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II. THE RESOLVENT

13. We shall follow, with some material deviations, Konig’s
exposition of Kronecker’s method of solving equations by means
of the resolvent. The equations are in general supposed to be non-
homogeneous; and homogeneous equations are regarded as a particular
case. Thus a homogeneous equation in % variables represents a cone
of n—1 dimensions with its vertex at the origin. Homogeneous co-
ordinates are excluded.

The problem is to find all the solutions of any given system of
equations #,=Fy=...= F,=0 in » unknowns @, 2, ..., z,. The
unknowns are supposed if necessary to have been subjected to a homo-
geneous linear substitution beforehand, the object being to make the
equations and their solutions of a general character, and to prevent
any inconvenient result happening (such as an equation or polynomial
being irregular* in any of the variables) which could have been avoided
by a linear substitution at the beginning. In theoretical reasoning
this preliminary homogeneous substitution is always to be understood ;
but is seldom necessary in dealing with a particular example.

The solutions we shall seek are (i) those, if any, which exist for a,
when ., @3, ..., @, have arbitrary values; (i) those which exist for
@y, @y, not included in (i), when , ..., #, have arbitrary values;
(iii) those which exist for #, a,, ,, not included in (i) or (ii), when
Zy, .., &, have arbitrary values; and so on. A set of solutions for’
Zy, Xy, ..., ¥, When @,,q, ..., &, have arbitrary values is said to be of
rank r, and the spread of the points whose coordinates are the solutions
is of rank r and dimensions n—r. If there are solutions of rank ¢ and
no solutions of rank < # the system ot equations #y= F} = ...= Fj= 0 and
the module (F, F, ..., F}) are both said to be of rank 7.

14, The polynomials F, ¥, ..., I, and also all their factors are
regular in #,. Hence their common factor D can be found by the
ordinary process of finding the m.c.r. of F}, F), ..., F) treated as
polynomials in a single variable ;. If D does not involve the variables
we take it to be 1. If it does involve the variables the solutions of
D =0 treated as an equation for @, give the first set of solutions of the
equations Fy = Fy=...= F; =0 mentioned above.

* A polynomial of degree ! is said to be regular or irregular in z; according as
the term z;! is present in it or not.
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In the algebraic theory of modules we regard any algebraic equation
in one unknown, whether the coefficients involve parameters or not, as
completely soluble, i.e. we regard any given non-linear polynomial in
one variable as reducible. A polynomial in two or more variables is
called reducible if it is the product of two polynomials both of which
involve the variables. A polynomial which is not reducible is called
(absolutely) #rreducible. Any given polynomial is either irreducible or
uniquely expressible as a product of irreducible factors, leaving factors
of degree zero out of account. It is assumed that the irreducible
factors of any given polynomial are known. Thus the polynomial D
above may be supposed to be expressed in its irreducible factors in
Ly, Ty, vy Tny a0d to each irreducible factor corresponds an irreducible
or non-degenerate spread.

Put Fi=D¢; (1=1,2, ..., k). Then ¢, s, ..., ¢, have no common
factor involving the variables, and the same is true of the two
polynomials ‘

Ny + Aoy + oo+ Ay and gy + padha+ oo+ iy,
where the Ns and s are arbitrary quantities. Regarding them as
two polynomials in a single variable @, we calculate their resultant,
and arrange it in the form '
pr I + p O + o+ oy B,

where py, ps, ..., p, are different power products of the A’s and p’s, and
FO, F0, . Fi,® are polynomials in @, 2, ..., @, not involving the
Nsand w’s. Each F® is regular in a,; for lany homogeneous linear
substitution beforehand of @y, #,, ..., @, among themselves only would
be carried through to the £,

Find the m.c.r. DY of A1, FO ... F;,® treated as polynomials in
a single variable 2, and put F0=DW ¢ (4=1,2,..., ). Then find
the resultant of

M@+ AW+ Ny and p ™ e+ L+ Py i,
and arrange it in the form

prE @+ p, B + Lo+ py B30

as before, where #1®, F,® ...  F.® are polynomials in 2, 2y, ..., 2.,
which may be assumed regular in #;, and whose m.c.r. D® can be
found. We thus get the following series in succession :

F, F, .., F, with #gCcr D,

¢1; (1)2) ] ¢k;

FO, F®, ..., F,0, with B.cr. D,

¢>Iu), ¢2(1), R ¢k|(1)7

Fo, Fe ..., 9, with 5.or. DO,

4)1(2)’ 952(2): ey ¢k2(2), and SO on.
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Now any solution of F, = Fy=... = #;=01is a solution of D=0 or of
¢ =¢y=...=¢;=0. Andany solution of ¢; =, =... = ¢, =013 a solu-
tion of FiW=FO=... = F,®=0, since Zp; F}V = 0 mod (Z\;¢;, Spidy);
and therefore a solution of DW=0 or of ¢M=¢,N=...=¢, V=0,
Hence any solution of F\=F,= ... = F,=0 is a solution of D=0 or of
DV=0 or of $V=¢V=...=¢M=0. Proceeding in a.similar way
we find that any solution of F,=...=F,=0 is a solution of
DDW .. D=0, since ¢™ Y, ¢ ..., qS,‘r::l) are polynomials in
a single variable , at most and have no common factor.

Conversely if &, a,, ..., @, is any solution of D® =0 the resultant
of 3N and Sp;pM with respect to a, vanishes when ;= &, and
SN W=3p;pM =0 have a solution z=§& when a,=§; ie.
the equations ¢, =...=¢,M=0, and therefore also the equations
FO=..=F,®0=0, have a solution &, &, @, ..., #,; and, by the
same reasoning, the equations Fy=F, = ... = F},=0 have a solution
&, &, &, @y, ..., xy. Similarly to any solution of H.DW ... D"V =0,
gsay a solution &, @i, ..., @, of DU-V=0, there corresponds a

solution &, &, -.., &, @iy, .-, @ Of the equations AL =F,= ... = F}, =0.
Hence from the solutions of the single equation DDV ... D"V =0 we
can get all the solutions of the system F,=F,=...=F,=0, since

all the solutions of the latter satisfy the former.

Definitions. DDV ... D™V is called the complete (total) resolvent
of the equations F= F,=...=F}, =0 and of the module (#,, £, ..., F}).
D=1 ig called the complete partial resolvent of rank i, and any whole
factor of D¢V is called a partial resolvent of rank <.

15.  The complete resolvent is a member of the module (Fy, I, ..., F}).
For Sp 0 = 0 mod (BN, Spich;) = AZINpy+ B,

where A, B are whole functions of @1, @s, <o, @,y Ay, oooy N,y pay oooy g
Hence by equating coefficients of the power products p; on both sides,
we have

FO=0mod (b, b, .-y Py),
and DFW=0mod (F,, Fy, ..., F}),*
or DDYe® =0 mod (F, Fy, ..., 7). .
Similarly  DDW ... D* ¢ =0 mod (#, F, ..., Fi);

and since the ¢, include one variable only (or none at all) and have

* Not DF!) = 0 mod (Fy, F,, ..., Fy) because any common factor of F';, Fy, ...,
F;, not involving the variables is not included in D and is left out of account.



1] THE RESOLVENT 21

no common factor, we can choose polynomials @; in the single variable
s0 that Sa;¢,* " =1. Hence

DDV ... D"Y=0 mod (I, F,, ..., Fy).

If the equations = Fy=...=F,=0 have no finite solution the
complete resolvent is equal to 1; consequently 1 is o member of
(£, By, ..., Fy), and every polynomial is a member.

16. We have seen that to every solution @;=¢; of D¢ =0 there
corresponds a solution &, &,..., &, @iy, ..., @, of the equations
Fi=F,=..=F,=0. It mayhappen that there is an earlier complete
partial resolvent DV-Y which vanishes when a;=¢;, ..., z;=§,. In
such a case the solution &, ..., &, @ip, ooy @ Of Fy=...=F,=0
corresponding to a solution of D¢-Y=0 is included in the solutions
corresponding to DV~ =0, and may be neglected if we are seeking
merely the complete solution of F)=F,=...=F,=0. Such a solu-
tion is called an mbedded solution. All solutions corresponding to an
irreducible factor of D¢~V will be imbedded if one of them is imbedded.

17. Examples on the Resolvent. Geometrically the re-
solvent enables us to resolve the whole spread represented by any given
set of algebraic equations into definite irreducible spreads (§21). It
has been supposed that the complete resolvent also supplies a definite
answer to certain other questions. The following examples disprove
this to some extent.

Example 1. Find the resolvent of n homogeneous equations
Fi=F,=...=F,=0 of the same degree / and having no proper
solution.

Since there are no solutions of rank <z the complete resolvent is
D=1, The first derived set of polynomials F1®, F,®, ... F}, ® are homo-
geneous and of degree 2 the 2nd set #,®, F,® ...are homogeneous
and of degree /4 and the (n — 1)th set F,®-Y, F,»-) ... are homogeneous
and of degree l2n—1. This last set involve only one variable ,, and

n—1

2 . .
therefore ‘have the common factor #," , which is therefore the
required complete resolvent.
We should arrive at a similar -rvesult if we changed ; to

zi+a;(¢=1,2, ..., n) beforehand, thus making the polynomials non-
1

homogeneous. The complete resolvent would then be (ac,,+a,.)l2 B

The resultant would be (2, +a,)". The difference in the two results
is explained by the fact that the resultant is obtained by a process
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applying uniformly to all the variables, and the resolvent by a process
applied to the variables in succession.

Ezample 1i. Konig (K, p. 219) defines a module or system of
equations as being simple or mized according as only one or more
than one of the complete partial resolvents D, DO, ... D®™ differs
from unity. Kronecker (Kr, p. 81) says that the system of equations
Fi=F,=...=F,=0isirreducible in this case ; and the Ency. des Sc. Math.
(W,, p. 352) repeats Konig’s definition. We give two examples to
show that this definition is a valueless one.

If w, v, w are three linear functions of three or more variables, any
polynomial which contains the spread of w=o=0 is of the form
Aw+ Bv; if it also contains the spread of w=w =0, B must vanish
when % = w =0, hence B must be of the form Cu + Dw, and Awu+ Bv
of the form A'w+ B'vw; if it also contains the spread of v=w =0,
A’ must be of the form Cv+ D'w, and A'w+ B'vw of the form
C'uwo+ D'uw+ B'vw. Hence a polynomial which contains all three
spreads is a member of the module (vw, wu, wv), and also any member
of the module contains the three spreads. This module, although
composite, is not mixed in any proper sense of the word.

Besides having partial resolvents of rank 2 corresponding to the
three spreads the module has a partial resolvent of rank 3 corre-
sponding to its singular spread w=v=w=0. This last partial
resolvent does not correspond to any property of the module which is
not included in the properties corresponding to its partial resolvents
of rank 2; in other words the partial resolvent of rank 3 is purely
redundant.

The resolvent D™ D® can be found as follows : Suppose

W= Ao+ QX + Aolly + ooy V=Dg+ Oy + Doy + ..., W=Cy+ CLO + Colo + ...
Then the resultant of Aow +Awu +Muv and pvw + pawu + pyuv
with respect to #,, apart from a constant factor, is
(610 — byw) (aaw — ;) (hyu— @, v)
y {clm—blw Ww—cu blu—alv}
b

+ +
Aoprs—Agpis  Agpa—Aypg Ao — Agpiy
its four irreducible factors corresponding to the spreads

v=w=0, w=u=0, wu=v=0,
Mams = Agpo) u = (Agpy = Ay pag) 0 = (At — Aspta) w.
Hence DW= (c;0— byw) (@yw— cyu) (byu—av) ;
and 0= (cv—bw), N =(@qw-cu), ¢=bu-a),



11] ‘ THE RESOLVENT 23

from which we obtain
DO = (bycy — byey) w+ (6105 — Co0,) © + (@1by — wsby) w.

Erxample i1i.  Compare and find the resolvents of the two modules
M = (27, 2, 2% + 2 + @, 2:35),
M = (2, 2%, 2122 28, 2>+ 2 + 2,2, 2,).
~ The resolvent of M’ will be found by obtaining the resultant with
respect to #; of the two equations
Ml + M2 @ + Ay + M) + A (@00 + 2 + 2y 205) = 0,
and 2+ @2+ P2 + parsd + py (2 + 2 + 2@y = 0.
This resultant is the same as that of the first equation and
(Naps) 4 + Napis) @220 + (Ngpas) 2y + (Mypas) @° = 0

except for a factor A,>. The roots of the last equation are a,2,, a;@s, 0325,
Hence the resultant, apart from a constant factor, is

IL{(Maf + 002 + Mga+ X)) 2% + Ay (a2 + 1+ ay) 2%, (a=ay, ay, a)
or &SI { (Mo + Xgo + Aga + X)) &, + A, (o2 +1+aw3).
Hence the complete resolvent is %, since no values of a5, #; inde-

pendent of the X’s and w’s will make the remaining product of factors
of the above resultant vanish.

The complete resolvent of M, worked in the same way, is also 2.°;
i.e. M and M’ have the same complete resolvent, although they are
not the same module. A, but not M’, contains the two modules

M’ =(2;— 1, 22+ 225 + 2%, 2%, + 21257,
M =2+ 1, @2 - 2125 + T, 2% — 2,257,
1.e. every member of M is a member of M” and of M. Thus
@’ =2 (2 + 2y 2y + ) — (2220 + 2125,
2 =z (2 + m @y + 2,) — (2, + 207,
20+ 2+ @y = (@ + 2,25 + ) + ;e (25— 1),
The module M is what is called the v.c.m. of M', M", M. 'The
two modules M", M have z,=2,=23—1=0 and z, = xz—x3+ 1=0
for their spreads, which are imbedded in the spread @; =,=0 of the
first component of M, viz. M.
M is then properly speaking a mixed module although this is not

indicated by its complete resolvent %, It has two imbedded spreads,
the points (0, 0, + 1). The complete resolvent should have the factors
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23+ 1 to indicate these, but it has no such factors. The complete
resolvent may indicate imbedded modules which do not exist as in
Ex. ii, or it may give no indication of them when they do exist as in
Ex. iii.

Ezample iv. 1t is stated in the ZEncyk. der Math. Wiss.
(W5, p. 305) and repeated in (W,, p. 354) that if only one complete
partial resolvent D differs from 1, and D has no repeated factor,
the module is the product of the prime modules corresponding to
the irreducible factors of D®. The absurdity of this statement is
shown by applying it to the module (%, vw), where u, v, w are the same
as in Ex. ii. The complete resolvent is DV = (byu — aw) (et — aw),
and the product of the prime modules (u, v), (w, w) corresponding to
its two factors is (u? wv, ww, vw) + (u, vw).

18. The u-resolvent. The solutions of Fi=F,=...=F,=0
are obtained in the most useful way by introducing a general unknown
2 standing for w, @, + ws @y + ... + U, &y, Where wy, ,, ..., u, are undeter-

mined coefficients. 'This is done by putting

‘TIZ'Z‘_u?w?— coe = Updy
A
in the system of equations F',=F,=...=F;=0. We thus get a new
system fi=/fo=...=/3=01n @, @, @, ..., &,, Where
) L= Uy — ooo — Up T, \ .
fi= ull’Fi (—_u________n__n’xz, ey xn} (Z: L2 .., k)’
1

the multiplier #,% being introduced to make f; integral in %,. There
is evidently a one-one correspondence between the solutions of the two
systems, viz. to the solution &, &, ..., & of F\=F,= ... = F},=0 there
corresponds the solution ¢, &, ..., & of fi=fe=...=/;=0, and wice
versa, where E =u, & + u. & + ... + U, &,

Definition. The complete resolvent D, D, ... D, (=F,) of
(fis Sfoy - Ju) obtained by eliminating @y, @, ..., @, in succession is
called the complete w-resolvent of (K, Iy, ..., F},).

Since F,=0 mod (A, /s .-, ), by § 15, we have

(ﬁwu)x=u,arl+...+unxn:0 mod (Fu Ty voes Fk)

F, is a whole function of @, a,, ..., 2., %, 4, ..., u, which resolves
into linear factors when regarded as a function of # only. The linear
factors of rank 7, that is, the linear factors of D,"-Y, are of the type

.
= U b= oo — U&= Upyy By — e — U 0y,
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where &, ..., &, @ry1s ooy @, 18 a solution of F,=F,=...=F,=0.
For if z—¢ is any linear factor of D,V then ¢ is a root of
D, =0 to which corresponds a solution & &, ..., &, @1, -.., 2 Of
Si=fo=...=/:=0 (§ 14) and a solution &, &, ..., &, @y -, @y of
V=F,=...=F,=0, where =& + ... + U &+ Upyy Tpyy + ooo + U 2y -
The linear factors of /), expressed in the above form supply all the
solutions of fA=fo= ... =/, =0, Viz. £ &, ...y &, @pyr, --vy iy, and all
the solutions of F\= Fo=...=F=0, viz. &, &, ..., &, Tpyq, --vy Zn, Of
the several ranks r=1, 2, ..., n; but it is only when &, &, ..., &, are
independent of u;, %, ..., u, that we know the solution from merely

knowing the factor.

19. A linear factor of #, of rank » such as the above will be
called a #rue linear factorif &, &, ..., & are independent of w;, us, ..., %y,
that is, if it is linear in @, ., u,, ..., Up.

If a linear factor of F, is not a true linear factor the solution
supplied by it is an imbedded one.

Let z — foro—w, & — ... = wo&s— U1 X541 — ... — U %y e a mon-true
linear factor of F,, so that &, &, ..., & depend on wy, us, ..., u,. Then
&, &y oy &, gy, ooy @y 1S a solution of Fi=F,=...=F,=0, and so
also 1S 1y, Mgy «-oy Ms, Xsi1y ---y Ly WHeETE 71, s, ..., 7, are obtained from
&, &, ..., & by changing w,, us, ..., 4, t0 vy, v, ..., v,. Hence 7, 7,
ey Mgy Tsi1y ooy @n (Where n=aym + oo+ U+ U1 Toyq F eon + U D)
is a solution of /i =f;= ... =/}, =0, and therefore makes #, vanish. But
it does not make D,-V...D,*-" vanish since this does not involve
Zs, ..., &g, and cannot have a factor 2 —, where n involves vy, vs, ..., ¥y-
Hence it makes some factor D, of F, of rank » <s vanish. Then
D,V vanishes when @, 2,,, ..., @, are put equal t0 %, Ppyy, .oy 753
and by putting v, v, ..., v, (of which D" is independent) equal to
Uy, Usy ..., Uy 1 follows that D,V vanishes when z, @4, ..., 2, are
put equal to & &1, ..., & Hence the solution &, &, ..., &, @51y -ovs
1s an imbedded one {§ 16).

1t jollows that all the solutions of F'y=Fy= ... = F}, =0 are obtainable
Jrom true linear factors of I, ; and that all the linear factors of the
Jirst complete partial w-resolvent (different from 1) are true linear
Jactors.

1t also follows that if there is a spread of rank s whick is not im-

bedded there must be true linear factors of F, of rank s corresponding
to the spread.
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We have not proved that all linear factors of F, are true linear
factors*, and whether this is so or not must be considered doubtful.

20. If an dirreducible factor R, of F, considered as a whole
Junction of all the quantities x, @y, ..., Ty, Uy, Usy .., Uy has @ true
linear factor all its linear factors are true linear factors.

Let R, be of rank ». Then R, is independent of @, #,, ..., @, and
there is a one-one correspondence between its true linear factors and
the sets'of values &, &, ..., é. of @1, @s, ..., @ (not involving u,, us, ..., %)
for which (R,)z=wua +... 4wz, vanishes. Let

(Ru)x=u.a-l+..‘+unmn =p B+ p Ro+ ..o + PV.R;U

where p;, ps, .., p, are different power products of w,, u,, ..., u, and
R,, R,, ..., R, are whole functions of 2, 23, ..., , independent of
Uy, Us,y ..y Un. 'Then the sets of values &, &, ..., & required are the
solutions of B,= R, = ... = R, =0 regarded as equations for 2, ,, ..., #,.
These come from the solutions &, &, ..., &, Zr41y +--y 2y Of Tank # of
the same equations in @, @,, ..., @,. Now there is at least one solu-
tion of rank 7; since R, has a true linear factor; and only a finite
number of such solutions altogether, since R, has only a finite number
of such factors. Hence the first complete partial w-resolvent (different
from 1) of the equations R, = R,=...= R, =0 is of rank », and resolves
completely into true linear factors (§19)

L= U&= oo = U Uy Xy — oo — U Ty

This complete partial u-resolvent of rank r is therefore R, itself (or else
a power of R,), which proves the theorem.

If F, is resolved into factors of the R, type (irreducible with
respect to @, @, ..., Ty, U, Us, ..., Uy,), and these into irreducible
factors as regards z, 2., ..., @, only, #, will be resolved into all
its irreducible factors.  Hence every irreducible factor of F, is a
factor of a factor of the R, type, and kas all or none of its linear

Jactors true linear factors.

It follows that any factor of F, irreducible with respect to
Zy Xy, ...y Ty, and having a true linear factor, has all its linear factors
true linear factors, and is a whole function of w,, ts, ..., U,.

* Kronecker states this as a fact without proving it. Konig’s proof contains an

error (K, p. 210). It is not correct to say as he does that E,* X,® vanishes
when x=§;, but only when =, &, £,,..., &, are put equal to &, &/, &), ..., &/
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21, The irreducible spreads of a module. Let R, be any
irreducible factor of #, of rank » having a true linear factor. We
know that

i=d
R,=A4 _II1 (= @y — oo = Wy = Uy Bpyy — +ov = Uy
im
i=d
Hence (R.)x=uz+...+uan=4 .Hl {wy (0y — 233) + oov + 0y (@0 — 203) )
i=

To R, corresponds what is called an irreducible spread, viz. the
spread of all points 2, ..., i, @rp1, ---, &, i Which 2,4, ..., 2, take
all finite values, and ay;, ..., 2,; the d sets of values supplied by the
linear factors of R,, which vary as @44, ..., 2, vary.

The degree d of R, is called the order of the irreducible spread.

From the two identities above several useful results can be deduced.
It must be remembered that R, is a known polynomial in z, @41, ...,
Zny Wyy Ugy «.., Uy, No linear factor of R, can be repeated, unless
R,
ox
have an H.C.F. involving #, and R, would be the product of two factors.
Whatever set of values z,,1, ..., @, have, whether general or special,
the d sets of corresponding values of @y, @s, ..., @,, Viz. @y, @yy «-ey @i
are definite and finite, because R, is regular in «.

From the second identity it is seen that (Ry)z=wuz,+...+une, 15 inde-
pendent of .y, ..., %,, and vanishes identically (i.e. irrespective of
Uy, Us, ..., Uy,) at every point of the spread and no other point. Hence
the whole coefficients® of the power products of wy, Usy ..., U, in
(Ri)z=1wmyt ...t unz, WU vanish at every point of the spread and do not
all vanish at any other point. These coefficients equated to zero give a
system of equations for the spread ; but it is not necessary to take
them all, and some are simpler than others. The coefficient of «,?
gives an equation ¢ (@, @41, --., @) = A II (2, — 2,;) =0 for z,, whose
roots are the d values of z, corresponding to given arbitrary values of
Zyy1y ooy &y, The coefficient of w,u,*~! gives an equation

Zyy1y -+, &y are given special values; for otherwise R, and would

T~ i _
Ly — Tp;

.Z‘1¢I—¢1=d>‘2 0,

. 3¢ ' Xy
where ¢’ is -— and ¢;, or ¢ 3 —=2
d) a.Z'T (bla qs - 2, —

. is a polynomial in @, @41, ---, @n.
i

* Also these coefficients are members of (Fy, F,, ..., Fy) if (Ru),_,, O et
= Uy e T URTH

is a member of (Fy, F,, ..., F}), as it will be proved to be when (Fy, Fy, ..., F}) is a
prime module (§ 31).
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Similarly we have @9’ — ¢, =0, ..., Z_19— ¢_; =0. The equations

¢:Ov .Z'II;%]/, '212:%7 ceey 'Z"r—l:(b;_rl

are called more particularly the equations of the spread, the first giving
the different values of @, as functions of #,.1, ..., #,, and the others
giving #,, &, ..., &y—1 as rational functions of x,, ., ..., @y. If
Zyy &yar, -5 &y have such values that ¢ =¢ =0 then ¢y, ¢, ..., ¢,
all vanish and the expressions above for @, #,, ..., #,_; become inde-
terminate. In such a case the values of #;, @, ..., #,_, may be found
by taking other equations from (£,)c=uz+...+unzy, Tor them.

22. Geometrical property of an irreducible spread.
An algebraic spread in general is one which is determined by any
finite system of algebraic equations, and consists of all points whose
coordinates satisfy the equations and no other points. Such a spread
has already been shown to consist of a finite number of irreducible
spreads each of which is determined by a finite system of equations.
The characteristic property of an irreducible spread is that any alge-
braic spread which contains a part of it, of the same dimensions as the
irreducible spread, contains the whole of it.

Let Fi=F,=...= F;;=0 be the equations determining any algebraic
spread, and /) = F, = ... = F'";y =0 the equations determining an irre-
ducible spread. The spread they have in common is determined by
the combined system of equations Fy= Fy= ... = Fy=F/'=...= F',, =0,

and is contained in the irreducible spread and has the same or less
dimensions. If it is of the same dimensions as the irreducible spread
the complete u-resolvent of F\=...=F,=F\=...=F'y=0 will have
an irreducible factor R,” of the same rank as the irreducible factor R,
of the complete w-resolvent of /) =1y =...=F"y=0 corresponding
to the spread of the same. Also all the roots of £,”=0 regarded as
an equation for # are roots of £,’=0. Hence R, is divisible by R,”,
and since they are both irreducible they must be identical. Hence the
spread of Fi=..=F,=F/'=...=F'y=0 contains the whole of the
spread of Fy = Fy =...=F"y=0,and the spread of ;= Fy=...= F},=0
contains the same. This proves the property stated above.



