Chapter 9

Not well-posed results

9.1 Introduction

For the second order differential operator in \mathbb{R}^{2} with real analytic coefficient $a\left(x_{0}, x_{1}\right) \geq 0$ defined near the origin

$$
P=-D_{0}^{2}+a\left(x_{0}, x_{1}\right) D_{1}^{2}
$$

the Cauchy problem is C^{∞} well posed near the origin ([40]). Since then it has been conjectured that the Cauchy problem is C^{∞} well posed for any second order differential operator of divergence form with real analytic coefficients

$$
P u=-D_{0}^{2} u+\sum_{i, j=1}^{n} D_{x_{i}}\left(a_{i j}(x) D_{x_{j}} u\right), \quad a_{i j}(x)=a_{j i}(x)
$$

where $a_{i j}(x)$ are real analytic and

$$
\sum_{i, j=1}^{n} a_{i j}(x) \xi_{i} \xi_{j} \geq 0, \quad \forall \xi^{\prime}=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n}
$$

In Section 8.1 we have shown that the operator $P_{\text {mod }}$ is of divergence form and hence this gives a counter example of the conjecture. In this chapter we show somewhat stronger assertion on the well-posedness of the Cauchy problem for $P_{\text {mod }}$, that is the Cauchy problem for $P_{\text {mod }}+Q$ is not $\gamma^{(s)}$ well posed for any $s>6$ whatever the lower order term Q is. Recall that the coefficients of $P_{\text {mod }}$ are not only real analytic but also polynomials. This is a quite unexpected fact. On the other hand note that the Cauchy problem for $P_{\text {mod }}+Q$ is $\gamma^{(s)}$ well posed for any $1 \leq s \leq 2$ and for any lower order term Q, which is a particular case of the general result proved in [9].

Let us consider again

$$
\begin{equation*}
P_{\text {mod }}(x, D)=-D_{0}^{2}+2 x_{1} D_{0} D_{2}+D_{1}^{2}+x_{1}^{3} D_{2}^{2} \tag{9.1.1}
\end{equation*}
$$

in \mathbb{R}^{3}. Then we have

Theorem 9.1.1 ([49]) The Cauchy problem for

$$
P(x, D)=P_{m o d}(x, D)+\sum_{j=0}^{2} b_{j} D_{j}
$$

is not locally solvable at the origin in $\gamma^{(s)}$ if $s>6$ for any $b_{0}, b_{1}, b_{2} \in \mathbb{C}$. In particular the Cauchy problem for $P_{\text {mod }}$ is not C^{∞} well posed for any lower order term.

It is easy to modify the proof of Theorem 8.1.1 to get
Proposition 9.1.1 The Cauchy problem for

$$
P(x, D)=P_{\text {mod }}(x, D)+\sum_{j=0}^{1} b_{j} D_{j}
$$

is not locally solvable in $\gamma^{(s)}$ if $s>5$ for any $b_{0}, b_{1} \in \mathbb{C}$.
Thus in order to prove Theorem 9.1.1 we may assume that $b_{2} \neq 0$. Moreover, making a change of the coordinate system; $\left(x_{0}, x_{1}, x_{2}\right) \rightarrow\left(x_{0}, x_{1},-x_{2}\right)$ if necessary, we may assume that $b_{2} \in \mathbb{C} \backslash \mathbb{R}^{+}$.

In Section 10.2, following [18], [23] we construct an asymptotic solution U_{λ} to $P U_{\lambda}=0$ which contradicts the a priori estimates, derived in Section 10.4, when $\lambda \rightarrow \infty$ and hence finally we prove Theorem 9.1.1.

9.2 Asymptotic solutions

Let us consider

$$
P=-D_{0}^{2}+2 x_{1} D_{0} D_{2}+D_{1}^{2}+x_{1}^{3} D_{2}^{2}+\sum_{j=0}^{2} b_{j} D_{j}, \quad b_{j} \in \mathbb{C}
$$

Make a change of coordinates system

$$
x_{0}=\lambda^{-1} y_{0}, \quad x_{1}=\lambda^{-2} y_{1}, \quad x_{2}=\lambda^{-4} y_{2}
$$

so that we have

$$
\begin{aligned}
P_{\lambda}=-\lambda^{-2} D_{0}^{2}+ & 2 \lambda^{-1} y_{1} D_{0} D_{2}+D_{1}^{2}+\lambda^{-2} y_{1}^{3} D_{2}^{2} \\
& +b_{2} D_{2}+\lambda^{-2} b_{1} D_{1}+\lambda^{-3} b_{0} D_{0}
\end{aligned}
$$

We switch the notation to x and set $b_{2}=b$ so that we study

$$
\begin{array}{r}
P_{\lambda}=-\lambda^{-2} D_{0}^{2}+2 \lambda^{-1} x_{1} D_{0} D_{2}+D_{1}^{2}+\lambda^{-2} x_{1}^{3} D_{2}^{2} \\
+b D_{2}+\lambda^{-2} b_{1} D_{1}+\lambda^{-3} b_{0} D_{0}
\end{array}
$$

Let us denote

$$
E_{\lambda}=\exp \left(i \lambda^{2} x_{2}+i \lambda \phi(x)\right)
$$

and compute $\lambda^{-1} E_{\lambda}^{-1} P_{\lambda} E_{\lambda}$ which yields

$$
\begin{array}{r}
\lambda^{-1} E_{\lambda}^{-1} P_{\lambda} E_{\lambda}=\lambda\left\{2 x_{1} \phi_{x_{0}}+\phi_{x_{1}}^{2}+x_{1}^{3}+b\right\} \\
+\left\{2 x_{1} D_{0}+2 \phi_{x_{1}} D_{1}+2 x_{1} \phi_{x_{0}} \phi_{x_{2}}+b \phi_{x_{2}}+2 x_{1}^{3} \phi_{x_{1}}-i \phi_{x_{1} x_{1}}\right\} \\
+\lambda^{-1} h^{(1)}(x, D)+\lambda^{-2} h^{(2)}(x, D)+\lambda^{-3} h^{(3)}(x, D)
\end{array}
$$

where $h^{(i)}(x, D)$ are differential operators of order 2 . We first assume that

$$
\operatorname{Im} b \neq 0
$$

Take $y_{1} \in \mathbb{R}$ small so that

$$
\operatorname{Im} \frac{b}{2 y_{1}}>0
$$

and work near the point $\left(x_{0}, x_{1}, x_{2}\right)=\left(t, y_{1}, 0\right)=x^{*}$. We solve the equation

$$
\begin{equation*}
2 x_{1} \phi_{x_{0}}+\phi_{x_{1}}^{2}+x_{1}^{3}+b=0 \tag{9.2.1}
\end{equation*}
$$

imposing the condition

$$
\phi=\left(x_{1}-y_{1}\right)+i\left(x_{1}-y_{1}\right)^{2}+i x_{2}^{2} \quad \text { on } \quad x_{0}=t .
$$

Noticing

$$
\phi=\left(x_{1}-y_{1}\right)+i\left(x_{1}-y_{1}\right)^{2}+i x_{2}^{2}+\phi_{x_{0}}\left(t, x_{1}, x_{2}\right)\left(x_{0}-t\right)+O\left(\left(x_{0}-t\right)^{2}\right)
$$

we conclude

$$
\operatorname{Im} \phi=\left(x_{1}-y_{1}\right)^{2}+x_{2}^{2}+\left\{\operatorname{Im} \phi_{x_{0}}\left(t, y_{1}, 0\right)+R(x)\right\}\left(x_{0}-t\right)
$$

where $R(x)=O\left(\left|x-x^{*}\right|\right)$. Note that

$$
\phi_{x_{0}}\left(x^{*}\right)=\frac{-1-b}{2 y_{1}}-\frac{y_{1}^{2}}{2}
$$

and hence $\operatorname{Im} \phi_{x_{0}}\left(x^{*}\right)<0$. Writing $\alpha=\operatorname{Im} \phi_{x_{0}}\left(x^{*}\right)$ we have

$$
\begin{aligned}
& \operatorname{Im} \phi=\left(x_{1}-y_{1}\right)^{2}+x_{2}^{2}+\alpha\left(x_{0}-t\right)+\frac{1}{2}\left(\epsilon^{-1}\left(x_{0}-t\right)+\epsilon R(x)\right)^{2} \\
&-\frac{\epsilon^{-2}}{2}\left(x_{0}-t\right)^{2}-\frac{\epsilon^{2}}{2} R(x)^{2} \\
&=\left(x_{1}-y_{1}\right)^{2}+x_{2}^{2}+\left(x_{0}-t\right)^{2}-\frac{\epsilon^{2}}{2} R(x)^{2} \\
&+\left\{\alpha-\left(\frac{\epsilon^{-2}}{2}+1\right)\left(x_{0}-t\right)\right\}\left(x_{0}-t\right)+\frac{1}{2}\left(\epsilon^{-1}\left(x_{0}-t\right)+\epsilon R(x)\right)^{2} \\
&=\left|x-x^{*}\right|^{2}-\frac{\epsilon^{2}}{2} R(x)^{2}+\frac{1}{2}\left(\epsilon^{-1}\left(x_{0}-t\right)+\epsilon R(x)\right)^{2} \\
&+\left\{\alpha-\left(\frac{\epsilon^{-2}}{2}+1\right)\left(x_{0}-t\right)\right\}\left(x_{0}-t\right)
\end{aligned}
$$

Thus $-\operatorname{Im} \phi$ attains its strict maximum at x^{*} in the set $\left\{x ;\left|x-x^{*}\right|<\delta, x_{0} \leq t\right\}$ if $\delta>0$ is small enough. Let L be a compact set in \mathbb{R}^{3}. For $t \in \mathbb{R}$ recall that we denote $L^{t}=\left\{x \in L \mid x_{0} \leq t\right\}$ and $L_{t}=\left\{x \in L \mid x_{0} \geq t\right\}$. Then we have

Lemma 9.2.1 Let K be a small compact neighborhood of x^{*}. Then we have

$$
\sup _{x \in K^{t+\tau}}\{-\operatorname{lm} \phi(x)\} \leq 2\left|\operatorname{Im} \phi_{x_{0}}\left(x^{*}\right)\right| \tau
$$

for any small $\tau>0$. Let $\delta>0$ be small. Then there exist $\nu(\delta)>0$ and $\tau(\delta)>0$ such that

$$
\sup _{x \in K^{t+\tau} \cap\left\{\left|x-x^{*}\right| \geq \delta\right\}}\{-\operatorname{lm} \phi(x)\} \leq-\nu(\delta)
$$

for any $\tau \leq \tau(\delta)$.
Let us denote

$$
\lambda^{-1} P_{\lambda} E_{\lambda}=E_{\lambda} Q_{\lambda}, \quad Q_{\lambda}=Q_{0}(x, D)+Q_{1}(x, \lambda, D)
$$

where

$$
\left\{\begin{array}{l}
Q_{0}(x, D)=2 x_{1} D_{0}+2 \phi_{x_{1}} D_{1}+2 x_{1} \phi_{x_{0}} \phi_{x_{2}}+b \phi_{x_{2}}+2 x_{1}^{3} \phi_{x_{1}}-i \phi_{x_{1} x_{1}} \\
Q_{1}(x, \lambda, D)=\lambda^{-1} h^{(1)}(y, D)+\lambda^{-2} h^{(2)}(x, D)+\lambda^{-3} h^{(3)}(x, D)
\end{array}\right.
$$

Let us set $V_{\lambda}=\sum_{n=0}^{N} v_{\lambda}^{(n)}$ and determine $v_{\lambda}^{(n)}$ by solving the Cauchy problem

$$
\left\{\begin{array}{l}
Q_{0}(x, D) v_{\lambda}^{(n)}=-g_{\lambda}^{(n)}=-Q_{1} v_{\lambda}^{(n-1)} \\
v_{\lambda}^{(0)}\left(t, x_{1}, x_{2}\right)=1 \\
v_{\lambda}^{(n)}\left(t, x_{1}, x_{2}\right)=0, \quad n \geq 1
\end{array}\right.
$$

where $v_{\lambda}^{(-1)}=0$ so that $Q_{\lambda} V_{\lambda}=Q_{1}(x, \lambda, D) v_{\lambda}^{(N)}$. Hence

$$
\begin{equation*}
\lambda^{-1} P_{\lambda} E_{\lambda} V_{\lambda}=E_{\lambda} Q_{1}(x, \lambda, D) v_{\lambda}^{(N)} \tag{9.2.2}
\end{equation*}
$$

We turn to the case

$$
b \in \mathbb{R}, \quad b<0
$$

We follow the arguments in [18]. We write $b=-\gamma^{2}, \gamma>0$. We solve the equation (9.2.1) under the condition

$$
\phi=-i\left(x_{0}-t\right)+i x_{2}^{2} \quad \text { on } \quad x_{1}=0
$$

That is, one solves the equation $\phi_{x_{1}}=\sqrt{\gamma^{2}-x_{1}^{3}-2 x_{1} \phi_{x_{0}}}$. It is clear that

$$
\phi_{x_{1}}=\left(\gamma+i \frac{x_{1}}{\gamma}\right)+O\left(x_{1}^{2}\right)
$$

One can write

$$
\phi=-i\left(x_{0}-t\right)+i x_{2}^{2}+\left(\gamma+i \frac{x_{1}}{\gamma}\right) x_{1}+R(x)
$$

where $R(x)=O\left(x_{1}^{3}\right)$. Note that

$$
\begin{array}{r}
\operatorname{Im} \phi=-\left(x_{0}-t\right)+x_{2}^{2}+\gamma^{-1} x_{1}^{2}+R(x) \\
=\left(x_{0}-t\right)^{2}+\gamma^{-1} x_{1}^{2}+x_{2}^{2}+R(x)+\left\{-1-\left(x_{0}-t\right)\right\}\left(x_{0}-t\right)
\end{array}
$$

and hence the same assertion as Lemma 9.2.1 holds. Noting that $\phi_{x_{1}}$ is different from zero in an open neighborhood of $x^{*}=(t, 0,0)$ we can solve the transport equation in the x_{1} direction

$$
\left\{\begin{array}{l}
Q_{0}(x, D) v_{\lambda}^{(n)}=-g_{\lambda}^{(n)}=-Q_{1} v_{\lambda}^{(n-1)} \\
v_{\lambda}^{(0)}\left(x_{0}, 0, x_{2}\right)=1 \\
v_{\lambda}^{(n)}\left(x_{0}, 0, x_{2}\right)=0, \quad n \geq 1
\end{array}\right.
$$

9.3 Lemmas

To estimate $E_{\lambda} V_{\lambda}$, which is constructed in the previous section, we apply the method of majorant following Ivrii [24]. Consider $Q=\sum_{|\alpha| \leq 1} b_{\alpha} D^{\alpha}$ where we assume that the coefficient of D_{0} is different from zero near $x=x^{*}$. We first recall the notion of majorant.

Definition 9.3.1 Let $\Phi_{i}(\tau, \eta)=\sum_{j, k \geq 0}^{\infty} C_{i j k} \tau^{j} \eta^{k}, i=1,2$ be two formal power series in (τ, η). Then we write

$$
\Phi_{1} \ll \Phi_{2}
$$

if $\left|C_{1 j k}\right| \leq C_{2 j k}$ for any $j, k \geq 0$. We say that Φ_{2} is a majorant of Φ_{1}.
Lemma 9.3.1 Let $Q v=g$ and let

$$
\Phi(\tau, \eta ; v)=\sum_{\alpha=\left(\alpha_{0}, \alpha^{\prime}\right)} \frac{\tau^{\alpha_{0}} \eta^{\left|\alpha^{\prime}\right|}}{\alpha!}\left|D^{\alpha} v\left(x^{*}\right)\right|
$$

Then we have

$$
\frac{\partial}{\partial \tau} \Phi(\tau, \eta ; v) \ll C(\tau, \eta) \frac{\partial}{\partial \eta} \Phi(\tau, \eta ; v)+C(\tau, \eta) \Phi(\tau, \eta ; g)
$$

with some holomorphic $C(\tau, \eta)$ at $(0,0)$ with $C(\tau, \eta) \gg 0$ which depends only on Q.

Proof: Note that

$$
\frac{\partial}{\partial \tau} \Phi(\tau, \eta ; v)=\sum_{\beta} \frac{\tau^{\beta_{0}} \eta^{\left|\beta^{\prime}\right|}}{\beta!}\left|D^{\beta}\left(D_{0} v\right)\left(x^{*}\right)\right|=\Phi\left(\tau, \eta ; D_{0} v\right)
$$

On the other hand from $Q v=g$ one sees $D_{0} v=\sum_{j=1}^{n} c_{j} D_{j} v+c_{0} v$. Since $\Phi(\tau, \eta ; f g) \ll \Phi(\tau, \eta ; f) \Phi(\tau, \eta ; g)$ and hence

$$
\frac{\partial}{\partial \tau} \Phi(\tau, \eta ; v) \ll C(\tau, \eta)\left(\sum_{j=1}^{n} \Phi\left(\tau, \eta ; D_{j} v\right)+\Phi(\tau, \eta ; g)\right)
$$

To conclude the assertion it is enough to note

$$
\begin{aligned}
& \frac{\partial \Phi}{\partial \eta} \gg \sum_{\alpha_{j}=1} \frac{\left|\alpha^{\prime}\right| \tau^{\alpha_{0}} \eta^{\left|\alpha^{\prime}\right|-1}}{\alpha!}\left|D^{\tilde{\alpha}}\left(D_{j} v\right)\left(x^{*}\right)\right| \\
& \frac{\left|\alpha^{\prime}\right| \tau^{\alpha_{0}} \eta^{\left|\alpha^{\prime}\right|-1}}{\alpha!}=\frac{\left|\alpha^{\prime}\right| \tau^{\tilde{\alpha}_{0}} \eta^{\left|\tilde{\alpha}^{\prime}\right|}}{\alpha_{j} \tilde{\alpha}!} \geq \frac{\tau^{\tilde{\alpha}_{0}} \eta^{\left|\tilde{\alpha}^{\prime}\right|}}{\tilde{\alpha}!}
\end{aligned}
$$

Lemma 9.3.2 Assume $Q v=g$ and

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial \tau} \Phi^{*}(\tau, \eta) \gg C(\tau, \eta) \frac{\partial}{\partial \eta} \Phi^{*}(\tau, \eta)+C(\tau, \eta) \Phi(\tau, \eta ; g) \\
\Phi^{*}(0, \eta) \gg \Phi(0, \eta ; v)
\end{array}\right.
$$

Then we have

$$
\Phi(\tau, \eta ; v) \ll \Phi^{*}(\tau, \eta)
$$

Proof: Let $\tilde{\Phi}$ be a solution to the Cauchy problem

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial \tau} \tilde{\Phi}(\tau, \eta)=C(\tau, \eta) \frac{\partial}{\partial \eta} \tilde{\Phi}(\tau, \eta)+C(\tau, \eta) \Phi(\tau, \eta ; g) \\
\tilde{\Phi}(0, \eta)=\Phi^{*}(0, \eta)
\end{array}\right.
$$

Then it is clear that $\Phi(\tau, \eta ; v) \ll \tilde{\Phi}(\tau, \eta) \ll \Phi^{*}(\tau, \eta)$.
Lemma 9.3.3 Assume $0<a \leq \delta a_{1}$ and $0<b \leq \delta b_{1}$ with some $0<\delta<1$.
Then we have
(i) $\left(1-\frac{\eta}{b}-\frac{\tau}{a}\right)^{-1}\left(1-\frac{\eta}{b_{1}}-\frac{\tau}{a_{1}}\right)^{-1} \ll(1-\delta)^{-1}\left(1-\frac{\eta}{b}-\frac{\tau}{a}\right)^{-1}$,
(ii) $\left(1-\frac{\eta}{b}\right)^{-1}\left(1-\frac{\tau}{a}\right)^{-1} \ll\left(1-\frac{\eta}{b}-\frac{\tau}{a}\right)^{-1}$.

Proof: The assertion (i) follows from

$$
\begin{aligned}
&\left\{\sum\left(\frac{\eta}{b}+\frac{\tau}{a}\right)^{n}\right\}\left\{\sum\left(\frac{\eta}{b_{1}}+\frac{\tau}{a_{1}}\right)^{n}\right\} \\
&=\sum_{n, m}\left(\frac{\eta}{b}+\frac{\tau}{a}\right)^{n}\left(\frac{\eta}{b_{1}}+\frac{\tau}{a_{1}}\right)^{m} \ll \sum_{n, m} \delta^{m}\left(\frac{\eta}{b}+\frac{\tau}{a}\right)^{n+m} \\
& \ll \sum_{m} \delta^{m} \sum_{n}\left(\frac{\eta}{b}+\frac{\tau}{a}\right)^{n}
\end{aligned}
$$

To examine the second assertion it is enough to note that the coefficient of $\eta^{n} \tau^{m}$ in $\sum(\eta / b)^{k} \sum(\tau / a)^{j}$ is $b^{-n} a^{-m}$ while that of $\eta^{n} \tau^{m}$ in

$$
\sum\left(\frac{\eta}{b}+\frac{\tau}{a}\right)^{k}
$$

is $b^{-n} a^{-m}(n+m)!/(n!m!)$.
Here we recall that if $\phi(\tau, \eta)$ is holomorphic in a neighborhood of $\{(\tau, \eta) \mid$ $|\eta| \leq b,|\tau| \leq a\}$ then we have

$$
\phi(\tau, \eta) \ll\left(1-\frac{\tau}{a}\right)^{-1}\left(1-\frac{\eta}{b}\right)^{-1} \sup _{|\tau|=a,|\eta|=b}|\phi(\tau, \eta)|
$$

which follows from the Cauchy's integral formula. Assume that

$$
C(\tau, \eta) \ll\left(1-\frac{\tau}{a_{1}}\right)^{-1}\left(1-\frac{\eta}{b_{1}}\right)^{-1} B \ll\left(1-\frac{\tau}{a_{1}}-\frac{\eta}{b_{1}}\right)^{-1} B .
$$

Lemma 9.3.4 Assume that $Q v=g$ and

$$
\Phi(0, \eta ; v) \ll \omega^{-1}\left(1-\frac{\eta}{b}\right)^{-n}, \quad \Phi(\tau, \eta ; g) \ll L\left(1-\frac{\tau}{a}-\frac{\eta}{b}\right)^{-n} e^{M \tau \omega}
$$

We also assume that $B a / b \leq(1-\delta)$ and $B \leq(1-\delta) M$. Then we have

$$
\Phi(\tau, \eta ; v) \ll L \omega^{-1}\left(1-\frac{\tau}{a}-\frac{\eta}{b}\right)^{-n} e^{M \tau \omega}
$$

Proof: Let us denote ($L \geq 1$)

$$
\Phi^{*}=L \omega^{-1}\left(1-\frac{\tau}{a}-\frac{\eta}{b}\right)^{-n} e^{M \tau \omega}
$$

It is easy to see by Lemma 9.3.3 that

$$
\frac{\partial \Phi^{*}}{\partial \tau} \gg C(\tau, \eta) \frac{\partial \Phi^{*}}{\partial \eta}+C(\tau, \eta) \Phi(\tau, \eta ; g)
$$

Then the assertion follows from Lemma 9.3.2.
Let us denote

$$
\Phi_{\lambda}^{n}=\Phi\left(\tau, \eta ; v_{\lambda}^{(n)}\right)
$$

and hence $\Phi_{\lambda}^{n}(0, \eta)=0$ for $n \geq 1$ and $\Phi_{\lambda}^{0}(0, \eta)=1$. We assume that

$$
\begin{equation*}
\Phi_{\lambda}^{n}(\tau, \eta) \ll A^{n+1} \lambda^{-n} \sum_{k=0}^{2 n} \omega^{n-k} k!\left(1-\frac{\tau}{a}-\frac{\eta}{b}\right)^{-k-1} e^{M \tau \omega} . \tag{9.3.1}
\end{equation*}
$$

For $n=0$ this holds clearly. Suppose that (9.3.1) holds for $\leq n-1$. Let

$$
g=\left(\sum_{j=1}^{3} \lambda^{-j} h^{(j)}(x, D)\right) v_{\lambda}^{(n-1)}=Q_{1}(x, \lambda, D) v_{\lambda}^{(n-1)}
$$

and we first show that

$$
\Phi(\tau, \eta ; g) \ll A^{n+1} \lambda^{-n} \sum_{k=0}^{2 n} \omega^{n-k} k!\left(1-\frac{\tau}{a}-\frac{\eta}{b}\right)^{-k-1} e^{M \tau \omega}
$$

As for terms $c(x) D^{\alpha} u$ with $|\alpha| \leq 2$ we have

$$
\begin{array}{r}
\Phi\left(\tau, \eta ; c D^{\alpha} u\right) \ll C\left(1-\frac{\tau}{a_{1}}-\frac{\eta}{b_{1}}\right)^{-1} \Phi\left(\tau, \eta ; D^{\alpha} u\right) \\
\ll C\left(1-\frac{\tau}{a_{1}}-\frac{\eta}{b_{1}}\right)^{-1}\left[\frac{\partial^{2}}{\partial \tau^{2}}+\frac{\partial^{2}}{\partial \tau \partial \eta}+\frac{\partial^{2}}{\partial \eta^{2}}\right] \Phi(\tau, \eta ; u) .
\end{array}
$$

We now estimate

$$
\left[\frac{\partial^{2}}{\partial \tau^{2}}+\frac{\partial^{2}}{\partial \tau \partial \eta}+\frac{\partial^{2}}{\partial \eta^{2}}\right] \sum_{k=0}^{2(n-1)} \omega^{n-1-k} k!\left(1-\frac{\tau}{a}-\frac{\eta}{b}\right)^{-k-1} e^{M \tau \omega}
$$

which is bounded by

$$
\begin{array}{r}
\sum_{k=0}^{2(n-1)} M^{2} \omega^{n+1-k} k!\left(1-\frac{\tau}{a}-\frac{\eta}{b}\right)^{-k-1}+ \\
+2 M \omega^{n-k}(k+1)!a^{-1}\left(1-\frac{\tau}{a}-\frac{\eta}{b}\right)^{-k-2} \\
+\omega^{n-1-k}(k+2)!a^{-2}\left(1-\frac{\tau}{a}-\frac{\eta}{b}\right)^{-k-3} \\
+M \omega^{n-k}(k+1)!b^{-1}\left(1-\frac{\tau}{a}-\frac{\eta}{b}\right)^{-k-2}+\omega^{n-1-k}(k+2)!a^{-1} b^{-1}\left(1-\frac{\tau}{a}-\frac{\eta}{b}\right)^{-k-3} \\
+\omega^{n-1-k}(k+2)!b^{-2}\left(1-\frac{\tau}{a}-\frac{\eta}{b}\right)^{-k-3}
\end{array}
$$

up to the factor $A^{n} \lambda^{-n+1} e^{M \tau \omega}$. Taking A so that

$$
A \geq M^{2}+2 M a^{-1}+a^{-2}+M b^{-1}+a^{-1} b^{-1}+b^{-2}
$$

we conclude that

$$
\Phi(\tau, \eta ; g) \ll A^{n+1} \lambda^{-n} \omega \sum_{k=0}^{2 n} \omega^{n-k} k!\left(1-\frac{\tau}{a}-\frac{\eta}{b}\right)^{-k-1} e^{M \tau \omega}
$$

Recalling that $\Phi_{\lambda}^{n}(0, \eta)=0 \ll \omega^{-1}\left(1-\frac{\eta}{b}\right)^{-1}, n \geq 1$ for any ω and applying Lemma 9.3.4 we see

Lemma 9.3.5 We have

$$
\Phi_{\lambda}^{n}(\tau, \eta) \ll A^{n+1} \lambda^{-n} \sum_{k=0}^{2 n} \omega^{n-k} k!\left(1-\frac{\tau}{a}-\frac{\eta}{b}\right)^{-k-1} e^{M \tau \omega}
$$

for any $\omega \geq 1$.

Lemma 9.3.6 There are $h>0$ and $\delta>0$ such that

$$
\sum_{\alpha} \frac{h^{|\alpha|}}{\alpha!} \sup _{\left|x-x^{*}\right| \leq \delta}\left|D^{\alpha} v_{\lambda}^{(n)}(x)\right| \leq B^{n+1} \lambda^{-n} \sum_{k=0}^{2 n} \omega^{n-k} k!e^{M_{1} \omega}
$$

Proof: Note that

$$
\sum_{\alpha} \frac{\eta^{|\alpha|}}{\alpha!}\left|D^{\alpha} v_{\lambda}^{(n)}\left(x^{*}\right)\right| \leq A^{n+1} \lambda^{-n} \sum_{k=0}^{2 n} \omega^{n-k} k!\left(1-\frac{\eta}{a}-\frac{\eta}{b}\right)^{-k-1} e^{M \eta \omega}
$$

and hence for $0<\eta \leq \eta_{0}$ we have

$$
\sum_{\alpha} \frac{\eta^{|\alpha|}}{\alpha!}\left|D^{\alpha} v_{\lambda}^{(n)}\left(x^{*}\right)\right| \leq B^{n+1} \lambda^{-n} \sum_{k=0}^{2 n} \omega^{n-k} k!e^{M \eta_{0} \omega}
$$

This shows that

$$
\left|v_{\lambda}^{(n)}(x)\right| \leq \sum_{\alpha} \frac{\left|D^{\alpha} v_{\lambda}^{(n)}\left(x^{*}\right)\right|}{\alpha!}\left|\left(x-x^{*}\right)^{\alpha}\right| \leq B^{n+1} \lambda^{-n} \sum_{k=0}^{2 n} \omega^{n-k} k!e^{M_{1} \omega}
$$

for $\left|x-x^{*}\right| \leq \eta_{0}$. From the Cauchy's inequality it follows that

$$
\sup _{\left|x-x^{*}\right| \leq \eta_{0} / 2}\left|D^{\alpha} v_{\lambda}^{(n)}(x)\right| \leq\left(\eta_{0} / 2\right)^{-|\alpha|} \alpha!B^{n+1} \lambda^{-n} \sum_{k=0}^{2 n} \omega^{n-k} k!e^{M_{1} \omega}
$$

and hence we have

$$
\sum_{\alpha} \frac{h^{|\alpha|}}{\alpha!} \sup _{\left|x-x^{*}\right| \leq \delta}\left|D^{\alpha} v_{\lambda}^{(n)}(x)\right| \leq B^{n+1} \lambda^{-n} \sum_{k=0}^{2 n} \omega^{n-k} k!e^{M_{1} \omega}
$$

for $2 h<\eta_{0}$ and $2 \delta<\eta_{0}$ with a possibly different B.
Let us define

$$
V_{\lambda}(x)=\sum_{n=0}^{N} v_{\lambda}^{(n)}(x)
$$

where N and ω are chosen so that

$$
\omega=4 N, \quad \lambda=\omega B e^{L}
$$

where L will be determined later. Then we have for $n \leq N$

$$
\sum_{k=0}^{2 n} \omega^{n-k} k!e^{M_{1} \omega} \leq \omega^{n} e^{M_{1} \omega} \sum_{k=0}^{2 n}\left(\frac{k}{\omega}\right)^{k} \leq \omega^{n} e^{M_{1} \omega} \sum_{k=0}^{2 n}\left(\frac{1}{2}\right)^{k}
$$

and hence

$$
\begin{array}{r}
\sum_{\alpha} \frac{h^{|\alpha|}}{\alpha!} \sup _{\left|x-x^{*}\right| \leq \delta}\left|D^{\alpha} v_{\lambda}^{(n)}(x)\right| \leq B^{n+1} \lambda^{-n} \omega^{n} e^{M_{1} \omega} \\
\leq B^{n+1}\left(B^{-1} e^{-L}\right)^{n} e^{M_{1} \omega}=B e^{-L n+M_{1} \omega}
\end{array}
$$

In particular one has

$$
\begin{array}{r}
\sum_{\alpha} \frac{h^{|\alpha|}}{\alpha!} \sup _{\left|x-x^{*}\right| \leq \delta}\left|D^{\alpha} v_{\lambda}^{(N)}(x)\right| \tag{9.3.2}\\
\leq B e^{-L N+4 M_{1} N}=B e^{-e^{-L}\left(L-4 M_{1}\right) \lambda / 4 B} .
\end{array}
$$

On the other hand, we see

$$
\begin{align*}
& \sum_{\alpha} \frac{h^{|\alpha|}}{\alpha!} \sup _{\left|x-x^{*}\right| \leq \delta}\left|D^{\alpha} V_{\lambda}(x)\right| \leq \sum_{n=0}^{N} B^{n+1} \lambda^{-n} \omega^{n} e^{M_{1} \omega} \tag{9.3.3}\\
= & e^{M_{1} \omega} B \sum_{n=0}^{N}\left(\frac{B \omega}{\lambda}\right)^{n} \leq e^{M_{1} \omega} B=B e^{4 M_{1} N}=B e^{e^{-L} M_{1} \lambda / B} .
\end{align*}
$$

9.4 A priori estimates

In this section assuming that the Cauchy problem for $P(x, D)$ is $\gamma^{(s)}$ well posed we derive a priori estimates following [22], [24]. Let L be a compact set in \mathbb{R}^{3}. Recall that

$$
\gamma_{0}^{(s), h}(L)=\left\{f \in \gamma^{(s)}\left(\mathbb{R}^{3}\right)\left|\operatorname{supp} u \subset L, \exists C>0, h^{|\alpha|}\right| \partial_{x}^{\alpha} f(x) \mid \leq C(\alpha!)^{s}\right\}
$$

which is the Banach space equipped with the norm

$$
\sup _{x, \alpha} \frac{h^{|\alpha|}\left|\partial_{x}^{\alpha} f(x)\right|}{(\alpha!)^{s}}
$$

In the following sections we fix $h>0$ and $\delta>0$ so that Lemma 9.3.6 holds and hence we have (9.3.2) and (9.3.3). Consider

$$
P_{\lambda}=P\left(\lambda^{-\sigma} x, \lambda^{\sigma} \xi\right)
$$

where $\lambda^{-\sigma} x=\left(\lambda^{-\sigma_{0}} x_{0}, \lambda^{-\sigma_{1}} x_{1}, \lambda^{-\sigma_{2}} x_{2}\right)$ and $\sigma_{j} \geq 0$. Then we have
Lemma 9.4.1 Assume that the Cauchy problem for P is $\gamma^{(s)}$ well posed near the origin. Let W be a compact neighborhood of the origin. Then there are $c>0, C>0$ such that

$$
|u|_{C^{0}\left(W^{t}\right)} \leq C \exp \left(c\left(\lambda^{\sigma_{0}} / \tau\right)^{1 /(s-\kappa)}\right) \exp \left(\lambda^{\bar{\sigma} / s^{\prime}}\right) \sum_{\alpha} \sup _{x_{0} \leq t+\tau} \frac{h^{|\alpha|}\left|\partial_{x}^{\alpha} P_{\lambda} u\right|}{(\alpha!)^{\left(s-s^{\prime}\right)}}
$$

for any $u \in \gamma_{0}^{(s), h}\left(W_{0}\right)$, any $t>0, \tau>0$, any $1<s^{\prime}<s$, any $1<\kappa<s$ where $\bar{\sigma}=\max _{j}\left\{\sigma_{j}\right\}$.
Proof: Assume that the Cauchy problem for P is $\gamma^{(s)}$ well posed. Let $h>0$ and K be a compact neighborhood of the origin. From the standard arguments it follows that there exists a neighborhood of the origin D such that for any
$f(x) \in \gamma_{0}^{(s), h}\left(K_{0}\right)$ there is a $u \in C^{2}(D)$ satisfying $P u=f$ in D and $u=0$ in $x_{0} \leq 0$ such that for any compact set $L \subset D$ there is $C>0$ such that

$$
|u|_{C^{0}(L)} \leq C \sum_{\alpha} \sup \frac{h^{|\alpha|}\left|\partial_{x}^{\alpha} f(x)\right|}{(\alpha!)^{s}}
$$

(see for example [39]). We may assume that $K \subset D$. Thus we have

$$
|u|_{C^{0}(L)} \leq C \sum_{\alpha} \sup \frac{h^{|\alpha|}\left|\partial_{x}^{\alpha} P u\right|}{(\alpha!)^{s}}, \quad \forall u(x) \in \gamma_{0}^{(s), h}\left(K_{0}\right)
$$

Let $\chi(r) \in \gamma^{(\kappa)}(\mathbb{R}), \kappa<s$, such that $\chi(r)=1$ for $r \leq 0, \chi(r)=0$ for $r \geq 1$ and set $\chi_{1}\left(x_{0}\right)=\chi\left(\left(x_{0}-t\right) / \tau\right)$ so that

$$
\begin{cases}\chi_{1}\left(x_{0}\right)=1 & x_{0} \leq t \\ \chi_{1}\left(x_{0}\right)=0 & x_{0} \geq t+\tau\end{cases}
$$

Let $u \in \gamma_{0}^{(s), h}\left(K_{0}\right)$ and consider $\chi_{1} P u$. Let $v \in C^{2}(D)$ be a solution to $P v=$ $\chi_{1} P u$ with $v=0$ in $x_{0} \leq 0$. Since $P v=P u$ in $x_{0} \leq t$ and hence

$$
|u|_{C^{0}\left(L^{t}\right)}=|v|_{C^{0}\left(L^{t}\right)} \leq C \sum_{\alpha} \sup \frac{h^{|\alpha|}\left|\partial_{x}^{\alpha}\left(\chi_{1} P u\right)\right|}{(\alpha!)^{s}}
$$

Recall that $\left|\partial_{x}^{\beta} \chi_{1}(x)\right| \leq C^{|\beta|+1}(\beta!)^{\kappa} \tau^{-|\beta|}$ and hence

$$
\begin{aligned}
& \sum_{\alpha} \sup \frac{h^{|\alpha|}\left|\partial_{x}^{\alpha}\left(\chi_{1} P u\right)\right|}{(\alpha!)^{s}} \leq \sum \sup \frac{\alpha!}{\alpha_{1}!\alpha_{2}!} \frac{h^{|\alpha|}\left|\partial_{x}^{\alpha_{1}} \chi_{1}\right|\left|\partial_{x}^{\alpha_{2}} P u\right|}{(\alpha!)^{s}} \\
& \leq \sum \sup \frac{1}{\alpha_{1}!\alpha_{2}!} \frac{h^{|\alpha|}\left|\partial_{x}^{\alpha_{1}} \chi_{1}\right|\left|\partial_{x}^{\alpha_{2}} P u\right|}{\left(\alpha_{1}!\right)^{s-1}\left(\alpha_{2}!\right)^{s-1}} \\
& \leq \sum_{\alpha_{1}} \sup \frac{h^{\left|\alpha_{1}\right|}\left|\partial_{x}^{\alpha_{1}} \chi_{1}\right|}{\left(\alpha_{1}!\right)^{s}} \sum_{\alpha_{2}} \sup _{x_{0} \leq t+\tau} \frac{h^{\left|\alpha_{2}\right|}\left|\partial_{x}^{\alpha_{2}} P u\right|}{\left(\alpha_{2}!\right)^{s}}
\end{aligned}
$$

Since

$$
\begin{aligned}
\sum_{\alpha_{1}} \sup \frac{h^{\left|\alpha_{1}\right|}\left|\partial_{x}^{\alpha_{1}} \chi_{1}\right|}{\left(\alpha_{1}!\right)^{s}} & \leq \sum_{\alpha_{1}} \frac{C^{\left|\alpha_{1}\right|+1} \tau^{-\left|\alpha_{1}\right|} h^{\left|\alpha_{1}\right|}}{\left(\alpha_{1}!\right)^{s-\kappa}} \\
\leq C \exp \left(c\left(\frac{1}{\tau}\right)^{1 /(s-\kappa)}\right) \sum_{\alpha_{1}}(C h)^{\left|\alpha_{1}\right|} & \leq C_{h} \exp \left(c\left(\frac{1}{\tau}\right)^{1 /(s-\kappa)}\right)
\end{aligned}
$$

we have

$$
\begin{equation*}
|u|_{C^{0}\left(L^{t}\right)} \leq C \exp \left(c\left(\frac{1}{\tau}\right)^{1 /(s-\kappa)}\right) \sum_{\alpha} \sup _{x_{0} \leq t+\tau} \frac{h^{|\alpha|}\left|\partial_{x}^{\alpha} P u\right|}{(\alpha!)^{s}} \tag{9.4.1}
\end{equation*}
$$

Let $u \in \gamma_{0}^{(s), h}\left(W_{0}\right)$. Then it is clear that $u\left(\lambda^{\sigma} x\right) \in \gamma_{0}^{(s), h}\left(K_{0}\right)$ for large λ. For $v(x)=u\left(\lambda^{\sigma} x\right)$ we apply the inequality (9.4.1) with $t=\lambda^{-\sigma_{0}} \hat{t}, \tau=\lambda^{-\sigma_{0}} \hat{\tau}$ to get

$$
|v|_{C^{0}\left(L^{t}\right)} \leq C \exp \left(c\left(\frac{\lambda^{\sigma_{0}}}{\hat{\tau}}\right)^{1 /(s-\kappa)}\right) \sum_{\alpha} \sup _{x_{0} \leq t+\tau} \frac{h^{|\alpha|}\left|\partial_{x}^{\alpha} P v\right|}{(\alpha!)^{s}}
$$

where $P v=P u\left(\lambda^{\sigma} x\right)=\left(P_{\lambda} u\right)\left(\lambda^{\sigma} x\right)$ and hence

$$
\partial^{\alpha}\left[\left(P_{\lambda} u\right)\left(\lambda^{\sigma} u\right)\right]=\lambda^{\langle\sigma, \alpha\rangle}\left(\partial_{x}^{\alpha} P_{\lambda} u\right)\left(\lambda^{\sigma} x\right)
$$

Thus we have

$$
\begin{aligned}
|u|_{C^{0}\left(W^{\hat{t}}\right)} & \leq C e^{c\left(\frac{\lambda^{\sigma_{0}}}{\hat{\tau}}\right)^{1 /(s-\kappa)}} \sum_{\alpha} \sup _{x_{0} \leq \hat{t}+\hat{\tau}} \frac{h^{|\alpha|} \lambda^{\bar{\sigma}|\alpha|}\left|\partial_{x}^{\alpha}\left(P_{\lambda} u\right)(x)\right|}{(\alpha!)^{s}} \\
& \left.=C e^{c\left(\frac{\lambda^{\sigma_{0}}}{\hat{\tau}}\right.}\right)^{1 /(s-\kappa)}
\end{aligned} \sum_{\alpha} \sup _{x_{0} \leq \hat{t}+\hat{\tau}} \frac{h^{|\alpha|} \lambda^{\bar{\sigma}|\alpha|}\left|\partial_{x}^{\alpha}\left(P_{\lambda} u\right)(x)\right|}{(\alpha!)^{s^{\prime}}(\alpha!)^{s-s^{\prime}}} .
$$

This proves the assertion.

9.5 Proof of not well-posed results

Take $\chi(x) \in \gamma_{0}^{(\kappa)}\left(W_{0}\right)$ such that $\chi(x)=1$ in a neighborhood of x^{*} supported in $\left\{\left|x-x^{*}\right| \leq \delta\right\}$ and $1<\kappa<s$. Let us set $U_{\lambda}=E_{\lambda} V_{\lambda} \chi \in \gamma_{0}^{(s), h}\left(W_{0}\right)$ and note $\left|U_{\lambda}\left(x^{*}\right)\right|=1$. Then we have from (9.2.2)

$$
\begin{aligned}
P_{\lambda} U_{\lambda} & =\left(P_{\lambda} E_{\lambda} V_{\lambda}\right) \chi+\sum_{|\alpha| \leq 1,1 \leq|\beta| \leq 2} c_{\alpha \beta}(x, \lambda) \partial_{x}^{\alpha}\left(E_{\lambda} V_{\lambda}\right) \partial_{x}^{\beta} \chi \\
& =E_{\lambda} Q_{1} v_{\lambda}^{(N)} \chi+\sum_{|\alpha| \leq 1,1 \leq|\beta| \leq 2} c_{\alpha \beta}(x, \lambda) \partial_{x}^{\alpha}\left(E_{\lambda} V_{\lambda}\right) \partial_{x}^{\beta} \chi
\end{aligned}
$$

To estimate the right-hand side we note
Lemma 9.5.1 We have

$$
\sum_{\alpha} \sup _{K} \frac{h^{|\alpha|}\left|\partial_{x}^{\alpha} E_{\lambda}\right|}{(\alpha!)^{s}} \leq C \exp \left(c \lambda^{2 / s}+\lambda \sup _{x \in K}\{-\operatorname{lm} \phi(x)\}\right)
$$

Proof: Recall that $E_{\lambda}=\exp \left(i \lambda^{2} x_{2}+i \lambda \phi(x)\right)$. Since $\phi(x)$ is real analytic in a neighborhood K of x^{*} then it is not difficult to check that

$$
\left|\partial_{x}^{\alpha} e^{i \lambda \phi(x)}\right| \leq C^{|\alpha|+1}(\lambda+|\alpha|)^{|\alpha|} e^{-\lambda \operatorname{lm} \phi(x)}, \quad x \in K
$$

and hence we have

$$
\begin{equation*}
\left|\partial_{x}^{\alpha} E_{\lambda}\right| \leq C^{|\alpha|+1}\left(\lambda^{2}+|\alpha|\right)^{|\alpha|} e^{-\lambda \operatorname{lm} \phi(x)}, \quad x \in K \tag{9.5.1}
\end{equation*}
$$

Noting that

$$
\frac{h^{|\alpha|}\left(\lambda^{2}+|\alpha|\right)^{|\alpha|}}{(\alpha!)^{s}} \leq C e^{c \lambda^{2 / s}}
$$

we get the assertion.
From Lemma 9.2.1 there exist $\nu>0$ and $\bar{\tau}>0$ such that $-\operatorname{Im} \phi(x) \leq-\nu$ if $x \in \operatorname{supp}\left[\partial_{x}^{\beta} \chi\right] \cap\left\{x_{0} \leq t+\tau\right\}, 0<\tau \leq \bar{\tau},|\beta| \geq 1$. Then from Lemma 9.5.1 and (9.3.3) it follows that

$$
\begin{align*}
& \sum_{\gamma} \sup _{x_{0} \leq t+\tau} \frac{h^{|\gamma|}\left|\partial_{x}^{\gamma}\left(\partial_{x}^{\alpha}\left(E_{\lambda} V_{\lambda}\right) \partial_{x}^{\beta} \chi\right)\right|}{(\gamma!)^{s}} \tag{9.5.2}\\
\leq & C \exp \left(c \lambda^{2 / s}-\nu \lambda+e^{-L} M_{1} B^{-1} \lambda\right) .
\end{align*}
$$

We turn to $E_{\lambda} Q_{1} v_{\lambda}^{(N)} \chi$. Thanks to Lemma 9.2.1 we have $-\operatorname{lm} \phi(x) \leq 2 a \tau$ if $x \in \operatorname{supp}[\chi] \cap\left\{x_{0} \leq t+\tau\right\}$ where $a=\left|\operatorname{Im} \phi_{x_{0}}\left(x^{*}\right)\right|$. Thus from Lemma 9.5.1 and (9.3.2) it follows that

$$
\begin{array}{r}
\sum_{\alpha} \sup _{x_{0} \leq t+\tau} \frac{h^{|\alpha|}\left|\partial_{x}^{\alpha}\left(E_{\lambda} Q_{1} v_{\lambda}^{(N)} \chi\right)\right|}{(\alpha!)^{s}} \tag{9.5.3}\\
\leq C \exp \left(c \lambda^{2 / s}+2 a \tau \lambda-e^{-L}\left(L-4 M_{1}\right)(4 B)^{-1} \lambda\right)
\end{array}
$$

Let $s-s^{\prime}>2$. Take L large so that $e^{-L} M_{1} B^{-1}<\nu$ and $L>4 M_{1}$ and choose $\tau>0$ such that

$$
2 a \tau-e^{-L}\left(L-4 M_{1}\right)(4 B)^{-1}<0
$$

then it is clear from (9.5.2) and (9.5.3) that

$$
\sum_{\alpha} \sup _{x_{0} \leq t+\tau} \frac{h^{|\alpha|}\left|\partial_{x}^{\alpha}\left(P_{\lambda} U_{\lambda}\right)\right|}{(\alpha!)^{s-s^{\prime}}} \leq C e^{-\nu_{1} \lambda}
$$

with some $\nu_{1}>0$. We now assume

$$
s>6
$$

Recalling $\sigma_{0}=1, \sigma_{1}=2, \sigma_{2}=4$ and hence $\bar{\sigma}=4$ then we can choose $s^{\prime}>4$ such that $s-s^{\prime}>2$ and $\bar{\sigma} / s^{\prime}<1$. Taking $1<\kappa<s$ so that $\sigma_{0} /(s-\kappa)<1$ we now apply Lemma 9.4.1 to get

$$
\left|U_{\lambda}\right|_{C^{0}\left(W^{t}\right)} \leq C e^{-c \lambda+o(\lambda)}
$$

with some $c>0$ as $\lambda \rightarrow \infty$. This gives a contradiction because

$$
\left|U_{\lambda}\left(x^{*}\right)\right|=1
$$

This completes the proof of Theorem 9.1.1.

