Chapter 10

Appendix

In this chapter we gather some basic facts on symplectic basis and symplectic coordinates, see for example [36], [19].

10.1 Symplectic vector space

Definition 10.1.1 Let S be a finite dimensional vector space over $\mathbb{R}(\mathbb{C})$ and let σ be a non degenerate anti-symmetric bilinear form on S. Then we call S a (finite dimensional) real (complex) symplectic vector space. Let $S_{i}(i=1,2)$ be two symplectic vector spaces with symplectic forms σ_{i}. If a linear bijection

$$
T: S_{1} \rightarrow S_{2}
$$

verifies $T^{*} \sigma_{2}=\sigma_{1}$ then T is called a symplectic isomorphism.
Remark: σ is said to be non degenerate if

$$
\sigma\left(\gamma, \gamma^{\prime}\right)=0, \forall \gamma^{\prime} \in S \Longrightarrow \gamma=0
$$

$T^{*} \mathbb{R}^{n}=\left\{(x, \xi) \mid x, \xi \in \mathbb{R}^{n}\right\}$ is a symplectic vector space with

$$
\sigma((x, \xi),(y, \eta))=\langle\xi, y\rangle-\langle x, \eta\rangle
$$

Proposition 10.1.1 Let S be a finite dimensional real symplectic vector space. Then the dimension of S is even and there is a symplectic isomorphism

$$
T: S \rightarrow T^{*} \mathbb{R}^{n}
$$

with some n.
Proof: Let e_{j}, f_{j} be the unit vector along x_{j}, ξ_{j} axis in $T^{*} \mathbb{R}^{n}$ respectively. It is clear that

$$
\begin{equation*}
\sigma\left(e_{j}, e_{k}\right)=\sigma\left(f_{j}, f_{k}\right)=0, \quad \sigma\left(f_{j}, e_{k}\right)=\delta_{j k} \tag{10.1.1}
\end{equation*}
$$

where $\delta_{j k}$ is the Kronecker's delta. To prove this proposition it is enough to show that there exists a basis of S verifying (10.1.1). Take $f_{1} \in S, f_{1} \neq 0$. Since σ is non degenerate one can take $e_{1} \in S$ so that $\sigma\left(f_{1}, e_{1}\right)=1$. Note that f_{1} and e_{1} are linearly independent. Let $S_{0}=\operatorname{span}\left\{f_{1}, e_{1}\right\}$ and

$$
S_{1}=S_{0}^{\sigma}=\left\{\gamma \in S \mid \sigma\left(\gamma, S_{0}\right)=0\right\}
$$

Then we have $S=S_{1} \oplus S_{0}$ for if $\gamma \in S_{1} \cap S_{0}$ then writing $\gamma=a f_{1}+b e_{1}$ one gets

$$
\sigma\left(\gamma, f_{1}\right)=-b=0, \sigma\left(\gamma, e_{1}\right)=a=0
$$

and hence $\gamma=0$. We now show that S_{1} is a symplectic vector space with the symplectic form σ. It is enough to check that σ is non degenerate on S_{1}. Suppose $\sigma\left(\gamma, S_{1}\right)=0, \gamma \in S_{1}$. By definition we see $\sigma\left(\gamma, S_{0}\right)=0$ hence $\sigma(\gamma, S)=0$ which gives $\gamma=0$. The rest of the proof is carried out by induction.

Definition 10.1.2 Let S be a symplectic vector space of dimension $2 n$ with the symplectic form σ. A basis $\left\{f_{j}, e_{j}\right\}_{j=1}^{n}$ verifying (10.1.1) is called a symplectic basis.

Proposition 10.1.2 Let S be a symplectic vector space of dimension $2 n$ with the symplectic form σ. Let A, B be subsets of $J=\{1,2, \ldots, n\}$. Assume that $\left\{e_{j}\right\}_{j \in A},\left\{f_{k}\right\}_{k \in B}$ are linearly independent and verify (10.1.1). Then one can choose $\left\{e_{j}\right\}_{j \in J \backslash A},\left\{f_{k}\right\}_{k \in J \backslash B}$ so that $\left\{e_{j}\right\}_{j \in J}$ and $\left\{f_{k}\right\}_{k \in J}$ become a full symplectic basis.

Proof: Assume $B \backslash A \neq \emptyset$. Take $l \in B \backslash A$. Then there exists $g \in S$ such that $\sigma\left(g, f_{l}\right)=-1$. With $V=\operatorname{span}\left\{e_{j}, f_{k} \mid j \in A, k \in B\right\}$ we have $g \notin V$ because $\sigma\left(V, f_{l}\right)=0$ by assumption. Choosing $\alpha_{i}, \beta_{i}, i \in A \cap B$ suitably one can assume that

$$
e_{l}=g-\sum_{i \in A \cap B} \alpha_{i} e_{i}-\sum_{i \in A \cap B} \beta_{i} f_{i}
$$

verifies

$$
\sigma\left(e_{l}, e_{j}\right)=0, j \in A, \quad \sigma\left(e_{l}, f_{k}\right)=-\delta_{l k}, k \in B
$$

Repeating this argument we may assume that $B \subset A$. Applying the same arguments to $A \backslash B$ we may assume $A=B$. If $A=B \neq J$ then with

$$
S_{0}=\operatorname{span}\left\{e_{j}, f_{k} \mid j \in A, k \in B\right\}
$$

we consider $S_{1}=S_{0}^{\sigma}$. Since S_{1} is a symplectic vector space, then by Proposition 10.1.1 there is a symplectic basis for S_{1} and hence it is enough to add this basis to $\left\{e_{j}, f_{j}\right\}_{j \in A=B}$.

10.2 Darboux theorem

Let us start with
Definition 10.2.1 Let S be a C^{∞} manifold with a C^{∞} closed non degenerate 2 form. We call such a manifold as a symplectic manifold. Let S_{i} be two symplectic manifolds with symplectic forms σ_{i}. Let χ be a diffeomorphism

$$
\chi: S_{1} \rightarrow S_{2}
$$

such that $\chi^{*} \sigma_{2}=\sigma_{1}$. Then χ is called symplectomorphism or canonical transformation.

Note that the tangent space $T_{\gamma} S$ becomes a symplectic vector space by the symplectic form and hence even dimensional. Let $f \in C^{k}(S)(k \geq 1)$. Then $d f$ is a linear form on $T_{\gamma}(S)$ and then

$$
\langle t, d f\rangle=\sigma\left(t, H_{f}\right)
$$

defines $H_{f}(\gamma) \in T_{\gamma}(S)$. It is clear that H_{f} is a C^{k-1} vector field on S. Let f, $g \in C^{k}(S)$. Then we define the Poisson bracket $\{f, g\}$ by the formula

$$
\{d f(\gamma), d g(\gamma)\}=\sigma\left(H_{f}, H_{g}\right)=H_{f} \cdot g=\{f, g\}
$$

Here we recall the Jacobi's identity

$$
\begin{equation*}
\{f,\{g, h\}\}+\{g,\{h, f\}\}+\{h,\{f, g\}\}=0, \quad f, g, h \in C^{2}(S) \tag{10.2.1}
\end{equation*}
$$

Then we have

$$
H_{\{f, g\}}=\left[H_{f}, H_{g}\right]=H_{f} H_{g}-H_{g} H_{f}
$$

Note that χ is a canonical transformation if and only if

$$
\begin{equation*}
\chi^{*}\{f, g\}=\left\{\chi^{*} f, \chi^{*} g\right\}, \quad f, g \in C^{2}(S) \tag{10.2.2}
\end{equation*}
$$

Therefore to define a local canonical transformation $\chi: S \rightarrow T^{*}\left(\mathbb{R}^{n}\right)$ it is enough to choose local coordinates (x, ξ) verifying

$$
\begin{equation*}
\left\{x_{j}, x_{k}\right\}=0, \quad\left\{\xi_{j}, \xi_{k}\right\}=0, \quad\left\{\xi_{j}, x_{k}\right\}=-\left\{x_{k}, \xi_{j}\right\}=\delta_{j k} \tag{10.2.3}
\end{equation*}
$$

The next theorem is called Darboux theorem (not homogeneous).
Theorem 10.2.1 Let S be a symplectic manifold of dimension $2 n$ and let A, B be two subsets of $\{1,2, \ldots, n\}$. Let U be a neighborhood of γ_{0} and assume that $f_{\alpha}, g_{\beta} \in C^{\infty}(U), \alpha \in A, \beta \in B$ verify the followings

$$
\begin{array}{r}
d f_{\alpha}\left(\gamma_{0}\right), d g_{\beta}\left(\gamma_{0}\right) \quad(\alpha \in A, \beta \in B) \quad \text { are linearly independent } \\
\left\{f_{\alpha}, f_{\alpha^{\prime}}\right\}=\left\{g_{\beta}, g_{\beta^{\prime}}\right\}=0, \quad\left\{f_{\alpha}, g_{\beta}\right\}=\delta_{\alpha \beta}
\end{array}
$$

$$
\text { in some neighborhood of } \gamma_{0}\left(\alpha, \alpha^{\prime} \in A, \beta, \beta^{\prime} \in B\right)
$$

Then there exists C^{∞} functions $f_{\alpha}, \alpha \notin A, g_{\beta}, \beta \notin B$ defined near γ_{0} such that $\left\{f_{\alpha}\right\},\left\{g_{\beta}\right\}$ satisfy (10.2.3).

To prove this we first show a theorem of Frobenius.
Theorem 10.2.2 Let v_{1}, \ldots, v_{r} be C^{∞} vector fields defined near the origin of \mathbb{R}^{n} which verify

$$
\begin{gather*}
v_{1}(0), \ldots, v_{r}(0) \quad \text { are linearly independent }, \\
{\left[v_{i}, v_{j}\right]=\sum_{k=1}^{r} c_{i j k} v_{k} \quad(\text { near the origin }) .} \tag{10.2.4}
\end{gather*}
$$

Let S be a C^{∞} manifold with $0 \in S$ such that $T_{0} S+\operatorname{span}\left\{v_{1}(0), \ldots, v_{r}(0)\right\}=\mathbb{R}^{n}$ and let $f_{1}, \ldots, f_{r} \in C^{\infty}$ near the origin. Then the system of equations

$$
\left\{\begin{array}{l}
v_{j} u=f_{j}, \quad j=1, \ldots, r \\
u=u_{0} \quad \text { on } S
\end{array}\right.
$$

has a C^{∞} solution near the origin if and only if

$$
\begin{equation*}
v_{i} f_{j}-v_{j} f_{i}=\sum_{k=1}^{r} C_{i j k} f_{k} \quad i, j=1, \ldots, r \tag{10.2.5}
\end{equation*}
$$

The solution u is unique.
Proof: Since $v_{i} u=f_{i}$ gives

$$
v_{i} v_{j} u-v_{j} v_{i} u=v_{i} f_{j}-v_{j} f_{i}=\sum_{k=1}^{r} c_{i j k} v_{k} u=\sum_{k=1}^{r} c_{i j k} f_{k}
$$

and hence the necessity of (10.2.5) is clear. Denoting the equation as $v u=f$ it is clear that for a non singular matrix $A=\left(a_{i j}\right)$ the equation $v u=f$ has a solution u if and only if the equation $A v u=A f$ has a solution u. We note that $V_{i}=\sum_{j=1}^{r} a_{i j} v_{j}, i=1, \ldots, r$ satisfy (10.2.4) because

$$
\begin{array}{r}
{\left[V_{i}, V_{j}\right]=\left[\sum a_{i k} v_{k}, \sum a_{j l} v_{l}\right]=\sum a_{i k} a_{j l}\left[v_{k}, v_{l}\right]} \\
+\sum a_{i k}\left(v_{k} a_{j l}\right) v_{l}-\sum a_{j l}\left(v_{l} a_{i k}\right) v_{k}
\end{array}
$$

and $v_{i}=\sum \tilde{a}_{i j} V_{j}$. Thus far the statement is invariant under such transformations and change of coordinates since the condition (10.2.4) is coordinates free. We show that our problem is reduced to

$$
\frac{\partial}{\partial y_{i}}=\sum_{j=1}^{r} b_{i j} v_{j}, \quad i=1, \ldots, r
$$

where $\left(b_{i j}\right)$ is a non singular matrix.
We now proceed by induction on n. We may assume that $v_{1}=\partial / \partial x_{1}$ taking a suitable coordinates. Subtracting a smooth function times v_{1} we may assume that $v_{i}, i=2, \ldots, r$ contains no $\partial / \partial x_{1}$

$$
v_{i}=\sum_{j=2}^{n} b_{i j} \frac{\partial}{\partial x_{j}}, \quad i=2, \ldots, r
$$

Renumbering the coordinates x_{2}, \ldots, x_{n} and considering $\sum_{j=2}^{r} a_{i j} v_{j}$ with a suitable non singular matrix $\left(a_{i j}\right)_{2 \leq i, j \leq r}$ we may assume that

$$
v_{i}=\frac{\partial}{\partial x_{i}}+\sum_{j=r+1}^{n} b_{i j} \frac{\partial}{\partial x_{j}}, \quad i=2, \ldots, r
$$

leaving v_{1} unchanged. Since

$$
v_{1} v_{i}-v_{i} v_{1}=\sum_{j=r+1}^{n} \frac{\partial b_{i j}}{\partial x_{1}} \frac{\partial}{\partial x_{j}}=\sum_{k=1}^{r} c_{1 i k} v_{k}
$$

it is clear that $c_{1 i k}=0$ and hence $\partial b_{i j} / \partial x_{1}=0$. Then $b_{i j}$ are independent of x_{1} and hence from the hypothesis of the induction we may assume that $v_{i}=\partial / \partial x_{i}$, $i=2, \ldots, r$. Hence the result. We now study

$$
\frac{\partial}{\partial x_{j}} u=f_{j}, \quad j=1, \ldots, r
$$

With $x^{\prime}=\left(x_{1}, \ldots, x_{r}\right), x^{\prime \prime}=\left(x_{r+1}, \ldots, x_{n}\right)$ we see that S is given by $x^{\prime}=h\left(x^{\prime \prime}\right)$. Now the solution is given by

$$
u(x)=\int_{h\left(x^{\prime \prime}\right)}^{x^{\prime}} \sum_{j=1}^{r} f_{j} d x_{j}+u_{0}\left(h\left(x^{\prime \prime}\right), x^{\prime \prime}\right)
$$

Since

$$
d\left(\sum_{j=1}^{r} f_{j} d x_{j}\right)=0
$$

then the integral is well defined.
Proof of Theorem 10.2.1: Let $j \in A \backslash B$. We look for g_{j} which verifies

$$
\begin{array}{r}
\left\{f_{\alpha}, g_{j}\right\}=H_{f_{\alpha}} g_{j}=\delta_{j \alpha}, \quad \alpha \in A \\
\left\{g_{\beta}, g_{j}\right\}=H_{g_{\beta}} g_{j}=0, \quad \beta \in B \tag{10.2.7}
\end{array}
$$

By assumption $H_{f_{\alpha}}(\alpha \in A)$ and $H_{g_{\beta}}(\beta \in B)$ are linearly independent and in view of

$$
\left[H_{f}, H_{g}\right]=H_{\{f, g\}}
$$

then $\left\{H_{f_{\alpha}} \mid \alpha \in A\right\}$ and $\left\{H_{g_{\beta}} \mid \beta \in B\right\}$ verify the assumption (10.2.4) in Theorem 10.2.2. Then giving g_{j} on a manifold $C \ni \gamma_{0}$ of dimension $2 n-|A|-|B|$ such that

$$
T_{\gamma_{0}} C+\operatorname{span}\left\{H_{f_{\alpha}}\left(\gamma_{0}\right), H_{g_{\beta}}\left(\gamma_{0}\right) \mid \alpha \in A, \beta \in B\right\}=\mathbb{R}^{2 n}=T_{\gamma_{0}} S
$$

we obtain g_{j} satisfying (10.2.7) which is determined uniquely by Theorem 10.2.2. We examine that $\left\{d g_{\beta}\right\}_{\beta \in B \cup\{j\}}$ and $\left\{d f_{\alpha}\right\}_{\alpha \in A}$ are linearly independent. In fact if we have

$$
b d g_{j}\left(\gamma_{0}\right)+\sum_{\beta \in B} b_{\beta} d g_{\beta}\left(\gamma_{0}\right)+\sum_{\alpha \in A} a_{\alpha} d f_{\alpha}\left(\gamma_{0}\right)=0
$$

then applying $H_{f_{j}}$ we have $b\left(\gamma_{0}\right)=0$ and hence $b_{\beta}=0$ and $a_{\alpha}=0$ which proves the assertion. Therefore we can repeat the same arguments until we arrive at $A \subset B$. For $j \in B \backslash A$, the same argument gives f_{j} and finally we may assume that $A=B$. Assume that $A=B \neq\{1,2, \ldots, n\}$. Take $j \in\{1, \ldots, n\} \backslash B$. We want to construct g_{j} satisfying (10.2.7). Take the manifold C of dimension $2 n-2|B|$ given by

$$
C=\left\{f_{\alpha}=g_{\beta}=0, \forall \alpha \in A, \forall \beta \in B\right\}
$$

Note that $H_{f_{\alpha}}, H_{g_{\beta}}$ do not belong to $T_{\gamma_{0}} C$ and this shows that

$$
T_{\gamma_{0}} C+\operatorname{span}\left\{H_{f_{\alpha}}, H_{g_{\beta}} \mid \alpha \in A, \beta \in B\right\}=\mathbb{R}^{2 n}
$$

Then by the Frobenius theorem one can construct g_{j} verifying (10.2.7) giving g_{j} on C. If we choose g_{j} on C so that

$$
d\left(\left.g_{j}\right|_{C}\right)\left(\gamma_{0}\right) \neq 0
$$

then it is clear that $\left\{d g_{\beta}\right\}_{\beta \in B \cup\{j\}}$ and $\left\{d f_{\beta}\right\}_{\alpha \in A}$ are linearly independent. The rest of the proof is clear.

10.3 Homogeneous Darboux theorem

Let us consider $T^{*} X$ where X is a smooth manifold. With $M_{t}(x, \xi)=(x, t \xi)$ we define the radial vector field as

$$
\rho f=\left.\frac{d}{d t} M_{t}^{*} f\right|_{t=1}, \quad \rho=\sum \xi_{j} \frac{\partial}{\partial \xi_{j}}
$$

We can define ρ in a coordinates free way

$$
\sigma(\rho, t)=\omega(t), \quad t \in T\left(T^{*} X\right)
$$

where $\omega=\xi d x$ is the canonical 1-form. Note that

$$
\sum \xi_{j} \frac{\partial}{\partial \xi_{j}}=r \frac{\partial}{\partial r}
$$

where $r^{2}=\sum \xi_{j}^{2}$. Indeed with $\xi_{j}=\omega_{j} r$ we have

$$
\frac{\partial}{\partial \xi_{j}}=\frac{\partial r}{\partial \xi_{j}} \frac{\partial}{\partial r}+\sum \frac{\partial \omega_{k}}{\partial \xi_{j}} \frac{\partial}{\partial \omega_{k}}=\omega_{j} \frac{\partial}{\partial r}+\frac{1}{r} \frac{\partial}{\partial \omega_{j}}
$$

Here $\sum \omega_{j}^{2}=1$ implies $\sum \omega_{j} \frac{\partial}{\partial \omega_{j}}=0$.
Theorem 10.3.1 Let X be a smooth N dimensional manifold and let

$$
A \subset\{1, \ldots, N-1\}, \quad B \subset\{1, \ldots, N\}
$$

be two subsets. Let $f_{\alpha}, \alpha \in A$ and $g_{\beta}, \beta \in B$ be C^{∞} functions defined in a conic neighborhood of $\gamma_{0} \in T^{*} X \backslash 0$ satisfying
(10.3.1) f_{α}, g_{β} are homogeneous of degree 0 and 1 respectively,
(10.3.2) $\quad f_{\alpha}\left(\gamma_{0}\right)=g_{\beta}\left(\gamma_{0}\right)=0, \quad \forall \alpha \in A, \forall \beta \in B \backslash\{N\}, g_{N}\left(\gamma_{0}\right) \neq 0$,
(10.3.3) $\quad d f_{\alpha}\left(\gamma_{0}\right), d g_{\beta}\left(\gamma_{0}\right), \quad \xi d x$ are linearly independent at γ_{0}
and the commutation relations

$$
\left\{f_{\alpha}, f_{\alpha^{\prime}}\right\}=\left\{g_{\beta}, g_{\beta^{\prime}}\right\}=0, \quad\left\{f_{\alpha}, g_{\beta}\right\}=\delta_{\alpha \beta}, \quad \alpha, \alpha^{\prime} \in A, \beta, \beta^{\prime} \in B
$$

Then we can find $f_{\alpha}, \alpha \notin A$ with $f_{\alpha}\left(\gamma_{0}\right)=0$ and $g_{\beta}, \beta \notin B$ with $g_{\beta}\left(\gamma_{0}\right)=0$ if $\beta \neq N$ and $g_{N}\left(\gamma_{0}\right) \neq 0$ so that $\left\{f_{\alpha}\right\}$ and $\left\{g_{\beta}\right\}$ will be a full homogeneous canonical coordinates.

Proof: We first make some comments on the necessity. Assume that we have a full homogeneous coordinates $\left\{f_{\alpha}, g_{\beta}\right\}$. Then one can express

$$
\rho=\sum_{\alpha} r_{\alpha} H_{f_{\alpha}}+\sum_{\beta} s_{\beta} H_{g_{\beta}} .
$$

Since $\rho f_{\alpha}=0$ because of the homogeneity and we conclude that $\rho=\sum_{\alpha} r_{\alpha} H_{f_{\alpha}}$ and then

$$
r_{\alpha}\left(\gamma_{0}\right)=\rho g_{\alpha}\left(\gamma_{0}\right)=g_{\alpha}\left(\gamma_{0}\right)
$$

This implies $g_{\alpha}\left(\gamma_{0}\right) \neq 0$ with some $1 \leq \alpha \leq N$. If $g_{\alpha}\left(\gamma_{0}\right)=0, \alpha=1, \ldots, N-1$ and $\left\{f_{\alpha}, g_{\beta}\right\}$ is a full homogeneous coordinates then necessarily $\rho,\left\{H_{g_{\alpha}}\right\}_{\alpha \in\{1, \ldots, N\}}$ and $\left\{H_{f_{\alpha}}\right\}_{\alpha \in\{1, \ldots, N-1\}}$ are linearly independent.

Let $j \in A \backslash B(1 \leq j \leq N-1)$. We construct g_{j} which is homogeneous of degree 1 and verifies

$$
H_{f_{\alpha}} g_{j}=\delta_{j \alpha}, \quad H_{g_{\beta}} g_{j}=0
$$

Recall that $H_{f_{\alpha}}, H_{g_{\beta}}$ and ρ are linearly independent. Take a submanifold C of dimension $2 N-|A|-|B|$ such that

$$
\begin{equation*}
T_{\gamma_{0}} C \ni \rho \tag{10.3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{\gamma_{0}} C+\operatorname{span}\left\{H_{f_{\alpha}}, H_{g_{\beta}} \mid \alpha \in A, \beta \in B\right\}=\mathbb{R}^{2 N} \tag{10.3.5}
\end{equation*}
$$

By the Frobenius theorem g_{j} is uniquely determined. We now examine that $\rho g_{j}=g_{j}$. Since

$$
\rho H_{f_{\alpha}} g_{j}=0=H_{f_{\alpha}} \rho g_{j}+\left[\rho, H_{f_{\alpha}}\right] g_{j}=H_{f_{\alpha}} \rho g_{j}-H_{f_{\alpha}} g_{j}
$$

it follows that

$$
H_{f_{\alpha}}\left(\rho g_{j}\right)=\delta_{j \alpha}
$$

Similarly from

$$
\rho H_{g_{\beta}} g_{j}=0=H_{g_{\beta}}\left(\rho g_{j}\right)+\left[\rho, H_{g_{\beta}}\right] g_{j}=H_{g_{\beta}}\left(\rho g_{j}\right)
$$

we have $H_{g_{\beta}}\left(\rho g_{j}\right)=0$. On the other hand since $\left.\rho g_{j}\right|_{C}=\rho\left(\left.g_{j}\right|_{C}\right)=\left.g_{j}\right|_{C}$ the uniqueness part of the Frobenius theorem gives that $\rho g_{j}=g_{j}$. It is easy to see that $\left\{H_{g_{\beta}}\right\}_{\beta \in B \cup\{j\}}$ and $\left\{H_{f_{\alpha}}\right\}_{\alpha \in A}$ are linearly independent. In fact assume that

$$
\rho=\sum_{\alpha \in A} r_{\alpha} H_{f_{\alpha}}+\sum_{\beta \in B \cup\{j\}} s_{\beta} H_{g_{\beta}} .
$$

Applying this to f_{j} we get $\rho f_{j}=-s_{j}\left(\gamma_{0}\right)=f_{j}\left(\gamma_{0}\right)=0$. Thus the assertion follows from the assumption. We continue this arguments to arrive at the case $A \subset(B \backslash\{N\})$.

Let $j \in B \backslash A$. We want to construct f_{j} which is homogeneous of degree 0 and satisfies

$$
H_{f_{\alpha}} f_{j}=0, \quad H_{g_{\beta}} f_{j}=-\delta_{j \beta}, \quad \alpha \in A, \quad \beta \in B
$$

Take a submanifold C of dimension $2 N-|A|-|B|$ such that (10.3.4) and (10.3.5) are verified. We apply the Frobenius theorem imposing $\left.f_{j}\right|_{C}=0$. Then it is easy to check that

$$
H_{f_{\alpha}}\left(\rho f_{j}\right)=0, \quad H_{g_{\beta}}\left(\rho f_{j}\right)=0
$$

and from the uniqueness one has $\rho f_{j}=0$, that is f_{j} is homogeneous of degree 0 . It is clear that $\left\{H_{f_{\alpha}}\right\}_{\alpha \in A \cup\{j\}}$ and $\left\{H_{g_{\beta}}\right\}_{\beta \in B}$ are linearly independent. Repeating these arguments we may assume that

$$
A=B \quad \text { or } \quad B=A \cup\{N\}
$$

Assume $A=B \neq\{1, \ldots, N-1\}$. Then taking $j \notin B$ we construct g_{j} and f_{j}. Let C be defined by

$$
C=\left\{f_{\alpha}=0, g_{\beta}=0, \quad \alpha \in A, \quad \beta \in B\right\}
$$

It is clear that $\rho \in T_{\gamma_{0}} C$ because f_{α} and g_{β} are homogeneous. We see that

$$
T_{\gamma_{0}}\left(T^{*} X \backslash 0\right)=T_{\gamma_{0}} C+\operatorname{span}\left\{H_{f_{\alpha}}, H_{g_{\beta}} \mid \alpha \in A, \beta \in B\right\} .
$$

From the Frobenius theorem one can solve g_{j}

$$
H_{f_{\alpha}} g_{j}=0, \quad H_{g_{\beta}} g_{j}=0, \quad \alpha \in A, \quad \beta \in B
$$

with $g_{j}\left(\gamma_{0}\right)=0$ where g_{j} is chosen so that $d\left(\left.g_{j}\right|_{C}\right)\left(\gamma_{0}\right)$ is not proportional to ρ, this is clearly possible because $\operatorname{dim} T_{\gamma_{0}} C \geq 2$. Thus we may assume that

$$
A=\{1, \ldots, N-1\}, \quad B=\{1, \ldots, N-1\} \quad \text { or } B=\{1, \ldots, N\} .
$$

Assume $B=\{1, \ldots, N-1\}$ and solve g_{N}

$$
H_{f_{\alpha}} g_{N}=0, \quad H_{g_{\beta}} g_{N}=0, \quad \alpha=1, \ldots, N-1, \beta=1, \ldots, N-1
$$

with $g_{N}\left(\gamma_{0}\right) \neq 0$. By the Frobenius theorem one can construct g_{N}. Suppose that

$$
\rho=\sum_{\alpha=1}^{N-1} r_{\alpha} H_{f_{\alpha}}+\sum_{\beta=1}^{N} s_{\beta} H_{g_{\beta}} .
$$

Then we would have $\rho=s_{N} H_{g_{N}}$ at γ_{0} and hence $\rho g_{N}=g_{N}\left(\gamma_{0}\right)=0$. This is a contradiction. Thus $\rho,\left\{H_{f_{\alpha}}\right\}$ and $\left\{H_{g_{\beta}}\right\}$ are linearly independent. Finally we construct f_{N}. Solve f_{N} as a solution to

$$
\left\{\begin{array}{l}
H_{f_{k}} f_{N}=0, \quad H_{g_{k}} f_{N}=0, \quad k=1, \ldots, N-1, \\
H_{g_{N}} f_{N}=-1, \quad \rho f_{N}=0
\end{array}\right.
$$

Since $\left[H_{f_{k}}, \rho\right]=H_{f_{k}},\left[H_{g_{k}}, \rho\right]=0$ then the hypothesis of Theorem 10.2.2 is verified and hence f_{N} with $f_{N}\left(\gamma_{0}\right)=0$ exists.

