
34 DISJUNCTIVE SUMS. 

26. Disjunctive Sums.—By means of development we can 
transform any sum into a disjunctive sum, /. e.} one in which 
each product of its summands taken two by two is zero. 
For, let (a + b 4- e) be a sum of which we do not know 
whether or not the three terms are disjunctive; let us assume 
that they are not. Developing, we have: 

a + b + c = abc + abc' + abe + ahc' + d be + dbc + d b' c. 

Now, the first four terms of this development constitute 
the development of a with respect to b and c; the two 
following are the development of db with respect to c. The 
above sum, therefore, reduces to 

a + d b + d b' c, 

and the terms of this sum are disjunctive like those of the 
preceding, as may be verified. This process is general and, 
moreover, obvious. To enumerate without repetition all the 
<z's, all the £'s, and all the ^'s, etc., it is clearly sufficient to 
enumerate all the #'s, then all the b's which are not ds, and 
then all the c's which are neither a's nor b's, and so on. 

It will be noted that the expression thus obtained is not 
symmetrical, since it depends on the order assigned to the 
original summands. Thus the same sum may be written: 

b + ab'+ db'c, c + ac + dbe, . . . . 

Conversely, in order to simplify the expression of a sum, 
we may suppress as factors in each of the summands (arranged 
in any suitable order) the negatives of each preceding sum-
mand. Thus, we may find a symmetrical expression for a 
sum. For instance, 

a •+• db = b + ab' = a + b. 

27. Properties of Deve loped Functions.—The practical 
utility of the process of development in the algebra of logic 
lies in the fact that developed functions possess the following 
property: 

The sum or the product of two functions developed with 
respect to the same letters is obtained simply by finding the 
sum or the product of their coefficients. The negative of a 
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developed function is obtained simply by replacing the 
coefficients of its development by their negatives. 

We shall now demonstrate these propositions in the case 
of two variables; this demonstration will of course be of 
universal application. 

Let the developed functions be 

axxy 4- bxxy + cxxy + dxxy, 

a2 xy -\- b2 xy + c2 xy + d2 xy. 

1. I say that their sum is 

(ax + a2)xy + (bx + b2)xy + (cx + c2)xy + (dx + d2)x'y. 

This result is derived directly from the distributive law. 

2. I say that their product is 

ax a2 xy + bx b2 xy' + cx c2 xy + dx d2 xy\ 

for if we find their product according to the general rule 
(by applying the distributive law), the products of two terms 
of different constituents will be zero; therefore there will remain 
only the products of the terms of the same constituent, and, 
as (by the law of tautology) the product of this constituent 
multiplied by itself is equal to itself, it is only necessary to 
obtain the product of the coefficients. 

3. Finally, I say that the negative of 

axy + bxy + cxy + dx'y 

is 

a xy + b' xy + cxy + d' x y. 

In order to verify this statement, it is sufficient to prove 
that the product of these two functions is zero and that their 
sum is equal to i . Thus 

(axy + bxy + cxy + dxy) {a xy + b'xy + cxy + d'xy) 

=• (ad xy + bb'xy + cc xy + dd'xy) 

= (o-xy + o-xy + o-x'y + o-xy ) = o 

(axy + bxy -\-exy + dxy) + (axy + b'xy -f cxy + d'xy) 

= [(a + a) xy+(b + b') xy +(c + c) xy + (d + d') xy] 

= (i-xy+ 1 -xy + 1 -X y + i • xy) = i. 
3* 



$6 PROPERTIES OF DEVELOPED FUNCTIONS. 

Special Case.—We have the equalities: 

(ab + a' b')''= ab''+ ab, 

(ab''+ #'£)' = ab + #'£', 

which may easily be demonstrated in many ways; for instance, 
by observing that the two sums {ab + a b') and (ab'-\-db) 
combined form the development of 1; or again by performing 
the negation (ab-\-db')' by means of D E MORGAN'S formulas 
(§25) . 

From these equalities we can deduce the following equality: 

{ab'-V db = o) = {ab + a'b' = 1), 

which result might also have been obtained in another way 
by observing that (§ 18) 

(a = b) = (*£'+ <*'£ = o) = [ 0 + b') (d-\- £) = 1], 

and by performing the multiplication indicated in the last 
equality. 

THEOREM.— We have the following equivalences:x 

{a = bc+ b'c) = (b =» ac -\- dc) = if = ab'-{- db). 

For, reducing the first of these equalities so that its second 
member will be o, 

a{bc + b'c) + d(bc -\- b'c) = o , 

abc + ab'c -\- dbe + a b'c = o. 

Now it is clear that the first member of this equality is 
symmetrical with respect to the three terms a, b, c. We may 
therefore conclude that, if the two other equalities which differ 
from the first only in the permutation of these three letters 
be similarly transformed, the same result will be obtained, 
which proves the proposed equivalence. 

Corollary.—If"we have at the same time the three inclusions: 

a <^bc'+ b'c, b<^ac'+ dc, c<^ab'+ a'b, 

we have also the converse inclusions, and therefore the 
corresponding equalities 

a = be -\- b'c, b — ac'-\- dc, c = ab -\-db. 

1 W. STANLEY JEVONS, Pure Logic, 1864, p. 61. 
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For if we transform the given inclusions into equalities, we 
shall have 

abc + ab'c = o, abc 4- dbe' = o, abc + a b'c = o, 

whence, by combining them into a single equality, 

abc-{• ab'c-\-a'bc'+a'b'c = o. 

Now this equality, as we see, is equivalent to any one of 
the three equalities to be demonstrated. 

28. T h e Limits of a Function.—A term x is said to be 

comprised between two given terms, a and b, when it contains 

one and is contained in the other; that is to say, if we have, 

for instance, 

a <C x, x <C.bt 

which we may write more briefly as 
a <^ x <C b. 

Such a formula is called a double inclusion. When the 
term x is variable and always comprised between two 
constant terms a and b, these terms are called the limits 
of x. The first (contained in x) is called inferior limit\ the 
second (which contains* x) is called the superior limit. 

THEOREM.—A developed function is comprised between the sum 
and the product of its coefficients. 

We shall first demonstrate this theorem for a function of 
one variable, 

ax + bx\ 

We have, on the one hand, 

(ab <C #) <C (abx <^ ax), 

(ab<b)<(abx<bx). 

Therefore 

abx + abx'<^ ax + bx\ 
or 

ab <^ ax + bx'. 

On the other hand, 

(a <C a + b) <C [ax < (a + b)x], 

(b < a +J) < [bx< (a + b)x]. 


