(that is to say, the part common to $a^{\prime}$ and $x$ ). The solution is generally indeterminate (between the limits $a^{\prime}$ and $b$ ); it is determinate only when the limits are equal,

$$
a^{\prime}=b
$$

for then

$$
x=b+a^{\prime} x=b+b x=b=a^{\prime}
$$

Then the equation assumes the form

$$
\left(a x+a^{\prime} x^{\prime}=0\right)=\left(a^{\prime}=x\right)
$$

and is equivalent to the double inclusion

$$
\left(a^{\prime}<x<a^{\prime}\right)=\left(x=a^{\prime}\right)
$$

31. The Resultant of Elimination.-When $a b$ is not zero, the equation is impossible (always false), because it has a false consequence. It is for this reason that SCHRÖDER considers the resultant of the elimination as a condition of the equation. But we must not be misled by this equivocal word. The resultant of the elimination of $x$ is not a cause of the equation, it is a consequence of it; it is not a sufficient but a necessary condition.

The same conclusion may be reached by observing that $a b$ is the inferior limit of the function $a x+b x^{\prime}$, and that consequently the function can not vanish unless this limit is 0 .

$$
\left(a b<a x+b x^{\prime}\right)\left(a x+b x^{\prime}=0\right)<(a b=0)
$$

We can express the resultant of elimination in other equivalent forms; for instance, if we write the equation in the form

$$
\left(a+x^{\prime}\right)(b+x)=0
$$

we observe that the resultant

$$
a b=0
$$

is obtained simply by dropping the unknown quantity (by suppressing the terms $x$ and $x^{\prime}$ ). Again the equation may be written:

$$
a^{\prime} x+b^{\prime} x^{\prime}=\mathbf{1}
$$

and the resultant of elimination:

$$
a^{\prime}+b^{\prime}=1
$$

Here again it is obtained simply by dropping the unknown quantity. ${ }^{\text { }}$

Remark. If in the equation

$$
a x+b x^{\prime}=0
$$

we substitute for the unknown quantity $x$ its value derived from the equations,

$$
x=a^{\prime} x+b x^{\prime}, \quad x^{\prime}=a x+b^{\prime} x^{\prime}
$$

we find

$$
\left(a b x+a b x^{\prime}=0\right)=(a b=0)
$$

that is to say, the resultant of the elimination of $x$ which, as we have seen, is a consequence of the equation itself. Thus we are assured that the value of $x$ verifies this equation. Therefore we can, with Voigt, define the solution of an equation as that value which, when substituted for $x$ in the equation, reduces it to the resultant of the elimination of $x$.

Special Case.- When the equation contains a term independent of $x$, i.e., when it is of the form

$$
a x+b x^{\prime}+c=0
$$

it is equivalent to

$$
(a+c) x+(b+c) x^{\prime}=0
$$

and the resultant of elimination is

$$
(a+c)(b+c)=a b+c=0
$$

[^0]whence we derive this practical rule: To obtain the resultant of the elimination of $x$ in this case, it is sufficient to equate to zero the product of the coefficients of $x$ and $x^{\prime}$, and add to them the term independent of $x$.
32. The Case of Indetermination.-Just as the resultant
$$
a b=\circ
$$
corresponds to the case when the equation is possible, so the equality
$$
a+b=0
$$
corresponds to the case of absolute indetermination. For in this case the equation both of whose coefficients are zero $(a=0),(b=0)$, is reduced to an identity $(0=0)$, and therefore is "identically" verified, whatever the value of $x$ may be; it does not determine the value of $x$ at all, since the double inclusion
$$
b<x<a^{\prime}
$$
then becomes
$$
0<x<\mathrm{I}
$$
which does not limit in any way the variability of $x$. In this case we say that the equation is indeterminate.

We shall reach the same conclusion if we observe that $(a+b)$ is the superior limit of the function $a x+b x^{\prime}$ and that, if this limit is 0 , the function is necessarily zero for all values of $x$,

$$
\left(a x+b x^{\prime}<a+b\right)(a+b=0)<\left(a x+b x^{\prime}=0\right)
$$

Special Case.-When the equation contains a term independent of $x$,

$$
a x+b x^{\prime}+c=0,
$$

the condition of absolute indetermination takes the form

$$
a+b+c=0 .
$$

For

$$
\begin{aligned}
a x+b x^{\prime}+c & =(a+c) x+(b+c) x^{\prime}, \\
(a+c)+(b+c) & =a+b+c=0 .
\end{aligned}
$$


[^0]:    x This is the method of elimination of Mrs. Ladd-Franklin and Mr. Mitchell, but this rule is deceptive in its apparent simplicity, for it cannot be applied to the same equation when put in either of the forms

    $$
    a x+b x^{\prime}=0, \quad\left(a^{\prime}+x^{\prime}\right)\left(b^{\prime}+x\right)=1
    $$

    Now, on the other hand, as we shall see ( $\$ 54$ ), for inequalities it may be applied to the forms

    $$
    a x+b x^{\prime} \neq \mathrm{o}, \quad\left(a^{\prime}+x^{\prime}\right)\left(b^{\prime}+x\right) \neq \mathbf{1} .
    $$

    and not to the equivalent forms

    $$
    \left(a+x^{\prime}\right)(b+x) \neq 0, \quad a^{\prime} x+b^{\prime} x^{\prime} \neq \mathrm{I} .
    $$

    Consequently, it has not the mnemonic property attributed to it, for, to use it correctly, it is necessary to recall to which forms it is applicable.

