzx, is positive
for values of x other than zero satisfying ax=0, can be inferred that in the matrix

i
|a .
of o columns and 2p rows, o I" not every determinant of & rows and columns can
1

vanish—and also that the o columns of quantities which form the matrix a are inde-
pendent, namely that we cannot have the p equations a2 +...+a,02(9)=0 satisfied
by rational integers 2, ..., #{o). For then, also, @;x=0, since z=ux,.

Remark ii. In the matrix £, if o be not less than p, all determinants of 2 (¢ — p) rows
and columns cannot be zero. In the matrix e, not all determinants of 4o or } (¢+1) rows
and columns can be zero. In particular when ¢=2p, for the matrix %, the determinant is
not zero ; for the matrix a, not all determinants of p rows and columns can be zero.

Let & 5 be columns each of & quantities. Then the coexistence of the 3 sets of
equations

=0, ap=0, k(f+n)=0

is inconsistent with the conditions (4) and (B) (§ 352), except for zero values of £ and 7.
The second of them obviously gives also an;=0.
For from these equations we infer that kn,é=a¢. by, — b¢ . an, is zero, and also

E(E+n) . ny=Fn, (E+n)=Pkn,&+knyn,

and therefore also £n, is zero. But by condition (B) the vanishing of £g;n when, as here,
an, =0, enables us to infer n=0.

* We use the word period for the quantities aly) occurring in our original equation (I.).
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Similarly

k§£1=lz’flf=; (&1+n0)- f_z'hf=’_¢(§1+'h) -E- kf'l1=7‘ (§1+’h)~ f“(db; I_)a) &m
=k (&40 £~ (an,. bE~bny. af)

is zero when % (£ +1n,)=0, an; =0, a£=0. Thence by condition (B), since af=0, & is zero.

Suppose now that the number of the p linear functions af which are linearly inde-
pendent is », so that all determinants of (v+ 1) rows and columns of the matrix « are zero,
but not all determinants of v rows and columns; and that the number of the ¢ linear
functions ££ which are linearly independent is 2« *, so that in the matrix 4 all determinants
of 2¢+1 rows and columns vanish, but not all of 2« rows and columns. Then we can
choose 2v+ 2« linearly independent linear functions from the 2p+o functions af, e,
%(£+7n). If this number, 2v+ 2«, of independent functions, were less than the number 2¢
of variables £, 7, the chosen independent functions could be made to vanish simultaneously
for other than zero values of the variables, and then all the linear functions dependent on
these must also vanish.

Hence

20+2c=20 Or v+kSo.
Now

vZp, 2k=a; hence v=io, 2= 2(c—p).

Remark iii. It follows from (ii) that if £=0, then y=0 and ¢ =p. Also that a function
of p variables which is everywhere finite, continuous and one-valued for finite values of the
variables and has no infinitesimal periods cannot be properly periodic (without exponential
factors) for more than p columns of independent periods; in every set of o independent
periods of such a function the determinants of ¢ rows and columns are not all zero. The
proof is left to the reader.

Remark iv. When ¢=2p we can put a=|20, 20'|, wherein the square matrix 2e is
chosen so that its determinant is not zero. When we write a=|2w0, 20’ | we shall always
suppose this done.

356. [Ex. i. Prove that the exponential of any quadric function of u, ..., %, is a
Jacobian function of the kind here considered, for which the matrix £ is zero.

Ez. ii. Prove that the product of any two or more Jacobian functions, ¢, with the
same number of variables and the same value for o, is a function of the same character,
and that the matrix % of the product is the sum of the matrices £ of the separate factors.

Ez. iii. If ¢ be considered as a function of other variables v than u, obtained from
them by linear equations of the form »=p+cv (u being any column of p quantities, and ¢
any matrix of p rows and columns), prove that the matrix % of the function ¢, regarded
as a function of », is unaltered.

Obtain the transformed values of a, b, ¢ and bm (u+4am)+cm. (Cf Ex. i, § 190,
Chap. X.)

Ez. iv. If instead of the periods a we use @’'=ag, where g is a matrix of integers with

o rows and columns, prove that ¢ (z+a'm) is of the form 27'm (+la'm)y+micm ¢,y anq
that # =gkg ; and also that £zy becomes changed to #'z’y’ by the linear equations r=gz’,
y=gy'- Insuch case the form ¥x'y is said to be contained in kzy. When the relation is
reciprocal, or g?=1, the forms are said to be equivalent. Thus to any function ¢ there
corresponds a class of equivalent forms £ (Cf. Chap. XVIIL, § 324, Ex. i.)

Examples iii. and iv. contain an important result which may briefly be summarised by

* That the number must be even is a known proposition, Frobenius, Crelle, Lxxx11. (1877),
p- 242. :
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saying that for Jacobian functions, gua Jacobian functions, there is no theory of transfor-
mation of periods such as arises for the theta functions. A transformed theta function is
a Jacobian function ; the equations of Chap. XVIII. (§ 324) are those which are necessary
in order that, for this Jacobian function, the matrix % should be the matrix e, or re
(cf. § 353).

Ez.v. If A be a matrix of 2p rows and o columns of which the first p rows are the
rows of @ and the second p rows those of b, prove that

Aed=*k.

In fact if §=Ax, £=Aa', then

ka'w=ax.ba'—ax/ bu=3[£:&isp— & &+ p]=€£E
=edx. A’ =4ed . &'a.

Hence also when o=2p the determinant of 4 is the square root of the determinant of 4,
which in that case, being a skew symmetrical determinant of even order, is a perfect
square.

Ez. vi. Shew that when ¢=2p and with the notation a=|2w, 20|, 27tb=|2y, 29|,

. that

— 2 _ _ _ N
AeA=ﬂ_—i on—fe, an-ne

b

Sy—ie, @i |
the notation being an abbreviated one for a matrix of 2p rows and columns. Thus in the
case when £=¢, the equation of Ex. v. expresses the Weierstrass equations for the periods
(Chap. VII, § 140).

Ex. vii. In the case of the theta functions we shewed (§ 140, and p. 533) that the
relations connecting the periods could be written in two different ways, one of which was
associated with the name of Weierstrass, the other with that of Riemann. We can give a
corresponding transformation of the equations (A), (B) (§ 352) in this case, provided o =2p,
the determinant of the matrix £ not being zero.

As to the equation (A), writing it in the equivalent form given in Ex. v., we
immediately deduce _

Ak 14 =¢, (A",
which is the transformation of equation (A).

As to the equation (B), let x be a column of ¢=2p arbitrary quantities, and determine
the column z, of ¢=2p elements, so that the 2p equations expressed by az=0, bz=ux, are
satisfied. Then

ar=abz=(ab—ba)z=kz, =p, say; so that £~ lp=z k~lp,=2;
thus _

thaz, =1 (ab— ba) 22, =1 (az, . bz — az . bz)) =1az, . be=1lozx="1a%2 =1pz

=ik~ pp=rktax, . ar=>rak" 122 ;
therefore, the form .
tak~lae (B),
is positive for all values of the column #, other than zero. This is the transformed form
of equations (B).
Ex. viii. When a=|20, 20';, b=2*;l;,.l2r;, 27|, o =2p, we have

Aed=| 20, 20'; 0 -1 %25, Z =‘! -4 (0d' - 0'®), —-g.(mﬁ'—a)'ﬁ) E

‘ . ™ | w ‘
s
L,LZ11 o
wt’ wi | |

2 1,
('@ — n@'), ‘W(’I’I"I'I)‘

P |
23, = ;
w e
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Hence when k=e¢, the equation (A’) of Ex. vii,, equivalent to ded= —¢, expresses the
Riemann equations for the periods (Chap. VIL, § 140). In the same case the equation
(B), of Ex. vii., expresses that

I ORI CA RIS EN AR
is negative for all values of # other than zero.
Ez.ix. When p=1, the two conditions (B), (B), or
tezx; =positive for ar=0, iaed,rx=negative for arbitrary x,
become, for a=|2w, 2¢'|, if the elements of « be denoted by » and #’, and the conjugate
imaginaries by «;, #,, respectively,
(o) (o, — 0'e;) &2 =positive, 7 (0,0’ —ww,’) x2,=negative,
and if o =p+70, 0;=p —t0, o’ =p'+10’, ©,'=p’ —i0’, these conditions are equivalent to
pa' —p'a>0,

and express that the real part of 7'/w is negative.

357. Suppose now that ¢ =2p; we proceed (§ 359) to consider how to
express the Jacobian function. Two arithmetical results, (i) and (ii), will be
utilised, and these may be stated at once: (i) if k be a skew symmetrical
matriz whose elements are integers, with 2p rows and columns, and e have the
signification previously attached to i, it s possible to find o matriz g, of 2p
rows and columns, whose elements are integers, such that* k=geg. For
instance when p =1, we can find a matrix such that

0 ky 0—1'
-k, 0 1 0

In Ga
G2 92

Ju G |[=
ga G2 |

Jadn — Jugda JaGre — Iufe | »
92911 — 91291 G212 — G129

namely, such that ky,=gng1w— guge; for this we can in fact take gy, g
arbitrarily. In general the 4p® integers contained in ¢ are to satisfy
p (2p — 1) conditions.

Ez.i. If a be a matrix of integers, of p rows and columns, and A be an integer, and

k=| 0, —Aa|,
Ng, O
g may have either of the two following forms
51=|% 0|, g;=|%q, O =i)\) Olla, 0 |, =gy, say,
0, a 0,1| |o,al|o, a

for we immediately find phu==£.

* For a proof see Frobenius, Crelle, Lxxxv1. (1879), p. 165, Crelle, Lxxxvir. (1880), p. 114.
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Ez.ii. If u be any matrix of integers, with 2p rows and columns, such that gep=e
(cf. § 322, Chap. XVIIL), we have, if k=geg, also k=gu~lep g, and instead of g we may
take the matrix p1g.

(ii) If g be a given matrix of integers, of 2p rows and columns, and z be
a column of 2p elements, the conditions, for z, that the 2p elements gz
should be prescribed integers cannot always be satisfied, however the elements
of z (which are necessarily rational numerical fractions) are chosen. If for
any rational values of =, integral or not, gz be a row of integers, and we put
=1y + L, where y has all its elements positive (or zero) and less than unity,
and L is a row of integers (including zero), then gz =gy + gL =gy + M,
where M is a row of integers; in this case the row gz will be said to be con-
gruent to gy for modulus g. The result to be utilised* is, that the number
of tncongruent rows gz, namely, the number of integers which can be repre-
sented in the form gz while each element of x is zero or positive and less than
unity, 1s finite. It is in fact equal to the absolute value of the determinant of
9. For instance when ¢ is | gy g, | there are gngm — g1gn integer pairs

ga G
which can be written g, + ¢12%5, gy + gn®s, for (rational) values of z,, ,
6 3|

less than unity. The reader may verify, for instance, that when ¢ ='

the 9 ways are given (cf. p. 637, Footnote) by
1 2 3 4 5 6 7 8 9

6+ By, 2, +22, 0, 02, 14,103, 1[4, 205, 1 5,2!6,2‘7,2

To prove the statement in general let ¢ be the number required, of integers
representable in the form gz, when 2<1. Consider how many integers
could be obtained in the form gX when X is restricted only to have all its
elements less than (a positive number) N. Corresponding to any one of the
¢t integers obtained in the former case we can now obtain N —1 others by
increasing only one of the elements of # in turn by 1, 2, ..., N—1. This
can be done independently for each element of #. Hence the number
“of integers gX is tN° where o, here to be taken =2p, is the number of

id

elements in #. Let one of these integers be called M. Then g %V = J—JVW— or say

gw=%, wherein 2 is less than unity. Now when N is very great, the

* Cf. Appendix ii, § 418, and the references there given, and Frobenius, Crelle, xcvir. (1884),
p- 189.
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- M .
variation of z= 7 a8 M changes, approaches to that of a continuous quan-

tity, and the number of its values, being the same as the number of values
of M, is

f o (Ndz)...(Ndz,),

where 2, ..., z, vary from zero to all values which give to , in the equations
gz =2, a value less than unity. Now this integral is

0(2, -.s 2o [ 7
S R

Since this is equal to ¢N°, it follows that ¢ is equal to | g|, as was stated.

358. Supposing then that the matrix g, with 2p rows and columns each
consisting of integers, has been determined so that k=a@b —ba = geg, we
consider the expression of the Jacobian function when o =2p. The deter-
minant of k not being zero, the determinant of g is not zero.

Put K=ag™, so that K is a matrix of p rows and 2p columns, and
a = Kg; put similarly b= Lg; also, take a row of 2p quantities denoted by -
C, such that ¢=gC + 4 [g], where c is the parameter (§ 351) of the Jacobian
function, and [¢g] is a row of 2p quantities of which one element is

[g]¢=x§g‘,agpﬂ,a, ‘ (a=1, ..., 2p);

take z, 2/, X, X', rows of 2p quantities such that
X =g», X'=ga, so that az=Kgz =KX, bz =LX, a’/=KX’, bx=LX';

then as _ B
_ kx'z, = ax.bx’ —ax’ . ba,= (KL — LK) X'X,
is also equal to
gegr'x =ega’ . gr = eX'X,

I?L-ZK=€, (C)y

we have
so that
— - L,.,p
Kelo — Ka'Le=(KL — LE)o'v=edv= 2 (0011, — ] %j4,);
%]
farther, as tkax, is positive for az = 0, we have -

1€eX X, = positive when KX =0, D);

thus, if A denote the matrix I ! , we have, from the equation (C),

AeéA =—Aed =, - (B),

and, if z be a row of p arbitrary quantities, and X be a row of 2p quantities
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such that KX =0, LX =z, so that K:=KLX=(KL—-LK)X =X, and
therefore eKz = — X, K,2, =eX,, we have

1K, eKzz, = positive, for arbitrary z other than zero, (F):
for

1K eKz22, = — iK, Xz, = — iK2,. X = — 1eX,. X =1eX X,.

If we now change the notation by writing K =|20, 2’|, 2L = |22, 27/,
and introduce the matrices a, b, h of p rows and columns defined by
a=3in07Y, h=}mo?, b=moeo '@,

it being assumed, in accordance with Remark iv. (§ 355) that the determinant
of the matriz o s not zero, then the equation (E) shews (cf. Ex. viii,, § 356)
that the matrices a, b are symmetrical, and that n' =0 e — {mi@?, so that
we can also write

n=2w, 7 =20 —h', 2ho=mt, 2he =Db;
also, by actual expansion,

iK,eK = iy [0 0y ~5'0] @ =~ o, [by+ 5] =~ v, b, + b] 3

-2 ocw, if b=c+id;
aT

thus ‘
1K eKzz,=— %ctlt, where ¢t =@z, z and ¢ being rows of p arbitrary quantities;
and therefore, by the equation (F), for real values of n,, ..., n, other than

zero, the quadratic form bn? has its real part essentially negative.
Hence we can define a theta function by the equation

N (u; '}") = S AUt hu(n+y) b (n-+y)2=2miy (n+y),
- n

wherein ¢, 7" are rows of p quantities given by C=(v/, v), that is, C,=v,,
Cptr=1,, for r<p+1. Denoting this function by & (u; C) and taking w for
a row of 2p integers, the function is immediately seen (§ 190, Chap. X.) to
satisfy the equation

. . a<f
S’('L&+K/L; O) _ e2mLy. (v +3Kp) +2wiCp+ wi a,Eﬁ €4, plakig 3 (u; C),

which is the definition equation for a Jacobian function of periods K, L and
parameter C, for which the matrix k is .

Further, if u be a matrix of integers with 2p rows and columns, such that
mep=e¢, and (Ex. ii., § 357) we replace g by p™g, the matrices K, L are
replaced by Kp and Lu. Thus instead of the theta function S (u; O)
we obtain a linear transformation of this theta function (cf. § 322, Chap.

XVIIL).
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359. Proceeding further to obtain the expression for the general value
of the Jacobian function ¢, let ¢ (u; v) denote

¢ (’lL + KV) e-21riLv (©+3Kv) -21rin+21rinn’,

where v;=n;, viyp=n, for t<p+1. Then, since ¢ =Kg, and therefore’
alN = KgN, we have

p(u+alN,v)=¢(u+KgN,v)=¢(u+ Ku, v), ),

where u denotes the row gN, so that aN=Kpu, N being a column of 2p
integers and therefore u a column of integers; thus ¢ (v + alV, v) is equal to

¢ (u+ alN + Kv) g=2miLy (wt Ku-t3Kv) ~2wiCrtmina’ — o (y + Kv) eF,
where

a<f
R=2mibN (u+ Kv + balN) + 2micN + w5 S, kep No Ny
—2mily (u+ Kp + $Kv) — 2miCy + winn/,

by the properties of ¢, N being a column of integers; thus ¢ (u + alV, v) is
equal to

& (1, v) €3N (u+3aN) + SricNAmi S Fug Ny Ng-+2mi (BN . K ~ Ly . Ku)
Now N = LgN = Ly, therefore
ON.Kyv— Lv. Ky = (KL~ LK) pv = epv =mn’ — m'n,

where u; = m;, piyp =mJ, ete. for i<p+1. If then we take v, as well as g,
to consist of integers, it will follow that

a<B
& (ut alV, v)= b (u, v). 27N 1+ 3aN) +2rieN +wi = kg NNy
and therefore that

¢(u+alN)_ o(u+al,v) 2N (u+3aN) +omieN 4wl S kg N, Ng

é (u) é (u, v)

Next
¢ (u, p+v) = ¢ (u + Kp + Kv) g2 Eut L) (@r3Ki+HEv) ~2mi (Cut O i mebm) (nm) - (9),

and this

= ¢ (u+ Kp, v) e,
where

M = 2milv (u + Kp + 3 Kv) + 2miCv — winn’ — 27 (Lp + Lv) (u + 3 K + 3 Kv)
— 2ri (O + Ov) + 7% (m + ) (n + )
therefore

¢ (u+ Ky, v) e—[2mi L (w4 Bp) +omi Cp—mimm’]

 (u, p+)
= g2miLp (3Kv)—2wiLy (3 Kp)+mimm/+minn'—wi (m+m') (n+n)
3
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of which the exponent of the right side is
w1 [(KL — LK) pv — mn' — m'n] = w3 [mn’ — m'n — (mn’ + m'n)] = — 2mwim'n,

so that, since u, v consist of integers, the right side is unity.
Hence we have

¢‘¢fi(" + Ky, ;’) = 2Ly (u+3Kp) +2mi Cu—mwimm’
U, ptv

It is to be carefully noticed that this equation does not require #=0 (mod. g).

a<p
We suppose now that =0 (mod. g). Then ¢cN+1 § kop NoNg=Cpu—imm’
(mod. unity) and Lu=bN, Ku = aN, as will be proved immediately (§ 360);
thus

putal) _$(utal,») _¢u+aN,v) _ 2w w+pal)+2wieN+7i"S kg, Np

¢ () ¢ v) P ptv) ’
and therefore ¢ (u, p+v)=¢(u, v) for integer values » and any integer
valués p that can be written in the form g, for integer NV; namely ¢ (u, »)
is unaltered by adding to v any set of integers congruent to zero for the
matrix modulus g.

The set of |g| integers gr, wherein » has all rational fractional values less
than unity will now be denoted by », each value of v denoting a column of
2p integers—in particular r =0 corresponds to a set of integers = u (mod. g).
And o shall denote a special one of the sets of integers which are similarly a
representative incongruent system for the transposed matrix modulus g, such
that " =gr, the quantities " being a set of fractions less than 1. With the
assigned values for v, let

¥ (u)= %e‘z’””"” é (v, v);

then
A (1 + K\) = Se2mir ¢ (u + K\, v) = Sermir'? @milA wHKN +amiO—rill ¢ (y, )\, + v)

for any set of integers A, as has been shewn (A being such that, for
t<p+1, M=l Mg =)

If now v+A=p, so that p also describes, with », a set of integers
incongruent in regard to modulus g, those for which the necessary fractions
s,in p=gs, are >1 being replaced, by the theorem proved*, by others for
which the necessary fractions are <1, so that the range of values for p is
precisely that for », then we have

Y (u+ KL) = Se2rirotamivh grmild KN tamiCh—ill ¢, (3, ),
v
= gmirAamiLA KN +omiOA—will 3 g—smir'y b (y, v),
14

= grirAtamiLA (CHEN) +amiO—will s (y),

* That ¢ (u, ») is unaltered when to » is added a column =0 (mod. g).
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Hence, by the result of § 284, Chap. XV., we have
Y (w) =4, (u, C+7),
the theta function depending on the a, b, h derived in this chapter (§ 858).
Now let »" describe a set of incongruent values for the modulus g; then

34,5, C+r)=39 (u) = 3 S ¢ (u, v);

and since v = gr’, we have v'r = gr'r = grr’ = »’; thus

2e~‘.‘.1r’i‘r’v =3 (6—21ri7‘v') = 2 (e—iﬂ'iﬁ)v' 1 (e-%ﬂ'irz)vlg . ( e—%irzp)v'g,, :
v v v

this sum can be evaluated :

when »=0 (mod. g), or the numbers r are zero, its value is equal to the
number of incongruent columns for modulus g, =|g|. Since k= geg, we
have |k| = (]g|)? so that |g] = J/[&].

when » £0 (mod. g), so that some of 7, ..., ry, are fractional, its value is
zero, as is easy to prove (see below, § 360).

Hence we have the following fundamental equation :

VIE] ¢ () = 24, (u, O+ ),
which was the expression sought. "
Thus between |k|+ 1 functions ¢ with the same periods and parameters
there exists a homogeneous linear relation with constant coefficients*®.
Ez.i. Prove that a product of » functions ¢ is a function ¢ for which 4/[%] is changed
into 2?4/ |/c_] In fact the periods are na, nb.
Ez. ii. Prove that the number of homogeneous products of n factors selected from

p+2 functions ¢ of the same periods and parameters is greater than n?4/[k] when =
is large enough. And infer that there exists a homogeneous polynomial relation con-
necting any p+ 2 functions ¢ of the same periods and parameters. (Cf. Chap. XV, § 284,
Ex. v.)

360. We now prove the two results assumed. .
(@) If p=0 (mod. g) or u =gN, where N are integers, then

a<B
cN+14 s kug NoNg = Cu — 3mm’  (mod. unity).
For

N _ w _p
kg = (g€9)ap = ?(g)av (e9)he = l(g)avl\zl[ev,)\gk,ﬁ + €y, a+090+p,8)
y= =

M

ni

y 2 ¥4 D
Fya = [engag + €y, a1pGrip,8] + Elgy+p, '321 (€y+5,297,8 + €y1p,A+pGr+,8]
o z

y=1 A=1

» P . P
=— Elgv,agﬁp,ﬂ + z'lgvﬂmgv,ﬁ = 21[.91+p,a9~/,ﬂ — Jv,e9v+p,8)
v= y= y=

)
= 21[97+p,u97,ﬁ — v.a9v+p,6]5
v=

* Weierstrass, Berl. Monatsber., 1869 ; Frobenius, Crelle, xcvii. (1884); Picard, Poincaré,
Compt. Rendus, xcvi1. (1883), p. 1284.
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therefore
a<pB pa<p
2 kg No Vg =7§1 2 [9y+p,0Na - 9v,.8 Ve — 9y,aNa - Jys0,8 V6]

p a<B

5731 2 [gy+p,alVa-9y,6Np + gy,aNa . gyrp,s Vg, (mod. 2),
P (a<B - a<f ]

sgl{ v B 9o Vo + S 9uaNp- gyina o)

D
EyE)IEEgﬂp,.,N w-Yr,6NV8, (mod. 2),

where the 23 indicates that the summation extends to every pair a, 8
except those for which a=3; thus

a<B b2
p3 kapNaNp + Z] 3 gy+p,aNa . gy,aNa
y=1 a=1
»
= 21[91,1N1+ ------ + 9y, Vap) [Gyp 1 Vit oo + Gy+p,Vop]

=3 Yy flyrp = M, (mod. 2);
therefore, since $ NV, = 3 N, (mnod. unity), and therefore

?
%‘yigwp,uNn GraNa=3%[g] N,

we have

a<
N+ 33 kg NalNa= o + ymn’ — 3[g] N = (§C+ 3[g]} N+ pont — 3[g] N,
' (mod. 1),

=gN.C+3imm' = puC + fmm’ = Cu — ymm/, as required.
o Ifnr,.... , Typ be any set of rational fractions all less than unity
and not all zero and such that the row gr =w» consists of integers, and
Wy eeeen. , V'), =7, be every integer row in turn which can be represented in

the form gr’ for values of #’ less than unity, then

2 (6—21rir.)v’ 1, (6 - Zm’rg)v’, ...... ( e 2nirw)v’,p
v

is zero. Since, as remarked (§ 359), the sum can also be written
2 (e iy, (e~ 2mvwn)’w,
v

wherein »,, ..., v, are integers, the sum is unaffected by the addition of any
integers to any one or more of the representants 7'y, ..., 7y, namely it has
the same value for all sets, »/, of incongruent columns (for the modulus g).
If to each of any set of incongruent columns » we add the column
0,...,0,%;, 0,...,0), all of whose elements are zero except that occupying
the 4-th place, which is an integer, we shall obtain another set of in-
congruent columns.
38—2
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Suppose then in the above sum 7; is fractional. Add to every one of
the incongruent sets »" the column (0,0, ..., 1,0, ...,0), of which every
element except the s-th is zero. In the summation everything is unaffected
except the powers of e~2m:, which are multiplied by e, Hence the
sum is unaffected when multiplied by e~2:, and must therefore be zero.

We put down the figures for a simple case given by
4 5]
then gr=(4r,+5ry, r,+27,) and the equations gr=v give

4y +5ry=v;| | (3r=2v;—5p,
2=y * |Bry=dvy— v;;

thus the values of 7, 7, and v, », are given by the table

7'1’7‘2“070}‘:%’% % 3
u,,u2_0,0f3,1‘6,2'

Similarly gr' = (47", 475, 571 +2r',), and the equations gr' =y give
'+ = . (3 =2 — Y,
5 4+ 2ry=v,y) " \3ry=4y -5/ ;
thus the values of 7'}, ', and »';, v, are given by the table

! J 2 L
Ty To O’Ol%)zil%’al

0,0‘2,3‘3,4l'

Vi Vo

Thus the sum in question is
( e—em'r, )0 ( e-—2m‘r,)o + ( e—amir,)2 ( e—mr,)s + ( e—zm‘a', )3 ( e—zm'r,)4
- ( e—zm'v, )o ( e—zm'ug)o + ( e—zm‘v,)é ( e—2n-iv2)§ + ( e—?m'v, )§ ( e—21riv2)§

2 2mi
=14 e—2mi er,+3r) 4 g—2mi Grtar) =14¢ 3 (n+2w) 4e 8 (2"‘+"2)_

For r,=ry,=v,=v,=0, these terms are each unity ; for

(7‘1, 7'2)=<%"s ':%), (”17 ”2)=(3: 1)
these terms are

2wt _2n
1+e 2@ fe—2mid=1+e ?(2)4.9 3 O

or zero.
For (ry, 79)=(%, %), (v, v)=(6, 2), these terms are

omi omi
Lot potmi@=1qe 5 Dge 5O
or zero.
361. We give now an example of the expression of ¢ functions.
Take the case in which p =1, and
0 -3
k=I5 ol
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the conditions @b — ba =k, and geg =k, if @ = (a, o), b = (b, b'), become
ab'—ab=—3, gugn—gugn=—3;

taking for instance

|4 5
I=l1 20
we have, if = (z, 2'), #, = (2, "), and ax + ¢’z’ = 0, the equation
. . Sz, 62’z
k —_ 3 [ = — hthtadiag 3 ’ - y = 1 /
tkax, = 3 (x| — 2'ay) g, (d'a, — aay’) aa, (a8 — o'B),
where a =a+18, ' =a’ +18". Thus, beside ab’'—a'b=— 3, we must have

af >a'B. The quantities a, b, &', b’ are otherwise arbitrary.
The equations a = Kg, b = Lg give (¢, ') = (4K + K, 5K + 2K); there-
fore
3K =2a —a', 3L =2b -V,
3K'=4a’'—5a, 3L =4b —5b;
further the equation ¢ = gC + 4 [g] gives
(c, c’)=[ 4 1|(C,C)V+3(4,10)=H4C+C+2,5C +2C" +5),
5 2

so that

3C=2c—c'+1, 3C' =4c¢ — 5¢—10.
Also, from K = |20, 20’ |, 2miL = |27, 29’ |, with

I L e
a=gl, h=_", b=2h,

we obtain

a=mi(2—b)/(2a—a), b=mi(4a —5a)/(20—a), h=37i/(20—a).

If then & (u; O) denote the theta function, with characteristic(_ g,),
given by
N (u ; C) —_ Eeau2+2hu (n+0)+b (n+C)2--2mwiC’ (n+0)’

then the Jacobian function, with a, b as periods, and ¢ as parameter, is given

by
3¢ (u)= 24,3 (u; C+7),

/
where, in the three terms of the right hand, »* is in turn equal to kg),

(1/3) (2/3)
2/3/° \1/3/"
The function ¢ (x) may in fact be considered as a theta function of the

third order; its various expressions, obtainable by taking different forms for

the matrix g, are transformations of one another, in the sense of Chap. X VIIL
and XX.
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362. The theory of the expression of a Jacobian function which has
been given is for the case when o =2p. Suppose o < 2p, and that we have
two matrices a, b, each of p rows and o columns, such that @b — ba, =k, is a
skew symmetrical matrix of integers, for which kzz, is a positive form for
all values satisfying az = 0, other than those for which also a2 =0, or 2=0;
then it is possible* to determine other 2p — ¢ columns of quantities, and
thence to construct matrices, 4, B, of 2p columns (whereof the first o
columns are those of @, b), such that 4B —BA = K is a skew symmetrical
matrix of integers for which ¢Kzw, is positive when 4z =0, except when
z=0 or Ax=0.

There will then correspond to the set 4, B a function ®, involving v[K |
arbitrary coefficients, such that, for integral n,

® (u + An) _ e21riBn(u+ %An)+21ri0n+a§ﬂKa,p nanp (u)
The function ¢ (u), which is subject only to the condition that

¢ (u+ an) = e21ribn(u+§an) +2micn +a§ﬁku,5 nang ¢ (w),

is then obtained by regarding ¢ (u) as a particular case of ® (u), in which
the added columns in 4, B are arbitrary except that they must be such that
the necessary conditions for 4, B are satisfied.

For further development the reader should consult Frobenius, Crelle,
XCVIL (1884), pp. 16; 188, and Crelle, cv. (1889), p. 35.

* Frobenius, Crelle, xcvir. (1884), p. 24.



