Finally, in the third, the product of two propositions cannot be false unless one of them is false, for, if both were true, their product would be true (equal to 1).
58. Law of Importation and Exportation.-The fundamental equivalence $(a<b)=a^{\prime}+b$ has many other interesting consequences. One of the most important of these is the law of importation and exportation, which is expressed by the following formula:

$$
[a<(b<c)]=(a b<c)
$$

"To say that if a is true b implies c, is to say that a and b imply c ".

This equality involves two converse implications: If we infer the second member from the first, we import into the implication ($b<c$) the hypothesis or condition a; if we infer the first member from the second, we, on the contrary, export from the implication $(a b<c)$ the hypothesis a.

Demonstration:

$$
\begin{gathered}
{[a<(b<c)]=a^{\prime}+(b<c)=a^{\prime}+b^{\prime}+c} \\
(a b<c)=(a b)^{\prime}+c=a^{\prime}+b^{\prime}+c
\end{gathered}
$$

Cor. I.-Obviously we have the equivalence

$$
[a<(b<c)]=[b<(a<c)]
$$

since both members are equal to ($a b<c$), by the commutative law of multiplication.

Cor. 2.-We have also

$$
[a<(a<b)]=(a<b)
$$

for, by the law of importation and exportation,

$$
[a<(a<b)]=(a a<b)=(a<b)
$$

If we apply the law of importation to the two following formulas, of which the first results from the principle of identity and the second expresses the principle of contraposition,

$$
(a<b)<(a<b), \quad(a<b)<\left(b^{\prime}<a^{\prime}\right)
$$

we obtain the two formulas

$$
(a<b) a<b, \quad(a<b) b^{\prime}<a^{\prime}
$$

which are the two types of hypothetical reasoning: "If a implies b, and if a is true, b is true" (modus ponens); "If a implies b, and if b is false, a is false" (modus tollens).

Remark. These two formulas could be directly deduced by the principle of assertion, from the following

$$
\begin{aligned}
& (a<b)(a=1)<(b=1), \\
& (a<b)(b=0)<(a=0),
\end{aligned}
$$

which are not dependent on the law of importation and which result from the principle of the syllogism.

From the same fundamental equivalence, we can deduce several paradoxical formulas:
1.

$$
a<(b<a), \quad a^{\prime}<(a<b)
$$

"If a is true, a is implied by any proposition b; if a is false, a implies any proposition $b^{\prime \prime}$. This agrees with the known properties of \circ and I .
2.

$$
a<[(a<b)<b], \quad a^{\prime}<\left[(b<a)<b^{\prime}\right] .
$$

"If a is true, then ' a implies b ' implies b; if a is false, then ' b implies a ' implies not-b."

These two formulas are other forms of hypothetical reasoning (modus ponens and modus tollens).
3. $\quad[(a<b)<a]=a^{\text {I }}, \quad\left[(b<a)<a^{\prime}\right]=a^{\prime}$,
"To say that, if a implies b, a is true, is the same as affirming a; to say that, if b implies a, a is false, is the same as denying $a^{\prime \prime}$.

Demonstration:

$$
\begin{aligned}
& {[(a<b)<a]=\left(a^{\prime}+b<a\right)=a b^{\prime}+a=a} \\
& {\left[(b<a)<a^{\prime}\right]=\left(b^{\prime}+a<a^{\prime}\right)=a^{\prime} b+a^{\prime}=a^{\prime}}
\end{aligned}
$$

[^0]In formulas (1) and (3), in which b is any term at all, we might introduce the sign \prod with respect to b. In the following formula, it becomes necessary to make use of this sign.
4.

$$
\prod_{x}\{[a<(b<x)]<x\}=a b
$$

Demonstration:

$$
\begin{aligned}
\{[a<(b<x)]<x\} & =\left\{\left[a^{\prime}+(b<x)\right]<x\right\} \\
= & {\left[\left(a^{\prime}+b^{\prime}+x\right)<x\right]=a b x^{\prime}+x=a b+x }
\end{aligned}
$$

We must now form the product $\prod_{x}(a b+x)$, where x can assume every value, including \circ and 1 . Now, it is clear that the part common to all the terms of the form $(a b+x)$ can only be $a b$. For, (1) $a b$ is contained in each of the sums $(a b+x)$ and therefore in the part common to all; (2) the part common to all the sums $(a b+x)$ must be contained in $(a b+o)$, that is, in $a b$. Hence this common part is equal to $a b^{x}$, which proves the theorem.
59. Reduction of Inequalities to Equalities.-As we have said, the principle of assertion enables us to reduce inequalities to equalities by means of the following formulas:

$$
\begin{gathered}
(a \neq 0)=(a=1), \quad(a \neq 1)=(a=0) \\
(a \neq b)=\left(a=b^{\prime}\right)
\end{gathered}
$$

For,

$$
(a \neq b)=\left(a b^{\prime}+a^{\prime} b \neq 0\right)=\left(a b^{\prime}+a b^{\prime}=\mathrm{1}\right)=\left(a=b^{\prime}\right)
$$

Consequently, we have the paradoxical formula

$$
(a \neq b)=\left(a=b^{\prime}\right)
$$

I This argument is general and from it we can deduce the formula

$$
\prod_{x}(a+x)=a
$$

whence may be derived the correlative formula

$$
\sum_{x} a x=a
$$

[^0]: I This formula is Bertrand Russell's "principle of reduction". See The Principles of Mathematics, Vol. I, p. 17 (Cambridge, 1903).

