
CHAPTER VIII 

THE COMMONER ORDINARY DIFFERENTIAL EQUATIONS 

89. Integration by separating the variables. If a differential equa­
tion of the first order may be solved for y1 so that 

ý = φ (x, y) or M(x, y) dx + N(x, y)dy = O (1) 

(where the functions ψ, M, N are single valued or where only one spe­
cific branch of each function is selected in case the solution leads to 
multiple valued functions), the differential equation involves only the 
first power of the derivative and is said to be of the first degree. If, 
furthermore, it so happens that the functions φ, M, N are products of 
functions of x and functions of y so that the equation (1) takes the form 

y' = φ¿x)φ¿y) or M¿x)M ĵftdœ + N¿x)N 3J}dy O, (2) 

it is clear that the variables may be separated in the manner 

-^- = ώ(x)dx or ¥¿ÿ-dx + ^dv-o m 
Φ¿V) Ψ l ( ) N¿x)** + M 3,)**-“> V> 

and the integration is then immediately performed by integrating each 
side of the equation. It was in this way that the numerous problems 
considered in Chap. VII were solved. 

As an example consider the equation yy' + xy2 = x. Here 

yåy + xiy*— l)dx = 0 or V
n

V + xdx = 0,  
2— 1 

and J log (y2 - 1) + \x2 = or (y2 - l)e*2 = C. 

The second form of the solution is found by taking the exponential of both sides 
of the first form after multiplying by 2. 

In some differential equations (1) in which the variables are not" 
immediately separable as above, the introduction of some change of 
variable, whether of the dependent or independent variable or both, 
may lead to a differential equation in which the new variables are sepa­
rated and the integration may be accomplished. The selection of the 
proper change of variable is in general a matter for the exercise of 
ingenuity ; succeeding paragraphs, however, will point out some special 
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types of equa t ions for wh ich a definite t y p e of subs t i t u t ion is k n o w n 
to accompl i sh t h e separa t ion . 

As an example consider the equation xdy — ydx = x Vx2 + y2 dx, where the varia-
bles are clearly not separable without substitution. The presence of Vx2 + y2 

suggests a change to polar coordinates. The work of finding the solution is : 

x — r cos θ, y = r sin θ, dx = cos θdr — r sin θdθ, dy = sin θdr + r cos θdθ ; 

then xdy — ydx = r2dθ, x Vx2 + y2dx = r2 cos θd (r cos θ). 

Hence the differential equation may be written in the form 
r2dθ = r2 cos θd (r cos θ) or sec θdθ = d(r cos θ), 

and log tan (± θ + Jπ) = r cos θ + or log = + . 
cos# 

\ X2 "4~ ?/2 "4" ?/ Hence = Ce* (on substitution for θ). 

Another change of variable which works, is to let y = vx. Then the work is : 

x (vdx + xdv) — vxdx = x2 V l + v2 dx or dυ = V l + v2dx. 
dυ 

Then ¡ = đx, sinh-½ = x + C, y = x sinh (x + C). 
V I + v2 

This solution turns out to be shorter and the answer appears in neater form than 
before obtained. The great difference of form that may arise in the answer when 
different methods of integration are employed, is a noteworthy fact, and renders a 
set of answers practically worthless ; two solvers may frequently waste more time 
in trying to get their answers reduced to a common form than each would spend in 
solving the problem in two ways. 

9 0 . I f in t h e equa t ion y' = φ(x, ÿ) t h e funct ion φ t u r n s ou t to be 
φ(y/x), a funct ion of y/x a lone, t h a t is, if t h e funct ions M a n d N a re 
homogeneous funct ions of x, y a n d of t h e same order (§ 53) , t h e differ­
en t i a l equa t ion is sa id t o be homogeneous a n d t h e change of var iab le 
y = vx x = vy wi l l a l w a y s resu l t i n s e p a r a t i n g t h e var iables . T h e 
s t a t e m e n t m a y be t a b u l a t e d as : 

i f ? = Ψ(4 substitute! y = VX (3) 
dx \xj [ or x = vy. 7 

A sor t of corol la ry case is g iven in E x . 6 below. 

As an example take \l + ey dx + & (y — x) dy — 0, of which the homogeneity 
is perhaps somewhat disguised. Here it is better to choose x = vy. Then 

(1 + ev) dx + ev (1 — v) dy = 0 and dx = vdy + ydv. 
dv 1 + ev 

Hence (υ + ev) dy + (1 + ev) dv = 0 or — -\ —dv = 0. 
v + ev 

X 

Hence log + log (v + ev) = or x + y& = G. 
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If the differential equation may be arranged so that 

ĝ + Λ » y = J ¾ s ) ï T or ĝ + ¾ / ) x = ¾ / ) * » , (4) 

where the second form differs from the first only through the inter­
change of x and and where Xχ and X are functions of x alone and 
Yχ and Y2 functions of y, the equation is called a Bernoulli equation; and 
in particular if n = 0, so that the dependent variable does not occur on 
the right-hand side, the equation is called linear. The substitution 
which separates the variables in the respective cases is 

y = ve-fx¿x)dx or χ = ve-Ĵγ¿y)dy. (5) 

To show that the separation is really accomplished and to find a general 
formula for the solution of any Bernoulli or linear equation, the sub­
stitution may be carried out formally. For 

ax ax Ύ 

The substitution of this value in the equation gives 

JL e-ĴXrfx _ χ v n e - nĵxxdx o r _l _ X Λ\- n)ĴÄ,r x d χ 

ax 2 vn 2 

Hence vλ-n = (1 — n) \ XjP¯ n>fx*dxdx, when n φ 1,* 

or y1- n = (1 - n) e(n -D ƒ * Ŵ Γ Çxjµ- »> ƒ ^ dxļ . (6) 

There is an analogous form for the second form of the equation. 
The equation (x2ys + xy) dy = dx may be treated by this method by writing it as 

dx 
yx — ysχ2 so that Y, = — y, Y2 = ¾/3, n = 2. 

dy 
Then let x = ve~f~ ydy = ve* \ 
_. dx dv \≠ , \ fl \y*- dv \y* 
Then yx = — e¿ + vye* — yve = — e¿ 

dy dy dy 
, dv \yi „ 9 đυ „ ļz/2, 

and — er = y3υ2ey2 or — = y3e¯ dy, 
dy υ2 

and --=(y2-2)e*≠ + or I = 2 - y* + Ce¯-≠. 
v x 

This result could have been obtained by direct substitution in the formula 

χ i - » = (1 - n) é" - “ ''* ƒ F,e<1-" ' •'7" đyl , 

but actually to carry the method through is far more instructive. 

* If 7¿ = ï, the variables are separated in the original equation. 
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EXERCISES 

1. Solve the equations (variables immediately separable) : 

(a) (1 + x)y + (1 — y)xy' = 0, Ans. xy = Ce*->. 
(ß) a (xdy + 2 ydx) = xydy, (y) V l — x2 dy + V l — y2 dx = 0, 

(δ) (1 + 2/2) dx - (y + V l + y)(l 4 «)* dy = 0. 

2 . By various ingenious changes of variable, solve : 
(a) (x + y†y' = a2> Ans. x 4 y = a tan (y/a + C). 
(ß) (x — y2) dx + 2 xî/¢ř¾/ = 0, (7) x¢fø — ydx = (x2 4 y2) dx, 
(δ) ý = x-y, (e) yy* + y2 + + 1 = 0. 

3 . Solve these homogeneous equations : 

(α) (2 Vxy — x) y' + = 0, Ans. Vx/y + log y = <7. 

(/S) xe* 4 y — xy' = 0, J.71S. + x log log C/x = 0. 
(7) ( 2 + 2) đy = xyđ¾, (δ) xy' — = Vx2 + y2. 

4 . Solve these Bernoulli or linear equations : 
(a) y' 4 y/x = y2, • J,ns. xy log Cx + 1 = 0. 
(|S) y' — esc x = cosx — 1, -áns. = sin x + tan ļ x. 
(7) xy' + = y2 log x, Ans. y~1 = log x + 1 4- Cx. 
(δ) (1 4- 2)dx 4- ( tan-1 y - x)dy, (e) ydx 4- ( α ¿ V - 2 x) dy = 0, 
(ś*) xy' - αy = x 4- 1, (17) ' + ļ 2 = cos x. 

5. Show that the substitution y = vx always separates the variables in the 
homogeneous equation y' = φ (y/x) and derive the general formula for the integral. 

6. Let a differential equation be reducible to the form 

dy_, / 4 + cΛ α A — 2 ≠ 0, 
dx ~ \α2x 4- ¾y 4- c2/ ' or - α ^ = 0. 

In case a b2 — α ^ ≠ 0, the two lines aλx 4- ¾y + cx = 0 and α2x 4- b2y 4- c2 = 0 
will meet in a point. Show that a transformation to this point as origin makes 
the new equation homogeneous and hence soluble. In case a b2 — ajbλ = 0, the 
two lines are parallel and the substitution z = α2x 4 h2y or z = aλx + b±y will 
separate the variables. 

7. By the method of Ex. 6 solve the equations : 
(a) ( 3 y - 7 x 4 7 ) d x 4 ( 7 y - 3 x 4 3 ) d y = 0, Ans. (y - x 4 l)2(y 4 - l ) 7 = . 
(ß) ( 2 x 4 3 y - 5 ) y ' + (3x + 2 y - 5 ) = O , (7) ( 4 x 4 3 y 4 l ) d x 4 ( x 4 y 4 l ) d y = O, 

(δ) (2x + y) = y ' ( 4 x 4 2 y - 1 ) , (e) ψ = ( * ¯ l ¯ ] $ -
dx \2 x — 2 4 1/ 

8. Show that if the equation may be written as yf (xy) dx 4- xg (xy) dy = 0, 
where ƒ and g are functions of the product xy, the substitution v = xy will sepa­
rate the variables. 

9. By virtue of Ex. 8 integrate the equations : 

(a) (y 4 2xy2 — xhß)dx 4 2x2ydy = 0, Ans. x 4 χ2y = C(l — xy). 
(0) ( + 2) dx 4- (x - 2 ) dy = 0, (7) ' (1 + xy) xy2dx 4- (ay - 1) xdy = 0. 



COMMONER O E D I N A E Y EQUATIONS 207 

10. By any method that is applicable solve the following. If more than one 
method is applicable, state what methods, and any apparent reasons for choos-

. ing one : 
(a) y' + y cos x = ψ sin 2x, (ß) (2 x2y + 3 ys) dx = (x3 + 2 xy2) dy, 
(y) (4x + 2 ž / - l ) ž / / + 2x + ž/+ 1 = 0, (δ) yy' + xy2 = ¾, 
(e) yf sinļ/ + sin x cos y = sin x, (f) Vα2 -f x2 (1 — y') = x + y, 
(v) (Ŵ3 + Ŵ 2 + #2/ + 1) + (x3ž/3 — x2y2 — xy+1) xy', (θ) y' = sin (x — y), 

_y 

( i ) XT/Í¾/ — y2dx = (x + )2 e x dx, ( ) (1 — y2)dx = αx¾/ (x + 1) <¾Λ 

91. Integrating factors. If the equation Max + iW¾/ = 0 by a suita­
ble rearrangement of the terms can be put in the form of a sum of total 
differentials of certain functions u, #,•••, s a y 

du + dv + • • • = 0, then + v -\- • - • — (7) 

is surely the solution of the equation. In this case the equation is called 
an exact differential equation. I t frequently happens that although the 
equation cannot itself be so arranged, yet the equation obtained from 
it by multiplying through with a certain factor µ(x, y) may be so 
arranged. The factor µ (x, y) is then called an integrating factor of the 
given equation. Thus in the case of variables separable, an integrating 
factor is 1/MJSÍ1 ; for 

^ [ ^ + ^ ^ ] = | g ^ + ¾ | ^ = = 0 ; (8) 

and the integration is immediate. Again, the linear equation may be 
treated by an integrating factor. Let 

dy + X±ydx = X2dx and µ = eSx*dx ; (9) 

then ef^dx dy + XχeSx^đx ydx = e f x'dx X2dx . • (10) 

or đ[ĵfefÄid*]==efXíđxX2dx, and yef*dx = ƒ eA r f ¾ X2dx. (11) 

In the case of variables separable the use of an integrating factor is 
therefore implied in the process of separating the variables. In the 
case of the linear equation .the use of the integrating factor is somewhat 
shorter than the use of the substitution for separating the variables. 
I n general it is not possible to hit upon an integrating factor by inspec­
tion and not practicable to obtain an integrating factor by analysis, but 
the integration of an equation is so simple when the factor is known, 
and the equations which arise in practice so frequently do have simple 
integrating factors, that it is worth while to examine the equation to 
see if the factor cannot be determined by inspection and trial. To aid 
in the work, the differentials of the simpler functions such as 
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dxy = xdy + ydx, 2" d (χ2 ¯¡¯ ìf) = χdx + ydy, 

d L = xdy-ydxļ d t o - i ĩ = ^ ¯ f y , (12) . 
X X2 X +  

should be borne in mind. 

Consider the equation (x*e — 2 mxy2) dx + 2 mx2ydy = 0. Here the first term 
x^cfø will be a differential of a function of x no matter what function of x may be 
assumed as a trial µ. With µ = 1/x4 the equation takes the form 

«fo + 2 » ^ - ¾ = «to« + m d ^ = O. 
\ x2 x3 x2 

The integral is therefore seen to be e + my2/x2 = without more ado. It may­
be noticed that this equation is of the Bernoulli type and that an integration by 
that method would be considerably longer and more tedious than this use of an 
integrating factor.. 

Again, consider (x + y) dx — (x — y) dy = 0 and let it be written as 

xcřx + ydy + ydx — xdy = 0; t ry µ = 1/(x2 + y2) ; 

t h e n ĩώ+iŵ + ? ŵ = ^ = 0 o r b l o g ( i e ï + m đ t a n - , ? = o, 
x2 + y2 x2 + y2 2  

and the integral is log Vx2 + y2 + tan~1 (x/y) = C. Here the terms xđx + ydy 
strongly suggested x2 + y2 and the known form of the differential of tan~1 (x/y) 
corroborated the idea. This equation comes under the homogeneous type, but the 
use of the integrating factor considerably shortens the work of integration. 

92. The attempt has been to write Mdx + Ndy or µ (Mdx -\- Ndy) 
as the sum of total differentials du -ļ- dv + • • • ? that is, as the differential 
dF of the function + v -\ / s o that the solution of the equation 
Mdx + Ndy = 0 could be obtained as F = C. When the expressions 
are complicated, the attempt may fail in practice even where it theoreti­
cally should succeed. I t is therefore of importance to establish condi­
tions under which a differential expression like Pdx -f Qdy shall be the 
total differential dF of some function, and to find a means of obtaining 
F when the conditions are satisfied. This will now be done. 

F • F 
Suppose Pdx + Qdy = dF = TJ— dx -f dy; (13) 

„ F F P Q 2F 
then P = T " ' ^ = “̂ ¯̄ ' ^~ = ^~ = ^~ ~ ' 

ex ċy cy ex cxćy 
Hence if Pdx + Qdy is a total differential dF, it follows (as in § 52) that 
the relation P'y = Q'x must hold. Now conversely if this relation does 
hold, it may be shown that Pdx + Qdy is the total differential of a 
function, and that this function is 
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F = f p(χ} y)dx + JQ(x0, y)dy 

y ( 1 4 ) 

or F = f Q(x, y)dy + fr(χ, y0)dx, 

where the fixed value xQ or yQ will naturally be so chosen as to simplify 
the integrations as much as possible. 

To show that these expressions may be taken as F it is merely neces­
sary to compute their derivatives for identification with P and Q. Now 

x~ = x^ P(X' ìj)dX + x¯ Q ^ Ŵdy = P(X> Ŵ 

77 Γ*x 7) Γ* Γ* 

Jy = yj ( ' ìj)dX + hjj Q(X*' № = ĘjJ PdX + Q(X»' ljS)' 
These differentiations, applied to the first form of F, require only the 
fact that the derivative of an integral is the integrand. The first turns 
out satisfactorily. The second must be simplified by interchanging the 
order of differentiation by and integration by x (Leibniz's Rule, 
§ 119) and by use of the fundamental hypothesis that P'y = Qx. 

í*x í%x ~Γ> 

— J pdx + Q(χo9 y) =j j^dx + Q(x0, y) 

ΓX Q \x 

= ļ fødx + Q(xo> ) = ¢(x> y)\ + <2<Λ> )= Q(x> )-
Jx0 ļ X0 

The identity of P and Q with the derivatives of F is therefore estab­
lished. The second form of F would be treated similarly. 

Show that (x2 + log y) dx + x/ydy — 0 is an exact differential equation and obtain 
the solution. Here it is first necessary to apply the test Py = Qx . Now 

— (x2 + log y) = - and = - • 

Hence the test is satisfied and the integral is obtained by applying the formula : 

J <*x / » 0 1 

(x2 + log y) dx + I - dy - - x3 + x log =  
J ό 

J'* x 1 

-dy + ¡ (x2 + log 1)dx = x log + - x 3 = C. 
i J " 3 

It should be noticed that the choice of x0 = 0 simplifies the integration in the first 
case because the substitution of the lower limit 0 is easy and because the second 
integral vanishes. The choice of y0 = 1 introduces corresponding simplifications in 
the second case. 
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Derive the partial differential equation which any integrating factor of the differ­
ential equation Mdx + Ndy = 0 must satisfy. If µ is an integrating factor, then 

µMdx + µNdy = dF and -^― = -^―. 
y x 

Hence M——N— = µ[ ) (15) 
y x \ x y) v 

is the desired equation. To determine the integrating factor by solving this equa­
tion would in general be as difficult as solving the original equation ; in some 
special cases, however, this equation is useful in determining µ. 

93. I t is now convenient to tabulate a list of different types of dif­
ferential equations for which an integrating factor of a standard form 
can be given. With the knowledge of the factor, the equations may 
then be integrated by (14) or by inspection. 

EQUATION Mdx + Ndy = 0 : FACTOR µ : 

I. Homogeneous Mdx + Ndy = 0, — — • 
° J Mx -f- Ny. 

I I . Bernoulli dy + Xχydx = X2yndx, y-ne(i-n)jx1dx% 

I I I . M = yf(xy), N = xg (xy), j‰ - Ny' 

M N 

IV. If y
 N

 X =f(x), el'W*. 

N M 

r rpkrn —1— tZykn —1— ß 

VI. Type * y ( * 4 Ŵ + ) = 0, {k a r b . t ¿ y ' 

ç -Jem — 1— a j Jen — 1—ß 

VII . xayß(mydx + nxdy) -f- χy-y*(pydx + qxdy) = 0, -̂  . ' 

The use of the integrating factor often is simpler than the substitu­
tion y = vx in the homogeneous equation. I t is practically identical 
with the substitution in the Bernoulli type. In the third type it is 
often shorter than the substitution. The remaining types have had no 
substitution indicated for them. The proofs that the assigned forms 
of the factor are right are given in the examples below or are left as 
exercises. 

To show that µ = (Mx + Ny)-1 is an integrating factor for the homogeneous 
case, it is possible simply to substitute in the equation (15), which µ must satisfy, 
and show that the equation actually holds by virtue of the fact that M and N are 
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homogeneous of the same degree, — this fact being used to simplify the result by 
Euler's Formula (30) of § 53. But it is easier to proceed directly to show 

1 M = N ) or ±(l-L_) = È_(l-±A, where φ = *>. 
y Mx + Ny x \Mx + NyJ y\xl + φ) õx\yl + <þj Mx 

Owing to the homogeneity, φ is a function of y/x alone. Differentiate. 

/1 1 \ 1 φ' l _ l φ' - y _ ð / 1 φ \ 
y\xl + φ)¯¯ x (1 + Φ)2x ~ (1 + Φ)2 ' x2 ~ x \y l + ø/ 

As this is an evident identity, the theorem is proved. 
To find the condition that the integrating factor may be a function of x only 

and to find the factor when the condition is satisfied, the equation (15) which µ 
satisfies may be put in the more compact form by dividing by µ. 

M - ^ - N - ^ = — ' - ^ or M °gµ
 N

d]°Z» = dN M_ {W) 
µ y µ X X y y X X y 

Now if µ (and hence log µ) is a function of x alone, the first term vanishes and 

đ - ř = ¾ ^ = / w or b** fm**-
This establishes the rule of type IV above and further shows that in no other case 
can / í b e a function of x alone. The treatment of type V is clearly analogous. 

Integrate the equation x*y (3 ydx + 2 xdy) + x2 (4 yđx + 3 xdy) = 0. This is of 
type VII ; an integrating factor of the form µ = χpy° will be assumed and the ex­
ponents /o, σ will be determined so as to satisfy the condition that the equation be 
an exact differential. Here 

P = µM = 3 χ P + V + 2 + 4XP + V + 1 , Q = µlSr=2χP + byσ+1 + 3zP + V -
Then P'y = 3((Γ + 2)χP + V + 1 + 4 ( ^ + l)χP + 2yσ 

= 2{p+ 5) + ̂ + 1 + 3(/) + 3) + 2 ^ = Q ; . 

Hence if 3((r + 2 ) = 2(/o + 5 ) and 4(<Γ + 1) = 3(/o + 3), 
the relation Pļ = Q'x will hold. This gives σ = 2, p = 1. Hence µ = xy2, 

and Ç X (3 x5¿/4 + 4 x*yZ) dx + Ody = ļ xQy4 + x4¿/3 =  

is the solution. The work might be shortened a trifle by dividing through in the 
first place by x2. Moreover the integration can be performed at sight without the 
use of (14). 

94. Several of the most important facts relative to integrating factors 
and solutions of Max +- Ndy = 0 will now be stated as theorems and 
the proofs will be indicated below. 

1. If an integrating factor is known, the corresponding solution may 
be found ; and conversely if the solution is known, the corresponding 
integrating factor may be found. Hence the existence of either implies 
the existence of the other. 

2. If F = and G = are two solutions of the equation, either must 
be a function of the other, as G = Φ(F) ; and any function of either is 
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a solut ion. I f µ a n d v a re t w o i n t e g r a t i n g factors of t h e equa t ion , t h e 
ra t io µ/v is e i the r cons t an t or a solut ion of t h e equa t ion ; a n d t h e prod­
uct of µ by a n y funct ion of a solut ion, as µΦ(F), is a n i n t e g r a t i n g fac­
tor of t h e equa t ion . 

3 . T h e no rma l de r iva t ive dF/dn of a solu t ion ob ta ined from t h e 
factor µ is t h e p roduc t µ V M 2 + .V2 (see § 48) . 

I t has already been seen that if an integrating factor µ is known, the corre­
sponding solution F = may be found by (14). Now if the solution is known, the 
equation 

dF = F'xdx + Fydy = µ (Mdx + Ndy) gives F'x = µM, Fý = µN ; 

and hence µ may be found from either of these equations as the quotient of a 
derivative of F by a coefficient of the differential equation. The statement 1 is 
therefore proved. I t may be remarked that the discussion of approximate solutions 
to differential equations (§§ 86-88), combined with the theory of limits (beyond the 
scope of this text), affords a demonstration that any equation Mdx -f Ndy = 0, 
where M and N satisfy certain restrictive conditions, has a solution ; and hence it 
may be inferred that such an equation has an integrating factor. 

If µ be eliminated from the relations Fx = µM, F'y = µN found above, it is seen 
that 

MFy - NFχ = 0, and similarly, MGy - NGX = 0, (16) 

are the conditions that F and G should be solutions of the differential equation. 
Now these are two simultaneous homogeneous equations of the first degree in M 
and N. If M and N are eliminated from them, there results the equation 

*ï¾-*ςe; = o or Γ* ļ\ = j(ĶG) = o, (ie-) 

which shows (§ 62) that F and G are functionally related as required. To show 
that any function Φ (F) is a solution, consider the equation 

MΦ'y - NΦX = (MF¦ -NFX) Φ'. 

As F is a solution, the expression MF'y—NF'x vanishes by (16), and hence MΦý—NΦx 

also vanishes, and Φ is a solution of the equation as is desired. The first half of 2 
is proved. 

Next, if µ and v are two integrating factors, equation (15') gives 

M ÌOgµ N \0gµ = M \QgP NÕ\0gv ^ χ \θgµ/ N \θgµ/v = ^ 
by x y x by x 

On comparing with (16) it then appears that log (µ/v) must be a solution of the 
equation and hence µ/v itself must be a solution. The inference, however, would 
not hold if µ/v reduced to a constant. Finally if µ is an integrating factor leading 
to the solution F = 0, then 

dF = µ (Mdx + Ndy), and hence µΦ (F) (Mdx + Ndy) = d fφ (F) dF. 

It therefore appears that the factor µΦ (F) makes the equation an exact differen­
tial and must be an integrating factor. Statement 2 is therefore wholly proved. 
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The third proposition is proved simply by differentiation and substitution. For 

dF F dx F dy Άrdx „dy 
= —- 1 = µM µN — . 

dn x dn by dn dn dn 

And if denotes the inclination of the curve F = C, it follows that 

dy M . dy N dx M 
tan = — = , sin T = — = —, — cos τ — — = — . 

dx N dn Vlf2 + N2 đn Vif2 -f N'2 

Hence dF/dn = µ V ¾ 2 + N2 and the proposition is proved. 
EXERCISES 

1. Find the integrating factor by inspection and integrate : 

(a) xdy — ydx = (x2 + 2) dx, (ß) {y2 — xy) dx + x2dy = 0, 
(7) ydx — xdy + ìogxdx = 0, (δ) y(2xy + e?)dx— e?dy = 0, 
(e) (1 + xy)ydx + (1 - xy)xdy = 0, (ξ) (x - y2)dx + 2 xydy = 0, 
(η) (xy2 -\-y)dx — xdy = 0, (θ) a (xdy + 2 ydx) = xydy, 

. ( i ) (x2 + 2) (xdx + ydy) + V l + (x2 + ÿ2) (ydx - xdy) = 0, 
* ( ) x2ydx — (x3 + y3)dy = 0, (λ) xdy — ydx = / 2 — y2dy. 

2. Integrate these linear equations with an integrating factor : 

(a) y' + ay = sin òx, (ß) y' + cot x = sec x, 
(7) (x + l )y ' -2y = (x+ l)4 , (δ) (1 +x2)2/ / + y = e*«-1*, 

and (/3), (δ), (f) of Ex. 4, p. 206. 

. 3 . Show that »the expression given under II , p. 210, is an integrating factor for 
the Bernoulli equation, and integrate the following equations by that method : 

(a) y' — tan x = y4 sec x, (ß) 3 y2y' + yz — x — 1, 
(7) ' + 2/ cos x = Î/W sin 2 x, (δ) ¢žx + 2 /d?/ = 2 axzyHy, 

and (α), (7), W, tø) of Ex. 4, p . 206. 

4. Show the following are exact differential equations and integrate : 

(a) (3 x 2 +6 xy2) dx + (6 x2¾/+4?/2) dy=0, (ß) sin x cos ydx + cos x sin ydy = 0, 
(7) ( 6 s - 2 y + l ) + ( 2 y - 2 æ - 3 ) ŵ = O, (δ) (x3 + 3xy2)dx + ( + 3x2y)dy = 0, 

2 x ^ M đ χ + y : - x ŵ = 0í (l + e¾d¾ + J ( l - Ξ W = O, 
y2 \ y/ 

(η) & (x2 + 2/2 + 2 x) đx + 2 y<?*Ŵ/ = 0, (0) (Î/ sin x — 1) dx + (y — cos x) tfy = 0. 

5. Show that (Mx — Ny)~1 is an integrating factor for type I I I . Determine 
the integrating factors of the following equations, thus render them exact, and 
integrate : 

(a) (y + x)dx + xdy = 0, (ß) (y2 - xy)dx + x4y = 0, 
(7) (x2 ±_y2) dx-2 xydy = 0, (δ) ( + xy) ydx + (x2y2 - 1)xdy = 0, 
(e) ( / -Ì)xdy-(Vxÿ+Ì)ydx = 0, (Ç) x4x + (3x2y + 2ys)dy = 0, 

and Exs. 3 and 9, p. 206. 

6. Show that the factor given for type VI is right, and that the form given for 
type VII is right if k satisfies k (qm — prì) = q (a — 7) — p (ß — δ). 
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7. Integrate the following equations of types IV-VII : 

(a) fø4 + 2 y) dx + (xyò + 2 y* - 4 x) dy = 0, (0) (x2 + ?/2 + 1) dx - *2 x ? ŵ = 0, 
(7) (3x2 + 6xΐ/3¿/2)đx + (2x2 + 3xy)đy = O, (δ) (2x¾/2 + ?/)- (x3?/ - 3x)ý= 0, 

(e) (2x 2 î / -3ž / 4 )dx4- (3x3 + 2x2/3)¢fy = O, 
( 0 ( 2 - 2 / / ) s i n ( 3 x - 2 ? / ) + y ' s i n ( x - 2 y ) = O. 

8. By virtue of proposition 2 above, it follows that if an equation is exact and 
homogeneous, or exact and has the variables separable, or homogeneous and under 
types IV-VII , so that two different integrating factors may be obtained, the solu­
tion of the equation may be obtained without integration. Apply this to finding 
the solutions of Ex. 4 (ß), (δ), (7) ; Ex. 5 (α), (7). 

9. Discuss the apparent exceptions to the rules for types I, I I I , VII, that is, 
when Mx 4- Ny = 0 or Mx — Ny ±= 0 or qm — pn = 0. 

10. Consider this rule for integrating Max + Ndy = O when the equation is known 
to be exact : Integrate Mdx regarding y as constant, differentiate the result regard­
ing y as variable, and subtract from N ; then integrate the difference with respect 
to y. In symbols, 

G = ƒ (Mdx + Ndy) = Mdx + ƒ (N- Ļ Ç Mđx\dy. 

Apply this instead of (14) to Ex. 4. Observe that in no case should either this 
formula or (14) be applied when the integral is obtainable by inspection. 

95. Linear equations with constant coefficients. The type 

dny , dn~λy , , dy , . . , . _ 
a*¯έ+a^¯ďbA+• • '+a^ű + = z ( ? } (17) 

of differential equation of the nth. order which is of the first degree in  
and its derivatives is called a linear equation. Eor the present only 

the case where the coefficients α0, av • • -, an_ly an are constant will be 
treated, and for convenience it will be assumed that the equation has 
been divided through by aQ so that the coefficient of the highest deriva­
tive is 1. Then if differentiation be denoted by D, the equation may be 
written symbolically as 

φn + a^Dn -1 + . . . + an _,D + an) = X, (17') 

where the symbol D combined with constants follows many of the laws 
of ordinary algebraic quantities (see § 70). 

The simplest equation would be of the first order. Here 

- - — aχy = X and = ea*x f e~^*Xdx, (18) 

as may be seen by reference to (11) or (6). Now if D — aχ be treated 
as an algebraic symbol, the solution may be indicated as 

(D-ajy = X and y = ^L-Xj (18') 
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where the operator (D — a^)~1 is the inverse of D — aχ. The solution 
which has just been obtained shows that the interpretation which must 
be assigned to the inverse operator is 

^ i — (*) = e^ĵe- ".- (*) <ix, (19) 

where (#) denotes the function of x upon which it operates. That the 
integrating operator is the inverse of D — aχ may be proved by direct 
differentiation (see Ex. 7, p. 152). 

This operational method may at once be extended to obtain the solu­
tion of equations of higher order. For consider 

Ŝ + « ! ¾ + ¾y = - γ or (D> + a^ + a¿y = X. (20) 

Let aχ and a2 be the roots of the equation D2 + aχD -f- a2 = 0 so that 
the differential equation may be written in the form 

[ D » _ ( ¾ + agZ> + ¾ ¾ ] y = . - or (D-a¿(D-a¿y = X. (20') 

The solution may now be evaluated by a succession of steps as 

(D — a^)y = y X = eaιX f e¯“**Xdx, 

y = X = ea*x J e~aA ea'x J e~“^Xdx 

or y = ea** Je^~ a*)x\ Je- a^xXdx dx. (20") 

The solution of the equation is thus reduced to quadratures. 
The extension of the method to an equation of any order is immediate. 

The first step in the solution is to solve the equation 

Dn + a^n-i + . . . 4. an_J) + an = 0 
so that the differential equation may be written in the form 

Ų) - aχ) (D-a2)...(D- an _,) (D-an)y = X; (17") 

whereupon the solution is comprised in the formula 

y = » J e(«*-i-**)* f ( ¿«*-“*>* J e¯^xX(dx)n, (17'") 

where the successive integrations are to be performed by beginning 
upon the extreme right and working toward the left. Moreover, it 
appears that if the operators D — an, D — an_u • • •, D — a.2, D — aχ were 
successively applied to this value of y, they would undo the work here 
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done and lead back to the original equation. As n integrations are 
required, there will occur n arbitrary constants of integration in the 
answer for y. 

As an example consider the equation (D3 — ½D)y = x2. Here the roots of the 
algebraic equation Ίß — 4 Ώ — 0 are 0, 2, — 2, and the solution for y is 

y = ļj^j÷Γ^ = fe>*fe-**e-**fe>*x4<lx)*. 

The successive integrations are very simple by means of a table. Then 

Çe2xx2dx = ì x42x - ļ xe2x + i e2x + Ct, 

Çe-*x Çe2xx2(dx)2 = f(ļx2e-2x-ļxe-2x + \e~2x + Cxe-*x)dx 

= -\x4-2x- \e~2x + Cxer** + C2, 

y = Ce2xÇe-*x Ce2xx2(dxf = ƒ (– \x2 - ļ + Cxe~2x + C2e2x)dx 

= " A « 3 - 1* + Cxe~2x + C2e2* + C3. 
This is the solution. It may be noted that in integrating a term like Cxe~*x the 
result may be written as Cλe-*x, for the reason that Cx is arbitrary anyhow ; and, 
moreover, if the integration had introduced any terms such as 2 e~2*, J e2x, 5, these 
could be combined with the terms Cxe~2x, C2e2x, C3 to simplify the form of 
the results. 

In case the roots are imaginary the procedure is the same. Consider 
d2y 
—- -ţ. = sin x or (D2 + 1) = sin x or ( + i ) ( l ) - i ) 2 / = sin x. 
dx2 

Then = sinx = eix \ e~2ix \ e∞sinx(dx)2. = V— 1. 
Ώ-iD + i J J v ' ' 

The formula for ļ ¢∞ sin òxcřx, as given in the tables, is not applicable when 
a2 + ò2 = 0, as is the case here, because the denominator vanishes. It therefore be­
comes expedient to write sin x in terms of exponentials. Then 

ƒ /» p%X g— IX p%X ß— XX 

e-2ix I eiχ . (dx)2; for sinx = :  

Now —,e** Çe~2ix Ç(e2ix - 1) (dx)2 = —.eix Çe~2ix¦ —m e2ix - x + cλdx 

= — e∞\ — x + — e~2ίxx e~2ix + CΛe~2ix + C„ 
2i |_2ι 2t 4 λ 2J 

= - 2 2 + C ι e " l a ; + C f 2 ^ . 
_l_ p— ta; pix _ p— ix 

Now Cxe-to + C2ete = (C2 + Cj) + ¢ + ( C 2 - C x )¿^―? 
Δ Δ% 

Hence this expression may be written as Cx cos x + C2 sin x, and then 
^ = — \ x cosx + Cx cosx + C2 sinx. 

The solution of such equations as these gives excellent opportunity to cultivate the 
art of manipulating trigonometric functions through exponentials (§ 74). 
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96. The general method of solution given above may be considerably 
simplified in case the function X(x) has certain special forms. In the 
first place suppose X = 0, and let the equation be P(D) y = 0, where 
P (D) denotes the symbolic polynomial of the τ¾th degree in D. Suppose 
the roots of P(D) = 0 are 1 2,---, and their respective multiplicities 
are mv m2, • • •, mk, so that 

(D — ak)
mk... (D — ccj¡)™*(D — ayn4j = 0 

is the form of the differential equation. Now, as above, if 

(D-aj™4j = O, then = ( z ) _ 1 0 = e^ ƒ • • • ƒ O(dx)™K 

Hence = ea'x(Cl + C2x + C¿c2 H h Cmxm* ~1) 

is annihilated by the application of the operator (D — a)mι, and there­
fore by the application of the whole operator P(D), and must be a solu­
tion of the equation. As the factors in P(D) may be written so that 
any one of them, as (D -÷ a¿)™i, comes last, it follows that to each factor 
(D — a¡)™i will correspond a solution 

Vi = e"iX(Cn + C& + • • • + Cimtx™i-1), P(D) Vi = 0, 

of the equation. Moreover the sum of all these solutions, 

i k 

y = 2 ) e«t*(Ca + Ci2x + • •. + C‰,æ“¾-1), (21) 
í = l 

will be a solution of the equation ; for in applying P(D) to y, 

P(D)y = P(D)yχ + P(D)y2 + . . . + P(D)yk = 0. 

Hence the general rule may be stated that : The solution of the dif­
ferential equation P (D) y = Oof the nth order may be found by multiply-
ing each eax by a polynomial of (m — 1) st degree in x (where a is a root of 
the equation P (D) = Oof multiplicity m and where the coefficients of the 
polynomial are arbitrary) and adding the results. Two observations 
may be made. First, the solution thus found contains n arbitrary con­
stants and may therefore be considered as the general solution ; and 
second, if there are imaginary roots for P (D) = 0, the exponentials aris­
ing from the pure imaginary parts of the roots may be converted into 
trigonometric functions. 

As an example take (D4 - 2D3 + y = 0. The roots are 1,1, 0, 0. Hence the 
solutionis y = <*(^+C,x)+(Cs+CtX). 

Again if (D* + 4) y = 0, the roots of D4 + 4 = 0 are ± 1 ± i and the solution is 
y = 0^(1+'>+ c2eα-0*+ c8e<-ι+θ*+ C4e<-ι-0* 
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or y = ex (C^1* + C2e- &) + er x (C3e^ + CAe~ix) 
= ex ( cos x + C2 sin x) + e~ x (C3 cos + C4 sin ), 

where the new O's are not identical with the old C's. Another form is 

— ex A cos (x + 7) 4- e~x cos (x -f δ), 

where 7 and δ, J . and B, are arbitrary constants. For 
C i C2 . 1 

C t c o s æ + C 2 s i n x = VC,2 + C9
2
 0 ¯~ cosa + sin , 

1 2 x 2 [y/Cl + C| V<72 + C| J 
and if 7 = tan ~1 I 2 ) , then Cx cos x + C2 sin = V c f + C | cos ( + 7). 

Next if x is not zero but if any one solution I can he found so that 
P ( D ) / = A , then a. solution containing n arbitrary constants may he 
found by adding to I the solution of P(Ü)y = 0. For if 

P(D)I=X and P(D)y = O, then P(D)(I + y) = X. 

I t therefore remains to devise means for finding one solution I. This 
solution I may be found by the long method of (17'"), where the inte­
gration may be shortened by omitting the constants of integration since 
only one, and not the general, value of the solution is needed. In the 
most important cases which arise in practice there are, however, some 
very short cuts to the solution / . The solution I of P{D)y = X is 
called the particular integral of the equation and the general solu­
tion of P{D) = 0 is called the complementary function for the equa­
tion P(D) y = X. 

Suppose that X is a polynomial in x. Solve symbolically, arrange 
P (D) in ascending powers of D, and divide out to powers of D equal to 
the order of the polynomial X. Then 

P(D)I=X, / ^ x = [Q(D)+£ígµ (22) 

where the remainder R (D) is of higher order in D than X in x. Then 

P(D)I = P(D)Q(D)X + R(D)X, R(D)X = O. 

Hence Q (D) x may be taken as / , since P (D) Q(D)X = P(D)I = X. By 
this method the solution I may be found, when I is a polynomial, as 
rapidly as P (JĴ) can be divided into 1 ; the solution of P (D) = 0 may 
be written down by (21) ; and the sum of I and this will be the required 
solution of P (Z>) y = X containing n constants. 

As an example consider (D3 + 4 D2 + 3 D) = 2. The work is as follows : 
1 9 1 ! , 1Γ1 4 ^ , 1 3 ^ fí(D)l 0 

ļ z= %2 — χ" = Σ) -\ ß 4- I 2 

3D + 4Z^ + D3 i )3 + 4Z> + D2 Dis 9 27 P(ty] ' 
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Hence I = Q(D)x* = - (– - -D + — DA X* = -x* - -χ2 + —χ. 
¾ v } D\3 9 27 9 9 27 

For D3 + 4i)2 4-32) = O the roots are 0, — 1, — 3 and the complementary function 
or solution of P(B)y = 0 would be Cx + C2e~x + C3e~Sx. Hence the solution of 
the equation P (D) y = x2 is 

2/ = 6\ + C2e~x + 3 - * + ¾x3 - f x2 + }f«. 

It should be noted that in this example Ώ is a factor of P (Ώ) and has been taken out 
before dividing ; this shortens the work. Furthermore note that, in interpreting 
\/Ώ as integration, the constant may be omitted because any one value of I will do. 

97. Next suppose that X = Ceax. Now Deax = aeax, Dkeax = akeax, 

and P (D) eax = P (a) eax ; hence P (D) — - eax = Ceax. 

n 
But P (D) I = Ceax, and hence I = —— eax (23) 

is clearly a solution of the equation, provided a is not a root of P (D) = 0. 
If P (a) = 0, the division by P (a) is impossible and the quest for I has 
to be directed more carefully. Let a be a root of multiplicity m so that 
P (D) = (D - a)>“P¿D). Then 

P^Z>) (D - a)mI = Ceax, (D - a)mI = — y - eax, 

and i = -±—e™ . . . ƒ (dxy= N • (23') 
Λ(α) J J P,(«)m! v ; 

For in the integration the constants may be omitted. I t follows that 
when X = Ceax, the solution I may be found by direct substitution. 

Now if X broke up into the sum of terms X = Xλ + X2 H a n d ^ 
solutions ƒ , /2, • • • were determined for each of the equations P(Π)I^= Xv 

p (Z)) /2 = Z2, • • •, the solution 7 corresponding to X would be the sum 
It -h ī0 -\ . Thus it is seen that the above short methods apply to 
equations in which X is a sum of terms of the form Cxm or Ceax. 

As an example consider (¿>4 — 2D*2 + \)y = ex. The roots are 1, 1, — 1, — 1, 
and a = 1. Hence the solution for I is written as 

(D + l)2 (Z> - l)2J = e*, (D - 1)2I = \ e* I = ļ e¾2. 
Then y = ex(G1 + 2 ) + e-*(C8 + Céx) + ļ e¾2. 

Again consider (D2 — 5 Ώ + 6) ?/ = x + e™*. To find the 7X corresponding to , 
divide. /1 5 ^ \ 1 5 

ƒ. = íc = (- + —D + . . . )x = -x + —• 
1 β~5i)+X>2 \6 86 6 36 

To find the I2 corresponding to e™̂ , substitute. There are three cases, 

1 2 = —2 1 Γ¯ae^ I2 = M3xi I2 = -xe*x, 
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according as m is neither 2 nor 3, or is 3, or is 2. Hence for the complete solution, 
1 5 1 

1 2 6 36 m 2 - 5 m + 6 
when ra is neither 2 nor 3 ; but in these special cases the results are 

y = CλΦ* + C2e*x + J x + ŵ - ∞8*, = Ci63* + <¾e2æ + i x + A + xe**. 

The next case to consider is where X is of the form cos ßx or sin ßx. 
If these trigonometric functions be expressed in terms of exponentials, 
the solution may be conducted by the method above ; and this is per­
haps the best method when ± ßί are roots of the equation P (D) = 0. 
I t may be noted that this method would apply also to the case where 
A might be of the form eax cos ßx or eax sin ßx. Instead oí splitting the 
trigonometric functions into two exponentials, it is possible to combine 
two trigonometric functions into an exponential. Thus, consider the 

equations 
P{D)y = eax cos ßx, P(D)y = eax sin ßx, 

and P{D)y = eax (cos ßx + i sinßx) = ¿a + ßi)x. (24) 

The solution I of this last equation may be found and split into its 
real and imaginary parts, of which the real part is the solution of the 
equation involving the cosine, and the imaginary part the sine. 

When X has the form cos ßx or sin ßx and ± ßi are not roots of the 
equation P(D) = 0, there is a very short method of finding / . For 

D2 cos ßx = — ß2 cos ßx and D2 sin ßx = — ß2 sin ßx. 

Hence if P(D) be written as P¿D2) + DP2(D
2) by collecting the even 

terms and the odd terms so that P ļ and P2 are both even in D, the 
solution may be carried out symbolically as 

Ţ__ 1 1 1 
7 - P (D) C0S X ¯ P¿D2) + DP2(D

2) C0S X - P l ( - ft + DP¿- ßř) ™* ‰ 

P¿-ļF)-DP¿-ļf) 
*-lP¿-r)7 + ftp¿-fř)7""*- (25) 

By this device of substitution and of rationalization as if D were a surd, 
the differentiation is transferred to the numerator and can be performed. 
This method of procedure may be justified directly, or it may be made 
to depend upon that of the paragraph above. 

Consider the example (D2 + \)y = cos . Here ßi = ί is a root of D2 -f 1 = 0. 
As an operator D2 is equivalent to — 1, and the rationalization method will not 
work. If the first solution be followed, the method of solution is 

1 eiχ i e-ix i eix i e-ix i i 
I = — h ^ = = — \xeιx — xe^~ lxλ = - x sin x. 

D 4 1 2 D2 + l 2 D-ίái Ώ+i4ί 4 J 2 
If the second suggestion be followed, the solution may be found as follows : 
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1 & 
(D2 + 1) I = cosx + ί sin x = etx, I = e∞ = 

Now I = — (cosx 4- sin x) = - sin x ix cosx. 
2 ' 2 2 

Hence Z = ļ x s i n x for (D2 + 1)1 = cosx, 
and I = — I x cosx for (D2 + 1) I = sinx. 
The complete solution is = Cλ cos x + C2 sin x 4- ļ x sin x, 
and for (D2 + 1) = sin x, 2/ = Ct cos x 4- C2 sin x — ļ x cos x. 

As another example take (D2 - 3 ΰ + 2)î/ = cosx. The roots are 1, 2, neither 
is equal to ± ßi = ± , and the method of rationalization is practicable. Then 

9 l ! 14-3D 1 
j _ c o s χ _ cosx = cosx = — (cosx — 3sinx). 

1)2 _ 3 D + 2 1 - 3 D 10 10V ' 
The complete solution is = Cλe~x 4- C2e~2x 4- j¾(cosx — 3sinx). The extreme 
simplicity of this substitution-rationalization method is noteworthy. 

EXERCISES 

1. By the general method solve the equations : 

(α)¾+4 + 8y = 2*. <ø*£_8¾ + 4 - , = *, 
dx2 dx dx3 dx2 dx 

(y) (IP-áD + 2)y = x, (δ) (IP + IP-áD + 4)y = x, 
(e) (LP + δD* + 6D)y = x, (f) (D2 4- D + 1) = xex, 
(η) (D2 + Ώ + l)î/ = sin2x, (0) (2)2-4)2/ = 4- 2 , 
( t ) (2)2 4- 3 D 4-2)2/= x 4- cosx, ( ) (D4 - 4D 2 )^ = 1 - sinx, 
(λ) (D2 + I)?/ = cosx, (µ) (D2 4- I)?/ = secx, (?) (D2 4- l)ž/ = tanx. 

2. By the rule write the solutions of these equations : 

(a) (D2 4- 3 D + 2)î/ = 0, (j8) (D3 4- 3D 2 4- D - ò)y = 0, 
( 7 ) ( D - l ) 8 y = 0, (δ) (D* 4- 2D 2 4- l)ž/ = 0, 
(e) ( D 3 - 3 D 2 + 4)2/ = 0, (f) ( D 4 - D 3 - 9 D í 2 - l l D - 4 ) 2 / = O, 
(η) ( D 3 - 6 D 2 4 - 9 D ) Ž / = O, (0) ( D * - 4 D 3 4-8Dí2-8D4-4)2/ = O, 

(t) ( D 5 _ 2 D 4 4-DS)2/ = O, ( ) (D3 - D2 4- D)2/ = 0, 
(λ) (D* - 1)22/ = 0, (µ) (D5 - 13D3 4- 26D2 4- 82D 4- 104)2/ = 0. 

3. By the short method solve (7), (δ), (e) of Ex. 1, and also : 
(a) (D*-l)y = x\ (ß) ( D 3 - 6 D 2 4 - H D - 6 ) 2 / = x, 
(7) (D3 4-3D^4- 2D)y = x2, (δ) (D3 - 3D 2 - 6D + 8)2/ = x, 
(e) (D3 + 8)2/ = x 4 4 - 2 x 4 - l , (f) (D3 _ 3D 2 - D + 3)2/= x2, 
(17) ( D * - 2 D 3 4-D2)2/ = x, (0) (D*4-2D34-3D^24-2D4-l)ž/ = l + ^4-x2, 
(1) ( D 3 - l ) 2 / = x2, (/c) ( D * - 2 D 3 4-D2)2/ = x3. 

4. By the short method solve (α), (ß), (θ) of Ex. 1, and also : 
(a) (IP-3D+2)y = ex, (ß) (D* - D3 - 3 D2 4- D - 2)y = e3x, 
(7) ( D 2 - 2 D 4 - l)y = ex, (δ) (D3 - 3D 2 4- 4)2/ = e3*, 
(e) (D*4- 1) / = 2 *4- ; 3 - , (V) (D3 4- l)ž/ = 3 4- e~x 4- 5e2*, 
(i,) (XH + 2D 2 4- l )ž / = e^4-4, (θ) (D3 4- 3D 2 4- 3 D + \)y = 2er*, 
( \ ) (D2-2D)2 / = e2^4- 1, ( ) (D3 4- 2D 2 4- D) = e2x 4- x2 4- , 
(λ) (D2 - a2)y = e™ 4- eδ*, <» (D2 - 2αD 4- a2)y = ex 4- 1. 
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5. Solve by the short method (η), (t), ( ) of Ex, 1, and also : 
(a) ( D 2 - D - 2 ) ? / = s i n x , ' - (j8) (D2 + 2 D + l) = 3 e 8 ' - coso:, 
(7) (D2 + 4) = x2 + cosx, (δ) (D3 + D2 - D - \)y = cos2 , 
(e) (D2 + l)2ž/ = cosx, (f) (D3 - D2 + D - l )y = cos , 
(η) ( D 2 - 5 D + 6)?/ = c o s x - e 2 * , (0) (D3 - 2 D2 - 3 D) = 3 2 + sin x, 
( ι ) (D2- l )2?/ = sinx, ( ) (D2 + 3 D + 2)?/ = e2*sinx, 
(\) ( D 4 - l ) ? / = : e * c o s x , (µ) ( ^ ~ 3 ^ 2 + 4 D - 2) = e*'+ cosx, 
(v) (D2 — 2 D + 4)?/ = e*sinx, (o) (D2 + 4)¿/ = sin3x + ex + x2, 

- xV3 (π) (D6 + 1) = sin f x sin ¾ x, (p) (D3 + 1) ?/ = e2* sin x + e2 sin , 

(σ) ( D 2 * 4)ž/ = sin2x, (T) (D* + 32 2) + 48)y = a;e-2a: + e2a;cos22Λ. 

1 1 «% . 
6. If X has the form eaxXì, show that I = eaxXΛ = e“ A",. 

*' P(D) P ( D + < * ) 
This enables the solution of equations where Xχ is a polynomial to be obtained by 
a short method ; it also gives a way of treating equations where X is ePcx cos ßx or 
eax sin /3x, but is not an improvement on (24) ; finally, combined with the second 
suggestion of (24), it covers the case where X is the product of a sine or cosine by 
a polynomial. Solve by this method, or partly by this method, (ξ) of Ex. 1 ; ( ), (λ), 
M» (p)i (τ) °f Ex. 5 ; and also 
(a) (D2 - 2 D + l)y = x2e*x, (ß) (D3 + 3D 2 + 3 D + \)y = (2 - x2)e~*, 
(γ) (D2 + n2)y = x4e*, (ð) (D4 - 2D 3 - 3D 2 + 4 D + 4)?y = χ2e*, 
(β) ( D 3 - 7 D - 6)y = 2 (1 + ), (f) ( D - l ) ¾ / = e*+cosx + x2e*, 
(17) (D - l)3î/ = x - x3e*, (θ) (D2 + 2) = x2e3æ + ex cos2x, 
( 1 ) (D3 — 1) = xex + cos2x, ( ) (D2 — 1) = sin + (1 + x2) e*, 
(λ) (D2 + 4) = æ sin x, (µ) (D4 + 2D2 + 1) = χ2 Cos αx,_ 
(*) (D2 + 4) = (x sin x)2, (0) (D2 - 2 D + 4)¾ = xex cos V¾ x. 

7. Show that the substitution x = e¢, Ex. 9, p. 152, changes equations of the type 

x*D»y + a^-^Ώn-iy + . . . + an-!XĪ>y + < = X(x) (26) 

into equations with constant coefficients ; also that ax + b = ef would make a simi­
lar simplification for equations whose coefficients were powers of ax + ò. Hence 
integrate : 

(or) (x2D2 - xD + 2)Ž/ = x log«, (j8) (x3DS - x2D2 + 2xD - 2) = x3 + 3 x, 
(7) [ ( 2 x - i y D S + ( 2 x - l ) D - 2 ] ? / = O, (δ) (x2D2 + 3xD + \)y = (1 - x)-2, 
(e) (xSDS + x D - l ) ¾ / = xlogx, (ft [(x + 1)2D2 - 4(x + l)D + 6]y = x, 
(η) (x 2 D+ 4xD + 2)2/ = ex, (θ) (x3Ώ2-3x2D + x)y= logxsinlogx + 1, 

(1) (x*D4 + 6x3Ds + 4 x 2 D 2 - 2 x D - 4) = x2 + 2 cos log x. 

8. If _L be self-induction, /t resistance, capacity, current, g charge upon the 
plates of a condenser, and f(t) the electromotive force, then the differential equa­
tions for the circuit are 

V ' ¢Z¿2 Ldt Ld I/ } VP; dt2 L at LC LJ V ; 

Solve (a) when ƒ (¿) = e~ α< sin ò£ and (/3) when ƒ (¿) = sin bt. Reduce the trigonometric 
part of the particular solution to the form sin (bt + 7). Show that if R is small 
and b is nearly equal to 1 / V Ī C , the amplitude iΓ is large. 
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,98. Simultaneous linear equations with constant coefficients. If 
there be given two (or in general n) linear equations with constant 
coefficients in two (or in general n) dependent variables and one inde­
pendent variable t, the symbolic method of solution may still be used 
to advantage. Let the equations be 

(a^ + a ^ ^ + ^- + a^x + (b^ + b ^ ^ + ^'+b^y R(t), 
(¢0D» + ¾Z>*-1 + • •. + cp) x + (d0D* •+ dτD + • • • + dq) y = S(t), l } 

when there are two variables and where D denotes differentiation by t. 
The equations may also be written more briefly as 

P¿D)x + Cψ))y = R and P D)x +Q Ώ)y = S. 
The ordinary algebraic process of solution for x and y may be employed 
because it depends only on such laws as are satisfied equally by the 
symbols D, Pļ(D), Q^D), and so on. 

Hence the solution for x and y is found by multiplying by the ap­
propriate coefficients and adding the equations. 

4D) I - P P) I P¿D) x + Q,(D) y=R, 
-Q¿D)\ P¿D)\ P D)x + Q¿D)y = S. 

Then \_P¿D) Q D) - P2(D) <¾(Λ)] x = ¾(Z>) R - Q¿D) S, 

W ß ) - 4D) 4D)Ì = '4D)*' - PÁD)R- ĸ } 

I t Λvill be noticed that the coefficients by which the equations are multi­
plied (written on the left) are so chosen as to make the coefficients of 
x and y in the solved form the same in sign as in other respects. I t may 
also be noted that the order of P and Q in the symbolic products is im­
material. By expanding the operator Pτ(D) Q2(P) — P0(D) ¾ ( ^ ) a certain 
polynomial in 7) is obtained and by applying the operators to R and £ 
as indicated certain functions of t are obtained. Each equation, whether 
in x or in y, is quite of the form that has been treated in § § 95-97. 

As an example consider the solution for x and y in the case of 

2 ^ _ Ŵ _ 4 x = 2í, 2 ^ + 4 ^ - 3 ÿ = 0 ; 
dt2 dt dt dt 

or ( 2 D 2 - 4 ) x - Dy = 2t, 2Dx + ( 4 D - 3 ) y = O. 

Solve 4 D - 3 I - 2 D I (2D2 - 4t)x - Dy = 2t 

D | 2 7 ) 2 - 4 | 2Dx + ( 4 D - 3 ) ? / = 0. 

Then [(4 D - 3) (2 IP - 4) + 2 D2] x = (4 D - 3) 2 í, 

[2D2 + (2D2 - 4 ) ( 4 D - 3)] y = - (2D)2t, 

or 4(2D 3 - UP - 4 D + S)x = 8 - 6¿, 4(27>3 - D2 - 4D + S)y = - 4. 

The roots of the polynomial in D are 1, 1, — l ļ ; and the particular solution Ix for 
x is — \ ¿, and 7y for ¾/ is — ļ . Hence the solutions have the form 

x = ( + Cÿ)e< + C 3 e - f ř - ļź , = (Kχ + 7Γ2¿)eř + ^ e " * 1 ~ ļ . 
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The arbitrary constants which are introduced into the solutions for x 
and y are not independent nor are they identical. The solutions must 
be substituted into one of the equations to establish the necessary relations 
between the constants. It will be noticed that in general the order of the 
equation in D for x and for y is the sum of the orders of the highest 
derivatives which occur in the two equations, — in this case, 3 = 2 + 1 . 
The order may be diminished by cancellations which occur in the formal 
algebraic solutions for x and y. In fact it is conceivable that the coeffi­
cient PχQ2 —PA °^ x a d i the solved equations should vanish and 
the solution become illusory. This case is of so little consequence in 
practice that it may be dismissed with the statement that the solution 
is then either impossible or indeterminate ; that is, either there are no 
functions x and of t which satisfy the two given differential equations, 
or there are an infinite number in each of which other things than the 
constants of integration are arbitrary. 

To finish the example above and determine one set of arbitrary constants in 
terms of the other, substitute in the second differential equation. Then 

2( * + C2e< + C2íe<- f C3e¯**—-ļ) + 4 (K x ë + K2e* + K2U* - ļ K3e¯i') 
- 3 ( * + K2te* + K3e¯ ìl - ļ ) = 0, 

or e<(2 6\ + 2 C2 + Kx + K2) + te\2 C2 + K2) - 3 e¯ i \C3 + 3 K3) = 0. 

As the terms e', ¿e', e~¾' are independent, the linear relation between them can 
hold only if each of the coefficients vanishes. Hence 

C3 + SK3 = 0, 2 C2 + K2 = 0, 2 Cλ + 2 C2 + K, + K2 = 0, 
and C3 = -SK3, 2C2 = -K2, 2 = - . 
Hence æ = (C, + C2t) ë - 3 K3e~ t ř - ļ ¿, = -2(CX + C2t) é + K3e¯ íl - \ 

are the finished solutions, where Gx, C2, iΓ3 are 4three arbitrary constants of inte­
gration and might equally well be denoted by Cτ, C2, (73, or Kx, i ι 2 , K3. 

99. One of the most important applications of the theory of simultaneous equa­
tions with constant coefficients is to the theory of small vibrations about a state of 
equilibrium in a conservative* dynamical system. If qχ, q2, . • •, qn are n coordinates 
(see Exs. 19-20, p. 112) which specify the position of the system measured relatively 

* The potential energy V is defined as — dV = dW = Qxdqx + Q2dq2 H -f Q dq , 
W h e Γ e 'G- Y ħ , v ħl + y ^ i , , τ x yn zn 

čtfi qi QÌ qi q{ ½ 

This is the immediate extension of Q as given in Ex. 19, p. 112. Here dW denotes the 
differential of work and dW = ΣF¿^r¿ = (X¿cfø¿-ļ- Ύ dy + . To find Q¿ it is 
generally quickest to compute d W from this relation with dxi, dyi, dzi expressed in terms 
of the differentials dql, • • •, dqn. The generalized forces Q¿ are then the coefficients of 
dqi. If there is to be a potential V, the differential d W must be exact. It is frequently 
easy to find V directly in terms of qλ, • • •, qn rather than through the mediation of 
Qi » * * * » Qn ; when this is not so, it is usually better to leave the equations in the form 
d T T , 
— r : τ— = Qi rather than to introduce V and L. 
dt cqi õqi 
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to a position of stable equilibrium in which all the q1s vanish, the development of 
the potential energy by Maclaurin's Formula gives 

V(Qi, 02» ' ' ' » ‰) = Vo + F ι t ø u ¾» ' ' ' » «») + ^^a(¢i» ¾» • ' ' » ¢«) + ' • ' » 
where the first term is constant, the second is linear, and the third is quadratic, and 
where the supposition that the g's take on only small values, owing to the restriction 
to small vibrations, shows that each term is infinitesimal with respect to the preced­
ing. Now the constant term may be neglected in any expression of potential energy. 
As the position when all the g's are 0 is assumed to be one of equilibrium, the forces 

Û - _ Ë Γ , Q--Ô- . . . o - - £ I 

must all vanish when the g's are 0. This shows that the coefficients, ( V/ qì)o = 0, 
of the linear expression are all zero. Hence the first term in the expansion is the 
quadratic term, and relative to it the higher terms may be disregarded. As the 
position of equilibrium is stable, the system will tend to return to the position 
where all the #'s are 0 when it is slightly displaced from that position. I t follows 
that the quadratic expression must be definitely positive. 

The kinetic energy is always a quadratic function of the velocities ġi , q2 » • • • » 
with coefficients which may be functions of the ¢'s. If each coefficient be expanded 
by the Maclaurin Formula and only the first or constant term be retained, the 
kinetic energy becomes a quadratic function with constant coefficients. Hence the 
Lagrangian function (cf. § 160) 

L=T-V Γ(ĝ , , ¢2 , ••- , qn)- V(qτ, q2, ••• , ‰), 

when substituted in the formulas for the motion of the system, gives 

d L L _ d L ϋL _ d L L _ 
dt qλ qx ' dt cq2 q2 ' ' dt qn q 

a set of equations of the second order with constant coefficients. The equations 
moreover involve the operator D only through its square, and the roots of the equa­
tion in D must be either real or pure imaginary. The pure imaginary roots intro­
duce trigonometric functions in the solution and represent vibrations. If there were 
real roots, which would have to occur in pairs, the positive root would represent 
a term of exponential form which would increase indefinitely with the time, — a 
result which is at variance both with the assumption of stable equilibrium and 
with the fact that the energy of the system is constant. 

When there is friction in the system, the forces of friction are supposed to vary 
with the velocities for small vibrations. In this case there exists a dissipative func­
tion -F(ġļ, q2, - • •, qn) which is quadratic in the velocities and may be assumed to 
have constant coefficients. The equations of motion of the system then become 

ļ L^_ L < ^ _ 0 d L L F _ 
dt q qλ qλ ' ' dt qn qn cqn 

which are still linear with constant coefficients but involve first powers of the 
operator D. I t is physically obvious that the roots of the equation in D must be 
negative if real, and must have their real parts negative if the roots are complex ; 
for otherwise the energy of the motion would increase indefinitely with the time, 
whereas it is known to be steadily dissipating its initial energy. I t may be added 
that if, in addition to the internal forces arising from the potential V and the 
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frictional forces arising from the dissipative function F, there are other forces 
impressed on the system, these forces would remain to be inserted upon the right-
hand side of the equations of motion just given. 

The fact that the equations for small vibrations lead to equations with constant 
coefficients by neglecting the higher powers of the variables gives the important -
physical theorem of the superposition of small vibrations. The theorem is : If with 
a certain set of initial conditions, a system executes a certain motion ; and if with 
a different set of initial conditions taken at the same initial time, the system 
executes a second motion ; then the system may execute the motion which consists 
of merely adding or superposing these motions at each instant of time ; and in 
particular this combined motion will be that which the system would execute under 
initial conditions which are found by simply adding the corresponding values in 
the two sets of initial conditions. This theorem is of course a mere corollary of the 
linearity of the equations. 

EXERCISES 

1. Integrate the following systems of equations : 

(a) Ox - By + x = cos ¿, Ώ2x - Ώy + Sx-y = e2t, 
(ß) SΣ>x-\- 3x + 2y = e«, áx-3Ih/ + 3y = St, 
(γ) Ίßx - Sx - 4y.= 0, ΰ ¾ + x + y = 0, 

( δ ) _ ^ _ = - ŵ = ŵ , ( « ) - ( ¾ = dx = dy , 
y—Ίx 2x + òy 3x + áy 2x+òy 

(f) tDx + 2(x - y) = 1, íDy + x + by = í, 
(η) Ώx = ny — mz, Dy = Iz — nx, Ώz = nix — ly, 
(θ) 1)4 - 3x - 4¾/ + 3 = 0, īßy + x - by + 5 = 0, 
(ι) D*x-àDsy + 4D¾-x=r 0, D 4 Î / - 4 2 ) 3 X + 4Dty-¾/ = O. 

2. A particle vibrates without friction upon the inner surface of an ellipsoid. 
Discuss the motion. Take the ellipsoid as 

ζ + g + (i=Ļf)! = i ; then * = C « n ( ^ í + c l \ = j r đ n ( Ä + j r Λ 
a2 b2 c2 \ a I \ b 

3 . Same as Ex. 2 when friction varies with the velocity. 

4. Two heavy particles of equal mass are attached to a light string, one at the 
middle, one at one end, and are suspended by attaching the other end of the string 
to a fixed point. If the particles are slightly displaced and the oscillations take 
place without friction in a vertical plane containing the fixed point, discuss the 
motion. 

5. If there be given two electric circuits without capacity, the equations are 

-,. d‰ - -diņ -r, . _, -r dί0 ^rdL _ . _ 
¾ďí + *ďř + «^ = *x, ¾ ^ + * ā ί + «A = *.. 

where iλ, i2 are the currents in the circuits, Lx, L2 are the coefficients of self-
induction, E ļ , R2 are the resistances, and M is the coefficient of mutual induction. 
(a) Integrate the equations when the impressed electromotive forces E14 E2 are 
zero in both circuits, (ß) Also when E2 = 0 but E = sin pt is a periodic force. 
(7) Discuss the cases of loose coupling, that is, where M2/LtL2 is small ; and the 
case of close coupling, that is, where M2/LλL2 is nearly unity. What values for ņ 
are especially noteworthy when the damping is small ? 
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6. If the two circuits of Ex. 5 have capacities C14 C2 and if ç ļ ţ q2 are the 
charges on the condensers so that iχ = dqx/dt, i2 = dq2/dt are the currents, the 
equations are 

L ä \ d^ dq, q^= L ^ + M*!h+R*ä + !h=E 
1 dP τ dP l dt Cx

 l 2 dP dP 2 dt C2
 2 

Integrate when the resistances are neg ligible and E1=E2= 0. If Tχ = 2 τ r V c ι i 1 

and T2 = 2 TrVC9L9 are the periods of the individual separate circuits and 
θ = 2 π i ¥ V c ^ 2 , and if Tλ= Γ2, show that V Γ 2 + θ 2 and V T 2 - θ2 are the 
independent periods in the coupled circuits. 

7. A uniform beam of weight 6 lb. and length 2 ft. is placed orthogonally 
across a rough horizontal cylinder 1 ft. in diameter. To each end of the beam is 
suspended a weight of 1 lb. upon a string 1 ft. long. Solve the motion produced 
by giving one of the weights a slight horizontal velocity. Note that' in finding the 
kinetic energy of the beam, the beam may be considered as rotating about its 
middle point (§ 39). 


