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CHAPTER XIX. 

ON SYSTEMS OF PERIODS AND ON GENERAL JACOBIAN FUNCTIONS. 

343. THE present chapter contains a brief account of some general ideas 
which it is desirable to have in mind in dealing with theta functions in 
general and more especially in dealing with the theory of transformation. 

Starting with the theta functions it is possible to build up functions 
of p variables which have 2p sets of simultaneous periods—as for instance 
by forming quotients of integral polynomials of theta functions (Chap. XL, 
§ 207), or by taking the second differential coefficients of the logarithm of 
a single theta function (Chap. XL, § 216, Chap. XVIL, § 311 (S)). Thereby 
is suggested, as a matter for enquiry, along with other questions belonging to 
the general theory of functions of several independent variables, the question 
whether every such multiply-periodic function can be expressed by means of 
theta functions*. Leaving aside this general theory, we consider in this 
chapter, in the barest outline, (i) the theory of the periods of an analytical 
multiply-periodic function, (ii) the expression of the most general single 
valued analytical integral function of which the second logarithmic dif­
ferential coefficients are periodic functions. 

344. If an uniform analytical function of p independent complex 
variables uly ..., up be such that, for every set of values of , ..., it 
is unaltered by the addition, respectively to 1 ..., of the constants 
P1} ..., Pp, then Pl9 ..., Pp are said to constitute a period column for the 
function. Such a column will be denoted by a single letter, P , and Pk will 
denote any one of P1} ..., Pp. I t is clear that if each of P , Q, Ry... be 
period columns for the function, and X, p, v, ... be any definite integers, 
independent of k, then the column of quantities + /AQ^ + vRk + ... is 
also a period column for the function; we shall denote this column by 
7LP + /J,Q + VR+ ..., and say that it is a linear function of the columns 
P , Q, , ..., the coefficients X, ft, vy ..., in this case, but not necessarily 

* Cf. Weierstrass, Creile, LXXXIX. (1880), p. 8. 
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always, being integers. The real parts of the new column are the same 
linear functions of the real parts of the component columns, as also are the 
imaginary parts. More generally, when the p quantities & + /iQfc + + • • • 
are zero for the same values of X, / i j , . . . , we say that the columns P,QyR,... 
are connected by a linear equation; it must be noticed, for the sake of 
definiteness, that it does not thence follow that, for instance, P is a linear 
function of the other columns, unless it is known that X is not zero. 

I t is clear moreover that any 2p + 1, or more, columns of periods are 
connected by at least one linear equation with real coefficients (that is, an 
equation for each of the p positions in the column—p equations in all, with 
the same coefficients) ; for, in order to such an equation, the separation of 
real and imaginary gives 2p linear equations to be satisfied by the 2p + 1 
real coefficients ; allowing possible zero values for coefficients these equations 
can always be satisfied. 

For instance the periods — ̂  + , ^ ^ + ^» '^ ' + ^* a r e connected by an 
equation 

in which however, if a»^'— a^ui '= 0, also £=0. 

Thus, for any periodic function, there exists a least number, r, of period 
columns, with r lying between 1 and 2p + 1, which are themselves not 
connected by any linear equation with real coefficients, but are such that 
every other period column is a linear function of these columns with real 
finite coefficients. Denoting such a set* of r period columns by P ( 1 ) , . . . , P ( r ) , 
and denoting any other period column by Q, we have therefore the p 
equations 

QV = \I*?+ + Mt\ (k=l,2,...,p), 

wherein X1} ..., Xr are independent of k, and are real and not infinite. It is 
the purpose of whatf follows to shew, in the case of an uniform analytical 
function of the independent complex variables uXi ..., up, (I.) that unless the 
function can be expressed in terms of less than p variables which are linear 
functions of the arguments , ..., up, the coefficients X1} ..., Xr are rational 
numbers, (II.) that, X1} ..., Xr being rational numbers, sets of r columns of 
periods exist in terms of which every existing period column can be linearly 
expressed with integral coefficients. 

Two lemmas are employed which may be enunciated thus :— 
(a) If an uniform analytical function of the variables ult ..., up have a 

column of infinitesimal periods, it is expressible as a function of less than 
p variables which are linear functions of , ..., up. And conversely, if such 

* It will appear that the number of such sets is infinite ; it is the number r which is unique, 
t These propositions are given by Weierstrass. Abhandlungen am der Functionenlehre 

(Berlin, 1886), p. 165 (or Berlin. Monateber. 1876). 



3 4 5 ] HAVE INFINITESIMAL PERIODS. 5 7 3 

uniform analytical function of , ...,up be expressible as a function of less 
than p variables which are linear functions of , ..., up, it has columns of 
infinitesimal periods. 

(ß) Of periods of an uniform analytical function of the variables 
u1}...,up> which does not possess any columns of infinitesimal periods, 
there is only a finite number of columns of which every period is finite. 

345. To prove the first part of lemma (a) it is sufficient to prove that 
when the function ƒ ( ^, ..., up) is not expressible as a function of less than 
p linear functions of u1} ..., up, then it has not any columns of infinitesimal 
periods. 

We define as an ordinary set of values of the variables u1} ..., up a set 
', ..., Up, such that, for absolute values of the differences — ', ...,up — up' 

which are within sufficient (not vanishing) nearness to zero, the function, 
ƒ ( , ..., up), can be represented by a converging series of positive integral 
powers of these differences—the possibility of such representation being the 
distinguishing mark of an analytical function ; other sets of values of the 
variables are distinguished as singular sets of values*. 

Then if the function be not expressible by less than p linear functions of 
, ..., upy there can exist no set of constants clf ..., cp such that the 

function 

1 p dup 

vanishes for all ordinary sets of values of the variables; for this would 
require ƒ to be a function of the p — 1 variables { — ( = 2, ..., p). 
Hence there exist sets of ordinary values such that not all the differential 
coefficients df/ , ...,df/dup are zero; let u\, ...,Up be such an ordinary 
set of values; for all values of u1} ...,up in the immediate neighbourhoods 
respectively of , ..., up , the statement remains true that not all the partial 
differential coefficients are zero. 

Then, similarly, the determinants of two rows and columns formed from 
the array 

\Èt 1 3t. \ 
I ' ' '" , I 

do not all vanish for every ordinary set of values of the variables; let  

, . . . , Up be an ordinary set for which they do not vanish ; for all values of 

* The ordinary sets of values constitute a continuum of 2p dimensions, which is necessarily 
limited; the limiting sets of values are the singular sets. Cf. Weierstrass, Creile, LXXXIX. 
(1880), p. 3, 
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, ..., up in the immediate neighbourhoods respectively of , ..., up, the 
statement remains true that not all these determinants are zero. 

Proceeding step by step in the way thus indicated we infer that there exist 
sets of ordinary values of the variables, ( , ...,up), ..., (uf, ...,up), such 
that the determinant, A, of p rows and columns in which the k-th element of 
the r-th row is df(u{[\ ..., ^/ *, does not vanish; and since these are 
ordinary sets of values of the arguments, this determinant will remain 
different from zero if (for r = l , ..., p) the set u{[\ ..., ] be replaced 
by v{[\ . . . , Vp\ where vk

r) is a value in the immediate neighbourhood of 

This fact is however inconsistent with the existence of a column of 
infinitesimal periods. For if Hlf ..., Hp be such a column, of which the 
constituents are not all zero, we have 

0 = ƒ («? + Hl,...,tg + Hp) - ƒ ( < ' , . . . ,<>), (r = 1, .. . , p), 

where 0lt ..., are quantities whose absolute values are ^ 1 , and the 
bracket indicates that, after forming df/ , we are (for m = l , ..., p) to 
substitute ur

m + for u^ ; these p equations, by elimination of Hly..., Hp 

give zero as the value of a determinant which is obtainable from by slight 
changes of the sets , ..., u'p ; we have seen above that such a determinant 
is not zero. 

To prove the converse part of lemma (a) we may proceed as follows. 
Suppose that the function is expressible by m arguments v1} ..., vm given by 

= 1 + ... + > (k = lt ..., m\ 

wherein m<p. The conditions that v1,...ivm remain unaltered when 
, ...,up are replaced respectively by + tQlf . . . , up + tQp are satisfied by 

taking ft, ..., Qp so that 

a*,iQi+ +ak,pQp = 0, (Ar=l, . . . ,m) , 

and since m<p these conditions can be satisfied by finite values of Qlt..., Qp 

which are not all zero. The additions of the quantities tQ1} ...,tQp to 
u\> ..., Wp, not altering vlf ..., vmj will not alter the value of the function/. 
Hence by supposing t taken infinitesimally small, the function has a column 
of infinitesimal periods. 

346. As to lemma (/3), let Pk = pk + -* be one period of any column of 
periods, (k = 1, . . . ,p) , wherein pk, crk are real, so that, in accordance with the 
condition that the function has no column of infinitesimal periods, there 



347] A SYSTEM OF INDEPENDENT PERIODS. 575 

is an assignable real positive quantity e such that not all the 2p quantities 
pk} crk are less than e. Then if fik, vk be 2p specified positive integers, 
there is at most one column of periods satisfying the conditions 

№ ^ | pk i < O* + 1) €, "he %> | <rk | < (vk -f 1) e, (k = 1, ..., p) ; 

wherein |/ *|, | "*| are the numerical values of pki <rk; for if p*'+ ' /were 
one period of another column also satisfying these conditions, the quantities 
Pk — /Ojb + (< — -*) would form a period column wherein every one of the 
2p quantities pk — pk, <rk — ak w a s numerically less than e. 

Hence, since, if g be any assigned real positive quantity, there is only a 
finite number of sets of 2p positive integers / , vk such that each of the 
2p quantities /z^e, vke is within the limits (— g, g), it follows that there 
is only a finite number of columns of periods Pk = pk + iaki such that each of 
pk, ark is numerically less than g. And this is the meaning of the lemma. 

347. We return now to the expression (§ 344) of the most general 
period column of the function ƒ by real linear functions of r period columns, 
of finite periods, in the form 

Q = X1Pw + +\,P<r); 

here the suffix is omitted, and we make the hypothesis that the function 
is not expressible by fewer than p linear combinations of Ui, ..., Up. 

Consider, first, the period columns Q from which X2 = X3 = ... = \ r = 0 
and 0 < \ x ^ 1. Since there are no columns of infinitesimal periods, there 
is a lower limit to the values of \ corresponding to existing period columns 
Q satisfying these conditions; and since there is only a finite number of 
period columns of wholly finite periods, there is an existing period for which 
Xi is equal to this lower limit. Let \lt ! be this least value of \ , and Q(1) 

be the corresponding period column Q. 
Consider, next, the period columns Q for which X3 = X4 = ... = \ = 0, 

and O^Xi^ -1 , 0<X2^>1. As before there are period columns of this 
character in which X2 has a least value, which we denote by X2j 2. If there 
exist several corresponding values of \1} let X1|2 denote one of these, and 
denote X1 ( 2P^ +X2j2P<2> by Q<2>. 

In general consider the period columns of the form 

\ P W + +\mP{m), ( m ^ r ) , 
wherein 

O ^ X ^ l , ^ O ^ X ^ ^ l , 0 < X m ^ l . 

Since there are no infinitesimal periods, there is a lower limit to the values 
of Xm corresponding to existing period columns satisfying these conditions ; 
since there is only a finite number of period columns of wholly finite periods, 
there is at least one existing column Q for which Xm is equal to this lower 
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limit; denote this value of A™ by Xm,m, and denote by \hm, ..., Xw_1>m values 
arising in an actual period column Q(m) given by 

Qw = \mp® + ,,* » +... + 4 ^ ( m ì ; 
there may exist more than one period column in which the coefficient of 
Pm is \™,m. 

Thus, taking m = l, 2, ..., r, we obtain r period columns Q(1), ..., Q<r). 
In terms of these any period column Q, = X1P

(1) + ... +\rP
ir), in which 

\lt ..., \r are real, can be uniquely written in the form 

» +... + irrQn + ^p« +... + fJbrpir)i 
wherein Nlt ..., Nr are integers, and f̂ , ..., fir are real quantities which are 
zero or positive and respectively less than \ M , ..., Xy>r. For, putting \ r into 
the form Nr\r,r + H>r> where Nr is an integer and / > if not zero, is positive 
and less than \r,r> we have 

Q = X1P« + . . .+Xr-Pw 

= X/P*1» + ... + A/î.-1P<r-1) 4- JVrQ
(r» + ^ ( ), 

where 
Aj = = A j J.Y f A j f, • . • , A f—i ^ \y—i xV Y Ay—j r ; 

and herein the column Q'= X/P(1) + ... + Vr_1P
(r_1» can quite similarly be 

expressed in the form 

Q' =X1"P<1> + . . . + „ + N^Qr-v + iuT_1P(^), 

and so on. 
But now, if JV̂ QW + ... + NrQv + {1) + ... + A*rP(r) be a period column, 

it follows, as JVj, ..., Nr are integers, that also ^ {1) +... + firP
(r) is a period 

column; and this in fact is only possible when each of /j,l9 ..., / is zero. 
For, by our definition of Q{r), the coefficient fir is zero ; then, by the definition 
of Q(r-1), the coefficient / ^ is zero ; and so on. 

On the whole we have the proposition (II., § 344)—if 

Q ( w , =4mP { 1 ) + . . . + X , w , m P ^ , (m = l, . . . , r ) , 

be that real linear combination of the first m columns from P{1)> ..., P{r) in 
which the m-th coefficient XWj m has the least existing value greater than zero 
and not greater than unity, or be one such combination for which Xm>m satisfies 
the same condition, then every period column is expressible as a linear combina­
tion of the columns Q(1), ..., Q(r) with integral coefficients. 

It should be noticed that ÇW, ..., §<r) are not connected by any linear equation with 
real coefficients, or the same would be true of PM, ..., P(r). And it should be borne 
in mind that the expression of any period column by means of integral coefficients, 
in terms of §M. ..., Q(r\ is a consequence of the fact that the function f(ult ..., up) 
has only a limited number of period columns which consist wholly of finite periods. 
Conversely the period columns, of finite periods, obtainable with such integral coefficients, 
are limited in number. 
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Another result (I., § 344) is thence obvious—The coefficients in the linear 
expression of any period column in terms of P(1), ..., P(r) are rational 
numbers. 

For by the demonstration of the last result it follows that the period 
columns P(1), ..., P{r) can be expressed with integral coefficients in terms of 
Q«, ..., Qw in the form 

pm = jy<«)QW + ... + N™Qi*9 (m= 1, ..., r ) ; 

from these equations, since the columns P(1), ..., P(r> are not connected by 
any linear relation with real coefficients, the columns Q(1), ..., Q{r) can be 
expressed as linear combinations of P(1), ..., P ( r ) with only rational numbers 
as coefficients; hence any linear combinations of Q(1), ..., Q(r) with integral 
coefficients is a linear combination of P(1), ..., P{r) with rational-number 
coefficients. 

I t needs scarcely* to be remarked that the set of period columns 
Q(1)> •••> Q{r)> in terms of which any other column can be expressed with 
integral coefficients, is not the only set having this property. 

348. We consider briefly the application of the foregoing theory to the case of uniform 
analytical functions of a single variable which do not possess any infinitesimal periods. I t 
will be sufficient to take the case when the function has two periods which have not a real 
ratio ; this is equivalent to excluding singly periodic functions. 

If 2a>x, 2u>2 be two periods of the function, whose ratio is not real, and 2û be any other 
period, it is possible to find two real quantities Xx, X2 such that 

Û = X 1 U > 1 4 - X 2 Û ) 2 ; 

then of periods of the form 2X1<»1, in which C X X ^ l , of which form periods do exist, 2<o1 

itself being one, there is one in which Xx has a least value, other than zero—as follows 
because the function has only a finite number of finite periods. Denote this least value 
by /xx, and put Ûj=/X1Û)1. Of periods of the form 2^^ + 2X2U>2 in which 0^>X1^>1,0<X2^>1, 
there is a finite number, and therefore one, in which X2 has the least value arising, say /*2 ; 
let one of the corresponding values of Xj be X; put Û2=Xo>1 + /i2û)2. Then any period 
2û = 2X1û>1 + 2X2u)2 is of the form 2N1Q1+2N2Q2+2V1<Ù1 + 2V2<Ù2Ì where v19 v2 are (zero or) 
positive and respectively less than fit and /u2, and NXi N2 are integers, such that \2=JV2fi2-\-v2, 
Xx — JV2X = N^x + i/j. But the existence of a period Q - 2JV1Q1 - 2JV2Q2=2 1 1 + 2 2 2 with 
"1</*1> <1 i s contrary to the definition of ^ and /*2, unless vx and v2 be both zero. 
Hence every period is expressible in the form 

Q = 2iVr
1Q1 + 2iVr

2Q2, 
where ffiu N2 are integers. 

In other words, a uniform analytical function of a single variable without infinitesimal 
periods cannot be more than doubly periodici. 

* For the argument compare Weierstrass (1. c , § 344), Jacobi, Ges. Werke, t. iL, p. 27, 
Hermite, Grelle, XL. (1850), p. 310, Eiemann, Grelle, LXXI. (1859) or Werke (1876), p. 276. See 
also Kronecker, "Die Periodensysteme von Functionen reeller Variabein," Sitzungsber. der 
Beri. Akad., 1884, (Jun. bis Dec), p. 1071. 

t Cf. Forsyth, Theory of Functions (1893), §§ 108, 107. It follows from these Articles, in 
this order, that any three periods of a uniform function of one variable can be expressed, with 

. 37 
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I t follows also that every period is expressible by 2a>ly 2Û>2 with only rational-number 
coefficients. 

349. Ex. i. If r quantities be connected by homogeneous linear equations with 
integral coefficients {r>k)y i t is possible to find r-k other quantities, themselves expressible 
as linear functions of the r quantities with integral coefficients, in terms of which the r 
quantities can be linearly expressed with integral coefficients. 

Ex. ii. If Pi1),..., P(r) be r columns of real quantities, each containing r - 1 constituents, 
a column NxPil) + . . . + NrPir) can be formed, in which 1 . . . , ? are integers, whose r- 1 
constituents are within assigned nearness of any r—1 assigned real quantities (cf. 
Chap. IX., § 166, and Clebsch u. Gordan, Abels. Funct. , p. 135). 

Ex. iii. An uniform analytical function of p variables, having r period columns PU), 
. . . , P(r), each of p constituents, and having a further period column expressible in the 
form \lP$)+...+\ ( ), wherein \19 . . . , Xr are real, will necessarily have a column of 
infinitesimal periods if even one of the coefficients \l9 . . . , Xr be irrational. 

From this result, taken with Ex. i., another demonstration of the proposition of the 
text (§ 347) can be obtained. The result is itself a corollary from the reasoning of the 
text. 

Ex. iv. If ux,a, . . . , tix'a be linearly independent integrals of the first kind, on a 

Riemann surface, and the periods, 2< (8, 2<»' , of the integral ux*a be written pr,B+io-rt9i 

pV,8 + ^'r,8> shew that the vanishing of the determinant of 2p rows and columns which is 

denoted by 

I Pr, l > • • • ) Pr, pi P r, l) • • • ? P r, p \ 

> 
' °V, • • • > °"r, p> °" r, i > • • • > V r, p ' 

would involve* the equation 

(M^iN^u** a + ... + (Mp-Œp)u% "^constant, 

where Mlf ffi19 . . . , Mpi Np are the minors of the elements of the first column of this 
determinant and are supposed not all zero. 

The vanishing of this determinant is the condition that the period columns of the 
integrals should be connected by a homogeneous linear relation with real coefficient's. 

350. The argument of the text has important bearings on the theory of the Inversion 
Problem discussed in Chap. IX. The functions by which the solution of that problem is 
expressed have 2p columns of periods in terms of which all other period columns can be 
expressed linearly with integral coefficients ; these 2p columns are not connected by any 
linear equation with integral coefficients (§ 165), and, therefore, are not connected by any 
linear equation with real coefficients. 

I t has been remarked (§ 174, Chap. X.) that the Riemann theta functions whereby the 
2jo-fold periodic functions expressing the solution of the Inversion Problem can be built 
up, are not the most general theta functions possible. The same is therefore presumably 
true of the 2p-fold periodic functions themselves. Weierstrass has stated a theorem t 

integral coefficients, in terms of two periods. These two periods, and any fourth period of the 
function, can, in their turn, be expressed integrally by two other periods^—and so on. The 
reasoning of the text shews that when the function has no infinitesima! periods, the successive 
processes are finite in number, and every period can be expressed, with integral coefficients, 
in terms of two periods. 

* Forsyth, Theory of Functions (1893), p. 440, Cor. ii. 
t Berlin, Manatsber. Dec. 2, 1869, Creile, LXXXIX. (1880). For an application to integrals 

of radical functions, Cf. Wirtinger, Untersuchungen über Thetafunctionen (Leipzig, 1895), p. 77. 
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whereby it appears that the most general 2jo-fold periodic functions that are possible can 
be supposed to arise in the solution of a generalised Inversion Problem ; this Inversion 
Problem differs from that of Jacobi in that the solution involves multiform periodic 
functions*; the theorems of the text possess therefore an interest, so far as they 
hold, in the case of such multiform functions. The reader is referred to Weierstrass, 
Abhandlungen aus der Functionenlehre (Berlin, 1886), p. 177, and to Casorati, Acta 
Mathematica, t. viii. (1886). 

351. We pass now to a brief account of a different theory which is 
necessary to make clear the position occupied by the theory of the ta 
functions. Considering, à priori, uniform integral analytical functions 
which, like the the ta functions, are such tha t their partial logarithmic 
differential coefficients of the second order are periodic functions, we in­
vestigate certain relations which must necessarily hold among the periods, 
and we prove tha t all such functions can be expressed by means of theta 
functions. 

Suppose tha t to the p variables , . . . , up there correspond a columns of 
quantit ies af(i=l, ..., p,j = 1, . . . , a) and a columns of quanti t ies U/]— 
according to the scheme 

\ <#>,..,<#> \ e . - . & r I; 

a{1) {< ) h{1) h{<r) I 
Up \ U,p , . . , tlp Up , . . , Up ; 

and suppose ( ) to be an uniform, analytical function of uly . . . , up which 
for finite values of ult ...,up is finite and continuous—which further has the 
property expressed by the equations 

(u + < ) = e 2 ^ " , ^ + ^ , i , ] + 2 ^ ' ) (y)y ( j = 1, . . . , -), (I.) 

wherein & is a symbol for a column \ . . . , ] and {?] is a single quanti ty 
depending only on j . The aggregate of c(1), . . . , will be called the 
characteristic or the parameter of ( ) ; ] will finally be denoted by aitj. 
We suppose tha t the columns { are independent, in the sense tha t there 
exists no linear equation connecting them of which the coefficients are 
rational number s ; bu t it is not assumed tha t the columns a^ constitute all 
the independent columns for which the function satisfies an equation of 
the form ( I ) . Also we suppose tha t the equation (I.) is not satisfied for 
any column of wholly infinitesimal quanti t ies pu t in place of a®. The 
reason for this last supposition is tha t in such case it is possible to express  

as the product of an exponential of a quadric function of ult . . . , up, 
multiplied into a function of less than p variables, these fewer variables 
being linear functions of ult . . . , up. The function ( ) in the most general 

* With a finite number of values. 

37—2 
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case is a generalisation of a theta function; it will be distinguished by the 
name of a Jacobian function ; but, for example, it may be a theta function, 
for which, when a < 2p, the columns a® are a- of the 2p columns of quasi-
periods, 2u)tf). 

A consequence of the two suppositions is that in the matrix of <r 
columns and 2p rows, of which the (2i — l)th and 2i-th rows are formed 
respectively by the real and imaginary parts of the row a*l), ..., a{f\ not 
every determinant of a rows and columns can vanish. For if with a arbitrary 
real variables x1} . . . ,#„ we form 2p linear functions, the (2 — l)th and 
2i-th of these having for coefficients the (2 — l) th and 2i-th rows of the 
matrix of a- columns and 2p rows just described, the condition that every 
determinant from this matrix with a rows and columns should vanish, is 
that all these 2p linear functions should be expressible as linear functions of 
at most a — 1 of them. Now it is possible to choose rational integer values 
of #!,...,#„. to make all of these o- —1 linear functions infinitesimally 
small*; they cannot be made simultaneously zero since the a columns of 
periods are independent. Therefore every one of the 2p linear functions 
would be infinitesimally small for the same integer values of xu ..., xa. 
Thus there would exist a column of infinitesimal quantities expressible in 
the form {1) + ... + x<ra

{(rK Now it will be shewn to be a consequence of 
the coexistence of equations (I.) that also an equation of the form (I.) exists 
when a^ is replaced by an expression xxa

{1) -f ... +xaa
{<r), wherein xlt ..., xff 

are integers. This however is contrary to our second supposition above. 
Hence also the matrix of a columns and 2p rows, wherein the (2 — l)th 

and 2z-th rows consist of a{}\ ..., a{°] and the quantities which are the 
conjugate complexes of these respectively, is such that not every determinant 
of ar rows and columns formed therefrom is zero. 

And also, by the slightest modification of the argument, a cannot be 
> 2p. The case when <r is equal to 2p is of especial importance ; in fact 
the case a <2p can be reduced to this f case. 

352. Consider now the equations (I.). We proceed to shew that in 
order that they should be consistent with the condition that ( ) is an 
uniform function, it is necessary, if a, b denote the matrices of p rows and a 
columns which occur in the scheme of § 351, that the matrix of a rows and 
columns\, expressed by 

ab — ba, (A), 

should be a skew symmetrical one of which each element is a rational 

* Chap, ix., § 166. 
t When <r = 2p, the hypothesis of no infinitesimal periods is a consequence of the other 

conditions (cf. § 345). 
% The notation already used for square matrices can be extended to rectangular matrices. 

See, for example, Appendix ., at the end of this volume (§ 406). 
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integer. Denote it by k, so that kaa = 0, kaß = — kßa. But further also we 
shew that it is necessary, if x denote a column of a quantities and xx denote 
the column whose elements are the conjugate complexes of those of x, that 
for all values, other than zero, satisfying the p equations 

ax = 0, (B), 

the expression should be positive. We shew that 1 cannot be zero 
unless, beside ax, also axx be zero : a condition only fulfilled by putting each 
of the elements of x = 0 (as follows because the a columns of periods are 
independent and there are no infinitesimal periods). The condition (B) is in 
general inoperative when a <p + 1. 

353. Before giving the proof it may be well to illustrate these results by shewing that 
they hold for the particular case of the theta functions for which (cf. § 284, Chap. XV.) 

( =2 , a = |2û>, 2Û>'|, 2 = |2»7, 2i/|, 

and therefore 

ax = 2Û)X+ 2<o' X' = Qx, bx—-—; HXì 

I X l where X is a column of p quantities, X' a column of » quantities, and x—\ Vf\. Let 
I - - [ 

\Y I  — , where, similarly, each of Fand Y' is a column of̂ > quantities ; then* 

XY' - X'Y=-—.{HXQ,Y — ¥& ) = ay - bx — ax. by = (äb — ba)xy=kxy, 

but 
1...P 1...JP '1...P 

XY'-X'Y= 2 \XiY{-XjYj\= 2 { + - + )= 2 [ + « < <+ + ^ + ^ ,-], 

where ei+Pti = + 1 = — ciii+p and * , ,=0 when ~ / is not equal top ; thus we may write 

kxy=XY'-X'Y=€xy, 

namely, the matrix is in the case of the theta functions the matrix e, of 2p rows and 
columns, which has already been employed (Chap. XVIII., § 322). 

I t can be similarly shewn that in the case of theta functions of order , —re. 
Next if a, b, h denote the matrices occurring in the exponents of the exponential in the 

theta series, we havet 
\1& = + ', 

namely h..ax=iriX+bX'. Hence the equations ax=0 give X= . '. If Xly X / 

denote the conjugate complexes of X, X' we have therefore = —\ -{. 
iti 

Hence ikxx1=iexx1=i(XX{ - X'XX) = - - [ ' ^ + \ X/X'] = - - ( b + \ ) X'X/, since 
7 7 

b = b and b1=b1 . Thus if b=c-H'd, 1^=0-id, the quantity - c X ' X / is positive unless 
each element of X' is zero, namely, the real part of bX'X/ is negative for all values of X' 
(except zero). If X'=ra+m, b (m2 + n2) is equal to 2+ 2; and the condition that this 
be negative is just the condition that the theta series converge. 

* For the notation see Appendix n. 
t Chap. x. § 190, Chap. vu. § 140. 



582 PROOF OF THE NECESSITY [354 

354. Passing from this case to the proof of equations (A), (B) of § 352, 
we have, from equation (I.), 

[u + aw + a®] = ^»(«[u+aw + iaa^ + a™«^ (u + ^ 

= 27 1&'1) [« + a<2> + Ja'1»] + 2wicV + 2 ! [ + è«(2)] + 2 <2> . / ^ \ 

where L12 = m [ 1] ® - ® ®], = -L21. Since the left-hand side of the 
equation is symmetrical in regard to ax and a2t eL™ must be =eL2i, and 
hence L12JTTÌ is a rational integer, = k21 say, such that k12 = — &21. 

Obviously, in k12 = a{1)b(2) — a(2,6(1), the part a(1) b{2) is formed by compound­
ing the first column of the matrix a (of a columns and p rows) with the 
second column of the matrix b. Similarly with a(2)6(1). Namely k12 is the 
(1, 2)th element of k = ab — ba. Since similar reasoning holds for every 
element, it follows that the matrix & is a skew symmetrical matrix of 
integers. Conversely, if this be so, it is easy to prove by successive steps 
the equation 

(u 4 a(1> + a{2) m2 + . . . + a{(r) ) / ( ) 

= 2ri [bVnh + ... + b^ma] Vu + a ^ " ^ t ^ ° ^ ~ j + 2iri (c« % + ...+ cOma) + mL (jj . 

where 
a</3 

L= 2 kaßmamß} 
a = l , . . . , <r 
/3 = 2, . . . , <r 

and mu ..., ma are integers; this equation may be represented* by 

arni a<& 
( + ) = ( ) L 2 j «e « P 

In fact, assuming the equation (II.) to be true for one set mlf ..., mff, we 
have, by the equations (I.), 

[u + am + a« ] = 27 ) tw+aw + ̂ 1 + 2™ ( t t + am), 

_ e2wibm [u + ^am] + 27 6^ [ + avi + % ®] + 27 + 2 0' + 7 S ; ^ ma viß ^ / ^ \ 

< 
_ 2 [bm + ][ + \ + \ + 2 [cm + + wi 2 ^ mß + iriR ( \ 

* For the notation see Appendix .—or thus— 

&m.M = S[b i lw1+ +bUfma]ui 
i 

= ( ^ ) m1 + + { )  
i 

= (2b{ï)ui)m1+ +(20^4) ma 

= ò(1,w.w1+ + b(<T)u.mv 

= bwm1.u+ +ò(o",w<r.M. 
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where R is equal to b{1). am — brn. a{1\ namely equal to 

™ [41)m1 + ... + aï]ma] - 2 [òj1} ̂  + ... + ^ < | a<!) ='&21m2 + ... + ^ m a , 

so that 
a<ß 

i2 + S kaßmamß 

= k21m2 4- ... + ^ + k12m1m2 -h ... + ^ ^ ,, + k^m2mz + ... + k2<rm2ma + ..., 

= 2 (&21m2 + ... + ^ «,) + &]2 (raj + l ) w 2 + ... + kla(m1 + l)m<r + 23 2 3 +... ; 

hence 
7 + 7 2 kaßinamß _ ici S kaß

mamß' 
& a<ß — # a < j 8 > 

where 
', . . . , m / ] = [ 1+ 1, m2, ..., m<J; 

therefore 
, . / 2Tribm,\u + ham'] + 2iricm, + Tri S #AßWi' ' • , \ 

Similarly we can take the case (u + am — a(1)), noticing that equation 
(I.) can be written 

( - ) = ( ) -2" ^-* )]-2™{\ 

where v = u + a^K 

355. The theorem (A) is thus proved. The theorem (B) is of a different 
character, and may be made to depend on the fact that a one-valu ed 
function of a single complex variable cannot remain finite for all values of 
the variable. 

Consider the expression 

L (£) = er**** <*+*«*>->»** (v + a£), 

wherein glt ..., £a are real quantities. 
Then L(% + m)/Z(f), wherein mly ..., ma are rational integers, is equal 

a<ß 

to eirikm^Ti s k*ßm*mßt as immediately follows from equation (I.), and is 
therefore a quantity whose modulus is unity. Now when fx, ..., fff are each 
between 0 and 1 and v is finite, L (£) is finite. Its modulus is therefore 
finite for all real values of f ; let G be an upper limit to the modulus of L (£) ; 
G can be determined by considering values of £ between 0 and 1. Let now 
a?i, ...,œ0 be such that ax = 0, and let xx denote the column of quantities 
which are the conjugate complexes of the elements of the column x. Put 
£ = x 4- xlf so that af = axx. 

Then 
(v + axx) = (v + aj) = e"*f • «*+**(«+**) f x (£), 

wherein an upper limit of the modulus of L (£) is a positive quantity G whose 
value may be taken large enough to be unaffected by replacing x by any 
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other solution of ax = 0 ; it is necessary in fact only to consider the modulus 
of L (£) when f is between 0 and 1. 

We have 

b%. £ = (x -f ) . a (x + xx) = bx. axx + bxx. axx 

= bx. — . ax + bxx. axx — Jcxx1 + &# 
( + 6 >) f, = w (x + #i), say, = w# 4- w ^ + (w — ^i) Ä?I, 

where w = + 6v ; therefore 

this equation is the same as 

where 

If, = Z(f)e^<«*+*'i*i>, 
has the same modulus as L (£), less than G, and where 
/ = 1 

i 26' + > Vj ~~ I ^ . 1 Vfr ~~ ^ I 
= iirÌtkij [xj (x^i — X{ (&i)j] = iirlkij = 2Ì7rzkiji 

\yi + iziy y%-izi\ \y%, -Zi\ 
— 27rXkij (yjZi — yiZj) = Zirkyz, is a real quantity ( being equal to + >). 

Now if # be any solution of the equations o# = 0, then fiYx is also a 
solution, fi being any arbitrary complex quantity and ^ its conjugate 
complex. Replace x throughout by fj^x, and therefore £ by fj^x + fixY. Then 
the equation just written becomes 

if having also its modulus < Cr. 
Herein the left side, if not independent of fi, is, for definite constant 

values of v and x, a one-valued continuous (analytical) function of JUL which is 
finite for all finite values of fi. Hence it must be infinite for infinite values 
of p. Hence p must be positive, viz., values of x such that ax=0 are such 
that the real quantity ikxx1 is necessarily positive provided only the ex­
pression 

€ 1* 1*-> 1*. (w-wj Xx (y + pax^ 

is not independent of / . 
Now if this expression be independent of fi, it is equal to (v), the value 

obtained when /J, = 0, and therefore 

0) 
here the left side is a function of v provided axx be not zero; when axx 

is zero its value is unity ; we take these possibilities in turn : 
(i) Suppose first axx is not zero, 
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then 

(w — Wj) xY — (bv — bfä) x1 = bx1.v — b^. t>i 

must, like the left side, be a function of v and therefore a linear function, say 

tr—.(Bv+C), so that 

(v + fiaœj = (v) e^+z^+c*, where A = iirabx? ; 

hence fiax1 represents a column of periods* for the function (v)—and this 
for arbitrary values of fi. 

In this case however (v) would be capable of a column of infinitesimal 
periods, contrary to our hypothesis. 

Hence p must be positive for values of x such that ax = 0, 0. 
(ii) * But in fact as there are <r columns of independent periods we cannot 
simultaneously have ax = 0, ax^ = 0. For the last is equivalent to aYx = 0 ; 
and ax — 0, a^x = 0, together, involve that every determinant of a rows and 

columns in the matrix is zero—and thence involve the existence of 

infinitesimal periods (§ 351). 
Hence ikxx1 is necessarily positive for values of x, other than zero, 

satisfying ax = 0 ; and this is the theorem (B). 

Remark i. From the existence of two matrices ay b of p rows and o- columns, for 
which ab-ba is a skew symmetrical matrix of integers such that ikxxt is positive 
for values of x other than zero satisfying ax=0, can be inferred that in the matrix 

of <r columns and 2p rows, I, not every determinant of o- rows and columns can 

vanish—and also that the a- columns of quantities which form the matrix a are inde­
pendent, namely that we cannot have the p equations a*1#<1) + ...+ai<r#(»)=0 satisfied 
by rational integers A-W, ..., °"). For then, also, axx=0, since x=xv 

Remark ii. In the matrix k, if a- be not less than p, all determinants of 2 (tr — p) rows 
and columns cannot be zero. In the matrix a, not all determinants of Jo- or J(o--f-l) rows 
and columns can be zero. In particular when <r=2p, for the matrix k, the determinant is 
not zero ; for the matrix a, not all determinants of p rows and columns can be zero. 

Let £, ) be columns each of o- quantities. Then the coexistence of the 3 sets of 
equations 

a£=0, =0, k(C+rj)=0 

is inconsistent with the conditions (A) and (B) (§ 352), except for zero values of £ and 17. 
The second of them obviously gives also = 0. 

For from these equations we infer that krj^ — a^. 1 - b£. } is zero, and also 

2 (Ç + v) • ?i=&h té+*) = &hê+*W7» 

and therefore also krjtf is zero. But by condition (B) the vanishing of k^rj when, as here, 
\—% enables us to infer rj—0. 

* We use the word period for the quantities a(» occurring in our original equation (I.). 
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Similarly 

is zero when (£ + )1)=0, <%=0, ag=0. Thence by condition (B), since a £ = 0 , £ is zero. 
Suppose now that the number of the p linear functions a£ which are linearly inde­

pendent is vy so tha t all determinants of (*> + l ) rows and columns of the matrix a are zero, 
but not all determinants of v rows and columns ; and tha t the number of the a- linear 
functions which are linearly independent is 2**, so that in the matrix all determinants 
of 2/c-fl rows and columns vanish, but not all of 2 rows and columns. Then we can 
choose 2V + 2K linearly independent linear functions from the 2 + < functions af, a^ ,  

(£ + rj). If this number, 2 I / + 2 K , of independent functions, were less than the number 2o-
of variables £, rj, the chosen independent functions could be made to vanish simultaneously 
for other than zero values of the variables, and then all the linear functions dependent on 
these must also vanish. 

Hence 
2I/ + 2 K > 2 O - or V + KJ>(T. 

Now 
i/<£>, 2K < o- ; hence v > ^cr, 2* > 2 (o- —p). 

Remark iii. I t follows from (ii) tha t if k=0, then v = ar and <r=p. Also tha t a function 
of p variables which is everywhere finite, continuous and one-valued for finite values of the 
variables and has no infinitesimal periods cannot be properly periodic (without exponential 
factors) for more than p columns of independent periods ; in every set of o- independent 
periods of such a function the determinants of a- rows and columns are not all zero. The 
proof is left to the reader. 

Remark iv. When <r=2p we can put a=\2a>, 2<»'|, wherein the square matrix 2o> is 
chosen so tha t its determinant is not zero. When we write =\2 2 | we shall always 
suppose this done. 

356. Ex. i. Prove that the exponential of any quadric function of ul9 . . . , up is a 
Jacobian function of the kind here considered, for which the matrix is zero. 

Ex. ii. Prove tha t the product of any two or more Jacobian functions, , with the 
same number of variables and the same value for ar, is a function of the same character, 
and tha t the matrix of the product is the sum of the matrices of the separate factors. 

Ex. iii. If be considered as a function of other variables v than u, obtained from 
them by linear equations of the form u=p + cv (p being any column of p quantities, and  
any matrix of p rows and columns), prove tha t the matrix of the function , regarded 
as a function of % is unaltered. 

Obtain the transformed values of a, 6, and { +\ )-\- . (Cf. Ex. i., § 190, 
Chap. X.) 

Ex. iv. If instead of the periods a we use a'=ag, where g is a matrix of integers with 
<r rows and columns, prove tha t ( + ' ) is of the form e2irib'm <«+i«'»>+ft*"t ^ a n d 

tha t 1(f—gkg ; and also that kxy becomes changed to k'afy' by the linear equations x=gx*, 
y=gy'. In such case the form kfafi/ is said to be contained in kxy. When the relation is 
reciprocal, or g2 = l, the forms are said to be equivalent. Thus to any function there 
corresponds a class of equivalent forms k. (Cf. Chap. XVII I . , § 324, Ex. i.) 

Examples iii. and iv. contain an important result which may briefly be summarised by 

* That the number must be even is a known proposition, Frobenras, Creile, LXXXII. (1877), 
p. 242. 
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saying that for Jacobian functions, qua Jacobian functions, there is no theory of transfor­
mation of periods such as arises for the theta functions. A transformed theta function is 
a Jacobian function ; the equations of Chap. X V I I I . (§ 324) are those which are necessary 
in order that , for this Jacobian function, the matrix should be the matrix e, or re 
(cf. § 353). 

Ex. v. If J. be a matrix of 2p rows and a- columns of which the first p rows are the 
rows of a and the second p rows those of b, prove that 

Â€Â=k. 
In fact if g = Ax, £' = Ax', then 

kx'x=ax. bx' — axf .bx = 2 [&gi+p- $/£j + p] = €£è' 

= f Ax. Ax' = AëA . x'x. 

Hence also when o- = 2p the determinant of A is the square root of the determinant of k, 
which in tha t case, being a skew symmetrical determinant of even order, is a perfect 
square. 

Ex. vi. Shew that when <r = 2p and with the notation = \2 >, 2<a'|, 2 = \2 ), 2i/'|, 
- tha t 

1 A
 2 I - - - , - i I 

7 I 

I ' } — }'< w'rj'— rf'<ù j 

the notation being an abbreviated one for a matrix of 2p rows and columns. Thus in the 
case when k=e, the equation of Ex. v. expresses the Weierstrass equations for the periods 
(Chap. VII. , § 140). 

Ex. vii. In the case of the theta functions we shewed (§ 140, and p. 533) that the 
relations connecting the periods could be written in two different ways, one of which was 
associated with the name of Weierstrass, the other with that of Riemann. We can give a 
corresponding transformation of the equations (A), (B) (§ 352) in this case, provided o- = 2p, 
the determinant of the matrix not being zero. 

As to the equation (A), writing it in the equivalent form given in Ex. v., we 
immediately deduce _ 

-* = ( '), 
which is the transformation of equation (A). 

As to the equation (B), let x be a column of a-=2p arbitrary quantities, and determine 
the column z, of a- — 2p elements, so tha t the 2p equations expressed by az=0, bz=x, are 
satisfied. Then 

äx=äbz=(äb—ba)z = kz, =/x, s ay ; so tha t k~1fx=z1 k~1yLl—zl-) 
thus 

ikzzx = i {ab — ba) zzx = i [azx .bz — az.bz^) — iazx. bz=iazxx=iaxz1=   

— ik'1 /zj/i = ikmmlälxl. äx=iak~lâxxxx ; 

therefore, the form 
iak-iâ^x ( '), 

is positive for all values of the column x, other than zero. This is the transformed form 
of equations (B). 

Ex. viii. When a = \2a>, 2©';, b= -—.|2iy, 2J ; ' | , a-=2p, we have 

; ' j | j - 1 I 1 

AcA- 2Û>, 2Û>' j 0 - 1 2 5 , —. = - 4 ( Û ) C Û ' - Û ) ' 5 ) , .( -œ'ïj) | 
I h ni j 7 • • . 
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Hence when k=€, the equation (A') of Ex. vii., equivalent to AcA=-e, expresses the 
Riemann equations for the periods (Chap. VIL, § 140). In the same case the equation 
(B'), of Ex. vii., expresses that 

v=l , = 1 

is negative for all values of x other than zero. 

Ex. ix. When p = l, the two conditions ( ), ( '), or 

€ = positive for ax=0, ia^äxxxx—negative for arbitrary x, 

become, for = |2 , 2a>'|, if the elements of x be denoted by x and x', and the conjugate 
imaginâmes by xl9 xt'9 respectively, 

(ÛHWJ)-1 ((ÙO>I — Û>'Û)1) x'xi = positive, i (U^O/ — o>a>1
/) xxx=negative, 

and if >= + ' -, < 1= - ; >'= ' + ', a>î=p' — -', these conditions are equivalent to 

po-' — p V > 0 , 

and express tha t the real part of ia/a is negative. 

357. Suppose now that a = 2p ; we proceed (§ 359) to consider how to 
express the Jacobian function. Two arithmetical results, (i) and (ii), will be 
utilised, and these may be stated at once : (i) if be a skew symmetrical 
matrix whose elements are integers, with 2p rows and columns, and e have the 
signification previously attached to it, it is possible to find a matrix g, of 2p 
rows and columns, whose elements are integers, such that* k = geg. For 
instance when p = l, we can find a matrix such that 

I 0 k12\ = \ gn g21\\ 0 -111 gu g12\=\g21gu-gng21 g21g12 - gng^ J, 

I - * M 0 I I g12 # 2 2 11 1 0 j I ^r21 ^^ i I g ^ g u - g12g21 g^g12 - g12g^ \ 

namely, such that k12 = 21 2 — gng^ ; for this we can in fact take gu, g12 

arbitrarily. In general the 4p2 integers contained in g are to satisfy 
p (2p — 1) conditions. 

Ex. i. If a be a matrix of integers, of p rows and columns, and X be an integer, and 

k=\ 0, — Xäl , 

|Xa, 0 I 

g may have either of the two following forms 

# i H *> ° I > #2 = 1 Xa, 0 I = j X, 0 I I a, 0 I, =glfi, say, 

I 0, ä I I 0 , 1 I | 0 , à I I 0, a" 1 j 

for we immediately find jjJcp.—k. 

* For a proof see Frobenius, Creile, LXXXVI. (1879), p. 165, Creile, LXXXVIII. (1880), p. 114. 
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Ex. ii. If /i be any matrix of integers, with 2p rows and columns, such that /Zf/x = e 
(cf. § 322, Chap. XVIII.), we have, if k=gcg, also k=gjï~1€fi~1g, and instead of g we may 
take the matrix p~xg. 

(ii) If g be a given matrix of integers, of 2p rows and columns, and x be 
a column of 2p elements, the conditions, for x, that the 2p elements gx 
should be prescribed integers cannot always be satisfied, however the elements 
of x (which are necessarily rational numerical fractions) are chosen. If for 
any rational values of x, integral or not, gx be a row of integers, and we put 
x — y + L, where y has all its elements positive (or zero) and less than unity, 
and L is a row of integers (including zero), then gx = gy 4- gL =gy -f M, 
where is a row of integers ; in this case the row gx will be said to be con­
gruent to gy for modulus g. The result to be utilised* is, that the number 
of incongruent rows gx, namely, the number of integers which can be repre­
sented in the form gx while each element of x is zero or positive and less than 
unity is finite. It is in fact equal to the absolute value of the determinant of 
g. For instance when g is I gn g12 I there are ^ — <7i2#2i integer pairs 

I #21 #22 | 

which can be written gn^1+g12x2, 21 + g22x2, for (rational) values of xlt x2 

i 3 ! 
less than unity. The reader may verify, for instance, that when g=\ I, 

the 9 ways are given (cf. p. 637, Footnote) by 

1 2 3 4 5 6 7 8 9 

/y. rp 0 0 1 4 5 2 | 1 1 | 2 8 7 1 4 7 2 2 8 5 

6^ + 3 ^ , x, + 2x2 0, 0 2, 1 4 , 1 3 , 1 4 , 2 j 5, 1 5 , 2 6, 2 7, 2 

To prove the statement in general let t be the number required, of integers 
representable in the form gxf when x < 1. Consider how many integers 
could be obtained in the form gX when X is restricted only to have all its 
elements less than (a positive number) N. Corresponding to any one of the 
t integers obtained in the former case we can now obtain iV"— 1 others by 
increasing only one of the elements of x in turn by 1, 2, ..., N— 1. This 
can be done independently for each element of x. Hence the number 
of integers gX is tN* where o-, here to be taken = 2p} is the number of 

elements in x. Let one of these integers be called M. Then g = -*r or say 

M 
gx = -^, wherein x is less than unity. Now when N is very great, the 

* Cf. Appendix ii, § 418, and the references there given, and Frobenius, Creile, xcvii. (1884), 
p. 189. 
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M 

variation of z = -^, as M changes, approaches to that of a continuous quan­

tity, and the number of its values, being the same as the number of values 

of M, is 

where zlf ..., za vary from zero to all values which give to x, in the equations 
gx = z, a value less than unity. Now this integral is 

N' if - *** "* dx°=N"ìgì ' fi "dXl"' ̂ =N'Ì9Ì' 
Since this is equal to t№, it follows that t is equal to \g\, as was stated. 

358. Supposing then that the matrix g, with 2p rows and columns each 
consisting of integers, has been determined so that k = ab — = , we 
consider the expression of the Jacobian function when a = 2p. The deter­
minant of not being zero, the determinant of g is not zero. 

Put K=ag~1, so that is a matrix of p rows and 2p columns, and 
a = Kg ; put similarly b= Lg; also, take a row of 2p quantities denoted by 
C, such that = gC + \ [g]9 where is the parameter (§ 351) of the Jacobian 
function, and [g] is a row of 2p quantities of which one element is 

[ff]a= 2 gK,agP+K,a, (« = 1, •-., 2^) J 
= 1 

take #, /, X, X', rows of 2p quantities such that 

X ='gx, X' =gx\ so that ax = Kgx = KX, bx = LX, ax' = KX', bx = LX' ; 

then as _ 
hxx, = ax. bx — ax'. bx, = (KL — LK) X'Xy 

is also equal to 
gegxx = ' . gx = eX'X, 

we have _ _ 
KL-LK = €, (C), 

so that 
- - , i, . . . .P 

KxLx — Kx'Lx = (ÜTZ — LK) x'x — exx = 2 (xix'i+p — #ƒ xj+p) ; 

further, as ikxxl is positive for a# = 0, we have 

ieXXx = positive when KX — 0, (D) ; 
I K\ 

thus, if A denote the matrix T , we have, from the equation (C), 

I h I 

" -4 = - 2 = , ( ), 

and, if z be a row of p arbitrary quantities, and X be a row of 2p quantities 



358] BY MEANS OF THETA FUNCTIONS. 591 

such that KX = 0, LX = z, so that Kz = KLX = (KL - LK) X = eX, and 
therefore eÄ£ = — X, ÜT^ = eX^, we have 

iK1eKzzl = positive, for arbitrary z other than zero, (F) ; 
for 

iK1eKzz1 = — iK1Xz1 = — iKxzxX = — ieXxX = ieXXlt 

If we now change the notation by writing i f = 12<o, 2 '|, 2*7 = |2rç, 2 ;' |, 
and introduce the matrices a, b, h of p rows and columns defined by 

a = ^rjœr1, h = ^7 ~1, b = 7 _ 1 / , 

*? assumed, in accordance with Remark iv. (§ 355) £/ £ the determinant 
of the matrix a> is not zero, then the equation (E) shews (cf. Ex. viii., § 356) 
that the matrices a, b are symmetrical, and that rj' = ) ( — ^7 >-1, so that 
we can also write 

7} = 2ac0, t) = 2 ' — h', 2hû> = iri, 2h&>' = b ; 

also, by actual expansion, 

iKxeK = 4 >! [«»f-1 CÜ/ — œ'œ"1'] w = o^ [^ + b] « = Wj [bj + b] œ 
7 7 

2 
= WiCû), if b = + ^d ; 

7 

thus 
- 2 

iK1eKzz1 = c^ , where £ = œz, z and £ being rows of p arbitrary quantities ; 
and therefore, by the equation (F), for real values of nlf ..., np other than 
zero, the quadratic form bn2 has its real part essentially negative. 

Hence we can define a theta function by the equation 

^ ( u . j _ 2ßat*2+2hw(«+y)+b { + ')*- { + ') 

\ ' - / 

wherein 7, 7' are rows of p quantities given by G = (y\ 7), that is, Cr = yr', 
Cp+r = 7 r , for r < p + 1. Denoting this function by ^ {u ; C) and taking / for 
a row of 2p integers, the function is immediately seen (§ 190, Chap. X.) to 
satisfy the equation 

which is the definition equation for a Jacobian function of periods K, L and 
parameter 0, for which the matrix is e. 

Further, if /A be a matrix of integers with 2p rows and columns, such that 
/ / = , and (Ex. ii., § 357) we replace g by /< - 1#, the matrices Ky L are 
replaced by K/JL and Z/ . Thus instead of the theta function ( ; ) 
we obtain a linear transformation of this theta function (cf. § 322, Chap. 
XVIIL). 
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359. Proceeding further to obtain the expression for the general value 
of the Jacobian function , let (ti ; v) denote 

Ò (tl + Kv) e~2niLv («+№0 -2iriCv+2irinn' 

where Vi = nif vi^.p — n{, for i<p + l. Then, since a = Kg, and therefore' 
aN = KgN, we have 

(u + aN, ) = ( + KgN, ) = ( + Kfi, v), (1), 

where fi denotes the row gN, so that aN=Kfi, N being a column of 2p 
integers and therefore fi a column of integers ; thus ( -f aN, v) is equal to 

(u + aN + Kv) e~^iLv + + *)- >>+1 ' = ( + Kv) 6 , 
where 

R = 2iribN(u + Kv + %aN) + 2TTÌCN+ m \ kaßNaNß 

— 2iriLv (U + Kfi + \Kv) — 2iriCv -f irinn', 

by the properties of , N being a column of integers ; thus ( + aN, v) is 
equal to 

( v)e
27ribN(u + baN) + 2™N+TTia2 kaßNaNß + 2iri{bN.Kv-Lv.KfjL) 

Now bN = LgN = Lfi, therefore 

bN. Kv — Zi/. Ify = (KL — LK) fiv = €fiv = mn — m'n, 

where fii = mi, fii+p = /, etc. for i<_p + 1 . If then we take v, as well as fi, 
to consist of integers, it will follow that 

(u+aN>v) = (u, v) ,e^bN (4+\aN) + 2mcN+maî k^N.N^ 

and therefore that 

4>(u + a>N) ^ + aN> ) = e2mbN(u + %aN) + 2*icN+*ia2ßkaßNaNß 

( ) ( , v) 
Next 

( , fl + v) = (u + fi + ÜLV) e~2ff* (^+^) («+№*+№>)- « (Cft+ê ï+ïrttm+OT') <n+n') (2), 

and this 
= ( + Kfi, v) eM, 

where 

M = 2-rriLv (u + Kfi + \Kv) + 2iriCv - irinn' - 2TTÎ (Z//, + Lv) (u + £ £ > + \Kv) 
- 2 (<7/* + Cv) + (m + m') (n + rc') ; 

therefore 

( , fi + v) 
_ ß2iriLfA. ( ) —2-iriLv (%Kt*.) +irivim'-i-irìnri--irì (m+mr) {n+n') 
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of which the exponent of the right side is 

iri [(KL — LK) fiv — mn — m'n] = [mn' — mn — (mn' + mn)] — — 2 ? , 

so that, since /-&, v consist of integers, the right side is unity. 
Hence we have 

<p [U -f- Afl, V) __ çZjriLn ( +% ) +2 <>—-nimm' 

( , fjL + v) 

I t is to be carefully noticed that this equation does not require =0 (mod. g). 
a<ß 

We suppose now that /A=0 (mod. g). Then cN+l £ ^ ^ = / —^ ' 
(mod. unity) and Lp, = bN, pu = aN, as will be proved immediately (§ 360) ; 
thus 

<f>(u+aN) = ( + , ) = ( + , ) = e21ribN(u + ̂ aN) + 2mcN+7riatßkaßNaNß 

( ) ( , v) ( , fi + v) 

and therefore ( , p, + v) = ( , v) for integer values v and any integer 
values f/, that can be written in the form gN, for integer iV"; namely ( , v) 
is unaltered by adding to v any set of integers congruent to zero for the 
matrix modulus g. 

The set oi\g\ integers gr, wherein r has all rational fractional values less 
than unity will now be denoted by v, each value of v denoting a column of 
2p integers—in particular r = 0 corresponds to a set of integers = pu (mod. g). 
And v shall denote a special one of the sets of integers which are similarly a 
representative incongruent system for the transposed matrix modulus g, such 
that v =gr\ the quantities r' being a set of fractions less than 1. With the 
assigned values for v, let 

^( ) = % -2™ '" ( v)\ 

then 

/ ( + K\) = 2e-2™'" ( + \, v) = 2e27rt>v e2iriLK <«+***>+ - « ' ( , \ + v) 
V V 

for any set of integers X, as has been shewn (X being such that, for 

i < p + 1, \ = hy Xi+i> = V)-
If now v + \ = p, so that / also describes, with v} a set of integers 

incongruent in regard to modulus gt those for which the necessary fractions 
s, in p=gs} are > 1 being replaced, by the theorem proved*, by others for 
which the necessary fractions are < 1, so that the range of values for p is 
precisely that for vy then we have 

y!r (u 4- K\) = 2 ~27 ' ' +27™*' e2iriLk (u+bK\)+2inCK-Tdii' /u -\ 
V 

_ ç2irir'k+2iriLk (u+iK\)+2irìC\—irill' ^ß—torir'v (k(ii v \ 

v 

= ß2irir'\+2niLK iu+lKk)+2inCk—KÜl' yip (u\ 

* That ( *, v) is unaltered when to v is added a column = 0 (mod. g). 

. 38 
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Hence, by the result of § 284, Chap. XV., we have 

the theta function depending on the a, b , h derived in this chapter (§ 358). 
Now let v describe a set of incongruent values for the modulus g ; then 

tAv>b( , + r ' ) = 2 ^ (u) = tte~2™'v ( , v) ; 
v' v v' 

and since v = gr'} we have vr — gr'r = grr — vr' ; thus 

I/' l / l / 

this sum can be evaluated : 

when v = 0 (mod. #), or the numbers r are zero, its value is equal to the 

number of incongruent columns for modulus g, = \g\. Since k=gegf we 

have \k\ = (\g\)2, so t ha t \g\ = «/[if. 
when z/ (mod. #), so tha t some of r1} . . . , r2i? are fractional, i ts value is 

zero, as is easy to prove (see below, § 360). 
Hence we have the following fundamental equation : 

v' 

which was the expression sought. 

Thus between V| | + 1 functions with the same periods and parameters 

there exists a homogeneous linear relation with constant coefficients*. 

Ex. i. Prove that a product of n functions is a function for which ^\k\ is changed 
into n*> \J\lc |. In fact the periods are na} rib. 

Ex. ii. Prove that the number of homogeneous products of n factors selected from 
p+2 functions of the same periods and parameters is greater than np\/\k\ when n 
is large enough. And infer that there exists a homogeneous polynomial relation con­
necting any p + 2 functions of the same periods and parameters. (Cf. Chap. XV., § 284, 
Ex. v.) 

360. We now prove the two results assumed. 

(a) If /ju = 0 (mod. g) or fju — gNy where N are integers, then 
a<j8 

cN' + \ 2 kaßNaNß = G fi — \mm' (mod. unity). 
For 

__ _ 2p _ p 

kaß = (geg)aß = 2 (g)ay(eg)yß = 2 (g)ay 2 [ey,KgKß + € , + ^ + ^ ] 
= 1 = 1 

JP P i ? 

= 2 <7Ya 2 [ ^ + €y,b+p9*+P,ßi + ^9 + ,* S [€Y+i?,A^A,/8 + € +1>| A+^À+p, / ] 
7 = 1 = 1 = 1 = 1 

* jp p 

= - 2 gy,agy+P,ß + 2 gy+Piagy,ß = 2 [gw,a£Y ,0 - # Y , * 3 W , 0 ] 
= 1 = 1 y = l 

= 2 [<7 +^, <7 ,/3 — ^ , ^ + ,^] i 
y = l 

* Weierstrass, Beri. Monatsber., 1869; Frobenius, Grelle, xcvii. (1884); Picard, Poincaré, 
Compt. Rendus, XCVII. (1883), p. 1284. 
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therefore 
a<ß p a<ß 

2 KtßNaNß = 2 2 \gy+PiaNa.gyißNß-gyì0.Na.gy+P>ßJSrß] 
p a<ß 

= 2 2 [gy+PtaNa.gy,ßNß + gy,aNa.gy+PißNß], (mod. 2), 

P (a<ß a<ß \ 

" ?il 2 yy+p>o-N**9y>fiNfi + S 9y,ßNß.gy+PiaNA 

p 
= 2 2,Zgy+p>aNa.^iV^, (mod. 2), 

y = l 

where the 2 2 indicates that the summation extends to every pair a, ß 
except those for which a = ß ; thus 
a < / 3 2> 2j0 

2 kaßNaNß - f 2 2 gy+p,aJSra. #v,aifa 
y = l a = l 

9y+p,w-N *P\ 
y = l 

= 2 jjy. /Xy+1? = mm7, (mod. 2) ; 

therefore, since %Na
2 = ^Na (mod. unity), and therefore 

%Zgy+P,aNa.gy,aNa = £ [ > ] , 

we have 

(mod. 1), 

= gN. G + £mm' = //,0 -f \mm' = / — \ ', as required. 

(b) It rlt , rw be any set of rational fractions all less than unity 
and not all zero and such that the row gr = v consists of integers, and 
(v\, , p'sp), = v't be every integer row in turn which can be represented in 
the form gr' for values of r ' less than unity, then 

2 { - t /e-2nir2y2 (e-2nir2Py2P 

v' 

is zero. Since, as remarked (§ 359), the sum can also be written 
2 (e " 2irivi)r'i (e ~ 2iriv2py&>} 

r' 

wherein vlf ..., v2p are integers, the sum is unaffected by the addition of any 
integers to any one or more of the représentants r\, ..., r'«^, namely it has 
the same value for all sets, i/, of incongruent columns (for the modulus g). 
If to each of any set of incongruent columns v we add the column 
(0 , . . . , 0, \i, 0, . . . ,0) , all of whose elements are zero except that occupying 
the i-th place, which is an integer, we shall obtain another set of in-
congruent columns. 

38—2 
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Suppose then in the above sum r{ is fractional. Add to every one of 
the incongruent sets v the column (0, 0, ..., 1, 0, ..., 0), of which every 
element except the -th is zero. In the summation everything is unaffected 
except the powers of e~2iriri, which are multiplied by e~2™\ Hence the 
sum is unaffected when multiplied by e"2*"*«, and must therefore be zero. 

We put down the figures for a simple case given by 

I4 5i 
P = l> H i 2\; 

then gr=(4r1 + 5r2, ^ + 2^) and the equations gr = v give 

4r1 + 5r2=v1\ . (Sr1 = 2v1-òv2 

r1 + 2r2 = l/2J ' ' (3 r 2 =4i / 2 - vx ; 

thus the values of r19 r2 and v19 v2 are given by the table 

ru 4 j 0, 0 I J , J I | , | | 

vx, v2 I 0, 0 J 3 , 1 I 6, 2 | 

Similarly ^ / = (4r'1+r'2, 5 / 1 + 2r'2), and the equations gr' = v give 

4r\+ r'2 = v\\ . (3r\ = 2v\- v2 

5 / 1 + 2r'2 = I/'2J * * \Zr'2 = ±v'2-bv\\ 

thus the values of r\, r'2 and v\, v2 are given by the table 

, r\ I 0, 0 I J, | I f, \ j 

ir'y *'2 | 0, 0 | 2, 3 | 3, 4 | 

Thus the sum in question is 

/ - 2 / - 2 >2 _|_/ -27 ^2 ( -2 _^/- / -2 2  

= 1 + - 2 (2^+ ) + - 2 (3^+4^) = 1 + e~ T ("l+2v*> + e~ ~3 ^ i " * " 1 ^ 

For r 1 = r 2 = ï/1 = i/2=0, these terms are each unity ; for 
(Ti> r2) = (i, i \ (vu v2) = (3, 1) 

these terms are 
I +e-2ni(§) + -2 ft) = i - | . e

 w + e   

or zero. 
For (r t , r2) = (§, f), (i/j, i/2) = (6, 2), these terms are 

l^ e -27r t ( i )+ e -27r i (§) = i4-e 3 w + e 3 W 

or zero. 

361. We give now an example of the expression of functions. 

Take the case in which p = l, and 

0|; 
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the conditions ab — ba — k, and = , if a = (a, a'), b = (b, ò'), become 

ab' -a'b = - 3, gl2g21 - gugn = - 3 ; 

taking for instance 
I 4 5 

' H i - 2.1'. 
we have, if x = (x} x'\ = ( , ?/), and ax + a V = 0, the equation 

ikxxx = (xxi — X'XT) = ( — aa/) = (aß' — aß), 
' 

where a = + iß, = '4- '. Thus, beside aò' — ab = — 3, we must have 
/3' > '/ . The quantities , 6, ', are otherwise arbitrary. 

The equations a = if#, b = Lg give (a, a') = (4if + K', oK + 2iT) ; there­
fore 

SK = 2a - a , 3L =2b -b' , 
' = 4a' - 5a, 3Z' = 40' - 50 ; 

further the equation = gC + i [#] gives 

( , = I 4 I I (C, 0') + i ( 4 , 10) = (4C+ C'+ 2, 5C + 2C" + 5), 
15 2 | 

so that 
3(7= 2c - c' + 1, 3 0 ' = 4 c ' - 5c - 10. 

Also, from = | 2o), 2Û>' |, 2 = | 2 ?, 2 ;' |, with 

a = ^ , h = ^ , b = 2ha>', 

we obtain 

a = iri (2b - 6')/(2a - a7), b = (4 ' - 5 )/(2 - '), h = /(2 - '). 

If then S- ( ; (7) denote the theta function, with characteristic ( ~, j , 

given by 

then the Jacobian function, with , as periods, and as parameter, is given 
by 

where, in the three terms of the right hand, / is in turn equal to f j , 

(1/S\ /2 /3 \ 

The function ( ) may in fact be considered as a theta function of the 
third order ; its various expressions, obtainable by taking different forms for 
the matrix g, are transformations of one another, in the sense of Chap. XVIII. 
and XX. 
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362. The theory of the expression of a Jacobian function which has 
been given is for the case when a = 2p. Suppose a < 2p} and that we have 
two matrices a, b, each of p rows and a columns, such that ab — ba, = ky is a 
skew symmetrical matrix of integers, for which ihxx1 is a positive form for 
all values satisfying ax = 0, other than those for which also aYx = 0, or x = 0 ; 
then it is possible* to determine other 2p — a columns of quantities, and 
thence to construct matrices, A, B, of 2p columns (whereof the first a 
columns are those of a, 6), such that AB — BA = is a skew symmetrical 
matrix of integers for which %Kxxx is positive when Ax=0, except when 
x = 0 or A^x = 0. 

There will then correspond to the set A} a function , involving \/\K\ 
arbitrary coefficients, such that, for integral n, 

/ , \ 2iriBn(u + \Arù + %'iriCn+ 2 Ka, ^ ,  (u + An) = e v * ' a<ß ( ) . 
The function ( ) which is subject only to the condition that 

( + ) = a<ß
 , ( )  

is then obtained by regarding ( ) as a particular case of (u), in which 
the added columns in , are arbitrary except that they must be such that 
the necessary conditions for , are satisfied. 

For further development the reader should consult Frobenius, Grelle, 
xcvii. (1884), pp. 16, 188, and Creile, cv. (1889), p. 35. 

* Frobenius, Creile, XCVII. (1884), p. 24. 


