10. Theorems on Multiplication and Addition.-We can now establish two theorems with regard to the combination of inclusions and equalities by addition and multiplication:
(Th. I) $\quad(a<b)<(a c<b c), \quad \mid \quad(a<b)<(a+c<b+c)$.

Demonstration:

I (Simpl.)
$a c<c$,
$(a c<a)(a<b)<(a c<b)$,
$(a c<b)(a c<c)<(a c<b c)$.
(Comp.)
$(a c<b)(a c<c)<(a c<b c)$.
2 (Simpl.)

$$
c<b+c,
$$

(Syll.) $\quad(a<b)(b<b+c)<(a<b+c)$,
(Comp.) $(\mathrm{a}<b+c)(c<b+c)<(a+c \leqslant b+c)$.
This theorem may be easily extended to the case of equalities:

$$
(a=b)<(a c=b c), \quad \mid \quad(a=b)<(a+c=b+c)
$$

$$
\begin{align*}
& (a<b)(c<d)<(a c<b d) \tag{Th.II}\\
& (a<b) \quad(c<d)<(a+c<b+d)
\end{align*}
$$

Demonstration:

```
r (Syll.)
(Comp.)
\[
\begin{align*}
& (a c<a)(a<b)<(a c<b) \\
& (a c<c)(c<d)<(a c<d)  \tag{Syll.}\\
& (a c<b)(a c<d)<(a c<b d)
\end{align*}
\]
(Comp.)
2 (Syll.)
\((a<b)(b<b+d)<(a<b+d)\),
(Syll.)
\((c<d)(d<b+d)<(c<b+d)\),
(Comp.) \(\quad(a<b+d)(c<b+d)<(a+c<b+d)\).
```

This theorem may easily be extended to the case in which one of the two inclusions is replaced by an equality:

$$
\begin{aligned}
& (a=b)(c<d)<(a c<b d) \\
& (a=b) \\
& (c<d)<(a+c<b+d)
\end{aligned}
$$

When both are replaced by equalities the result is an equality:

$$
\begin{aligned}
& (a=b)(c=d)<(a c=b d) \\
& (a=b) \quad(c=d)<(a+c=b+d)
\end{aligned}
$$

To sum up, two or more inclusions or equalities can be added or multiplied together member by member; the result will not be an equality unless all the propositions combined are equalities.

