
CHAPTER 1

Fourier transforms on the hyperbolic space

1. Basic geometry in the hyperbolic space

1.1. Upper-half space model. We begin with reviewing elementary geo-
metric properties of the hyperbolic space Hn. Throughout this note, Hn is the
Euclidean upper-half space

(1.1) Rn
+ = {(x, y) ; x ∈ Rn−1, y > 0}

equipped with the metric

(1.2) ds2 =
|dx|2 + (dy)2

y2
.

In the following, for v = (v1, · · · , vd) ∈ Rd, |v| means its Euclidean length : |v| =( ∑d
i=1 v2

i

)1/2

.

Theorem 1.1. (1) The following 4 maps are the generators of the group of
isometries on Hn :
(a) dilation : (x, y) → (λx, λy), λ > 0,
(b) translation : (x, y) → (x + v, y), v ∈ Rn−1,
(c) rotation : (x, y) → (Rx, y), R ∈ O(n − 1),
(d) inversion with respect to the unit sphere centered at (0, 0) :

(x, y) → (x, y) =
(x, y)

|x|2 + |y|2
.

(2) Any isometry on Hn is a product of the above 4 isometries.

Proof. The assertion (1) follows from a direct computation. We use

dx =
dx

r2
− 2x

r3
dr, dy =

dy

r2
− 2y

r3
dr,

where r2 = x2 + y2, x = x/r2, y = y/r2, to prove (d). The proof of the assertion
(2) is in [15] pp. 21, 24. �

Recall that the inversion with respect to the sphere {|x − x0| = r} is the map:
x → r2(x − x0)/|x − x0|2 + x0. We give examples of the isometry in H2 and H3,
which can be proved by a straightforward computation.

1.2. H2 and linear fractional transformation. When n = 2, it is conve-
nient to identify a point (x, y) ∈ H2 with the complex number z = x + iy. For a
matrix

γ =
(

a b
c d

)
∈ SL(2,R),

11
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12 1. FOURIER TRANSFORMS ON THE HYPERBOLIC SPACE

the linear fractional transformation

z → γ · z :=
az + b

cz + d

defines an isometry on H2.

1.3. H3 and quarternions. Represent a point (x1, x2, x3) ∈ H3 by a quar-
ternion

z = x11 + x2i + x3j =
(

x1 + ix3 x2

−x2 x1 − ix3

)

with k-component equal to 0 ; then H3 ⊂ Q. For a matrix

γ =
(

a b
c d

)
∈ SL(2,C),

the Möbius transformation

z → γ · z := (az + b)(cz + d)−1.

acts from H3 to Q. Using ad − bc = 1, straightforward although lengthy com-
putations show that γ · z actually belongs to H3. Thus γ defines an isometry on
H3.

1.4. Geodesics. The equation of a geodesic in a Riemannian manifold with
metric ds2 = gijdxidxj is

d2xk

dt2
+ Γk

ij

dxi

dt

dxj

dt
= 0,

Γk
ij =

1
2
gkp

(
∂gjp

∂xi
+

∂gip

∂xj
− ∂gij

∂xp

)
,

where (gij) is the inverse matrix of (gij). It is well-known that this may be rewritten
as Hamilton’s canonical equation with Hamiltonian h(x, ξ) = 1

2gijξiξj :

dxi

dt
=

∂h

∂ξi
,

dξi

dt
= − ∂h

∂xi
.

(One can check it directly by using the formula
∂gij

∂xm
= −gik

(
∂gkr

∂xm

)
grj). In the

case of Hn, with (ξ, η) dual to (x, y), Hamilton’s equation turns out to be



dx

dt
= y2ξ,

dy

dt
= y2η,

dξ

dt
= 0,

dη

dt
= −y(|ξ|2 + η2).

Hence ξ does not depend on t. If ξ = 0, the curve becomes a straight line {x = x(0)}.
When ξ �= 0, (x(t), y(t)) moves in the 2-dimensional plane spanned by 2 vectors
(ξ, 0) and (0, 1), which is denoted by Π. We use the same (x, y) to denote the
rectangular coordinates on Π. Since the energy h is conserved, y(t)2(|ξ|2 + η(t)2)
is a constant, which is denoted by 2E. Then η2 = 2E/y2 − |ξ|2, which implies

y� =
dy

dx
=

η

|ξ|
= ±

√
A

y2
− 1, A =

2E

|ξ|2
.

Solving this equation, we get (x + B)2 + y2 = A. We have thus proven
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1. BASIC GEOMETRY IN THE HYPERBOLIC SPACE 13

Lemma 1.2. There are only two kinds of geodesics in Hn :
(a) the hemi-circles with center on the hyperplane {y = 0},
(b) the straight lines perpendicular to the hyperplane {y = 0}.

We see by Lemma 1.2 that for two points P,Q ∈ Hn, there exists only one
geodesic passing through P and Q.

Lemma 1.3. For two points (a, b), (a�, b�) ∈ Hn, there exists an isometry which
maps (a, b) to (0, 1) and (a�, b�) to (0, c), where

(
tanh

| log c|
2

)2

=
|a − a�|2 + (b − b�)2

|a − a�|2 + (b + b�)2
.

Proof. By the following isometries, (a, b) is mapped to (0, 1) :

(a, b) → (
a

b
, 1) (dilation) → (0, 1) (translation).

Then (a�, b�) is mapped to (a′−a
b , b′

b ). Therefore, we have only to show that for any
(x, y) there exists an isometry which maps (x, y) to (0, c) with suitable c leaving
(0, 1) invariant. The problem is then reduced to 2-dimensions. Consider the linear
fractional transformation by

γ =
(

cos θ − sin θ
sin θ cos θ

)
,

which leaves i invariant. Then for given z = x + iy,

γ · z =
|z|2−1

2 sin 2θ + x cos 2θ + iy

|z sin θ + cos θ|2
.

By choosing θ so that the real part vanishes, we get the isometry which maps x+ iy
to ic. Let us compute c. Assuming that x > 0, by our choice of θ,

cos 2θ =
1 − |z|2

[(1 − |z|2)2 + 4x2]1/2
, sin 2θ =

2x

[(1 − |z|2)2 + 4x2]1/2
.

Therefore

|z sin θ + cos θ|2 =
1 + |z|2

2
+

1 − |z|2

2
cos 2θ + x sin 2θ

=
1
2

[
1 + |z|2 +

(
(1 − |z|2)2 + 4x2

)1/2
]
,

hence

c =
2y

1 + |z|2 + ((1 − |z|2)2 + 4x2)1/2
=

1 + |z|2 − ((1 − |z|2)2 + 4x2)1/2

2y
.

This implies (
tanh

| log c|
2

)2

=
1 + |z|2 − 2y

1 + |z|2 + 2y
.

Putting x = |a − a�|/b, y = b�/b, we complete the proof of the lemma. �

The hyperbolic distance from (0, 1) to (0, c) is given by∣∣∣∣
∫ c

1

dy

y

∣∣∣∣ = | log c|.

This and Lemma 1.3 imply the following formula.
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14 1. FOURIER TRANSFORMS ON THE HYPERBOLIC SPACE

Lemma 1.4. The hyperbolic distance d = d
(
(x, y), (x�, y�)

)
between (x, y) and

(x�, y�) is given by
(

tanh
d

2

)2

=
|x − x�|2 + |y − y�|2

|x − x�|2 + |y + y�|2
.

From this lemma, we get

(1.3)
1
2
(
cosh d − 1

)
=

|x − x�|2 + |y − y�|2

4yy� .

Lemma 1.5. The geodesic sphere in Hn is a Euclidean sphere.

For example the geodesic sphere in Hn with center (0, 1) and radius r > 0 is
written as

|x|2 + (y − (1 + 2δ))2 = 4δ(1 + δ), δ = (cosh r − 1)/2.

This is a Euclidean sphere with center (0, cosh r) and radius sinh r.
The following formula is a corollary of the previous considerations :

(1.4) ds2 = (dr)2 + sinh2 r(dθ)2,

where (r, θ) ∈ [0,∞) × Sn−1 are geodesic polar coordinates centered at (0, 1), and
(dθ)2 is the standard metric on Sn−1.

1.5. Estimate of the metric. Let dh(x, y) be the hyperbolic distance be-
tween (x, y) and (1, 0). For w ∈ Rd, we put 〈w〉 = (1 + |x|2)1/2, and define

(1.5) ρ0(x, y) = log〈x〉 + 〈log y〉.

Lemma 1.6. There exists a constant C0 > 0 such that on Hn

C−1
0

(
1 + ρ0(x, y)

)
≤ 1 + dh(x, y) ≤ C0

(
1 + ρ0(x, y)

)
.

Proof. By (1.3), cosh dh = (|x|2 +y2 +1)/(2y). If y is small, edh ∼ (|x|2 +1)/y,
and we obtain the lemma easily. If y is large, edh ∼ y + |x|2/y. The estimate from
above is easy, since edh ≤ C(y + |x|2). The estimate from below is obtained by
cosidering two cases y >

√
|x| and y <

√
|x|. �

2. Besov type spaces

The Fourier transform f̂(ξ) of a function f(x) on Rn becomes smooth if f(x)
decays rapidly at infinity, and we can restrict f̂(ξ) on a hypersurface in Rn. The
best possible space to describe the relation between the decay at infinity of Rn and
the restriction of its Fourier transform on a hypersurface was found by Agmon-
Hörmander [2]. Let us point out that Murata ([106], [107]) had discovered this
space in his study of the asymptotic behavior at infinity of solutions of linear partial
differential equations. This space furnishes a natural framework to characterize
solutions to the Helmholtz equation. We introduce this space for Hn.
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2. BESOV TYPE SPACES 15

2.1. The Besov type space. Let h be a Hilbert space endowed with inner
product ( , )h and norm ‖ · ‖h. We decompose (0,∞) into (0,∞) = ∪k∈ZIk, where

Ik =




(
exp(ek−1), exp(ek)

]
, k ≥ 1(

e−1, e
]
, k = 0(

exp(−e|k|), exp(−e|k|−1)
]
, k ≤ −1.

We fix a natural number n ≥ 2 and put

dµ(y) =
dy

yn
.

Definition 2.1. Let B be the space of h-valued function on (0,∞) satisfying

‖f‖B =
∑
k∈Z

e|k|/2

(∫

Ik

‖f(y)‖2
hdµ(y)

)1/2

< ∞.

Lemma 2.2. (1) The following inequality holds :
∫ ∞

0

y(n−1)/2‖f(y)‖hdµ(y) ≤ C‖f‖B, ∀f ∈ B

(2) For any T ∈ B∗, there exits a unique vT ∈ L2
loc((0,∞);h) such that

T (f) =
∫ ∞

0

(
f(y), vT (y)

)
h
dµ(y), ∀f ∈ B,

‖T‖ = sup
k∈Z

e−|k|/2

(∫

Ik

‖vT (y)‖2
hdµ(y)

)1/2

.

Proof. By the Schwarz inequality, we have
∫ ∞

0

y(n−1)/2‖f(y)‖h
dy

yn
≤

∑
k

(∫

Ik

dy

y

)1/2 (∫

Ik

‖f(y)‖2
h

yn
dy

)1/2

.

Since
∫

Ik
dy/y ≤ Ce|k|, we get the assertion (1).

Let Tk be the restriction of T on L2(Ik;H). Then we have for f which vanishes
outside Ik

|Tk(f)| = |T (f)| ≤ ‖T‖‖f‖B = ‖T‖e|k|/2

(∫

Ik

‖f(y)‖2
hdµ(y)

)1/2

.

Therefore by the theorem of Riesz, there exists v
(k)
T (y) ∈ L2(Ik;H) such that

T (f) =
∫

Ik

(
f(y), v(k)

T (y)
)
h

dµ(y), ∀f ∈ L2(Ik;h),

(∫

Ik

‖v(k)
T (y)‖2

hdµ(y)
)1/2

≤ ‖T‖e|k|/2.

Putting vT (y) = v
(k)
T (y), y ∈ Ik, we then have

sup
k

e−|k|/2

(∫

Ik

‖vT (y)‖2
hdµ(y)

)1/2

≤ ‖T‖.
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16 1. FOURIER TRANSFORMS ON THE HYPERBOLIC SPACE

Let χk be the characteristic function of Ik. Then for any f ∈ B

T (f) =
∑

k

T (χkf)

=
∑

k

∫

Ik

(
f(y), v(k)

T (y)
)
h

dµ(y)

=
∫ ∞

0

(f(y), vT (y))h dµ(y).

We now put

ak = e|k|/2

(∫

Ik

‖f(y)‖2
hdµ(y)

)1/2

, bk = e−|k|/2

(∫

Ik

‖vT (y)‖2
hdµ(y)

)1/2

.

Then since

|T (f)| ≤
∑

k

∫

Ik

‖f(y)‖h‖vT (y)‖hdµ(y)

≤
∑

k

akbk ≤
∑

k

ak

(
sup

k
bk

)
,

we have ‖T‖ ≤ supk bk. �

By this lemma, B∗ is identified with the Banach space with norm

‖v‖B∗ = sup
k∈Z

e−|k|/2

(∫

Ik

‖v(y)‖2
hdµ(y)

)1/2

.

However, the following norm is easier to handle.

Lemma 2.3. There exists a constant C > 0 such that

C‖v‖B∗ ≤

(
sup
R>e

1
log R

∫
1
R <y<R

‖v(y)‖2
hdµ(y)

)1/2

≤ C−1‖v‖B∗ .

Proof. We put

A = sup
k∈Z

e−|k|
∫

Ik

‖v(y)‖2
hdµ, B = sup

R>e

1
log R

∫
1
R <y<R

‖v(y)‖2
hdµ.

For any � > 0 there exists k ∈ Z such that

e−|k|
∫

Ik

‖v(y)‖2
hdµ > A − �.

By putting log R = e|k|, we have

1
log R

∫
1
R <y<R

‖v(y)‖2
hdµ ≥ e−|k|

∫

Ik

‖v(y)‖2
hdµ.

This implies B ≥ A.
On the other hand for any � > 0 there exists R > e such that

1
log R

∫
1
R <y<R

‖v(y)‖2
hdµ > B − �.
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2. BESOV TYPE SPACES 17

Choosing k ∈ Z such that exp(ek) ≤ R ≤ exp(ek+1) we then have

1
log R

∫
1
R <y<R

‖v(y)‖2
hdµ ≤ 1

log R

∑
|p|≤k+1

∫

Ip

‖v(y)‖2
hdµ

≤ A

log R

∑
|p|≤k+1

e|p| ≤ CA. �

Definition 2.4. We identify B∗ with the space equipped with norm

‖u‖∗B =

(
sup
R>e

1
log R

∫
1
R <y<R

‖u(y)‖2
hdµ

)1/2

< ∞.

The following inequality holds :

|(f, v)| =
∣∣∣∣
∫ ∞

0

(f(y), v(y))hdµ

∣∣∣∣ ≤ C‖f‖B‖v‖B∗ .

Lemma 2.5. (1) The following assertions (2.1) and (2.2) are equivalent.

(2.1) lim
R→∞

1
log R

∫
1
R <y<R

‖u(y)‖2
hdµ = 0.

(2.2) lim
R→∞

1
log R

∫ ∞

0

ρ
( log y

log R

)
‖u(y)‖2

hdµ = 0, ∀ρ ∈ C∞
0 (R).

(2) A function u belongs to B∗ if and only if

sup
R>e

1
log R

∫ ∞

0

ρ
( log y

log R

)
‖u(y)‖2

hdµ < ∞, ∀ρ ∈ C∞
0 (R)

Proof. To prove (1), we have only to note that (2.1) is equivalent to

(2.3) lim
R→∞

1
log R

∫

Ra<y<Rb

‖u(y)‖2
hdµ = 0, −∞ < ∀a < ∀b < ∞.

Indeed, letting R = Rc, c = max {|a|, |b|}, in (2.1), we get (2.3). Letting a = 1, b =
−1 in (2.3), we get (2.1). Since a and b are arbitrary, (2.3) is equivalent to (2.2).

The assertion (2) is proved similarly. �

In the upper half-space model Rn
+, we represent a point of Rn

+ as (x, y), x ∈
Rn−1, y > 0, and put h = L2(Rn−1).

2.2. Weighted L2 space. The following spaces are also useful.

Definition 2.6. For s ∈ R, we define the space L2,s by

u ∈ L2,s ⇐⇒ ‖u‖2
s =

∫ ∞

0

(1 + | log y|)2s‖u(y)‖2
h dµ(y) < ∞.

Lemma 2.7. For s > 1/2, we have the following inclusion relations :

L2,s ⊂ B ⊂ L2,1/2 ⊂ L2 ⊂ L2,−1/2 ⊂ B∗ ⊂ L2,−s.
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18 1. FOURIER TRANSFORMS ON THE HYPERBOLIC SPACE

Proof. We put

ak,s =
(∫

Ik

(1 + | log y|)2s‖u(y)‖2
hdµ(y)

)1/2

.

Since
C−1e|k| ≤ 1 + | log y| ≤ Ce|k|, y ∈ Ik,

we have
C−1e|k|sak,0 ≤ ak,s ≤ Ce|k|sak,0.

This implies

‖u‖1/2 =
√∑

k

(ak,1/2)2 ≤
∑

k

ak,1/2 ≤ C
∑

k

e|k|/2ak,0 = C‖u‖B.

Letting � = s − 1/2 > 0, we have

‖u‖B =
∑

k

e−|k|�e|k|sak,0 ≤ C
∑

k

e−|k|�ak,s ≤ C(
∑

k

a2
k,s)

1/2 = C‖u‖s.

These two relations yield L2,s ⊂ B ⊂ L2,1/2. Passing to the dual spaces, we have
L2,−1/2 ⊂ B∗ ⊂ L2,−s. �

3. 1-dimensional problem

3.1. Some facts from functional analysis. Let us recall basic terminolo-
gies. A densely defined linear operator A on a Hilbert space H is said to be sym-
metric if (Au, v) = (u,Av), ∀u, v ∈ D(A). If A is symmetric, D(A) ⊂ D(A∗) and
A∗u = Au for u ∈ D(A). A symmetric operator A is said to be self-adjoint if
D(A∗) = D(A). The closure A of a symmetric operator A is defined as follows:
u ∈ D(A), Au = f if and only if there exists {un} ∈ D(A) such that un → u,
Aun → f . A symmetric operator A is said to be essentially self-adjoint if A is
self-adjoint. A is essentially self-adjoint if and only if Ker (A∗ ± i) = {0}. This is
equivalent to Ker (A∗ − z) = {0} if Im z �= 0. For the proof of these facts, see e.g.
[115], Vol. 1 and Vol. 3.

Suppose we are given a differential operator A = a(y)∂2
y + b(y)∂y + c(y) on the

interval (0,∞). We shall assume that the coefficients of A is sufficiently smooth,
a(y) �= 0 on (0,∞), and that there exists a function ρ(y) > 0 such that A

∣∣
C∞

0 ((0,∞))

is essentially self-adjoint in H = L2((0,∞); ρ(y)dy). For Im z �= 0, let ϕ0(y) and
ϕ∞(y) be non-trivial solutions of (A − z)u = 0 on (0,∞) such that

ϕ0(y) ∈ L2((0, 1); ρ(y)dy), ϕ∞(y) ∈ L2((1,∞); ρ(y)dy).

Lemma 3.1. ϕ0(y) and ϕ∞(y) are linearly independent.

Proof. If they were linearly dependent, then ϕ0(y) ∈ H. Therefore, since A is
self-adjoint, ϕ0(y) = 0, which is a contradiction. �

Let W (y) be the Wronskian:

W (y) = ϕ0(y)ϕ�
∞(y) − ϕ�

0(y)ϕ∞(y) �= 0

and define the Green function G(y, y�) by

G(y, y�) =
1

a(y�)ρ(y�)W (y�)

{
ϕ0(y)ϕ∞(y�), 0 < y < y�,

ϕ∞(y)ϕ0(y�), 0 < y� < y.
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3. 1-DIMENSIONAL PROBLEM 19

The integral operator

Gf(y) =
∫ ∞

0

G(y, y�)f(y�)ρ(y�)dy�

is called the Green operator of A − z. Let ‖ · ‖ be the norm in H.

Lemma 3.2. (1) If Im z �= 0,

‖Gf‖ ≤ 1
|Im z|

‖f‖.

(2) For f ∈ H, (A − z)Gf = f.

Proof. (1) is a standard fact (see e.g. [115] Vol 1). For f ∈ C∞
0 ((0,∞)), we

put u = Gf . One can then find a small � > 0 such that u = Cϕ0(y) for y < � and
u = C �ϕ∞(y) for y > 1/�. Hence u ∈ H. Using (A − z)ϕ0 = (A − z)ϕ∞ = 0, we
have, by a direct, computation

(A − z)u = (ϕ�
∞ϕ0 − ϕ�

0ϕ∞)
aρ

aρW
f = f.

This implies that G = (A − z)−1 on C∞
0 ((0,∞)), and proves (2) for such f �s. As

‖(Az)−1‖ ≤ |Im z|−1, by approximating f ∈ L2((0,∞)) by fn ∈ C∞
0 ((0,∞)), we

obtain (1) and (2) for the whole H. �

We explain the elliptic regularity theorem in the 1-dimensional case. Let I ⊂ R
be an open interval and A = −d2/dx2 +a1(x)d/dx+a0(x) be a differential operator
with smooth coefficients. The formal adjoint A† is defined by

A†ϕ(x) = − d2

dx2
ϕ(x) − d

dx

(
a1(x)ϕ(x)

)
+ a0(x)ϕ(x).

A function u(x) is said to be a weak solution of the equation Au = f on I if∫

I

u(x)A†ϕ(x)dx =
∫

I

f(x)ϕ(x)dx, ∀ϕ ∈ C∞
0 (I).

Lemma 3.3. If u is a weak solution to the equation Au = f on I with f ∈
C∞(I), then actually u ∈ C∞(I) and Au = f holds in the classical sense.

Proof. By Corollary 3.1.6 of [55], we have u ∈ C2(I) if, e.g. f ∈ C1(I). Since
u�(x) is a weak solution to the equation(

− d2

dx2
+ (a1 + a�

1)
d

dx
+ a0

)
u� = f � − a�

0u,

we have u� ∈ C2(I), hence u ∈ C3(I). Repeating this procedure, we prove the
lemma. �

3.2. Bessel functions. We summarize basic knowledge of Bessel functions
utilized in this note. For the details, see [103], [94] and [131].

The modified Bessel function (of 1st kind) Iν(z) with parameter ν ∈ C is
defined by

(3.1) Iν(z) =
(z

2

)ν ∞∑
n=0

(z2/4)n

n! Γ(ν + n + 1)
, z ∈ C \ (−∞, 0].

It is related with the Bessel function Jν(z) by

Iν(y) = e−νπi/2Jν(iy), y > 0.
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20 1. FOURIER TRANSFORMS ON THE HYPERBOLIC SPACE

The following function Kν(z) is also called the modified Bessel function, or the
K-Bessel function, or sometimes the Macdonald function:

(3.2) Kν(z) =
π

2
I−ν(z) − Iν(z)

sin(νπ)
, ν /∈ Z,

Kn(z) = K−n(z) = lim
ν→n

Kν(z), n ∈ Z.

These Iν(z),Kν(z) solve the following equation

z2u�� + zu� − (z2 + ν2)u = 0,

and have the following asymptotic expansions as |z| → ∞:

(3.3) Iν(z) ∼ ez

√
2πz

+
e−z+(ν+1/2)πi

√
2πz

, |z| → ∞, −π

2
< arg z <

π

2
,

(3.4) Kν(z) ∼
√

π

2z
e−z, |z| → ∞, −π < arg z < π.

The asymptotics as z → 0 are as follows:

(3.5) Iν(z) ∼ 1
Γ(ν + 1)

(z

2

)ν

,

(3.6) Kν(z) ∼ π

2 sin(νπ)

(
1

Γ(1 − ν)

(z

2

)−ν

− 1
Γ(1 + ν)

(z

2

)ν
)

, ν �∈ Z

Kn(z) ∼

{
− log z, n = 0,

2n−1(n − 1)!z−n, n = 0, 1, 2, · · ·
Let n ≥ 2 be an integer, and a parameter ζ ∈ C satisfy Re ζ ≥ 0. We consider

the differential operator

(3.7) L0(ζ) = y2(−∂2
y + ζ2) + (n − 2)y∂y − (n − 1)2

4
on the interval (0,∞). Let ( , ) be the inner product of L2((0,∞); dy/yn). We have

(3.8) (L0(ζ)u, v) = (u, L0(ζ)v), ∀u, v ∈ C∞
0 ((0,∞)).

When ζ �= 0, the equation (L0(ζ)+ν2)u = 0 has two linearly independent solutions

y(n−1)/2Iν(ζy), y(n−1)/2Kν(ζy),

and when ζ = 0 and ν �= 0, these two linearly independent solutions are y
n−1

2 ±ν .

Theorem 3.4. If ζ ≥ 0, L0(ζ)
∣∣
C∞

0 ((0,∞))
is essentially self-adjoint.

Proof. We have only to show that

(u, (L0(ζ) ± i)ϕ) = 0, ∀ϕ ∈ C∞
0 ((0,∞)) =⇒ u = 0.

Suppose (u, (L0(ζ) + i)ϕ) = 0, ∀ϕ ∈ C∞
0 ((0,∞)). Then by Lemma 3.3, u ∈

C∞((0,∞)) and (L0(ζ) − i)u = 0 holds in the classical sense. Picking ν =
exp(−πi/4), we have

u = ay(n−1)/2Iν(ζy) + by(n−1)/2Kν(ζy).

Since u ∈ L2((1,∞); dy/yn), we have a = 0 by (3.3). Since Re ν > 0 and u ∈
L2((0, 1); dy/yn), we also have b = 0 by (3.6). When ζ = 0, u is written as

u = ay(n−1)/2+α−iβ + by(n−1)/2−α+iβ , α, β > 0
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3. 1-DIMENSIONAL PROBLEM 21

As above a = 0, since u ∈ L2((1,∞)); dy/yn), and b = 0 since u ∈ L2((0, 1)); dy/yn).
�

3.3. Green function. We construct the Green function of L0(ζ) + ν2 when
Re ζ > 0. In the following we always assume that

ν �∈ Z, Re ν ≥ 0.

Definition 3.5. We put

G0(y, y�; ζ, ν) =

{
(yy�)(n−1)/2Kν(ζy)Iν(ζy�), y > y� > 0,

(yy�)(n−1)/2Iν(ζy)Kν(ζy�), y� > y > 0

and define the integral operator G0(ζ, ν) by

G0(ζ, ν)f(y) =
∫ ∞

0

G0(y, y�; ζ, ν)f(y�)
dy�

(y�)n
.

Lemma 3.6. (L0(ζ) + ν2)G0(ζ, ν)f = f, ∀f ∈ C∞
0 ((0,∞)).

Proof. Using the equality

Iν(z)K �
ν(z) − I �ν(z)Kν(z) = −1

z
,

we have (
y(n−1)/2Iν(ζy)

)(
y(n−1)/2Kν(ζy)

)�

−
(
y(n−1)/2Iν(ζy)

)� (
y(n−1)/2Kν(ζy)

)
= −yn−2.

We then compute as in the proof of Lemma 3.2 (2). �

Lemma 3.7. The Green function G0(y, y�; ζ, ν) is analytic with respect to ζ
when Re ζ > 0, and the following inequalities hold.

(3.9) |G0(y, y�; ζ, ν)| ≤ C(yy�)(n−1)/2,

(3.10) |G0(y, y�; ζ, ν)| ≤ C

|ζ|
(yy�)(n−2)/2,

(3.11)
∣∣∣ ∂

∂ζ
G0(y, y�; ζ, ν)

∣∣∣ ≤ C

|ζ|
(yy�)(n−2)/2(y + y�).

Here the constant C depends on ν, but is independent of ζ when Re ζ > 0.

Proof. By virtue of (3.3) ∼ (3.6), we have

(3.12) |Iν(z)| ≤ C

(
|z|

1 + |z|

)Re ν

(1 + |z|)−1/2eRe z,

(3.13) |Kν(z)| ≤ C

(
|z|

1 + |z|

)−Re ν

(1 + |z|)−1/2e−Re z

Since t/(1 + t) is monotone increasing for t ≥ 0 , we have for y > y� > 0

|Kν(ζy)Iν(ζy�)| ≤ C
e−Re ζ(y−y′)

(1 + |ζy|)1/2(1 + |ζy�|)1/2
.
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22 1. FOURIER TRANSFORMS ON THE HYPERBOLIC SPACE

Hence,

(3.14) |G0(y, y�; ζ, ν)| ≤ C(yy�)(n−1)/2 e−Reζ|y−y′|

(1 + |ζy|)1/2(1 + |ζy�|)1/2
,

which implies (3.9), (3.10). By the following formulas

(3.15) 2I �ν(z) = Iν−1(z) + Iν+1(z),

−2K �
ν(z) = Kν−1(z) + Kν+1(z)

(see e.g. [103] p. 173) and (3.3) ∼ (3.6), we have

|zI �ν(z)| ≤ C

(
|z|

1 + |z|

)Re ν

(1 + |z|)1/2eRe z,

|zK �
ν(z)| ≤ C

(
|z|

1 + |z|

)−Re ν

(1 + |z|)1/2e−Re z.

Therefore we have
∣∣∣ ∂

∂ζ
Iν(ζy)

∣∣∣ ≤ C

|ζ|

(
|ζy|

1 + |ζy|

)Re ν

(1 + |ζy|)1/2eRe ζy,

∣∣∣ ∂

∂ζ
Kν(ζy)

∣∣∣ ≤ C

|ζ|

(
|ζy|

1 + |ζy|

)−Re ν

(1 + |ζy|)1/2e−Re ζy.

Using the straightforward inequality
(

1 + |ζy�|
1 + |ζy|

)1/2

≤ y + y�

(yy�)1/2
,

we obtain (3.11). �

One can check that the constants C in (3.9) ∼ (3.11) may be chosen indepen-
dently of ν when ν varies over a compact set in {Re ν ≥ 0} \ Z.

We define B,B∗ by putting h = C in §2.

Lemma 3.8. We have

‖G0(ζ, ν)f‖B∗ ≤ C‖f‖B,

where the constant C is independent of ν when ν varies over a compact set in
{Re ν ≥ 0} \ Z, and also of ζ when Re ζ > 0.

Proof. We put u = G0(ζ, ν)f . By (3.9), we have

|u(y)|2

yn
≤ C

y

(∫ ∞

0

|f(y�)|
(y�)1/2

dy�

(y�)n/2

)2

.

Hence we have

‖u‖B∗ ≤ C

∫ ∞

0

1
(y�)1/2

|f(y�)|
(y�)n/2

dy�

=
∑

k

∫

Ik

1
(y�)1/2

|f(y�)|
(y�)n/2

dy�

≤
∑

k

(∫

Ik

dy

y

)1/2 (∫

Ik

|f(y)|2dµ(y)
)1/2

≤ C‖f‖B. �
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3. 1-DIMENSIONAL PROBLEM 23

Lemma 3.9. (1) If u ∈ B∗ satisfies (L0(ζ)− z)u = 0 for ζ > 0, Im z �= 0, then
u = 0.
(2) If u ∈ L2((0,∞)) satisfies (L0(ζ) − t)u = 0 for ζ > 0, t ∈ R, then u = 0.

Proof. We prove the assertion (1). Letting ν = ±i
√

z, Re ν > 0, u is written as
u = ay(n−1)/2Iν(ζy) + by(n−1)/2Kν(ζy). Since u ∈ B∗, letting y → ∞, we see that
a = 0. Letting y → 0, we also see b = 0. The assertion (2) is proved in a similar
way. �

Corollary 3.10. If ζ > 0, z = −ν2, Im z �= 0, then

(3.16) G0(ζ, ν) = (L0(ζ) − z)−1

holds, where the right-hand side is the resolvent of L0(ζ) in L2((0,∞); dy
yn ).

3.4. Limiting absorption principle. Let X be a Banach space and X∗ its
dual. A sequence {un}∞n=1 ⊂ X∗ is said to converge to u ∈ X∗ in ∗-weak sense if

〈un, v〉 → 〈u, v〉, ∀v ∈ X.

Theorem 3.11. For ζ > 0, λ > 0, f ∈ B,

(L0(ζ) − λ ∓ i�)−1f → G0(ζ,∓i
√

λ)f, � → 0

in ∗-weak sense.

Proof. We put u(ν) = G0(ζ, ν)f , where ν = −i
√

λ + i� for λ + i�, and ν =
i
√

λ − i� for λ − i�. By Corollary 3.10, u(ν) = (L0(ζ) − λ ∓ i�)−1f . Since, by
Lemma 3.8, u(ν) are bounded in B∗, by Lebesgue’s convergence theorem (u(ν), g) →
(G0(ζ,∓i

√
λ)f, g), ∀g ∈ C∞

0 ((0,∞)). As C∞
0 ((0,∞)) is dense in B, applying again

Lemma 3.8 proves the theorem. �

In the following, we write

(L0(ζ) − λ ∓ i0)−1 = G0(ζ,∓i
√

λ).

By Lemma 3.8, we have the following uniform, with respect to ζ > 0, estimate

(3.17) sup
ζ≥0

‖(L0(ζ) − λ ∓ i0)−1‖B(B;B∗) = C(λ) < ∞,

where, for 0 < a < b < ∞,

(3.18) sup
a<λ<b

C(λ) < ∞.

Later we will also prove (3.18) by using techniques from partial differential equa-
tions.

3.5. Eigenfunction expansions.

Lemma 3.12. For ζ > 0, σ(L0(ζ)) = [0,∞) and σp(L0(ζ)) = ∅.

Proof. We have for u ∈ C∞
0 ((0,∞))

(L0(ζ)u, u) +
(n − 1)2

4
‖u‖2 = ζ2

∫ ∞

0

|u(y)|2 dy

yn−2
+

∫ ∞

0

|u�(y)|2 dy

yn−2
.
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24 1. FOURIER TRANSFORMS ON THE HYPERBOLIC SPACE

By integration by parts and Cauchy-Schwarz’ inequality, we have

(n − 1)
∫ ∞

0

|u|2 dy

yn
= 2Re

∫ ∞

0

(∂yu) u
dy

yn−1

≤ 2
(∫ ∞

0

|∂yu|2

yn−2
dy

)1/2 (∫ ∞

0

|u|2

yn
dy

)1/2

.

This implies that ∫ ∞

0

|∂yu|2

yn−2
dy ≥ (n − 1)2

4
(u, u).

Therefore,

(L0(ζ)u, u) ≥ ζ2

∫ ∞

0

|u(y)|2 dy

yn−2
.

Therefore σ(L0(ζ)) ⊂ [0,∞).
Let us recall that for λ > 0, (L0(ζ) − λ)

[
y(n−1)/2Ki

√
λ(ζy)

]
= 0. Take χ(t) ∈

C∞((0,∞)) such that χ(t) = 0 (t < 1), χ(t) = 1 (t > 2), and put

uN (y) = χ(Ny)y(n−1)/2Ki
√

λ(ζy)

By (3.6)

‖uN‖2 =
∫ ∞

0

χ
(Nt

ζ

)
|Ki

√
λ(t)|2 dt

t

≥
∫ ∞

1

|Ki
√

λ(t)|2 dt

t
+ C

∫ 1

ζ/N

dt

t

≥ C(log N + 1).

(3.19)

We put ϕN (y) = uN (y)/‖uN‖. Then ‖ϕN‖ = 1, and

(L0(ζ) − λ)ϕN =
1

‖uN‖

{
− (Ny)2χ��(Ny)y(n−1)/2Ki

√
λ(ζy)

−2Nyχ�(Ny)y∂y

(
y(n−1)/2Ki

√
λ(ζy)

)
+ (n − 2)Nyχ�(Ny)y(n−1)/2Ki

√
λ(ζy)

}
.

Taking into account (3.15) and (3.19) and facts that∫ ∞

0

(Ny)2χ�(Ny)2
dy

y
=

∫ ∞

0

t2χ�(t)2
dt

t
< ∞,

and also
∫ ∞
0

(Ny)4χ�(Ny)2dy/y < ∞,
∫ ∞
0

(Ny)4χ��(Ny)2dy/y < ∞, we have ‖(L0(ζ)−
λ)ϕN‖ → 0. By Weyl’s method of singular sequence (see [115] Vol 1, p. 237), we
have λ ∈ σ(L0(ζ)). Lemma 3.9 proves that L0(ζ) has no eigenvalues. �

Let us recall Stone’s formula ([115] Vol 1, p. 237). Let H be a self-adjoint
operator, R(z) = (H − z)−1 the resolvent of H, EH(λ) the spectral decomposition
for H. If a, b �∈ σp(H), letting I = (a, b), we have

(EH(I)f, g) = ([EH(b) − EH(a)]f, g)

= lim
�→0

1
2πi

∫ b

a

([R(λ + i�) − R(λ − i�)]f, g) dλ.
(3.20)

Using Kν(z) = K−ν(z) and (3.2, we have

K−ν(z)I−ν(z�) − Kν(z)Iν(z�) =
2 sin(νπ)

π
Kν(z)Kν(z�), ν �∈ Z.
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3. 1-DIMENSIONAL PROBLEM 25

Therefore, the integral kernel of (L0(ζ)−λ− i0)−1 − (L0(ζ)−λ + i0)−1 is given by

(3.21)
2i sinh(

√
λπ)

π
(yy�)(n−1)/2Ki

√
λ(ζy)Ki

√
λ(ζy�).

We now put, for f ∈ C∞
0 ((0,∞)) and k > 0

(3.22) (Fζf) (k) =

(
2k sinh(kπ)

)1/2

π

∫ ∞

0

y(n−1)/2Kik(ζy)f(y)
dy

yn
.

Theorem 3.13. (1) Fζ is uniquely extended to a unitary operator from
L2((0,∞); dy/yn) to L2((0,∞); dk).
(2) If f ∈ D(L0(ζ)), then (FζL0(ζ)f) (k) = k2 (Fζf) (k).
(3) For f ∈ L2((0,∞); dy/yn), the inversion formula

f = F∗
ζ Fζf(3.23)

= y(n−1)/2

∫ ∞

0

(
2k sinh(kπ)

)1/2

π
Kik(ζy)(Fζf)(k)dk(3.24)

holds.

Proof. It follows from (3.20) and (3.22) that for 0 < a < b < ∞

(3.25)
(
[EL0(ζ)(b) − EL0(ζ)(a)]f, g

)
=

∫ √
b

√
a

(Fζf(k),Fζg(k)) dk,

where we have used

(3.26) Kik(y) = Kik(y) = K−ik(y).

Letting a → 0, b → ∞, we see that Fζ is an isometry from L2(0,∞); dy/yn) to
L2((0,∞); dk). We show the surjectivity later. For f ∈ C∞

0 ((0,∞)), by part
integration, we have∫ ∞

0

y(n−1)/2Kik(ζy) (L0(ζ)f(y))
dy

yn
= k2

∫ ∞

0

y(n−1)/2Kik(ζy)f(y)
dy

yn
.

This proves (2), if we take into account the density of C∞
0 ((0,∞)) in D(L0(ζ)) (see

Theorem 3.4).
The isometric property of Fζ entails (3.23). However, the integral formula

(3.24) requires a subtle analysis. Since Fζ is bounded from L2((0,∞); dy/yn) to
L2((0,∞); dk), for any f ∈ L2((0,∞); dy/yn) the strong limit

lim
a→0,b→∞

(2k sinh(kπ))1/2

π

∫ √
b

√
a

y(n−1)/2Kik(ζy)f(y)
dy

yn
=: (Fζf) (k)

exists in L2((0,∞); dk). To study the inverse transformation, we define an operator
Fζ(k) by

Fζ(k)f = (Fζf) (k) for k > 0 and f ∈ C∞
0 ((0,∞)).

Remark 3.14. In the following we often use such a notation. Namely, let a
given be an operator F from a Hilbert space H to another Hilbert space L2((0,∞);h; dk),
where h is an auxiliary Hilbert space. For k > 0 we define an operator F(k) from
a suitable subspace S of H to h by

F(k)f = (Ff)(k), f ∈ S.
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26 1. FOURIER TRANSFORMS ON THE HYPERBOLIC SPACE

Conversely if we are given a family of operators {F(k)}k>0, with range in h, we
define an operator F with range in L2((0,∞);h; dk) by the above formula.

Lemma 3.15. For any k > 0, there exists a constant 0 < C(k) < ∞ such that

sup
ζ>0

‖Fζ(k)‖B(B;C) ≤ C(k),

where C(k) is uniformly bounded on any compact in (0,∞).

Proof. Using Lemma 3.8 and Theorem 3.11, and differentiating (3.20) and
(3.25) by b, we have, in view of (3.21),

|Fζ(k)f |2 =
k

iπ

([
(L0(ζ) − k2 − i0))−1 − (L0(ζ) − k2 + i0))−1

]
f, f

)
.

Using (3.17), we prove the lemma. �
By (3.22), Fζ(k)∗ is simply a multiplication operator :

C � α → (2k sinh(kπ))1/2

π
y(n−1)/2Kik(ζy)α.

Lemma 3.15 implies
sup
ζ>0

‖Fζ(k)∗‖B(C;B∗) ≤ C(k),

By (3.18), this C(k) is bounded when k varies over a compact set in (0,∞). Hence,
for any g ∈ L2((0,∞); dk),

∫ N

1/N

Fζ(k)∗g(k)dk ∈ B∗, ∀N > 0.

Letting χN (λ) be the characteristic function of (1/N,N), we have for h ∈ C∞
0 ((0,∞))

(3.27)
( ∫ N

1/N

Fζ(k)∗g(k)dk, h
)

=
∫ N

1/N

g(k)
(
Fζ(k)h

)
dk = (χNg,Fζh).

Here the left-hand side is the coupling between B∗ and B, the right-hand side is
the inner product of L2((0,∞); dk). However, since Fζ is an isometry between
L2((0,∞); dy/yn) and L2((0,∞); dk), the right-hand side makes sense for all h ∈
L2((0,∞); dy/yn) Thus, the left-hand side can be extended by continuity to h ∈
L2((0,∞)); dy/yn). This implies, by Riesz’ theorem, that

∫ N

1/N

Fζ(k)∗g(k)dk = F∗
ζ (χNg) ∈ L2((0,∞); dy/yn).

Since F∗
ζ is partial isometry, in the sense of strong convergence in L2((0,∞); dy/yn),

lim
N→∞

∫ N

1/N

Fζ(k)∗g(k)dk = F∗
ζ g

holds. Taking g = Fζf and using again that Fζ is a partial isometry, we see that,
in the sense of strong convergence in L2((0,∞); dy/yn),

f = lim
N→∞

∫ N

1/N

Fζ(k)∗ (Fζf) (k)dk.

This is the meaning of the inversion formula (3.24).

Let us prove the surjectivity of Fζ . Denote by C0((0,∞)) the class of continuous
functions with compact support in (0,∞).
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Lemma 3.16. For f ∈ C0((0,∞))

Fζ(k)f = C±(k) lim
y→0

y−(n−1)/2±ik(L0(ζ) − k2 ∓ i0)−1f,

C±(k) =
1
π

(
ζ

2

)±ik

Γ(1 ∓ ik)(2k sinh(kπ))1/2.

Proof. By the definition of Green’s function, it follows from the asymptotics
(3.5) that, for small y > 0,

G0(ζ,∓i
√

k)f(y) ∼ (ζ/2)∓ik

Γ(1 ∓ ik)
y(n−1)/2∓ik

∫ ∞

0

(y�)(n−1)/2Kik(ζy�)f(y�)
dy�

(y�)n
,

from which the lemma follows. �
Lemma 3.17. Suppose u ∈ B∗ satisfies (L0(ζ)− k2)u = 0 for ζ > 0, k > 0 and

limy→0 y−(n−1)/2+iku exists. Then u = 0.

Proof. Since u is written as u = ay(n−1)/2Iik(ζy) + by(n−1)/2I−ik(ζy),

y−(n−1)/2+iku ∼ ac+(k)y2ik + bc−(k) as y → 0

with constants c±(k) �= 0. If the limit of the right-hand side exists, a = 0. Hence
u = by(n−1)/2I−ik(ζy). Looking at the behavior as y → ∞, we have b = 0. �

Lemma 3.18. (1) Suppose ζ > 0, k > 0, and f ∈ C0((0,∞)), u ∈ B∗ satisfy
(L0(ζ) − k2)u = f . Furthermore assume that as y → 0, u ∼ Cy(n−1)/2−ik. Then
u = (L0(ζ) − k2 − i0)−1f .
(2) Suppose ζ > 0, k > 0, and f ∈ C0((0,∞)), u ∈ B∗ satisfy (L0(ζ) − k2)u = f .
Furthermore assume that as y → 0, u ∼ Cy(n−1)/2+ik. Then u = (L0(ζ) − k2 +
i0)−1f .

Proof. By Theorem 3.11, (L0(ζ)−k2−i0)−1f ∈ B∗ and behaves like Cy(n−1)/2−ik

near 0. To prove (1), we put u− (L0(ζ)− k2 − i0)−1f = v, and apply the previous
lemma. Taking the complex conjugate of (1), we obtain (2). �

Lemma 3.19. RanFζ = L2((0,∞); dk).

Proof. For ψ(k) ∈ L1
loc((0,∞)), let L(ψ) be the set of Lebesgue points of ψ,

i.e. the set of � > 0 such that

ψ(�) = lim
�→0

1
2�

∫ �+�

�−�

ψ(k)dk.

It is well-known that (0,∞) \ L(ψ) is measure 0 for any ψ ∈ L1
loc((0,∞)). Let

ϕ(k) ∈ L2((0,∞); dk) be othogonal to the range of Fζ , and take

� ∈ L(ϕ(k)) ∩ L(|ϕ(k)|2).
We take χ(y) ∈ C∞((0,∞)), χ(y) = 1 (y < 1), χ(y) = 0 (y > 2), and put

u�(y) = χ(y)y(n−1)/2Ii�(ζy),

g�(y) = (L0(ζ) − �2)u� = [L0(ζ), χ]Ii�(ζy).
Since g�(y) ∈ C∞

0 ((0,∞)), u� = (L0(ζ)− �2 + i0)−1g� by Lemma 3.18. The formula
(3.22) and Lemma 3.16 imply that Fζ(k)g� =: C(k) is a continuous function of k > 0
such that C(�) �= 0. For the characteristic function χI of an interval I ⊂ (0,∞),
we have

(FζχI(L0(ζ))g�)(k) = χI(k2)(Fζg�)(k) = χI(k2)C(k),
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28 1. FOURIER TRANSFORMS ON THE HYPERBOLIC SPACE

which implies ∫

I

ϕ(k)C(k)dk = 0

for any interval I ⊂ (0,∞). We then have

ϕ(�)C(�) = ϕ(�)C(�) − 1
2�

∫ �+�

�−�

ϕ(k)C(k)dk

= C(�)

(
ϕ(�) − 1

2�

∫ �+�

�−�

ϕ(k)dk

)
− 1

2�

∫ �+�

�−�

ϕ(k)
(
C(k) − C(l)

)
dk.

When � → 0, the 1st term of the right-hand side tends to 0 since � ∈ L(ϕ(k)). The
2nd term also tends to 0 by the Schwarz inequality,∣∣∣∣∣

1
2�

∫ �+�

�−�

ϕ(k)
(
C(k) − C(l)

)
dk

∣∣∣∣∣

≤

(
1
2�

∫ �+�

�−�

|ϕ(k)|2dk

)1/2

×

(
1
2�

∫ �+�

�−�

|C(k) − C(�)|2dk

)1/2

,

the assumption that � ∈ L(|ϕ(k)|2), and continuity of C(k). Therefore ϕ(�) = 0,
which proves the lemma due to the density of L(ϕ(k)) ∩ L(|ϕ(k)|2). �

3.6. Kontrovich-Lebedev’s inversion formula. By F∗
ζ Fζ = 1,

f(y) =
∫ ∞

0

∫ ∞

0

2σ sinh(σπ)
π2

(yy�)−1/2Kiσ(y)Kiσ(y�)f(y�)dy�dσ,

and from FζF∗
ζ = 1,

g(σ) =
∫ ∞

0

∫ ∞

0

2(τσ)1/2 (sinh(σπ) sinh(τπ))1/2

π2

Kiσ(y)Kiτ (y)
y

g(τ)dτdy,

which are called Kontrovich-Lebedev’s inversion formulae. The convergence of the
integral in L2 is proven above. Conditions for the pointwise convergence are given
in [94] p. 132.

4. The upper-half space model

4.1. Laplace-Beltrami operator. We return to the upper-half space model
(1.1) with the Riemannian metric (1.2). The volume element is dxdy/yn. Therefore,

L2(Hn) = L2(Rn
+;

dxdy

yn
).

The Laplace-Beltrami operator is given by

−∆g = y2(−∂2
y − ∆x) + (n − 2)y∂y, ∆x =

n−1∑
i=1

(∂/∂xi)2.

We put

H0 = −∆g − (n − 1)2

4
.
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4. THE UPPER-HALF SPACE MODEL 29

The partial Fourier transform f̂(ξ, y) of f(x, y) is defined by

F0f(ξ, y) = f̂(ξ, y) = (2π)−(n−1)/2

∫

Rn−1
e−ix·ξf(x, y)dx.

Letting L0(ζ) be as in (3.7), we have

(̂H0f)(ξ, y) =
(
L0(|ξ|)f̂(ξ, ·)

)
(y).

Lemma 4.1. H0

∣∣
C∞

0 (Rn
+)

is essentially self-adjoint.

Proof. We have only to prove that, for u ∈ L2(Hn),

((H0 − i)ϕ, u) = 0 ∀ϕ ∈ C∞
0 (Rn

+) =⇒ u = 0,

and the same assertion with i replaced by −i. Passing to the partial Fourier trans-
form and choosing ϕ(x, y) = ϕx(x)ϕy(y), ϕx ∈ C∞

0 (Rn−1), ϕy ∈ C∞
0 ((0,∞)), for

almost all ξ ∈ Rn−1, we have

((L0(|ξ|) − i)ϕy(y), û(ξ, y))L2((0,∞);dy/yn) = 0.

By the result for the 1-dimensional case (Theorem 3.4), we have û(ξ, y) = 0. �

4.2. Limiting absorption principle and Fourier transform. We put

R0(z) = (H0 − z)−1, z ∈ C \ R,

and define the spaces B,B∗ by taking h = L2(Rn−1; dx) in Subsection 2.1.

Theorem 4.2. (1) σ(H0) = [0,∞).
(2) σp(H0) = ∅.
(3) For λ > 0 and f ∈ B, the following limits exist in B∗ in the weak ∗-sense

lim
�→0

R0(λ ± i�)f =: R0(λ ± i0)f,

and the following inequality holds

(4.1) ‖R0(λ ± i0)f‖B∗ ≤ C‖f‖B,

where the constant C does not depend on λ if it varies over a compact set in (0,∞).
(4) We put for k > 0, k2 = λ, f ∈ C∞

0 (Rn
+),

(
F (±)

0 (k)f
)

(x) =

(
2k sinh(kπ)

)1/2

π
(2π)−(n−1)/2

×
∫∫

Rn−1×(0,∞)

eix·ξ
( |ξ|

2

)∓ik

y(n−1)/2Kik(|ξ|y)f̂(ξ, y)
dξdy

yn
.

(4.2)

Then we have

(4.3)
k

πi

(
[R0(k2 + i0) − R0(k2 − i0)]f, f

)
= ‖F (±)

0 (k)f‖2
L2(Rn−1),

and

(4.4) ‖F (±)
0 (k)f‖L2(Rn−1) ≤ C‖f‖B,

where the constant C is independent of k if it varies over a compact set in (0,∞).
(5) We put (F (±)

0 f)(k) = F (±)
0 (k)f . Then F (±)

0 is uniquely extended to a unitary
operator from L2(Hn) to L2((0,∞);L2(Rn−1); dk). For f ∈ D(H0), we have

(4.5) (F (±)
0 H0f)(k) = k2(F (±)

0 f)(k).
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Proof. (1) Since Lemma 3.12 implies σ(L0(|ξ|)) = [0,∞), for z �∈ [0,∞) the
operator

(4.6) (2π)−(n−1)/2

∫

Rn−1
eix·ξ

((
L0(|ξ|) − z

)−1
f̂(ξ, ·)

)
(y)dξ

is bounded on L2((0,∞);L2(Rn−1); y−ndy) and is equal to R0(z). Therefore σ(H0) ⊂
[0,∞). The converse inclusion relation is proved by the method of singular sequence
as in Lemma 3.12. Namely we take χ ∈ C∞

0 (R) such that χ(t) = 1 (|t| < 1), χ(t) =
0 (|t| > 2), and normalize

χ
( |x|

N

)
χ
( log y

log N

)
eix·ξy(n−1)/2Ki

√
λ(|ξ|y).

We omit the computation.
(2) If there exists an L2-solution of (H0−λ)u = 0, we have (L0(|ξ|)−λ)û(ξ, ·) =

0, where, for almost all ξ, û(ξ, ·) ∈ L2((0,∞); dy/yn). Lemma 3.9 yields û(ξ, y) = 0.
(3) We shall prove this statement in Chap. 2, §2 (see Lemma 2.2.9). In this

section we confine ourselves to f ∈ L2,s, ∀s > 1/2. We start with estimates

(4.7) ‖R0(λ ± i0)f‖B∗ ≤ Cs‖f‖s,

where the constant Cs is independent of λ when λ varies over a compact set in
(0,∞) and ‖ ·‖s is the norm in Definition 2.6 with h = L2(Rn−1; dx). Observe that

sup
R>e

1
log R

∫ R

1/R

[∫

Rn−1
|F (ξ, y)|2dξ

]
dy

yn
≤

∫

Rn−1

[
sup
R>e

1
log R

∫ R

1/R

|F (ξ, y)|2 dy

yn

]
dξ.

Taking F (ξ, y) = (L0(ξ)− λ∓ i0)−1f̂(ξ, y) and using (3.17), (3.18 ), and Lemmata
2.3 and 2.7

‖R0(λ ± i0)f‖2
B∗ ≤

∫

Rn−1
‖(L0(|ξ|) − λ ∓ i0)−1f̂(ξ, ·)‖2

B∗dξ

≤ C

∫

Rn−1
‖f̂(ξ, ·)‖2

Bdξ ≤ Cs

∫

Rn−1
‖f̂(ξ, ·)‖2

sdξ = Cs‖f‖2
s,

which proves (4.7).
Returning to formula (4.6), where f̂ ∈ C∞

0 (Hn) and using Theorem 3.11, we
see that there exist limits R0(λ± i0)f = lim�→0 R0(λ± i�)f . Using (4.7), we extend
them to f ∈ L2,s.

(4) The equality (4.3) follows from (3.25), which together with (4.1) proves
(4.4).

(5) Taking into account of the 1-dimensional result, we have only to prove the
unitarity. Restricting ourselves to F (−)

0 , we obtain by the Parseval formula (4.3)
that F (−)

0 is isometric. We take ϕ(k, x) ∈ L2((0,∞) × Rn−1), χ(y) ∈ C∞(0,∞)
such that χ(y) = 1 (y < 1), χ(y) = 0 (y > 2), and put

ul(x, y) = χ(y)y(n−1)/2F ∗
0

[( |ξ|
2

)−il

Iil(|ξ|y)ϕ̂(l, ξ)
]

,

where for any ψ

(4.8) F ∗
0 ψ = (2π)−(n−1)/2

∫

Rn−1
eix·ξψ(ξ)dξ.
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4. THE UPPER-HALF SPACE MODEL 31

Let (H0 − l2)ul = fl. When y → 0, ξ �= 0,

ûl(ξ, y) ∼ 1
Γ(1 + il)

y(n−1)/2+ilϕ̂(l, ξ).

Since for any fixed ξ ∈ Rn−1 we have f̂(ξ, ·) ∈ C∞
0 ((0,∞)), ûl(ξ, ·) ∈ B∗, by Lemma

3.18, ûl(ξ, ·) = (L0(|ξ|) − l2 − i0
)−1 and ul = R0(l2 − i0)f . Therefore, by Lemma

3.16 F (−)
0 (l)f = C(l)ϕ(l, ·), with some constant C(l) �= 0. Therefore by the same

argument as in the proof of Lemma 3.19, F (−)
0 is onto. �

4.3. Helmholtz equation. Theorem 4.2 implies

(4.9) F (±)
0 (k)∗ ∈ B(L2(Rn−1);B∗),

(
F (±)

0 (k)∗ϕ
)

(x, y) =

(
2k sinh(kπ)

)1/2

π

× F ∗
0

[(
|ξ|
2

)±ik

y(n−1)/2Kik(|ξ|y)ϕ̂(ξ)

]
,

(4.10)

and by (4.5) in the weak sense

(H0 − k2)F (±)
0 (k)∗ϕ = 0, ∀ϕ ∈ L2(Rn−1).

The aim of this subsection is to prove the following theorem (Modified Poisson-
Herglotz formula).

Theorem 4.3. For k > 0

{u ∈ B∗; (H0 − k2)u = 0} = F (±)
0 (k)∗

(
L2(Rn−1)

)
.

Namely, any solution in B∗ to the Helmholtz equation can be written as a
Poisson integral of some L2-function on the boundary at infinity. As will be shown
later, the space B∗ is, in some sense, the smallest space for the solutions to the
Helmholtz equation. Namely, recall the inclusion relations in Lemma 2.7. One
can show that if u ∈ L2,−1/2 satisfies the Helmholtz equation (H0 − k2)u = 0 for
k > 0, then u = 0. Therefore, all the non-zero solutions to the Helmholtz equation
decays at most like or slower than the functions in B∗. The largest solution space
was characterized by Helgason [50], who proved that all solutions of the Helmholtz
equation (H0 − λ)u = 0 is written by a Poisson integral of a Sato’s hyperfunction
on the boundary. This result was extended to general symmetric spaces by [100],
[74]. This was also extended to the Euclidean space using more general analytic
functionals by [47].

In the Euclidean case, Theorem 4.3 was proved by Agmon-Hörmander [2]. It
was also extended to 2-body Schrödinger operators by Yafaev [132], and for the
3-body problem by the author [60].

The proof of Theorem 4.3 requires a series of Lemmas.

Lemma 4.4. (A-priori estimate)
(1) If u ∈ B∗ satisfies (H0 − z)u = f ∈ B∗, z ∈ C,

‖y∂yu‖B∗ + ‖y∂xu‖B∗ ≤ C(‖u‖B∗ + ‖f‖B∗).

(2) If u ∈ B∗ satisfies (H0 − z)u = f ∈ B∗ and

lim
R→∞

1
log R

∫ R

1/R

[
‖u(y)‖2

L2(Rn−1) + ‖f(y)‖2
L2(Rn−1)

] dy

yn
= 0,
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32 1. FOURIER TRANSFORMS ON THE HYPERBOLIC SPACE

we have

lim
R→∞

1
log R

∫ R

1/R

[
‖y∂yu(y)‖2

L2(Rn−1) + ‖y∂xu‖2
L2(Rn−1)

] dy

yn
= 0.

Proof. We put Dy = y∂y, Dx = y∂x. Then

H0 = −D2
y + (n − 1)Dy − D2

x − (n − 1)2

4
,

and for u, v ∈ C∞
0 (Rn

+)

(4.11) (H0u, v) = (Dyu,Dyv) + (Dxu,Dxv) − (n − 1)2

4
(u, v).

We pick ρ ∈ C∞
0 (R) such that ρ(t) = 1 for |t| < 1, and put

ρr,R(x, y) = ρ

(
|x|
r

)
ρ

(
log y

log R

)
, ρR(y) = ρ

(
log y

log R

)
,

for large parameters r,R >> 1. If u ∈ B∗ satisfies (H0 − z)u = f ∈ B, we have, cf
(4.11),

(4.12) (f, ρr,Ru) = (Dxu,Dx(ρr,Ru)) + (Dyu,Dy(ρr,Ru)) − E(z)(u, ρr,Ru),

with E(z) = (n − 1)2/4 + z. Let us note that putting ρ̃x = Dxρr,R, ρ̃y = Dyρr,R,
we have

Re (Dxu, ρ̃xu) = −1
2
(u, (Dxρ̃x)u),

Re (Dyu, ρ̃yu) = −1
2
(u, yn

( ρ̃y

yn−1

)�
u), � = ∂y.

We take the real part of (4.12) and let r → ∞. Since, pointwise

Dxρ̃x → 0, ρ̃y → 1
log R

ρ�
( log y

log R

)
,

we obtain

Re (f, ρRu) = (ρRDxu,Dxu) + (ρRDyu,Dyu) − 1
2
(u, ψRu) − Re E(z)(u, ρRu),

ψR = yn∂y

(
1

yn−1 log R
ρ�

( log y

log R

))
.

Using Cauchy-Schwarz inequality and dividing by log R, we obtain

1
log R

∫ ∞

0

[(ρRDxu,Dxu) + (ρRDyu,Dyu)]
dy

yn

≤ 1
log R

∫ ∞

0

[(φRu, u) + (φRf, f)]
dy

yn
,

(4.13)

where φR has the form φR(y) = C(R)φ(
log y

log R
) for some φ ∈ C∞

0 (R) and C(R) is

bounded on (e,∞). Taking the supremum with respect to R, we obtain, by Lemma
2.5, the assertion (1).

Letting R → ∞ in (4.13) and using Lemma 2.5 (1), we obtain (2). �
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Lemma 4.5. For ϕ ∈ L2(Rn−1),

lim
R→∞

1
log R

∫ R

1/R

‖(F (±)
0 (k)∗ϕ)(·, y)‖2

L2(Rn−1)

dy

yn
= C‖ϕ‖2

L2(Rn−1),

where C = C(k) > 0.

Proof. By (4.10) and (3.13) and Lebesgue’s convergence theorem, we have
1

yn−1
‖(F (±)

0 (k)∗ϕ)(·, y)‖2
L2(Rn−1) = C̃(k)

∫

Rn−1
|Kik(|ξ|y)ϕ(ξ)|2dξ

≤ C̃(k)
∫

Rn−1
e−2|ξ|y|ϕ(ξ)|2dξ.

Thus,
1

yn−1
‖(F (±)

0 (k)∗ϕ)(·, y)‖2 → 0, as y → ∞.

This implies that, as R → ∞,

(4.14)
1

log R

∫ R

1

‖(F (±)
0 (k)∗ϕ)(·, y)‖2

L2(Rn−1)

dy

yn
→ 0.

To compute the limit as y → 0, we first use (3.6) to see that
1

yn−1
‖(F (±)

0 (k)∗ϕ)(·, y)‖2
L2(Rn−1) = C(k)

∫

Rn−1
|Kik(|ξ|y)ϕ(ξ)|2dξ

∼ C(k)‖ϕ‖2
L2(Rn−1) + Re

[
C(ϕ)y−2ik

]
,

where C(k) > 0 and

C(ϕ) = C0

∫

Rn

|ξ|−2ik|ϕ(ξ)|2dξ.

Hence,

1
log R

∫ 1

1/R

‖(F (±)
0 (k)∗ϕ)(·, y)‖2

L2(Rn−1)

dy

yn
→ C(k)‖ϕ‖2

L2(Rn−1). �

The above lemma and (4.9) imply the following corollary.

Corollary 4.6. There exists a constant C = C(k) > 0 such that

C‖ϕ‖L2(Rn−1) ≤ ‖F (±)
0 (k)∗ϕ‖B∗ ≤ C−1‖ϕ‖L2(Rn−1).

Next we show that the Fourier transform F (±)
0 (k) is derived from the asymptotic

expansion of the resolvent as y → 0, cf. Lemma 3.16.

Lemma 4.7. For f ∈ B we put

u± = R0(k2 ± i0)f,

v±(x, y) = ω±(k)y(n−1)/2∓ik
(
F (±)

0 (k)f
)
(x),

(4.15) ω±(k) =
π(

2k sinh(kπ)
)1/2Γ(1 ∓ ik)

Then we have as R → ∞
1

log R

∫ 1

1/R

‖u±(·, y) − v±(·, y)‖2
L2(Rn−1)

dy

yn
→ 0.
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Proof. First we show the lemma for f̂ ∈ C∞
0 (Rn

+). Since supp f̂ is compact,
we have as y → 0

û±(ξ, y) = y(n−1)/2I∓ik(|ξ|y)
∫ ∞

0

(y�)(n−1)/2Kik(|ξ|y�)f̂(ξ, y�)
dy�

(y�)n

∼ ω±(k)y(n−1)/2∓ikF0F (±)
0 (k)f.

(4.16)

It then follows from (4.4) and (3.17) that

1
log R

∫ 1

1/R

‖u±(·, y) − v±(·, y)‖2
L2(Rn−1)

dy

yn
→ 0,

as R → ∞. The general case is proved if we note that by (4.1) and (4.4)

1
log R

∫ 1

1/R

‖u±(·, y) − v±(·, y)‖2
L2(Rn−1)

dy

yn
≤ C‖f‖2

B,

and approximate f by fn with f̂n ∈ C∞
0 (Rn

+). �

By the well-known formula

Γ(1 + s)Γ(1 − s) = sΓ(s)Γ(1 − s) =
πs

sin(πs)
,

we have

(4.17) |Γ(1 + iσ)|2 =
πσ

sinhπσ
, σ > 0,

which implies

(4.18) |ω±(k)|2 =
π

2k2
.

The function (4.15) and the formulas (4.17), (4.18) will be used frequently through-
out these notes.

Corollary 4.8. For u± = R0(k2 ± i0)f , with f ∈ B, we have

(4.19) lim
R→∞

1
log R

∫ 1

1/R

‖u±(·, y)‖2
L2(Rn−1)

dy

yn
=

π

2k2
‖F (±)

0 (k)f‖2
L2(Rn−1),

(4.20) lim
R→∞

1
log R

∫ 1

1/R

‖
(
y∂y − n − 1

2
± ik

)
u±(·, y)‖2

L2(Rn−1)

dy

yn
= 0.

Proof. Let u±, v± be as in the previous lemma, and denote them by u, v.
Let ‖ · ‖ = ‖ · ‖L2(Rn−1). Since ‖u‖2 − ‖v‖2 = (u − v, u) + (v, u − v), we have∣∣‖u‖2 − ‖v‖2

∣∣ ≤ (‖u‖ + ‖v‖)‖u − v‖. Thus, by (4.1), (4.4) and Lemma 4.7 that, as
R → ∞,

1
log R

∣∣∣∣∣
∫ 1

1/R

(‖u‖2 − ‖v‖2)
dy

yn

∣∣∣∣∣

≤ 1
log R

(∫ 1

1/R

(‖u‖2 + ‖v‖2)
dy

yn

)1/2

× 1
log R

(∫ 1

1/R

(‖u − v‖2)
dy

yn

)1/2

→ 0.
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We then obtain (4.19) by using

|ω±(k)|2‖F (±)
0 (k)f‖2

L2(Rn−1) =
1

log R

∫ 1

1/R

‖v±(·, y)‖2
L2(Rn−1)

dy

yn
.

Noting Lemma 4.4 (1) and differentiating (4.16), we obtain (4.20). �

Lemma 4.9. For f ∈ B, let u = R0(k2 ± i0)f , Dx = y∂x, Dy = y∂y. Then we
have

(4.21) lim
R→∞

1
log R

∫ R

1

‖u(·, y)‖2
L2(Rn−1)

dy

yn
= 0.

(4.22) lim
R→∞

1
log R

∫ R

1

[
‖Dxu(·, y)‖2

L2(Rn−1) + ‖Dyu(·, y)‖2
L2(Rn−1)

]dy

yn
= 0.

Proof. We first prove (4.21) for f̂ ∈ C∞
0 (Rn

+), u = R0(k2 − i0)f . If f(x, y) = 0
for y < C−1 and y > C, û(ξ, y) is written as for y > C

û(ξ, y) = y(n−1)/2Ki
√

λ(|ξ|y)
∫ C

C−1
(y�)(n−1)/2ĥ(ξ, y�)

dy�

(y�)n
,

where, due to (3.12), (4.6) and Definition 3.5, h ∈ L2(Rn
+). Denoting

g(ξ) =
∫ C

C−1
(y�)(n−1)/2ĥ(ξ, y�)

dy�

(y�)n
,

we have by (3.13)

|û(ξ, y)| ≤ Cy(n−1)/2e−|ξ|yg(ξ), g ∈ L2(Rn−1).

Hence,

1
log R

∫ R

1

‖u(·, y)‖2
L2(Rn−1)

dy

yn
≤ C

log R

∫ R

1

‖e−|ξ|yg(ξ)‖2
L2(Rn−1)

dy

y
.

Therefore, (4.21) for f̂ ∈ C∞
0 (Rn

+) follows from Lebesgue’s convergence theorem.
Taking note of

1
log R

∫ R

1

‖u(·, y)‖2
L2(Rn−1)

dy

yn
≤ C‖f‖2

B,

we have only to approximate f̂ by functions from C∞
0 (Rn

+) to prove (4.21) for the
general case.

We put

〈u, v〉 =
∫ ∞

1

(
u(·), v(·)

)
dµ, dµ = dy/yn,

where (·, ·) is the inner product of L2(Rn−1). Take ρ ∈ C∞(R) such that ρ(t) =
0 (|t| > 3), ρ(t) = 1 (|t| < 2), and put ρR(y) = ρ((log y)/(log R)). We multiply the
equation (H0 − k2)u = f by ρR(y)u and integrate by parts to see

〈Dyu, ρRDyu〉 + 〈Dyu, yn
( ρR

yn−1

)�
u〉 + (Dyu, ρRu)

∣∣
y=1

−n − 1
2

(u, ρRu)
∣∣
y=1

− n − 1
2

〈u, yn
( ρR

yn−1

)�
u〉

+〈Dxu, ρRDxu〉 − E(k2)〈u, ρRu〉 = 〈f, ρRu〉.
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(We should insert ρ(|x|/r), and let r → ∞ using Theorem 4.2(3) and Lemma 4.4(1)).
We now put ψ(t) = 1 (t < 3), ψ(t) = 0 (t > 4), ψR(y) = ψ((log y)/(log R)), and
‖ · ‖ = ‖ · ‖L2(Rn−1) to obtain

〈Dyu, ρRDyu〉 + 〈Dxu, ρRDxu〉

≤ C(k)
( ∫ ∞

1

ψR(y)‖Dyu(y)‖ · ‖u(y)‖dµ +
∫ ∞

1

ψR(y)‖u(y)‖2dµ

+
∫ ∞

1

ψR(y)‖f(y)‖ · ‖u(y)‖dµ + (‖Dyu(1)‖ + ‖u(1)‖)‖u(1)‖
)
.

We divide both sides by log R. Then the first term of the right-hande side is
dominated from above by

(
1

log R

∫ ∞

1

ψR(y)‖Dyu‖2dµ

)1/2 (
1

log R

∫ ∞

1

ψR(y)‖u‖2dµ

)1/2

.

By Lemma 4.4 (1), we have

sup
R>2

1
log R

∫ ∞

1

ψR(y)‖Dyu‖2dµ < ∞.

Using (4.21), we see that

lim
R→∞

1
log R

∫ ∞

1

ψR(y)‖u(y)‖2dµ = 0.

Using the same considerations to estimate 1
log R

∫ ∞
1

ψR(y)‖f(y)‖ · ‖u(y)‖dµ, we
arrive at (4.22). �

Lemma 4.10. If u ∈ B∗, (H0 − k2)u = 0, f ∈ B, and either F (+)
0 (k)f = 0 or

F (−)
0 (k)f = 0 holds, then (u, f) = 0.

Proof. Assume that F (−)
0 (k)f = 0. Take ρ(t) ∈ C∞

0 (R) such that ρ(t) =
1 (|t| < 1), and put

ρR(y) = ρ
( log y

log R

)
, ρR,r(y) = χ

( log y

log R

)
ρ
( log y

log r

)
, χ(t) =

∫ t

−∞
ρ(s)ds.

Letting v = R0(k2 − i0)f , we then have

0 = (ρR,r(y)v, (H0 − k2)u)

= (ρR,rf, u) − ((D2
yρR,r)v, u) − 2((DyρR,r)Dyv, u) + (n − 1)((DyρR,r)v, u).

Let r → ∞. Then, for any R > 0 and sufficiently large r,

ρ

(
log y

log R

)
ρ

(
log y

log r

)
= ρ

(
log y

log R

)
.

Using this formula, together with the fact that

Dyρ

(
log y

log r

)
=

1
log r

ρ�
(

log y

log r

)
,

so that we obtain an extra factor 1
log r , we can use Lemma 4.9 to show that it is

possible to replace ρR,r in the above equation by χR(y) = χ(log y/ log R). Thus,

(4.23) (χRf, u) = ((D2
yχR)v, u) + 2((DyχR)Dyv, u) − (n − 1)((DyχR)v, u).
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Observe that, due to the assumption F (−)
0 (k)f = 0, it follows from Corollary 4.8

and Lemma 4.9 that
1

log R

∫

1/R<y<R

‖v(·, y)‖2
L2(Rn−1)

dy

yn
→ 0, as R → ∞.

Since
DyχR(y) =

1
log R

ρ
( log y

log R

)
, D2

yχR(y) =
1

log2 R
ρ�

( log y

log R

)
,

it then follows that the 1st and 3rd terms in the right-hand side of (4.23) tend to
0 as R → ∞. Integrating by parts in the 2nd term of the right-hand side of (4.23)
and using the fact that, by Lemma 4.4(1), Dyu ∈ B∗, the same considerations show
that this term also tends to 0. Thus, (f, u) = 0. �

Lemma 4.11. Let X,Y be Banach spaces, and T ∈ B(X,Y ). Then the follow-
ing 4 assertions are equivaent.
(1) RanT is closed.
(2) RanT ∗ is closed.
(3) RanT = N(T ∗)⊥ = {y ∈ Y ; 〈y, y∗〉 = 0 ∀y∗ ∈ N(T ∗)}.
(4) RanT ∗ = N(T )⊥ = {x ∈ X∗; 〈x, x∗〉 = 0 ∀x ∈ N(T )}.

@ For the proof, see e.g. [133] p. 205.

Proof of Theorem 4.3. We put X = B, Y = L2(Rn−1), T = F (±)
0 (k) in the

above lemma. By Corollary 4.6, RanT ∗ is closed. Hence Ran T is closed. Corollary
4.6 also implies N(T ∗) = {0}. Therefore RanT = Y , and RanT ∗ = N(T )⊥.
Lemma 4.10 shows that if u ∈ B∗ and (H0 − k2)u = 0, then u ∈ N(T )⊥. Therefore
u ∈ RanT ∗. �

Corollary 4.12. F (±)
0 (k)B = L2(Rn−1).

5. Modified Radon transform

5.1. Modified Radon transform on Hn. The Radon transform is usually
defined as an integral over some submanifolds (see e.g. [52]). In this section, we
define the Radon transform in terms of the Fourier transform. For this purpose it
is convenient to change its definition slightly.

Definition 5.1. For k ∈ R \ {0} we define operators F0(k) and F0(k) by

F0(k)f(x) =

√
2
π

k

√
sinh(kπ)

kπ

× F ∗
0

(( |ξ|
2

)−ik
∫ ∞

0

y
n−1

2 Kik(|ξ|y)f̂(ξ, y)
dy

yn

)
,

F0(k) =
Ω(k)√

2
F0(k),

Ω(k) =
−i

Γ(1 − ik)

√
kπ

sinh(kπ)
.

Here g(k) := (kπ/ sinh(kπ))1/2 is defined on C \ {iτ ; τ ∈ (−∞, 1] ∪ [1,∞)} as a
single-valued analytic function. In particular, g(k) = g(−k) for k > 0.
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38 1. FOURIER TRANSFORMS ON THE HYPERBOLIC SPACE

Note that by (4.2), F0(k) = F (+)
0 (k) for k > 0, and by (4.17), |Ω(k)| = 1. The

following lemma follows easily from this definition and Theorem 4.2.

Lemma 5.2. (1) F0 is uniquely extended to an isometry from L2(Hn) to Ĥ
:= L2(R; L2(Rn−1); dk), and it diagonalizes H0 :

(F0H0f) (k, x) = k2 (F0f) (k, x).

(2) Let r+ be the projection onto the subspace Ĥ+ := L2((0,∞);L2(Rn−1); dk).
Then the range of r+F0 is Ĥ+.
(3) g ∈ Ĥ belongs to the range of F0 if and only if

ĝ(−k, ξ) =
Γ(1 − ik)
Γ(1 + ik)

(
|ξ|
2

)2ik

ĝ(k, ξ), ∀k > 0.

We then define the modified Radon transform associated with H0 by

Definition 5.3. For s ∈ R, we define

(
R0f

)
(s, x) =

1√
2π

∫ ∞

−∞
eiks

(
F0f

)
(k, x)dk.

Recall that F0 is written explicitly as

(5.1) F0(k)f(x) =
−ik√

π Γ(1 − ik)
F ∗

0

(( |ξ|
2

)−ik
∫ ∞

0

y
n−1

2 Kik(|ξ|y)f̂(ξ, y)
dy

yn

)
.

Lemma 5.2 implies the following theorem.

Theorem 5.4. R0 is an isometry from L2(Hn) to Ĥ. Moreover we have

R0H0 = −∂2
sR0.

5.2. Asymptotic profiles of solutions to the wave equation. The Radon
transform thus defined describes the behiavior of solutions to the wave equation at
infinity. Recall that the solution to the wave equation

{
∂2

t u + H0u = 0,

u
∣∣
t=0

= f, ∂tu
∣∣
t=0

= g

is written as

u(t) = cos(t
√

H0)f + sin(t
√

H0)
√

H0

−1
g.

Theorem 5.5. For any f ∈ L2(Hn), we have as t → ±∞
∥∥∥∥cos(t

√
H0)f − y(n−1)/2

√
2

(R0f)(− log y ∓ t, x)
∥∥∥∥

L2(Hn)

→ 0,

∥∥∥∥sin(t
√

H0)f ∓ iy(n−1)/2

√
2

(R0 sgn(−i∂s)f)(− log y ∓ t, x)
∥∥∥∥

L2(Hn)

→ 0,

where

sgn (−i∂s)φ(s) =
1
2π

∫∫

R1×R1
eik(s−s′)sgn (k)φ(s�)ds�dk,

and where sgn (k) = 1 (k > 0), sgn (k) = −1 (k < 0).
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5. MODIFIED RADON TRANSFORM 39

Proof. We prove this theorem only for the case t → ∞. Since the map :
f(k, x) → y(n−1)/2f(log y, x) is unitary from Ĥ onto L2(Hn), it follows from The-
orem 5.4 that we have only to prove the case when φ(k, ξ) := (F0F (+)

0 f)(k, ξ) ∈
C∞

0 (R+ × Rn−1). Let supp φ(k, ξ) ⊂ {δ0 < k < δ−1
0 } × {R−1 < |ξ| < R} for some

δ0, R > 0. We put

u(t, ξ, y) = F0e
−it

√
H0f

= F0

(
F (+)

0

)∗
e−itkF (+)

0 f

=
∫ ∞

0

(2k sinh(kπ))1/2

π

(
|ξ|
2

)ik

y
n−1

2 Kik(|ξ|y)e−itkφ(k, ξ)dk.

(5.2)

By the well-known integral representation

Kν(z) =
1
2

∫ ∞

−∞
e−z cosh(s)eνsds,

(see e.g. [131], Chap. 6, formula (7) or [94], formula (5.10.23)), one can show that
if z > δ0 for some δ0 > 0,

|∂m
k Kik(z)| ≤ Cme−z/2, ∀m ≥ 0,

where the constant Cm is independent of k. Therefore, for any δ > 0, by using
(−it)−1∂ke−itk = e−itk and integrating by parts, we see that, for any N > 0,

(5.3)
∫ ∞

δ

‖u(t, ·, y)‖2
L2(Rn−1)

dy

yn
≤ CN

(1 + |t|)N
.

In the region 0 < y < δ, Kik(|ξ|y) is expanded as

Kik(|ξ|y) =
π

2i sinh(kπ)

(
1

Γ(1 − ik)

( |ξ|y
2

)−ik

− 1
Γ(1 + ik)

( |ξ|y
2

)ik
)

+ r1(k, |ξ|y),

where |r1(k, |ξ|y)| ≤ C|ξ|y uniformly for δ0 < k < δ−1
0 , R−1 < |ξ| < R. We put

u1(t, ξ, y) =
∫ ∞

0

(2k sinh(kπ))1/2

π

(
|ξ|
2

)ik

y
n−1

2 r1(k, |ξ|y)e−itkφ(k, ξ)dk.

Then

|u1(t, ξ, y)| ≤ C(ξ)y
n+1

2

∫ 1/δ0

δ0

|φ(k, ξ)|dk,

hence

(5.4)
∫ δ

0

‖u1(t, ·, y)‖2
L2(Rn−1)

dy

yn
≤ Cφδ2,

where Cφ is independent of t ∈ R. We put

u0(t, ξ, y) =
1
i

∫ ∞

0

√
k

2 sinh(kπ)

(
1

Γ(1 − ik)

( |ξ|y
2

)−ik

− 1
Γ(1 + ik)

( |ξ|y
2

)ik
)

×
( |ξ|

2

)ik

y
n−1

2 e−itkφ(k, ξ)dk.

Then,

(5.5) u0(t, ξ, y) = u
(+)
0 (t, ξ, y) + u

(−)
0 (t, ξ, y).

27600106 メモアール32巻.indd   45 2014/05/19   16:59:49
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Here

u
(+)
0 (t, ξ, y) =

1
i

∫ ∞

0

√
k

2 sinh(kπ)
1

Γ(1 − ik)
y

n−1
2 e−ik(t+log y)φ(k, ξ)dk

=
y(n−1)/2

√
π

∫ ∞

0

eik(− log y−t) (F0F0(k)f) (ξ)dk,

u
(−)
0 (t, ξ, y) =

−1
i

∫ ∞

0

√
k

2 sinh(kπ)
1

Γ(1 + ik)

( |ξ|
2

)2ik

y
n−1

2 e−ik(t−log y)φ(k, ξ)dk

=
y(n−1)/2

√
π

∫ 0

−∞
eik(− log y+t) (F0F0(k)f) (ξ)dk.

In the last equation we have used that, in view of (5.1), (3.26), (|ξ|/2)2ikF0F0(k)f =
−F0F0(−k)f. Rewriting u

(±)
0 (t, ξ, y) as

u
(±)
0 (t, ξ, y) = g±(− log y ∓ t, ξ)y(n−1)/2

with g± ∈ L2(R × Rn−1), we have

∫ δ

0

‖u(+)
0 (t, ·, y)‖2

L2(Rn−1)

dy

yn
=

∫ ∞

− log δ−t

‖g+(ρ, ·)‖2
L2(Rn−1)dρ,

which tends to 0 as t → −∞. Similarly
∫ δ

0

‖u(−)
0 (t, ·, y)‖2

L2(Rn−1)

dy

yn
=

∫ ∞

− log δ+t

‖g−(ρ, ·)‖2
L2(Rn−1)dρ,

which tends to 0 as t → ∞. In view of (5.3), (5.4), we have thus proven that

‖u(t, ·) − u
(±)
0 (t, ·)‖L2(Hn) → 0 as t → ±∞.

In other words

‖F0e
−it

√
H0f − u

(+)
0 (t)‖L2(Hn) → 0 (t → ∞),

‖F0e
−it

√
H0f − u

(−)
0 (t)‖L2(Hn) → 0 (t → −∞),

‖F0e
it
√

H0f − u
(−)
0 (−t)‖L2(Hn) → 0 (t → ∞).

The theorem follows from these formulas together with Definition 5.3 and (5.5). �

By the change of variable s = − log y − t, we get the following corollary.

Corollary 5.6. For any f ∈ L2(Hn), we have as t → ∞
√

2e(n−1)(s+t)/2
(
cos(t

√
H0)f

)
(x, e−s−t) →

(
R0f

)
(s, x) in L2(Rn).
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6. Radon transform and the wave equation

6.1. Radon transform and horosphere. As is seen in Theorem 5.5, the
modified Radon transform is closely connected with the wave equation. We shall
also study its geometrical feature in this section. The fundamental solution for the
wave equation on Hn is written explicitly in terms of spherical mean. For n = 3,
it has the following form (see e.g. [51] or [25]):

(6.1) cos(t
√

H0)f(x) =
∂

∂t

(
1

4π sinh(t)

∫

S(x,t)

f(x�)dS

)
,

where x = (x, y), x ∈ R2, y > 0, S(x; t) = {x�; dh(x�,x) = t}, and dh(x�,x) is the
hyperbolic distance. It follows from (1.3) that

S(x, t) =
{
(x�, y�); |x� − x|2 + |y� − cosh(t)y|2 = sinh2(t)y2

}
.

Therefore, dS = sinh2(t)y2dω, dω being the Euclidean surface element on S2, and

cos(t
√

H0)f(x) =
∂

∂t

(
sinh(t)y2

4π

∫

S2
f((x, cosh(t)y) + sinh(t)yω)dω

)
.

Let t → ∞ and y → 0 keeping t + log y = −s. Then

(x, cosh(t)y) + sinh(t)yω →
(
x,

e−s

2
)

+
e−s

2
ω,

Therefore, the sphere S(x, t) converges to the sphere

Σ(s, x) =
{
(x�, y�);

∣∣x� − x
∣∣2 +

∣∣y� − e−s

2

∣∣2 =
e−2s

4
}
.

This is the horosphere tangent to {y� = 0}. We then have

cos(t
√

H0)f(x) ∼ −y

8π

∂

∂s

(
e−s

∫

Σ(s,x)

fdω

)
,

which, compared with Theorem 5.5 with n = 3, implies that

R0f(s, x) =
−
√

2
8π

∂

∂s

(
e−s

∫

Σ(s,x)

fdω

)
.

From this formula, one can easily see that, if f is supported in the region y > δ > 0,
then R0f(s, x) = 0 for e−s < δ. The converse is also true. Namely, if R0f(s, x) = 0
for e−s < δ, f(x, y) vanishes for y < δ. This is the support theorem for the Radon
transform. See [93] and [120].

6.2. 1-dimensional wave equation. In the Euclidean space, there are 3
ways of constructing fundamental solutions to the wave equation : (1) the method
of spherical means, (2) the method of plane waves and (3) the method of Fourier
transforms. In the hyperbolic space, the first method is usually adopted. For
example, in the work of Helgason [51], a generalization of Asgeirsson’s mean value
theorem on two-point homogeneous space is used to derive the formula (6.1). In
the following we shall apply the Fourier analysis to the fundamental solution. Let
us start with the 1-dimensional case. The basic formula is
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42 1. FOURIER TRANSFORMS ON THE HYPERBOLIC SPACE

Lemma 6.1.

Kν(x)Kν(y) =
π

2 sin(νπ)

∫ ∞

log(y/x)

J0(
√

2xy cosh t − x2 − y2) sinh(νt)dt

(x > 0, y > 0, |Re ν| < 1/4).

Proof. See [29], p. 302 and [94] p. 140. �

For x > 0 and k ∈ R, we have by (3.1) and (3.2)

(6.2) Iik(x) = I−ik(x), Kik(x) = Kik(x) = K−ik(x),

Let θ(t) be the Heaviside function: θ(t) = 1 (t > 0), θ(t) = 0 (t ≤ 0). By Lemma
6.1 and (6.2), we have for x, y > 0

∫ ∞

−∞
sinh(πk)Kik(x)Kik(y) sin(tk)dk

=
π2

2

(
θ
(
t − log(

y

x
)
)
− θ

(
− t − log(

y

x

)))
J0

(√
2xy cosh t − x2 − y2

)
.

(6.3)

We put

ρ(k) =
2k sinh(πk)

π2
,

and define for ζ > 0

Uadv(t, y, y�; ζ) =
(yy�)

n−1
2

2π

∫

R2

Kik(ζy)Kik(ζy�)
k2 − (ω + i0)2

ρ(k)e−itωdkdω,

Uret(t, y, y�; ζ) =
(yy�)

n−1
2

2π

∫

R2

Kik(ζy)Kik(ζy�)
k2 − (ω − i0)2

ρ(k)e−itωdkdω.

The subscripts adv and ret mean advanced and retarded, respectively.

Lemma 6.2. (1) For t > 0 and y, y� > 0, we have

Uadv(t, y, y�; ζ) = (yy�)
n−1

2 θ
(
t −

∣∣ log
( y

y�

)∣∣)J0

(
ζ
√

2yy� cosh t − y2 − (y�)2
)
,

and for t < 0,
Uadv(t, y, y�; ζ) = 0.

(2) For t ∈ R,
Uret(t, y, y�; ζ) = Uadv(−t, y, y�; ζ).

Proof. Let us recall that if a > 0

(6.4)
∫ ∞

−∞

eiax

x − b ∓ i0
dx =

{
2πieiab (−)

0 (+),

and if a < 0

(6.5)
∫ ∞

−∞

eiax

x − b ∓ i0
dx =

{
0 (−)

−2πieiab (+).

Using
1

k2 − (ω + i0)2
=

1
2k

(
1

ω + k + i0
− 1

ω − k + i0

)
,
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6. RADON TRANSFORM AND THE WAVE EQUATION 43

we then have
∫ ∞

−∞

e−itω

k2 − (ω + i0)2
dω =




2π
sin(tk)

k
(t > 0)

0 (t < 0).

Therefore by (6.3) we have if y, y� > 0∫ ∫
Kik(ζy)Kik(ζy�)
k2 − (ω + i0)2

e−itωρ(k)dkdω

=




2π

(
θ(t − log(

y�

y
)) − θ(−t − log(

y�

y
))

)
J0

(
ζ
√

2yy� cosh t − y2 − (y�)2
)

(t > 0)

0 (t < 0),
which proves (1). Using (6.2), we prove (2). �

Lemma 6.3. (1) For f ∈ C∞
0 ((0,∞)), we put

u+(t, y, ζ) =
∫ ∞

0

Uadv(t, y, y�; ζ)f(y�)
dy�

(y�)n
.

Then the following formulas hold:

(6.6) (L0(ζ) + ∂2
t )u+(t, y, ζ) = f(y)δ(t),

(6.7) u+(t, y, ζ) = 0 for t < 0,

(6.8) (∂tu+)(+0, y, ζ) = f(y).

Proof. Observe that, due to Lemma 6.2, for f ∈ C∞
0 ((0,∞)), u+(t, y, ζ) is

a well-defined smooth function of (y, t), y, t > 0. The formula (6.7) is obvious.
Consider now, for t > 0,

(L0(ζ) + ∂2
t )u+(t, y, ζ)

=
1
2π

∫ ∞

0

∫

R2
(yy�)

n−1
2 Kik(ζy)Kik(ζy�)ρ(k)e−itω f(y�)

(y�)n
dkdωdy = 0,

(6.9)

where we have used Theorem 3.13 (2) and (3). Using (6.4) and (6.5), we have∫ ∞

−∞

2ω

k2 − (ω + i0)2
e−itωdω

=
∫ ∞

−∞

e−itω

k − ω − i0
dω −

∫ ∞

−∞

e−itω

k + ω + i0
dω

=
{

4πi cos(tk) (t > 0),
0 (t < 0).

Therefore, we have

∂tu+(t, y, ζ) =
∫ ∞

0

∫

R2
(yy�)

n−1
2 Kik(ζy)Kik(ζy�) cos(tk)ρ(k)f(y�)

dkdy�

(y�)n
,

which proves (6.8).
Formula (6.6) follows from (6.7) and (6.9). �

We now define

U(t, y, y�; ζ) = Uadv(t, y, y�; ζ) − Uret(t, y, y�; ζ).

The following lemma is an easy consequence of Lemma 6.2 (2) and Lemma 6.3.
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Lemma 6.4. For f ∈ C∞
0 ((0,∞)), we put

u(t, y, ζ) =
∫ ∞

0

U(t, y, y�; ζ)f(y�)
dy�

(y�)n
.

Then we have
(∂2

t + L0(ζ))u(t, y, ζ) = 0,

u(0, y, ζ) = 0,

∂tu(0, y, ζ) = f(y).

Note that Uadv(t, y, y�; ξ) is the Scwartz kernel of the operator 1
t sin(tL0(ξ))

and, therefore, defines a bounded operator in L2((0,∞); dy/yn). This can be also
directly observed from Theorem 3.13 (1) and (3), if we take f ∈ L2((0,∞); dy/yn).

6.3. Wave equation in Hn. We define an operator P (t, y, y�) by

(6.10) P (t, y, y�)f(x) = (2π)−
n−1

2

∫

Rn−1
eix·ξp(ξ; t, y, y�)f̂(ξ)dξ,

p(ξ; t, y, y�) = J0(|ξ|
√

2yy� cosh(t) − y2 − (y�)2),
which is a Fourier multiplier acting on functions of x ∈ Rn−1, depending on pa-
rameters t, y, y�. Since J0(z) is an even function of z, p(ξ; t, y, y�) is smooth with
respect to ξ and all the other parameters y, y� and t. By Lemma 6.4, the solution
of the Cauchy problem {

∂2
t u + H0u = 0,

u(0) = 0, ∂tu(0) = f

is written as

u(t, x, y) =
∫ ∞

0

(yy�)
n−1

2

(
θ(t − | log

y

y� |) − θ(−t − | log
y

y� |)
)

× (P (t, y, y�)f(·, y�)) (x)
dy�

(y�)n
.

Differentiating this formula with respect to t, we get the fundamental solution.

Theorem 6.5. Let P be defined by (6.10). Then we have the following formula:

cos(t
√

H0)f(x, y) =
∫ ∞

0

(
yy�)n−1

2

(
δ
(
t − | log

y

y� |
)

+ δ
(
t + | log

y

y� |
))

× P (t, y, y�)f(·, y�)(x)
dy�

(y�)n

+
∫ ∞

0

(
yy�)n−1

2

(
θ
(
t − | log

y

y� |
)
− θ

(
− t − | log

y

y� |
))

× ∂tP (t, y, y�)f(·, y�)(x)
dy�

(y�)n
.

In view of Corollary 5.6, we can derive an explicit form of the modified Radon
transform R0f . Take f ∈ C∞

0 (Hn) and s ∈ R. We let t → ∞ and y → 0 keeping
−t − log y = s. Then we have y = e−s−t, t − | log(y/y�)| = −s − log y�, and
t + | log(y/y�)| → ∞. Moreover, under these conditions,

p(ξ; t, y, y�) → J0(|ξ|
√

e−sy� − (y�)2),
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∂tp(ξ; t, y, y�) → −e−s|ξ|2y�

2
J1(|ξ|

√
e−sy� − (y�)2)

|ξ|
√

e−sy� − (y�)2
,

where we have used J �
0(z) = −J1(z). Note that the right-hand side is again a

smooth function of s, ξ and y�, and when y� = e−s, this p(ξ, t, y, y�) = 1. Therefore
the modified Radon transform has the following expression.

Theorem 6.6. For f ∈ C∞
0 (Hn) and s ∈ R, we have

R0f(s, x) =
√

2e(n−1)s/2f(x, e−s) −
√

2e−s

∫ e−s

0

y−n−1
2 A(s, y)f(·, y)dy,

where A(s, y)f(·, y) is defined by

A(s, y)f(·, y) = (2π)−(n−1)/2

∫

Rn−1
eix·ξA(ξ; s, y)f̂(ξ, y)dξ,

A(ξ; s, y) =
|ξ|2

2
J1(|ξ|

√
e−sy − y2)

|ξ|
√

e−sy − y2
.

Passing to the Fourier transform in Theorem 6.6 and using Definition 5.3, we
have

1
π

∫ ∞

−∞

∫ ∞

0

eiks

(
|ξ|
2

)−ik −ik

Γ(1 − ik)
y−n+1

2 Kik(|ξ|y)f̂(ξ, y)dydk

= 2e
(n−1)s

2 f̂(ξ, e−s) − e−s|ξ|2
∫ e−s

0

y−n−1
2

J1(|ξ|
√

e−sy − y2)

|ξ|
√

e−sy − y2
f̂(ξ, y)dy.

Taking f̂(ξ, y) to be of the form ϕ(ξ)ψ(y), and then letting |ξ| = 1, we have
1
π

∫ ∞

−∞

∫ ∞

0

eiks 2ik −ik

Γ(1 − ik)
y−n+1

2 Kik(y)ψ(y)dydk

= 2e
(n−1)s

2 ψ(e−s) − e−s

∫ e−s

0

y−n−1
2

J1(
√

e−sy − y2)√
e−sy − y2

ψ(y)dy.

Since this holds for any C∞
0 ((0,∞))-function ψ(y), we have proven the following

lemma.

Lemma 6.7. For y > 0
1
π

∫ ∞

−∞
eiks −ik

Γ(1 − ik)
2ikKik(y)dk

= 2e−sδ(e−s − y) − e−sy θ(e−s − y)
J1(

√
e−sy − y2)√

e−sy − y2
,

where θ is the Heaviside function.

Letting s + log 2 = t, one can rewrite the above formula as follows
1
2π

∫ ∞

−∞
eikt −ik

Γ(1 − ik)
Kik(y)dk

= 2e−tδ(2e−t − y) − e−ty θ(2e−t − y)
J1(

√
2e−ty − y2)√

2e−ty − y2
.
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