
Chapter 10

Appendix

In this chapter we gather some basic facts on symplectic basis and symplectic
coordinates, see for example [36], [19].

10.1 Symplectic vector space

Definition 10.1.1 Let S be a finite dimensional vector space over R (C) and
let σ be a non degenerate anti-symmetric bilinear form on S. Then we call S a
(finite dimensional ) real (complex ) symplectic vector space. Let Si (i = 1, 2)
be two symplectic vector spaces with symplectic forms σi. If a linear bijection

T : S1 → S2

verifies T ∗σ2 = σ1 then T is called a symplectic isomorphism.

Remark: σ is said to be non degenerate if

σ(γ, γ′) = 0, ∀γ′ ∈ S =⇒ γ = 0.

T ∗Rn = {(x, ξ) | x, ξ ∈ Rn} is a symplectic vector space with

σ((x, ξ), (y, η)) = 〈ξ, y〉 − 〈x, η〉.

Proposition 10.1.1 Let S be a finite dimensional real symplectic vector space.
Then the dimension of S is even and there is a symplectic isomorphism

T : S → T ∗Rn

with some n.

Proof: Let ej , fj be the unit vector along xj , ξj axis in T ∗Rn respectively. It is
clear that

(10.1.1) σ(ej , ek) = σ(fj , fk) = 0, σ(fj , ek) = δjk
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where δjk is the Kronecker’s delta. To prove this proposition it is enough to
show that there exists a basis of S verifying (10.1.1). Take f1 ∈ S, f1 ∕= 0. Since
σ is non degenerate one can take e1 ∈ S so that σ(f1, e1) = 1. Note that f1 and
e1 are linearly independent. Let S0 = span{f1, e1} and

S1 = Sσ
0 = {γ ∈ S | σ(γ, S0) = 0}.

Then we have S = S1⊕S0 for if γ ∈ S1∩S0 then writing γ = af1 + be1 one gets

σ(γ, f1) = −b = 0, σ(γ, e1) = a = 0

and hence γ = 0. We now show that S1 is a symplectic vector space with the
symplectic form σ. It is enough to check that σ is non degenerate on S1. Suppose
σ(γ, S1) = 0, γ ∈ S1. By definition we see σ(γ, S0) = 0 hence σ(γ, S) = 0 which
gives γ = 0. The rest of the proof is carried out by induction. □

Definition 10.1.2 Let S be a symplectic vector space of dimension 2n with the
symplectic form σ. A basis {fj , ej}n

j=1 verifying (10.1.1) is called a symplectic
basis.

Proposition 10.1.2 Let S be a symplectic vector space of dimension 2n with
the symplectic form σ. Let A, B be subsets of J = {1, 2, ..., n}. Assume that
{ej}j∈A, {fk}k∈B are linearly independent and verify (10.1.1). Then one can
choose {ej}j∈J\A, {fk}k∈J\B so that {ej}j∈J and {fk}k∈J become a full sym-
plectic basis.

Proof: Assume B \ A ∕= ∅. Take l ∈ B \ A. Then there exists g ∈ S such that
σ(g, fl) = −1. With V = span{ej , fk | j ∈ A, k ∈ B} we have g ∕∈ V because
σ(V, fl) = 0 by assumption. Choosing αi, βi, i ∈ A∩B suitably one can assume
that

el = g −
X

i∈A∩B

αiei −
X

i∈A∩B

βifi

verifies

σ(el, ej) = 0, j ∈ A, σ(el, fk) = −δlk, k ∈ B.

Repeating this argument we may assume that B ⊂ A. Applying the same
arguments to A \ B we may assume A = B. If A = B ∕= J then with

S0 = span{ej , fk | j ∈ A, k ∈ B}

we consider S1 = Sσ
0 . Since S1 is a symplectic vector space, then by Proposition

10.1.1 there is a symplectic basis for S1 and hence it is enough to add this basis
to {ej , fj}j∈A=B . □
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10.2 Darboux theorem

Let us start with

Definition 10.2.1 Let S be a C∞ manifold with a C∞ closed non degenerate
2 form. We call such a manifold as a symplectic manifold. Let Si be two
symplectic manifolds with symplectic forms σi. Let χ be a diffeomorphism

χ : S1 → S2

such that χ∗σ2 = σ1. Then χ is called symplectomorphism or canonical trans-
formation.

Note that the tangent space TγS becomes a symplectic vector space by the
symplectic form and hence even dimensional. Let f ∈ Ck(S) (k ≥ 1). Then df
is a linear form on Tγ(S) and then

〈t, df〉 = σ(t, Hf )

defines Hf (γ) ∈ Tγ(S). It is clear that Hf is a Ck−1 vector field on S. Let f ,
g ∈ Ck(S). Then we define the Poisson bracket {f, g} by the formula

{df(γ), dg(γ)} = σ(Hf , Hg) = Hf · g = {f, g}.

Here we recall the Jacobi’s identity

(10.2.1) {f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0, f, g, h ∈ C2(S).

Then we have
H{f,g} = [Hf , Hg] = HfHg − HgHf .

Note that χ is a canonical transformation if and only if

(10.2.2) χ∗{f, g} = {χ∗f, χ∗g}, f, g ∈ C2(S).

Therefore to define a local canonical transformation χ : S → T ∗(Rn) it is enough
to choose local coordinates (x, ξ) verifying

(10.2.3) {xj , xk} = 0, {ξj , ξk} = 0, {ξj , xk} = −{xk, ξj} = δjk.

The next theorem is called Darboux theorem (not homogeneous).

Theorem 10.2.1 Let S be a symplectic manifold of dimension 2n and let A,
B be two subsets of {1, 2, ..., n}. Let U be a neighborhood of γ0 and assume that
f↵, gβ ∈ C∞(U), α ∈ A, β ∈ B verify the followings

df↵(γ0), dgβ(γ0) (α ∈ A, β ∈ B) are linearly independent,

{f↵, f↵′} = {gβ , gβ′} = 0, {f↵, gβ} = δ↵β

in some neighborhood of γ0 (α, α′ ∈ A, β, β′ ∈ B).

Then there exists C∞ functions f↵, α ∕∈ A, gβ, β ∕∈ B defined near γ0 such that
{f↵}, {gβ} satisfy (10.2.3).
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To prove this we first show a theorem of Frobenius.

Theorem 10.2.2 Let v1,...,vr be C∞ vector fields defined near the origin of Rn

which verify

v1(0), ..., vr(0) are linearly independent,

[vi, vj ] =
rX

k=1

cijkvk (near the origin).(10.2.4)

Let S be a C∞ manifold with 0 ∈ S such that T0S +span{v1(0), ..., vr(0)} = Rn

and let f1,...,fr ∈ C∞ near the origin. Then the system of equations(
vju = fj , j = 1, ..., r,

u = u0 on S

has a C∞ solution near the origin if and only if

(10.2.5) vifj − vjfi =
rX

k=1

Cijkfk i, j = 1, ..., r.

The solution u is unique.

Proof: Since viu = fi gives

vivju − vjviu = vifj − vjfi =
rX

k=1

cijkvku =
rX

k=1

cijkfk

and hence the necessity of (10.2.5) is clear. Denoting the equation as vu = f
it is clear that for a non singular matrix A = (aij) the equation vu = f has a
solution u if and only if the equation Avu = Af has a solution u. We note that
Vi =

Pr
j=1 aijvj , i = 1, ..., r satisfy (10.2.4) because

[Vi, Vj ] = [
X

aikvk,
X

ajlvl] =
X

aikajl[vk, vl]

+
X

aik(vkajl)vl −
X

ajl(vlaik)vk

and vi =
P

ãijVj . Thus far the statement is invariant under such transforma-
tions and change of coordinates since the condition (10.2.4) is coordinates free.
We show that our problem is reduced to

∂

∂yi
=

rX
j=1

bijvj , i = 1, ..., r

where (bij) is a non singular matrix.
We now proceed by induction on n. We may assume that v1 = ∂/∂x1 taking

a suitable coordinates. Subtracting a smooth function times v1 we may assume
that vi, i = 2, ..., r contains no ∂/∂x1

vi =
nX

j=2

bij
∂

∂xj
, i = 2, ..., r.
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Renumbering the coordinates x2, ..., xn and considering
Pr

j=2 aijvj with a suit-
able non singular matrix (aij)2≤i,j≤r we may assume that

vi =
∂

∂xi
+

nX
j=r+1

bij
∂

∂xj
, i = 2, ..., r

leaving v1 unchanged. Since

v1vi − viv1 =
nX

j=r+1

∂bij

∂x1

∂

∂xj
=

rX
k=1

c1ikvk

it is clear that c1ik = 0 and hence ∂bij/∂x1 = 0. Then bij are independent of x1

and hence from the hypothesis of the induction we may assume that vi = ∂/∂xi,
i = 2, ..., r. Hence the result. We now study

∂

∂xj
u = fj , j = 1, ..., r.

With x′ = (x1, ..., xr), x′′ = (xr+1, ..., xn) we see that S is given by x′ = h(x′′).
Now the solution is given by

u(x) =
Z x′

h(x′′)

rX
j=1

fjdxj + u0(h(x′′), x′′).

Since

d(
rX

j=1

fjdxj) = 0

then the integral is well defined. □

Proof of Theorem 10.2.1: Let j ∈ A \ B. We look for gj which verifies

{f↵, gj} = Hf↵gj = δj↵, α ∈ A,(10.2.6)
{gβ , gj} = Hgβ

gj = 0, β ∈ B.(10.2.7)

By assumption Hf↵
(α ∈ A) and Hgβ

(β ∈ B) are linearly independent and in
view of

[Hf , Hg] = H{f,g}

then {Hf↵ | α ∈ A} and {Hgβ
| β ∈ B} verify the assumption (10.2.4) in

Theorem 10.2.2. Then giving gj on a manifold C ∋ γ0 of dimension 2n−|A|−|B|
such that

Tγ0C + span{Hf↵
(γ0), Hgβ

(γ0) | α ∈ A, β ∈ B} = R2n = Tγ0S

we obtain gj satisfying (10.2.7) which is determined uniquely by Theorem 10.2.2.
We examine that {dgβ}β∈B∪{j} and {df↵}↵∈A are linearly independent. In fact
if we have

bdgj(γ0) +
X
β∈B

bβdgβ(γ0) +
X
↵∈A

a↵df↵(γ0) = 0
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then applying Hfj we have b(γ0) = 0 and hence bβ = 0 and a↵ = 0 which proves
the assertion. Therefore we can repeat the same arguments until we arrive at
A ⊂ B. For j ∈ B \ A, the same argument gives fj and finally we may assume
that A = B. Assume that A = B ∕= {1, 2, ..., n}. Take j ∈ {1, ..., n} \ B.
We want to construct gj satisfying (10.2.7). Take the manifold C of dimension
2n − 2|B| given by

C = {f↵ = gβ = 0, ∀α ∈ A, ∀β ∈ B}.

Note that Hf↵ , Hgβ
do not belong to Tγ0C and this shows that

Tγ0C + span{Hf↵ , Hgβ
| α ∈ A, β ∈ B} = R2n.

Then by the Frobenius theorem one can construct gj verifying (10.2.7) giving
gj on C. If we choose gj on C so that

d(gj |C)(γ0) ∕= 0

then it is clear that {dgβ}β∈B∪{j} and {dfβ}↵∈A are linearly independent. The
rest of the proof is clear. □

10.3 Homogeneous Darboux theorem

Let us consider T ∗X where X is a smooth manifold. With Mt(x, ξ) = (x, tξ)
we define the radial vector field as

ρf =
d

dt
M∗

t f |t=1, ρ =
X

ξj
∂

∂ξj
.

We can define ρ in a coordinates free way

σ(ρ, t) = ω(t), t ∈ T (T ∗X)

where ω = ξdx is the canonical 1–form. Note that

X
ξj

∂

∂ξj
= r

∂

∂r

where r2 =
P

ξ2
j . Indeed with ξj = ωjr we have

∂

∂ξj
=

∂r

∂ξj

∂

∂r
+

X ∂ωk

∂ξj

∂

∂ωk
= ωj

∂

∂r
+

1
r

∂

∂ωj
.

Here
P

ω2
j = 1 implies

P
ωj

@
@!j

= 0.

Theorem 10.3.1 Let X be a smooth N dimensional manifold and let

A ⊂ {1, ..., N − 1}, B ⊂ {1, ..., N}
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be two subsets. Let f↵, α ∈ A and gβ, β ∈ B be C∞ functions defined in a conic
neighborhood of γ0 ∈ T ∗X \ 0 satisfying

f↵, gβ are homogeneous of degree 0 and 1 respectively,(10.3.1)
f↵(γ0) = gβ(γ0) = 0, ∀α ∈ A, ∀β ∈ B \ {N}, gN (γ0) ∕= 0,(10.3.2)
df↵(γ0), dgβ(γ0), ξdx are linearly independent at γ0(10.3.3)

and the commutation relations

{f↵, f↵′} = {gβ , gβ′} = 0, {f↵, gβ} = δ↵β , α, α′ ∈ A, β, β′ ∈ B.

Then we can find f↵, α ∕∈ A with f↵(γ0) = 0 and gβ, β ∕∈ B with gβ(γ0) = 0
if β ∕= N and gN (γ0) ∕= 0 so that {f↵} and {gβ} will be a full homogeneous
canonical coordinates.

Proof: We first make some comments on the necessity. Assume that we have a
full homogeneous coordinates {f↵, gβ}. Then one can express

ρ =
X
↵

r↵Hf↵ +
X

β

sβHgβ
.

Since ρf↵ = 0 because of the homogeneity and we conclude that ρ =
P

↵ r↵Hf↵

and then
r↵(γ0) = ρg↵(γ0) = g↵(γ0).

This implies g↵(γ0) ∕= 0 with some 1 ≤ α ≤ N . If g↵(γ0) = 0, α = 1, ..., N − 1
and {f↵, gβ} is a full homogeneous coordinates then necessarily ρ, {Hg↵

}↵∈{1,...,N}
and {Hf↵

}↵∈{1,...,N−1} are linearly independent.
Let j ∈ A \ B (1 ≤ j ≤ N − 1). We construct gj which is homogeneous of

degree 1 and verifies
Hf↵gj = δj↵, Hgβ

gj = 0.

Recall that Hf↵
, Hgβ

and ρ are linearly independent. Take a submanifold C of
dimension 2N − |A|− |B| such that

(10.3.4) Tγ0C ∋ ρ

and

(10.3.5) Tγ0C + span{Hf↵ , Hgβ
| α ∈ A, β ∈ B} = R2N .

By the Frobenius theorem gj is uniquely determined. We now examine that
ρgj = gj . Since

ρHf↵gj = 0 = Hf↵ρgj + [ρ, Hf↵ ]gj = Hf↵ρgj − Hf↵gj

it follows that
Hf↵

(ρgj) = δj↵.
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gj on C. If we choose gj on C so that

d(gj |C)(γ0) ∕= 0

then it is clear that {dgβ}β∈B∪{j} and {dfβ}↵∈A are linearly independent. The
rest of the proof is clear. □

10.3 Homogeneous Darboux theorem

Let us consider T ∗X where X is a smooth manifold. With Mt(x, ξ) = (x, tξ)
we define the radial vector field as

ρf =
d

dt
M∗

t f |t=1, ρ =
X

ξj
∂

∂ξj
.

We can define ρ in a coordinates free way

σ(ρ, t) = ω(t), t ∈ T (T ∗X)

where ω = ξdx is the canonical 1–form. Note that

X
ξj

∂

∂ξj
= r

∂

∂r

where r2 =
P

ξ2
j . Indeed with ξj = ωjr we have

∂

∂ξj
=

∂r

∂ξj

∂

∂r
+

X ∂ωk

∂ξj

∂

∂ωk
= ωj

∂

∂r
+

1
r

∂

∂ωj
.

Here
P

ω2
j = 1 implies

P
ωj

@
@!j

= 0.

Theorem 10.3.1 Let X be a smooth N dimensional manifold and let

A ⊂ {1, ..., N − 1}, B ⊂ {1, ..., N}
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be two subsets. Let f↵, α ∈ A and gβ, β ∈ B be C∞ functions defined in a conic
neighborhood of γ0 ∈ T ∗X \ 0 satisfying

f↵, gβ are homogeneous of degree 0 and 1 respectively,(10.3.1)
f↵(γ0) = gβ(γ0) = 0, ∀α ∈ A, ∀β ∈ B \ {N}, gN (γ0) ∕= 0,(10.3.2)
df↵(γ0), dgβ(γ0), ξdx are linearly independent at γ0(10.3.3)

and the commutation relations

{f↵, f↵′} = {gβ , gβ′} = 0, {f↵, gβ} = δ↵β , α, α′ ∈ A, β, β′ ∈ B.

Then we can find f↵, α ∕∈ A with f↵(γ0) = 0 and gβ, β ∕∈ B with gβ(γ0) = 0
if β ∕= N and gN (γ0) ∕= 0 so that {f↵} and {gβ} will be a full homogeneous
canonical coordinates.

Proof: We first make some comments on the necessity. Assume that we have a
full homogeneous coordinates {f↵, gβ}. Then one can express

ρ =
X
↵

r↵Hf↵ +
X

β

sβHgβ
.

Since ρf↵ = 0 because of the homogeneity and we conclude that ρ =
P

↵ r↵Hf↵

and then
r↵(γ0) = ρg↵(γ0) = g↵(γ0).

This implies g↵(γ0) ∕= 0 with some 1 ≤ α ≤ N . If g↵(γ0) = 0, α = 1, ..., N − 1
and {f↵, gβ} is a full homogeneous coordinates then necessarily ρ, {Hg↵

}↵∈{1,...,N}
and {Hf↵

}↵∈{1,...,N−1} are linearly independent.
Let j ∈ A \ B (1 ≤ j ≤ N − 1). We construct gj which is homogeneous of

degree 1 and verifies
Hf↵gj = δj↵, Hgβ

gj = 0.

Recall that Hf↵
, Hgβ

and ρ are linearly independent. Take a submanifold C of
dimension 2N − |A|− |B| such that

(10.3.4) Tγ0C ∋ ρ

and

(10.3.5) Tγ0C + span{Hf↵ , Hgβ
| α ∈ A, β ∈ B} = R2N .

By the Frobenius theorem gj is uniquely determined. We now examine that
ρgj = gj . Since

ρHf↵gj = 0 = Hf↵ρgj + [ρ, Hf↵ ]gj = Hf↵ρgj − Hf↵gj

it follows that
Hf↵

(ρgj) = δj↵.
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Similarly from

ρHgβ
gj = 0 = Hgβ

(ρgj) + [ρ, Hgβ
]gj = Hgβ

(ρgj)

we have Hgβ
(ρgj) = 0. On the other hand since ρgj |C = ρ(gj |C) = gj |C the

uniqueness part of the Frobenius theorem gives that ρgj = gj . It is easy to
see that {Hgβ

}β∈B∪{j} and {Hf↵
}↵∈A are linearly independent. In fact assume

that
ρ =

X
↵∈A

r↵Hf↵
+

X
β∈B∪{j}

sβHgβ
.

Applying this to fj we get ρfj = −sj(γ0) = fj(γ0) = 0. Thus the assertion
follows from the assumption. We continue this arguments to arrive at the case
A ⊂ (B \ {N}).

Let j ∈ B \ A. We want to construct fj which is homogeneous of degree 0
and satisfies

Hf↵fj = 0, Hgβ
fj = −δjβ , α ∈ A, β ∈ B.

Take a submanifold C of dimension 2N−|A|−|B| such that (10.3.4) and (10.3.5)
are verified. We apply the Frobenius theorem imposing fj |C = 0. Then it is
easy to check that

Hf↵
(ρfj) = 0, Hgβ

(ρfj) = 0

and from the uniqueness one has ρfj = 0, that is fj is homogeneous of de-
gree 0. It is clear that {Hf↵}↵∈A∪{j} and {Hgβ

}β∈B are linearly independent.
Repeating these arguments we may assume that

A = B or B = A ∪ {N}.

Assume A = B ∕= {1, ..., N − 1}. Then taking j ∕∈ B we construct gj and fj .
Let C be defined by

C = {f↵ = 0, gβ = 0, α ∈ A, β ∈ B}.

It is clear that ρ ∈ Tγ0C because f↵ and gβ are homogeneous. We see that

Tγ0(T
∗X \ 0) = Tγ0C + span{Hf↵

, Hgβ
| α ∈ A, β ∈ B}.

From the Frobenius theorem one can solve gj

Hf↵
gj = 0, Hgβ

gj = 0, α ∈ A, β ∈ B

with gj(γ0) = 0 where gj is chosen so that d(gj |C)(γ0) is not proportional to ρ,
this is clearly possible because dim Tγ0C ≥ 2. Thus we may assume that

A = {1, ..., N − 1}, B = {1, ..., N − 1} or B = {1, ..., N}.

Assume B = {1, ..., N − 1} and solve gN

Hf↵
gN = 0, Hgβ

gN = 0, α = 1, ..., N − 1, β = 1, ..., N − 1
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with gN (γ0) ∕= 0. By the Frobenius theorem one can construct gN . Suppose
that

ρ =
N−1X
↵=1

r↵Hf↵
+

NX
β=1

sβHgβ
.

Then we would have ρ = sNHgN
at γ0 and hence ρgN = gN (γ0) = 0. This is a

contradiction. Thus ρ, {Hf↵} and {Hgβ
} are linearly independent. Finally we

construct fN . Solve fN as a solution to
(

Hfk
fN = 0, Hgk

fN = 0, k = 1, ..., N − 1,

HgN
fN = −1, ρfN = 0.

Since [Hfk
, ρ] = Hfk

, [Hgk
, ρ] = 0 then the hypothesis of Theorem 10.2.2 is

verified and hence fN with fN (γ0) = 0 exists. □
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