
Chapter 3

Noneffectively hyperbolic
characteristics

3.1 Elementary decomposition

In what follows we assume that the doubly characteristic set

⌃ = {(x, ξ) | p(x, ξ) = dp(x, ξ) = 0}

of p is a smooth conic manifold. In this section we study p of the form

p = −ξ2
0 + a1(x, ξ′)ξ0 + a2(x, ξ′)

which is hyperbolic with respect to ξ0.

Definition 3.1.1 We say that p(x, ξ) admits an elementary decomposition if
there exist real valued symbols λ(x, ξ′), µ(x, ξ′), Q(x, ξ′) defined near x = 0, de-
pending smoothly on x0, homogeneous of degree 1, 1, 2 respectively and Q(x, ξ′) ≥
0 such that

p(x, ξ) = −⇤(x, ξ)M(x, ξ) + Q(x, ξ′),
⇤(x, ξ) = ξ0 − λ(x, ξ′), M(x, ξ) = ξ0 − µ(x, ξ′),

|{⇤(x, ξ), Q(x, ξ′)}| ≤ CQ(x, ξ′),(3.1.1)

|{⇤(x, ξ), M(x, ξ)}| ≤ C(
p

Q(x, ξ′) + |⇤(x, ξ′) − M(x, ξ′)|)(3.1.2)

with some constant C. If we can find such symbols defined in a conic neigh-
borhood of ρ then we say that p(x, ξ) admits an elementary decomposition at
ρ.

Lemma 3.1.1 ([26]) Assume that p admits an elementary decomposition. Then
there is no null bicharacteristic which has a limit point in ⌃.
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Proof: Note that ⌃ = {(x, ξ) | ⇤(x, ξ) = M(x, ξ) = Q(x, ξ′) = 0} because
∂⇠0p = −(⇤(x, ξ) + M(x, ξ)) = 0 and p(x, ξ) = 0 implies ⇤(x, ξ)2 + Q(x, ξ′) = 0.
Let γ(s) be a null bicharacteristic of p which lies outside ⌃. Since p(γ(s)) = 0
we may assume that dx0(s)/ds = −⇤(γ(s)) − M(γ(s)) < 0 so that we can take
x0 as a parameter:

d

dx0
⇤(γ(x0)) =

d

ds
⇤(γ(s))

ds

dx0
= {p, ⇤}(γ(s))

ds

dx0
.

Since M⇤ = Q ≥ 0 we have ⇤(γ(s)) ≥ 0 and M(γ(s)) ≥ 0. Noting p =
−M⇤ + Q we see on γ(s)

|{p, ⇤}| ≤ C(Q + ⇤
p

Q + ⇤|⇤ − M |)
= C⇤(M +

√
⇤M + |⇤ − M |).

Since
M +

√
⇤M + |⇤ − M |
⇤ + M

≤ 3

one has

(3.1.3)
���� d

dx0
⇤(γ(x0))

���� ≤ C⇤(γ(x0)).

Suppose that γ(x0) ∕∈ ⌃ for x0 ∕= 0 and limx0→0 γ(x0) ∈ ⌃ so that ⇤(γ(0)) = 0.
From (3.1.3) it follows that ⇤(γ(x0)) = 0 and hence Q(γ(x0)) = 0 for p(γ(x0)) =
0. Since Q is non-negative it follows that {Q, M}(γ(x0)) = 0. This proves���� d

dx0
M(γ(x0))

���� ≤ CM(γ(x0))

and hence M(γ(x0)) = 0 so that γ(x0) ∈ ⌃ which is a contradiction. □

3.2 Case Im F 2
p ∩ Ker F 2

p = {0}
Here we work with

p(x, ξ) = −ξ2
0 + q(x, ξ′), q(x, ξ′) ≥ 0.

We assume that the doubly characteristic set

⌃ = {(x, ξ) | p(x, ξ) = dp(x, ξ) = 0}

is a smooth manifold near ρ̄ such that

(3.2.1) dimT⇢⌃ = dim Ker Fp(ρ), ρ ∈ ⌃

that is, the codimension of ⌃ is equal to the rank of the Hessian of p at every
point on ⌃ and

(3.2.2) rank
�
σ|Σ

�
= constant on ⌃

3.2. CASE IMF 2
P ∩ KER F 2

P = {0} 29

where σ =
P

dξj ∧dxj and finally we assume that p is none↵ectively hyperbolic
at every ρ ∈ ⌃ and

(3.2.3) Ker F 2
p (ρ) ∩ Im F 2

p (ρ) = {0}, ∀ρ ∈ ⌃.

From the hypothesis (3.2.1), near every ρ̄ ∈ ⌃, one can write

(3.2.4) p(x, ξ) = −ξ2
0 +

rX
j=1

φj(x, ξ′)2

where dφj are linearly independent at ρ̄ and ⌃ is given by

⌃ = {(x, ξ) | φj(x, ξ) = 0, j = 0, ..., r}

near ρ̄ where we have set φ0(x, ξ) = ξ0. Let Q(u, v) be the polar form of p⇢̄.
Since

1
2
Q(u, v) = −dφ0(u)dφ0(v) +

rX
j=1

dφj(u)dφj(v)

where dφj(u) = dφj(ρ̄;u) then it follows that

1
2
Q(u, v) = −σ(u, Hφ0)σ(v, Hφ0) +

rX
j=1

σ(u, Hφj )σ(v, Hφj )

= σ
⇣
u,−σ(v, Hφ0)Hφ0 +

rX
j=1

σ(v, Hφj )Hφj

⌘
= σ(u, Fp(ρ̄)v).

Thus we have

(3.2.5) Fp(ρ̄)v = −σ(v, H⇠0)H⇠0 +
rX

j=1

σ(v, Hφj (ρ̄))Hφj (ρ̄).

In particular we see

(3.2.6) Im Fp(ρ̄) = 〈Hφ0(ρ̄), Hφ1(ρ̄), ..., Hφr (ρ̄)〉.

It is also clear that

Ker Fp(ρ̄) = {v ∈ R2(n+1) | σ(v, Hφj ) = 0, j = 0, 1, ..., r}
= 〈Hφ0 , Hφ1 , ..., Hφr 〉σ = (Im Fp(ρ̄))σ = T⇢̄⌃.(3.2.7)

Here we remark

Lemma 3.2.1 The condition (3.2.2) is equivalent to

rank({φi, φj})(ρ) = const, ρ ∈ ⌃.
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Proof: Note that
(T⇢⌃)σ = 〈Hφ0(ρ), ..., Hφr

(ρ)〉
and σ(Hφi

(ρ), Hφj
(ρ)) = {φi, φj}(ρ). From this it is enough to show that (3.2.2)

is equivalent to
rank

�
σ|(T⇢Σ)σ

�
= const.

Let us consider the map

L : T⇢⌃ ∋ v �→
sX

j=1

σ(v, fj(ρ))fj(ρ) ∈ T⇢⌃

where T⇢⌃ = 〈f1(ρ), ..., fs(ρ)〉. The assumption (3.2.2) implies that the rank of
the matrix (σ(fi(ρ), fj(ρ))) is constant and hence

dim Ker L = dim (T⇢⌃ ∩ (T⇢⌃)σ) = const.

This proves the desired assertion because the kernel of

L̃ : (T⇢⌃)σ ∋ v �→
rX

j=0

σ(v, Hφj
(ρ))Hφj

(ρ) ∈ (T⇢⌃)σ

is just Ker L. □
Assume (3.2.3) then from Corollary 2.3.1 the quadratic form p⇢ takes the

form, in a suitable symplectic coordinates

(3.2.8) p⇢ = −ξ2
0 +

kX
j=1

µ2
j (x

2
j + ξ2

j ) +
k+X̀

j=k+1

ξ2
j

where we have

Lemma 3.2.2 The number k in (3.2.8) is independent of ρ ∈ ⌃.

Proof: With {ψj} = {ξ0, xj , ξj , 1 ≤ j ≤ k, ξj , k + 1 ≤ j ≤ k + ℓ} it follows
from Lemma 3.2.1 that the rank of ({ψi, ψj}) is constant. This shows that k is
independent of ρ ∈ ⌃. □

Lemma 3.2.3 There exist a conic neighborhood V of ρ̄ and a smooth vector
h(ρ) defined in V ∩ ⌃ such that

(3.2.9) h(ρ) ∈ Ker F 2
p (ρ), p⇢(h(ρ)) < 0, σ(Hx0 , Fp(ρ)h(ρ)) = −1

on ρ ∈ V ∩ ⌃.

Proof: Let p⇢ take the form (3.2.8). Then from (3.2.5)

F 2
p (ρ)v =

kX
j=1

µ2
j

�
σ(v, H⇠j )Hxj − σ(v, Hxj )H⇠j

�
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so that

Ker F 2
p (ρ) = {v | σ(v, H⇠j

) = 0, σ(v, Hxj
) = 0, j = 1, ..., k}

and hence dimKer F 2
p (ρ) = 2n + 2 − 2k which is independent of ρ ∈ ⌃ by

Lemma 3.2.2. Let p⇢̄ take the form (3.2.8). Since we have that F 2
p (ρ̄)Hx0 = 0,

p⇢̄(Hx0) = −1 and σ(Hx0 , Fp(ρ̄)Hx0) = −1 then there is a conic neighborhood
V of ρ̄ such that one can choose smooth h(ρ) defined in V ∩ ⌃ such that

(3.2.10) h(ρ) ∈ Ker F 2
p (ρ), p⇢(h(ρ)) < 0, σ(Hx0 , Fp(ρ)h(ρ)) = −1

for ρ ∈ V ∩ ⌃. We can assume that h(ρ) is homogeneous of degree 0 in ξ, for if
not we can just restrict to the sphere |ξ| = 1 and extend the restriction so that
it becomes homogeneous of degree 0. □

Lemma 3.2.4 Assume that h(ρ) satisfies (3.2.10). Then we have

σ(v, Fp(ρ)h(ρ)) = 0 =⇒ p⇢(v) > 0.

Proof: Let us fix ρ ∈ V ∩ ⌃. We can assume that p⇢ has the form (3.2.8). Set
w = Fp(ρ)h(ρ) and hence w ∈ Ker Fp(ρ). From (3.2.10) one can put h(ρ) =
(y0, ..., yn,−1, η1, ..., ηn) where y1 = · · · = yk = 0, η1 = · · · = ηk = 0 then we see

1 >

k+X̀
j=k+1

η2
j , w = H⇠0 −

k+X̀
j=k+1

ηjH⇠j

because p⇢(h(ρ)) < 0 and σ(Hx0 , w) = −1. Let v = (x0, ..., xn, ξ0, ..., ξn) and
σ(v, w) = 0 hence ξ0 −

Pk+`
j=k+1 ηjξj = 0 so that we conclude

ξ2
0 <

k+X̀
j=k+1

ξ2
j

and hence the assertion otherwise we would have

ξ2
0 = (

k+X̀
j=k+1

ηjξj)2 ≤ (
k+X̀

j=k+1

η2
j )(

k+X̀
j=k+1

ξ2
j ) ≤ δξ2

0

with some δ < 1 which is a contradiction. □

Proposition 3.2.1 Assume that Ker F 2
p ∩ Im F 2

p = {0} on ⌃. Then p admits
an elementary decomposition

p = −M⇤ + Q

such that |M − ⇤| ≤ C
√

Q with some C > 0.
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�
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so that

Ker F 2
p (ρ) = {v | σ(v, H⇠j

) = 0, σ(v, Hxj
) = 0, j = 1, ..., k}

and hence dimKer F 2
p (ρ) = 2n + 2 − 2k which is independent of ρ ∈ ⌃ by

Lemma 3.2.2. Let p⇢̄ take the form (3.2.8). Since we have that F 2
p (ρ̄)Hx0 = 0,

p⇢̄(Hx0) = −1 and σ(Hx0 , Fp(ρ̄)Hx0) = −1 then there is a conic neighborhood
V of ρ̄ such that one can choose smooth h(ρ) defined in V ∩ ⌃ such that

(3.2.10) h(ρ) ∈ Ker F 2
p (ρ), p⇢(h(ρ)) < 0, σ(Hx0 , Fp(ρ)h(ρ)) = −1

for ρ ∈ V ∩ ⌃. We can assume that h(ρ) is homogeneous of degree 0 in ξ, for if
not we can just restrict to the sphere |ξ| = 1 and extend the restriction so that
it becomes homogeneous of degree 0. □

Lemma 3.2.4 Assume that h(ρ) satisfies (3.2.10). Then we have

σ(v, Fp(ρ)h(ρ)) = 0 =⇒ p⇢(v) > 0.

Proof: Let us fix ρ ∈ V ∩ ⌃. We can assume that p⇢ has the form (3.2.8). Set
w = Fp(ρ)h(ρ) and hence w ∈ Ker Fp(ρ). From (3.2.10) one can put h(ρ) =
(y0, ..., yn,−1, η1, ..., ηn) where y1 = · · · = yk = 0, η1 = · · · = ηk = 0 then we see

1 >

k+X̀
j=k+1

η2
j , w = H⇠0 −

k+X̀
j=k+1

ηjH⇠j

because p⇢(h(ρ)) < 0 and σ(Hx0 , w) = −1. Let v = (x0, ..., xn, ξ0, ..., ξn) and
σ(v, w) = 0 hence ξ0 −

Pk+`
j=k+1 ηjξj = 0 so that we conclude

ξ2
0 <

k+X̀
j=k+1

ξ2
j

and hence the assertion otherwise we would have

ξ2
0 = (

k+X̀
j=k+1

ηjξj)2 ≤ (
k+X̀

j=k+1

η2
j )(

k+X̀
j=k+1

ξ2
j ) ≤ δξ2

0

with some δ < 1 which is a contradiction. □

Proposition 3.2.1 Assume that Ker F 2
p ∩ Im F 2

p = {0} on ⌃. Then p admits
an elementary decomposition

p = −M⇤ + Q

such that |M − ⇤| ≤ C
√

Q with some C > 0.
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Proof: We first work in a neighborhood V of any ρ̄ ∈ ⌃. Let h(ρ) be in Lemma
3.2.3 and put w(ρ) = Fp(ρ)h(ρ). Since Im Fp(ρ) = 〈H⇠0 , Hφ1 , ..., Hφr

〉 then one
can write

w(ρ) = γ0H⇠0 −
rX

j=1

γjHφj

where γj(ρ) are smooth in V ∩⌃. From σ(Hx0 , w(ρ)) = −1 we have γ0 = 1. As
remarked above we can assume that γj are homogeneous of degree 0 in ξ. Let
us put

λ =
rX

j=1

γj(x, ξ′)φj(x, ξ′)

so that w(ρ) = H⇠0−λ on V ∩ ⌃. Let us write

p = −(ξ0 + λ)(ξ0 − λ) + q̂, q̂ =
rX

j=1

φ2
j − (

rX
j=1

γjφj)2 = q − λ2.

We now check that
rX

j=1

γ2
j < 1.

From Lemma 3.2.4 it follows that

σ(v, H⇠0−λ) = 0 =⇒ σ(v, Fp(ρ)v) = σ(v, Fq̂(ρ)v) > 0.

This implies that

σ(v, H⇠0−λ) = 0 =⇒
rX

j=1

σ(v, Hφj
)2 − (

rX
j=1

γjσ(v, Hφj
))2 > 0.

Note that the map

〈H⇠0−λ〉σ/T⇢⌃ ∋ v �→ (σ(v, Hφj
))j=1,...,r ∈ Rr

is surjective. Indeed if σ(v, H⇠0−λ) = 0, σ(v, Hφj
) = 0 for j = 1, ..., r then it

follows that

v ∈ 〈H⇠0−λ, Hφ1 , ..., Hφr 〉σ = 〈H⇠0 , Hφ1 , ..., Hφr 〉σ = Ker Fp(ρ) = T⇢⌃.

From this it follows that 〈γ, t〉2 < |t|2 for any t ∈ Rr and hence we conclude

|γ(ρ)| = (
rX

j=1

γj(ρ)2)1/2 < 1.

We extend γj(ρ) (ρ ∈ V ∩ ⌃) to V such a way that |γ| < 1 in V . This proves
that

q̂ ≥ c
rX

j=1

φj(x, ξ′)2

3.2. CASE IMF 2
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with some c > 0 and hence we have

|λ|2 ≤ δq

with some δ < 1. Recall that H⇠0−λ ∈ Ker Fp in V ∩ ⌃ and this shows that
{ξ0 − λ, φj} = 0 in V ∩ ⌃ and hence

{ξ0 − λ, λ} = 0 in V ∩ ⌃.

Thus we can find a family of conic open sets {Vi} and smooth {λi} defined
on Vi, homogeneous of degree 0 such that one can write in Vi

p = −ξ2
0 + q = −ξ2

0 +
r(i)X
↵=1

φ2
i↵

= −(ξ0 + λi)(ξ0 − λi) + qi, qi = q − λ2
i ,

|λi| ≤
√

δ
√

q in Vi,

{ξ0 − λi, φi↵} = 0 on Vi ∩ ⌃, α = 1, ..., r(i).

Take a partition of unity {χi} subordinate to {Vi} such that 0 ≤ χi ≤ 1,
χi ∈ C∞

0 (Vi), homogeneous of degree 0 and
P

χi = 1. Define

λ =
X

χiλi,

p = −(ξ0 + λ)(ξ0 − λ) + Q, Q = q − λ2.

Here we note that

|λ| ≤
X

χi|λi| ≤
√

δ
√

q
X

χi =
√

δ
√

q,

Q = q − λ2 ≥ q − δ2q = (1 − δ2)q ≥ 0.
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X
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X
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X
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X
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P
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P
φ2
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c2

P
φ2

i↵ in Vi with some ci > 0 and hence Q =
P

Q↵βφi↵φiβ then on the
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|{ξ0 − λi, Q}| ≤ C
X
↵

φ2
i↵ ≤ C ′qi ≤ C ′q ≤ C ′′Q.
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√
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√
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p

Q
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Proof: We first work in a neighborhood V of any ρ̄ ∈ ⌃. Let h(ρ) be in Lemma
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rX

j=1

γjHφj
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rX

j=1
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rX

j=1
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rX
j=1
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rX

j=1

γ2
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rX

j=1
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rX
j=1
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then we get

(3.2.11) |{ξ0 − λ, Q}| ≤ CQ.

We now study |{ξ0 − λ, ξ0 + λ}| = 2|{ξ0 − λ, λ}|. Note that

{ξ0 − λ, λ} =
X

χi{ξ0 − λ, λi} +
X

λi{ξ0 − λ, χi}

and
χi{ξ0 − λ, λi} = χi

X
χk{ξ0 − λk, λi}− χi

X
λk{χk, λi}.

Since we have {ξ0 − λk, λi} = 0 on Vk ∩ Vi ∩ ⌃ the same arguments as above
give

|{ξ0 − λk, λi}| ≤ C
√

qi ≤ C
√

q ≤ C ′pQ.

We check other terms

|λk{χk, λi}| ≤ C
√

qk ≤ C
√

q ≤ C ′pQ on Vk,

|λi{ξ0 − λ, χi}| ≤ C
√

qi ≤ C
√

q ≤ C ′pQ on Vi.

Hence we have
|{ξ0 − λ, λ}| ≤ C

p
Q

which shows |{ξ0 − λ, ξ0 + λ}| ≤ C
√

Q. This together with (3.2.11) proves the
assertion. □

3.3 Case Im F 2
p ∩ Ker F 2

p ∕= {0}
We next discuss the same problem studied in Section 4.2 for the case Im F 2

p ∩
KerF 2

p ∕= {0}. In particular we give a necessary and sufficient condition in order
that p admits an elementary decomposition for general case in terms of some
vector field defined near the doubly characteristic manifold.

Recall that we are working with

p(x, ξ) = −ξ2
0 + q(x, ξ′), q(x, ξ′) ≥ 0

where p(x, ξ) is none↵ectively hyperbolic and verifies the conditions (3.2.1),
(3.2.2) and

(3.3.1) Ker F 2
p (ρ) ∩ Im F 2

p (ρ) ∕= {0}, ∀ρ ∈ ⌃.

This means that the Hamilton map Fp(ρ) has a Jordan block of size four at
every ρ ∈ ⌃. Recall that from the hypothesis (3.2.1) one can write

p(x, ξ) = −ξ2
0 +

rX
j=1

φj(x, ξ′)2
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near every ρ ∈ ⌃ where dφj are linearly independent at ρ and ⌃ is given by

⌃ = {φj(x, ξ) = 0, j = 0, ..., r}

where φ0(x, ξ) = ξ0 as before. Assume (3.3.1) then by Theorem 2.3.1 the
quadratic form Q = p⇢ takes the form, in a suitable symplectic coordinates

(3.3.2) Q = (−ξ2
0 + 2ξ0ξ1 + x2

1)/
√

2 +
kX

j=2

µj(x2
j + ξ2

j ) +
k+X̀

j=k+1

ξ2
j .

Lemma 3.3.1 The number k in (3.3.2) is independent of ρ ∈ ⌃.

Proof: With {ψj} = {ξ0, ξ1, x1, xj , ξj , 2 ≤ j ≤ k, ξj , k + 1 ≤ j ≤ k + ℓ} it follows
from Lemma 3.2.1 that the rank of ({ψi, ψj}) is constant. This shows that k is
independent of ρ ∈ ⌃. □

Examining the standard canonical model (3.3.2) it is easy to see that

dim Im F 2
p (ρ) = 2 + 2(k − 1), dim Im F 3

p (ρ) = 1 + 2(k − 1)

which are independent of ρ as we observed above. Since

(3.3.3) dim
�
Ker Fp(ρ) ∩ Im F 3

p (ρ)
�

= 1, dim
�
Ker F 2

p (ρ) ∩ Im F 2
p (ρ)

�
= 2

which is easily verified examining the standard model (3.3.2) then one can choose
smooth vectors z1(ρ), hj(ρ), j = 1, 2 defined near a reference point ρ̄ ∈ ⌃ so
that

Ker Fp(ρ) ∩ Im F 3
p (ρ) = 〈z1(ρ)〉, ρ ∈ ⌃,

Ker F 2
p (ρ) ∩ Im F 2

p (ρ) = 〈h1(ρ), h2(ρ)〉, ρ ∈ ⌃.

Lemma 3.3.2 There are smooth z1(ρ) and z2(ρ) defined near the reference
point such that

Ker F 2
p (ρ) ∩ Im F 2

p (ρ) = 〈z1(ρ), z2(ρ)〉,
Fp(ρ)z1(ρ) = 0, Fp(ρ)z2(ρ) ∕= 0.

Proof: Let Ker F 2
p (ρ)∩ Im F 2

p (ρ) = 〈h1(ρ), h2(ρ)〉. Since Fp(ρ)hj(ρ), j = 1, 2 are
in Ker Fp(ρ) ∩ Im F 3

p (ρ) there exist smooth α(ρ), β(ρ) such that

α(ρ)Fp(ρ)h1(ρ) + β(ρ)Fp(ρ)h2(ρ) = 0.

Then it is enough to choose

z1(ρ) = α(ρ)h1(ρ) + β(ρ)h2(ρ),
z2(ρ) = β(ρ)h1(ρ) − α(ρ)h2(ρ).

□
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p (ρ) = 2 + 2(k − 1), dim Im F 3
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which are independent of ρ as we observed above. Since
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p (ρ)
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= 1, dim
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which is easily verified examining the standard model (3.3.2) then one can choose
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that
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p (ρ)∩ Im F 2

p (ρ) = 〈h1(ρ), h2(ρ)〉. Since Fp(ρ)hj(ρ), j = 1, 2 are
in Ker Fp(ρ) ∩ Im F 3

p (ρ) there exist smooth α(ρ), β(ρ) such that
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z2(ρ) = β(ρ)h1(ρ) − α(ρ)h2(ρ).

□



36CHAPTER 3. NONEFFECTIVELY HYPERBOLIC CHARACTERISTICS

Note that, in the canonical model (3.3.2) it is easy to see that

(3.3.4) Ker F 2
p (ρ) ∩ Im F 2

p (ρ) = 〈H⇠0 , Hx1〉

and

(3.3.5) z2(ρ) = aH⇠0 + bHx1 , b ∕= 0.

Lemma 3.3.3 There exists a smooth S(x, ξ) defined near the reference point
vanishing on ⌃ such that

HS(ρ) = z2(ρ), ρ ∈ ⌃.

Proof: Note that from (3.2.5) it follows that

(3.3.6) Fp(ρ)v =
rX

j=0

�jσ(v, Hφj
(ρ))Hφj

(ρ), �0 = −1, �j = 1, j ≥ 1

and hence

(3.3.7) F 2
p (ρ)v =

rX
k=0

�kσ(v, Hφk
(ρ))

2
4 rX

j=0

�jσ(Hφk
(ρ), Hφj (ρ))Hφj (ρ)

3
5 .

This shows that

Im F 2
p (ρ) = 〈

rX
j=0

�jσ(Hφk
(ρ), Hφj (ρ))Hφj (ρ); k = 0, ..., r〉

and with A(ρ) = (akj(ρ)) = ({φk, φj}(ρ)) we have Im F 2
p (ρ) = 〈f1(ρ), ..., fr(ρ)〉

where f(ρ) = A(ρ)Hφ(ρ), Hφ = t(−Hφ0 , ..., Hφr ). Since the rank of A(ρ) is
constant there exists βik(ρ) such that with

gi(ρ) =
rX

k=0

βik(ρ)fk(ρ), i = 1, ..., s

we have
Im F 2

p (ρ) = 〈g1(ρ), ..., gs(ρ)〉.
Since z2(ρ) ∈ Im F 2

p (ρ) one can write

z2(ρ) =
sX

k=1

αk(ρ)gk(ρ)

with smooth αk(ρ). Then

z2(ρ) =
sX

k=1

αk(ρ)
rX

j=0

βkj(ρ)fj(ρ) =
sX

k=1

rX
j=0

rX
`=0

αk(ρ)βkj(ρ)aj`(ρ)Hφ`(⇢).
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Let us define

S =
sX

k=1

rX
j=0

rX
`=0

α̃kβ̃kj ãj`φ`

where α̃k, β̃kj and ãj` are smooth extensions outside ⌃ of αk, βkj and aj`. This
is a desired one. □

Lemma 3.3.4 There exists a smooth ⇤(x, ξ) defined near the reference point
vanishing on ⌃ such that

HΛ(ρ) = z1(ρ), ρ ∈ ⌃.

Proof: Repeat the same arguments as in the proof of Lemma 3.3.3. □

Lemma 3.3.5 In a neighborhood of the reference point we have

∀w ∈ 〈z1(ρ)〉σ =⇒ σ(w, Fp(ρ)w) ≥ 0.

Proof: Choose a symplectic coordinates on which p⇢ takes the form (3.3.2). Then
it is easy to see that

〈z1(ρ)〉 = 〈H⇠0〉
and hence if w ∈ 〈z1(ρ)〉σ then

σ(w, Fp(ρ)w) = Q(w) = x2
1/
√

2 +
kX

j=2

µj(x2
j + ξ2

j ) +
k+X̀

j=k+1

ξ2
j ≥ 0

which is the assertion. □
We summarize what we have proved in

Proposition 3.3.1 Assume that p satisfies (3.2.1), (3.2.2) and (3.3.1). Then
there exist smooth vectors z1(ρ), z2(ρ), ρ ∈ ⌃ defined near the reference point
such that

(3.3.8) z1(ρ) ∈ Ker Fp(ρ) ∩ Im F 3
p (ρ), ρ ∈ ⌃,

(3.3.9) z2(ρ) ∈ Ker F 2
p (ρ) ∩ Im F 2

p (ρ), ρ ∈ ⌃,

(3.3.10) w ∈ 〈z1(ρ)〉σ =⇒ σ(w, Fp(ρ)w) ≥ 0.

Since Fp(ρ)z2(ρ) is proportional to z1(ρ), ρ ∈ ⌃ we may assume, without
restrictions, that

(3.3.11) Fp(ρ)z2(ρ) = −z1(ρ), ρ ∈ ⌃.

We have
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(3.3.11) Fp(ρ)z2(ρ) = −z1(ρ), ρ ∈ ⌃.

We have
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Proposition 3.3.2 One can write p, near every ρ ∈ ⌃, as

p = −ξ2
0 +

rX
j=1

φj(x, ξ′)2

= −(ξ0 + φ1(x, ξ′))(ξ0 − φ1(x, ξ′)) +
rX

j=2

φj(x, ξ′)2

where ⌃ is given by {ξ0 = 0, φ1 = · · · = φr = 0} and

(3.3.12) {ξ0 − φ1, φj} = 0, j = 1, ..., r, {φ1, φ2} ∕= 0 on ⌃.

Proof: Let ⇤(x, ξ) be a smooth function vanishing on ⌃ such that HΛ(ρ) is
proportional to z1(ρ) of which existence is assured by Lemma 3.3.4. Since
σ(z1, Hx0) ∕= 0 by (3.3.10), without restrictions, we may assume that

⇤ = ξ0 − λ, λ =
rX

j=1

γj(x, ξ′)φj

where φj are those in (3.2.4). Writing

p = −(ξ0 − λ)(ξ0 + λ) +
rX

j=1

φ2
j − (

rX
j=1

γjφj)2

one obtains

σ(v, Fpv) = −2σ(v, HΛ)σ(v, H⇠0+λ)

+
rX

j=1

σ(v, Hφj )
2 − (

rX
j=1

γj(ρ)σ(v, Hφj ))
2.

Because of (3.3.10) we have

(3.3.13)
rX

j=1

σ(v, Hφj )
2 − (

rX
j=1

γj(ρ)σ(v, Hφj ))
2 ≥ 0

if v ∈ 〈HΛ(ρ)〉σ. As observed in Section 4.2, the mapping

(3.3.14) 〈HΛ(ρ)〉σ/T⇢⌃ ∋ v �→ (σ(v, Hφj ))j=1,...,r ∈ Rr

is surjective and hence (3.3.13) shows that

rX
j=1

γj(ρ)2 = |γ(ρ)|2 ≤ 1.

We now show that

(3.3.15) |γ(ρ)| = 1, ρ ∈ ⌃.

3.3. CASE IMF 2
P ∩ KER F 2

P ∕= {0} 39

We first note that σ(z2, Fpz2) = σ(z1, z2) = σ(F 3
p w, z2) = −σ(w, F 3

p z2) = 0
because z1 = F 3

p w with some w and z2 ∈ Ker F 2
p . Since σ(z2, z1) = σ(z2, HΛ) =

0 we have

0 = σ(z2, Fpz2) =
rX

j=1

σ(z2, Hφj )
2 − (

rX
j=1

γj(ρ)σ(z2, Hφj ))
2.

If σ(z2, Hφj
) = 0 for j = 1, ..., r then z2 ∈ 〈HΛ, Hφ1 , ..., Hφr

〉σ = Ker Fp which
contradicts to Fpz2 = −z1. This proves that σ(z2(ρ), Hφj

(ρ))1≤j≤r is di↵erent
from zero and hence one get (3.3.15) because

rX
j=1

σ(z2, Hφj
)2 = (

rX
j=1

γjσ(z2, Hφj
))2 ≤ |γ|2

rX
j=1

σ(z2, Hφj
)2.

We still denote by γ(x, ξ′) an extension of γ(ρ) outside ⌃ such that |γ(x, ξ′)| = 1.
Thus we can write

p(x, ξ) = −(ξ0 + 〈γ, φ〉)(ξ0 − 〈γ, φ〉) + |φ|2 − 〈γ, φ〉2

where {ξ0 −〈γ, φ〉, φj} = 0, j = 1, ..., r on ⌃ since H⇠0+〈γ,φ〉 ∈ Im Fp. Let us set
ψ1(x, ξ′) =

Pr
j=1 γj(x, ξ′)φj(x, ξ′) and taking a smooth orthonormal basis

γ(x, ξ′), e2(x, ξ′), ..., er(x, ξ′), ej = (ej1, ..., ejr)

and define

ψj(x, ξ′) =
rX

h=1

ejh(x, ξ′)φh(x, ξ′)

so that
Pr

j=1 ψj(x, ξ′)2 =
Pr

j=1 φj(x, ξ′)2. Switching the notation to {φj} we
can thus write

p(x, ξ) = −(ξ0 + φ1(x, ξ′))(ξ0 − φ1(x, ξ′)) +
rX

j=2

φj(x, ξ′)2

where {ξ0 −φ1, φj} = 0 on ⌃ for j = 1, ..., r. We finally check that {φ1, φk} ∕= 0
for some k. Indeed if otherwise we would have {ξ0, φj} = 0, j = 1, ..., r and this
would contradict (3.3.1). In fact if this would happen then we have

p⇢ = −ξ2
0 +

rX
j=1

ℓ2j , {ξ0, ℓj} = 0, j = 1, ..., r.

Since
Pr

j=1 ℓ2j is a non negative definite quadratic form, in a suitable symplectic
basis, p⇢ takes the form (1) of Theorem 2.3.1. Renumbering the coordinates so
that k = 2 we have the assertion. □
Remark: From Proposition 3.3.2 one can write {ξ0−φ1, φj} =

Pr
k=1 cjkφk but

if cj1 ∕= 0 then {ξ0 − φ1, φj} could not controlled by
Pr

j=2 φ2
j .
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3.4 Vector field HS

Let S(x, ξ) be a smooth real function defined on T ∗⌦, homogeneous of degree
0, such that

(3.4.1) S(x, ξ) = 0, (x, ξ) ∈ ⌃

and we have on ⌃

(3.4.2) HS(ρ) ∈ Ker F 2
p (ρ) ∩ Im F 2

p (ρ), Fp(ρ)HS(ρ) ∕= 0.

We first remark that it is possible to choose S independent of ξ0. In fact from
Lemma 3.3.4 one can take ⇤(x, ξ) so that

⇤(ρ) = 0, HΛ(ρ) = z1(ρ), ρ ∈ ⌃.

Since σ(Hx0 , Fp(ρ)Hx0) = −1 it follows that σ(Hx0 , HΛ(ρ)) ∕= 0, ρ ∈ ⌃ due to
(3.3.10). This proves that one can write, without restrictions,

⇤(x, ξ) = ξ0 − λ(x, ξ′).

Let us write S(x, ξ) = αξ0 + f(x, ξ′) and put

S̃(x, ξ′) = S(x, ξ) − α⇤(x, ξ).

Then it is clear that S̃(x, ξ′) verifies (3.4.1) and (3.4.2) for HΛ(ρ) ∈ Ker Fp(ρ)∩
Im F 3

p (ρ).
Recall that p(x, ξ) takes the form

(3.4.3) p(x, ξ) = −ξ2
0 + q(x, ξ′), q(x, ξ′) ≥ 0.

Lemma 3.4.1 Assume that p admits an elementary decomposition such that
p = −M⇤ + Q. Then HΛ(ρ) is proportional to z1(ρ), ρ ∈ ⌃.

Proof: Let ⇤ = ξ0 − λ. It is obvious that q = Q + λ2 ≥ 0 and hence λ and
Q vanishes on ⌃ at least of order 1 and 2 respectively. Then it is clear that
HΛ(ρ) ∈ Im Fp(ρ). Recall

FpHΛ = −σ(HΛ, HM )HΛ + FQHΛ.

It is clear that σ(HΛ, HM ) = {⇤, M} = 0 and from (3.1.1) we have FQHΛ =
H{Q,Λ} = 0 on ⌃. This shows that FpHΛ = 0 and hence HΛ is in Im Fp∩Ker Fp

on ⌃.
Let S be a smooth function verifying (3.4.1) and (3.4.2). Since HS ∈ Im Fp

then σ(HΛ, HS) = {⇤, S} = 0 on ⌃. Thus one has

FpHS = −(1/2)σ(HS , HM )HΛ + FQHS

which gives σ(HS , FpHS) = σ(HS , FQHS) = 0 because FpHS ∈ Ker Fp and
HS ∈ Im Fp. This proves

(3.4.4) FQHS = 0 on ⌃
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because σ(HS , FQHS) = Q⇢(HS) and Q⇢ is non negative definite. Thus we have

FpHS = −1
2
σ(HS , HM )HΛ.

By definition of S we have FpHS ∕= 0 and this proves the assertion. □

Lemma 3.4.2 Assume that p admits a decomposition

p(x, ξ) = −(ξ0 + λ)(ξ0 − λ) + Q(x, ξ′) = −M⇤ + Q

with Q(x, ξ′) ≥ 0. If FQHΛ = 0 on ⌃ and Fp has no non zero real eigenvalues
then (3.1.2) holds.

Proof: We first note that

⌃ = {⇤ = 0, M = 0, Q = 0}.

Since FpHΛ = −(1/2)σ(HΛ, HM )HΛ by FQHΛ = 0. If σ(HΛ, HM ) ∕= 0 then Fp

would have a non zero real eigenvalue which contradicts the assumption. Hence

σ(HΛ, HM ) = {⇤, M} = 0 on ⌃.

Then one can write

(3.4.5) {M, ⇤} =
rX

j=1

cjψj

where

q = Q + λ2 =
rX

j=1

ψ2
j

because {M, ⇤} is independent of ξ0. The assertion follows from (3.4.5). □
We now show

Proposition 3.4.1 ([6]) Let S1, S2 be two smooth functions verifying (3.4.1)
and (3.4.2). Then there exists C ∕= 0 such that

H3
S1

p
��
Σ

= CH3
S2

p
��
Σ
.

We first show

Lemma 3.4.3 Assume that p admits a decomposition p = −M⇤ + Q with
⇤ = ξ0 −λ, M = ξ0 +λ, Q ≥ 0 such that HΛ is proportional to z1(ρ) for ρ ∈ ⌃.
Let S be a smooth function verifying (3.4.1) and (3.4.2). Then we have

H3
SQ = 0 on ⌃.



40CHAPTER 3. NONEFFECTIVELY HYPERBOLIC CHARACTERISTICS

3.4 Vector field HS

Let S(x, ξ) be a smooth real function defined on T ∗⌦, homogeneous of degree
0, such that

(3.4.1) S(x, ξ) = 0, (x, ξ) ∈ ⌃

and we have on ⌃

(3.4.2) HS(ρ) ∈ Ker F 2
p (ρ) ∩ Im F 2

p (ρ), Fp(ρ)HS(ρ) ∕= 0.

We first remark that it is possible to choose S independent of ξ0. In fact from
Lemma 3.3.4 one can take ⇤(x, ξ) so that

⇤(ρ) = 0, HΛ(ρ) = z1(ρ), ρ ∈ ⌃.

Since σ(Hx0 , Fp(ρ)Hx0) = −1 it follows that σ(Hx0 , HΛ(ρ)) ∕= 0, ρ ∈ ⌃ due to
(3.3.10). This proves that one can write, without restrictions,

⇤(x, ξ) = ξ0 − λ(x, ξ′).

Let us write S(x, ξ) = αξ0 + f(x, ξ′) and put

S̃(x, ξ′) = S(x, ξ) − α⇤(x, ξ).

Then it is clear that S̃(x, ξ′) verifies (3.4.1) and (3.4.2) for HΛ(ρ) ∈ Ker Fp(ρ)∩
Im F 3

p (ρ).
Recall that p(x, ξ) takes the form

(3.4.3) p(x, ξ) = −ξ2
0 + q(x, ξ′), q(x, ξ′) ≥ 0.

Lemma 3.4.1 Assume that p admits an elementary decomposition such that
p = −M⇤ + Q. Then HΛ(ρ) is proportional to z1(ρ), ρ ∈ ⌃.

Proof: Let ⇤ = ξ0 − λ. It is obvious that q = Q + λ2 ≥ 0 and hence λ and
Q vanishes on ⌃ at least of order 1 and 2 respectively. Then it is clear that
HΛ(ρ) ∈ Im Fp(ρ). Recall

FpHΛ = −σ(HΛ, HM )HΛ + FQHΛ.

It is clear that σ(HΛ, HM ) = {⇤, M} = 0 and from (3.1.1) we have FQHΛ =
H{Q,Λ} = 0 on ⌃. This shows that FpHΛ = 0 and hence HΛ is in Im Fp∩Ker Fp

on ⌃.
Let S be a smooth function verifying (3.4.1) and (3.4.2). Since HS ∈ Im Fp

then σ(HΛ, HS) = {⇤, S} = 0 on ⌃. Thus one has

FpHS = −(1/2)σ(HS , HM )HΛ + FQHS

which gives σ(HS , FpHS) = σ(HS , FQHS) = 0 because FpHS ∈ Ker Fp and
HS ∈ Im Fp. This proves

(3.4.4) FQHS = 0 on ⌃

3.4. VECTOR FIELD HS 41

because σ(HS , FQHS) = Q⇢(HS) and Q⇢ is non negative definite. Thus we have

FpHS = −1
2
σ(HS , HM )HΛ.

By definition of S we have FpHS ∕= 0 and this proves the assertion. □

Lemma 3.4.2 Assume that p admits a decomposition

p(x, ξ) = −(ξ0 + λ)(ξ0 − λ) + Q(x, ξ′) = −M⇤ + Q

with Q(x, ξ′) ≥ 0. If FQHΛ = 0 on ⌃ and Fp has no non zero real eigenvalues
then (3.1.2) holds.

Proof: We first note that

⌃ = {⇤ = 0, M = 0, Q = 0}.

Since FpHΛ = −(1/2)σ(HΛ, HM )HΛ by FQHΛ = 0. If σ(HΛ, HM ) ∕= 0 then Fp

would have a non zero real eigenvalue which contradicts the assumption. Hence

σ(HΛ, HM ) = {⇤, M} = 0 on ⌃.

Then one can write

(3.4.5) {M, ⇤} =
rX

j=1

cjψj

where

q = Q + λ2 =
rX

j=1

ψ2
j

because {M, ⇤} is independent of ξ0. The assertion follows from (3.4.5). □
We now show

Proposition 3.4.1 ([6]) Let S1, S2 be two smooth functions verifying (3.4.1)
and (3.4.2). Then there exists C ∕= 0 such that

H3
S1

p
��
Σ

= CH3
S2

p
��
Σ
.

We first show

Lemma 3.4.3 Assume that p admits a decomposition p = −M⇤ + Q with
⇤ = ξ0 −λ, M = ξ0 +λ, Q ≥ 0 such that HΛ is proportional to z1(ρ) for ρ ∈ ⌃.
Let S be a smooth function verifying (3.4.1) and (3.4.2). Then we have

H3
SQ = 0 on ⌃.



42CHAPTER 3. NONEFFECTIVELY HYPERBOLIC CHARACTERISTICS

Proof: Let φj be as in (3.2.4). It is clear that ⌃ = {ξ0 = 0, λ = 0, Q = 0} and
hence one can write

⇤ = ξ0 −
rX

j=1

γjφj , Q = |φ|2 − 〈γ, φ〉2.

It is also clear that |γ(x, ξ′)| ≤ 1 near ⌃ because Q ≥ 0 by assumption. Repeat-
ing the same arguments in the proof of Proposition 3.3.2 we conclude that

|γ(ρ)| = 1 ρ ∈ ⌃

and γ(ρ) is proportional to σ(HS(ρ), Hφ(ρ))

(3.4.6) HSφ(ρ) = σ(HS(ρ), Hφ(ρ)) = α(ρ)γ(ρ), ρ ∈ ⌃

where we have denoted σ(HS , Hφ) = (σ(HS , φ1), ..., σ(HS , Hφr )). As shown in
the proof of Lemma 3.4.1 we have

0 = σ(HS , FpHS) = σ(HS , FQHS)

and hence FQHS = 0 on ⌃ because Q ≥ 0. We now study H3
S(|φ|2 − 〈γ, φ〉2).

It is clear that H3
S〈φ, φ〉 = 6〈H2

Sφ, HSφ〉 on ⌃ and hence

(3.4.7) H3
S〈φ, φ〉 = 6α〈H2

Sφ, γ〉 on ⌃.

On the other hand one obtains

H3
S〈γ, φ〉2 = 4(〈HSγ, φ〉 + 〈γ, HSφ〉)

×(2〈HSγ, HSφ〉 + 〈γ, H2
Sφ〉)

+2〈γ, HSφ〉(〈H2
Sγ, φ〉 + 2〈HSγ, HSφ〉 + 〈γ, H2

Sφ〉).

On ⌃ this becomes

(3.4.8) 6α〈γ, H2
Sφ〉 + 12α2〈HSγ, γ〉.

Since 1 − |γ|2 ≥ 0 near ⌃ and 1 − |γ|2 = 0 on ⌃ it follows that

HS(1 − |γ|2) = −HS〈γ, γ〉 = −2〈HSγ, γ〉 = 0 on ⌃.

Thus (3.4.8) is equal to 6α〈γ, H2
Sφ〉 and hence the assertion. □

Proof of Proposition 3.4.1: Let S1, S2 be two functions verifying our assump-
tions. From Proposition 3.3.2 we can write

p = −M⇤ + Q, Q ≥ 0

where HΛ is proportional to z1(ρ) and {⇤, Q} vanishes of second order on ⌃.
By (3.4.2) one can write FpHSj = cjHΛ with cj ∕= 0, j = 1, 2. Now

H3
Sj

p = {Sj , {Sj , {Sj ,−⇤M + Q}}}
= −3{Sj , M}{Sj , {Sj , ⇤}}
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on ⌃ because {Sj , ⇤} = 0 and H3
Sj

Q = 0 on ⌃ by Lemma 3.4.3. Since one can
write

HSj
= θjz2(ρ) + Hfj

(ρ), ρ ∈ ⌃, j = 1, 2

with Hfj
∈ Ker Fp ∩ Im F 3

p where fj vanishes on ⌃ then we obtain that

HS1(ρ) =
θ1

θ2
HS2(ρ) + Hf (ρ)

where Hf (ρ) ∈ Ker Fp and f vanishes on ⌃. Let us set

−3{Sj , M} = αj , j = 1, 2

which is di↵erent from zero. Indeed if {Sj , M} = 0 then we would have
{Sj , ξ0} = σ(HSj , H⇠0) = 0 and hence FpHSj =

P
σ(HSj , Hφk

)Hφk
which is

not proportional to HΛ. Then we have

H3
S1

p = α1{S1, {S1, ⇤}} = α1{
θ1

θ2
S2 + f, {θ1

θ2
S2 + f, ⇤}}

= α1

h
(
θ1

θ2
)2{S2, {S2, ⇤}} +

θ1

θ2
{S2, {f, ⇤}}

+
θ1

θ2
{f, {S2, ⇤}} + {f, {f, ⇤}}

i
.

Since {Sj , ⇤} = 0, {f, ⇤} = 0 on ⌃ and hence

{f, {S2, ⇤}} = 0, {f, {f, ⇤}} = 0, on ⌃.

This shows that the third and fourth terms in the above formula vanish on ⌃.
Taking into account the Jacobi identity

{S2, {f, ⇤}} = −{f, {⇤, S2}}− {⇤, {S2, f}}

we see that the second term also vanishes on ⌃ because Hf ∈ Im Fp ∩ Ker Fp.
Hence one has

H3
S1

p
��
Σ

=
α1

α2
(
θ1

θ2
)2H3

S2
p
��
Σ
.

This is the desired assertion. □

3.5 Elementary decomposition revisited

Recall that we are assuming (3.2.1) and (3.2.2) throughout this chapter. The
next result was proved in [44] under some restrictions on the double character-
istic manifold and in [6] in full generality removing the previous restrictions.

Theorem 3.5.1 ([6], [44]) Let S be a smooth function verifying (3.4.1) and
(3.4.2). Then the following assertions are equivalent.
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Proof: Let φj be as in (3.2.4). It is clear that ⌃ = {ξ0 = 0, λ = 0, Q = 0} and
hence one can write

⇤ = ξ0 −
rX

j=1

γjφj , Q = |φ|2 − 〈γ, φ〉2.
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S〈φ, φ〉 = 6〈H2

Sφ, HSφ〉 on ⌃ and hence

(3.4.7) H3
S〈φ, φ〉 = 6α〈H2

Sφ, γ〉 on ⌃.
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H3
S〈γ, φ〉2 = 4(〈HSγ, φ〉 + 〈γ, HSφ〉)

×(2〈HSγ, HSφ〉 + 〈γ, H2
Sφ〉)

+2〈γ, HSφ〉(〈H2
Sγ, φ〉 + 2〈HSγ, HSφ〉 + 〈γ, H2

Sφ〉).

On ⌃ this becomes

(3.4.8) 6α〈γ, H2
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H3
Sj

p = {Sj , {Sj , {Sj ,−⇤M + Q}}}
= −3{Sj , M}{Sj , {Sj , ⇤}}
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P
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S1
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θ1
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θ2
S2 + f, ⇤}}
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h
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θ1

θ2
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θ1

θ2
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θ1

θ2
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i
.
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This is the desired assertion. □

3.5 Elementary decomposition revisited

Recall that we are assuming (3.2.1) and (3.2.2) throughout this chapter. The
next result was proved in [44] under some restrictions on the double character-
istic manifold and in [6] in full generality removing the previous restrictions.

Theorem 3.5.1 ([6], [44]) Let S be a smooth function verifying (3.4.1) and
(3.4.2). Then the following assertions are equivalent.
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(i) H3
S p(ρ) = 0, ρ ∈ ⌃,

(ii) p admits an elementary decomposition at every ρ ∈ ⌃.

Proof: We start by proving that (ii)=⇒(i). From Lemma 3.4.1 we see that HΛ

is proportional to z1(ρ). Then due to Lemma 3.4.3 one has H3
SQ = 0 on ⌃ and

hence

(3.5.1) H3
S p

∣∣
Σ

= −3{S, M}{S, {S, ⇤}}
∣∣
Σ
.

From (3.5.1) it suffices to show

σ(HS , H{S,Λ}) = 0

on ⌃. Thanks to (3.1.1) we have Ker FQ ⊂ Ker F{Λ,Q}. This together with
(3.4.4) shows that

H{S,{Λ,Q}} = −F{Λ,Q}HS = 0

on ⌃. Recall the Jacobi identity

(3.5.2) {Q, {S, ⇤}} + {S, {⇤, Q}} + {⇤, {Q, S}} = 0.

Considering the Hamilton vector field of (3.5.2) we obtain

(3.5.3) FQH{S,Λ} + H{Λ,{Q,S}} = 0 on ⌃.

Let us study the second term in (3.5.3)

H{Λ,{Q,S}} = [HΛ, H{Q,S}].

Since H{Q,S}|Σ = FQHS |Σ = 0 and HΛ ∈ T⇢⌃ = Ker Fp, ρ ∈ ⌃ it follows that
[HΛ, H{Q,S}] = 0. This gives

(3.5.4) FQH{S,Λ} = 0.

Then we have FpH{Λ,S} = −(1/2)σ(H{Λ,S}, HM )HΛ because σ(H{Λ,S}, HΛ) = 0
which follows from {S, ⇤} = 0 on ⌃. From Lemma 3.4.1, HΛ is proportional to
z1 and then FpHS is so

(3.5.5) HΛ = α(ρ)FpHS .

This gives that

H{Λ,S} +
1
2
α(ρ)σ(H{Λ,S}, HM )HS ∈ Ker Fp(ρ)

which proves clearly
σ(HS , H{Λ,S}) = 0

and thus we have proved (ii)=⇒(i).
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The implication (i)=⇒ (ii) follows immediately from the following result
which will be key observations in this chapter. To make the statement of the
following proposition to be clear, using φ̃j instead of φj , assume that p is written
as

p = −ξ2
0 +

rX
j=1

φ̃2
j

near ρ.

Proposition 3.5.1 Assume (3.3.1). Let S be a smooth function verifying (3.4.1)
and (3.4.2) and assume that

H3
S p = 0

near ρ on ⌃. Then near ρ we can rewrite p as

p = −(ξ0 + λ)(ξ0 − λ) + Q

with

λ = φ1 + L(φ′)φ1 + γφ3
1|ξ′|−2,

Q =
rX

j=2

φ2
j + a(φ)φ4

1|ξ′|−2 + b(φ′)L(φ′)φ2
1 ≥ c(|φ′|2 + φ4

1|ξ′|−2)

with some c > 0 where φj are linear combinations of φ̃j, j = 1, ..., r and φ =
(φ1, φ2, ..., φr), φ′ = (φ2, ..., φr). Here ξ0 − λ and φj satisfy

|{ξ0 − λ, Q}| ≤ C(|φ′|2 + φ4
1|ξ′|−2),(3.5.6)

{ξ0 − λ, φj} = O(|φ|), j = 1, ..., r,(3.5.7)

{φ1, φj} = O(|φ|), j ≥ 3,(3.5.8)
{φ1, φ2} > 0(3.5.9)

near ρ. Here L(φ′) = O(|φ′||ξ′|−1) and γ is a real constant.

Proof: Denote φ̃j by φj . Let p be as in (3.4.3). From Proposition 3.3.2 we can
write

(3.5.10) p(x, ξ) = −(ξ0 + φ1(x, ξ′))(ξ0 − φ1(x, ξ′)) + |φ′(x, ξ′)|2

where

(3.5.11) {ξ0 − φ1, φj}
��
Σ

= 0, j = 1, ..., r, {φ1, φ2}(ρ) ∕= 0.

Recall that H⇠0−φ1 is proportional to z1(ρ) on ⌃ near ρ.
Let us consider

φ̃j =
rX

k=2

Ojkφk, j = 2, ..., r.
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(i) H3
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Proof: We start by proving that (ii)=⇒(i). From Lemma 3.4.1 we see that HΛ

is proportional to z1(ρ). Then due to Lemma 3.4.3 one has H3
SQ = 0 on ⌃ and

hence

(3.5.1) H3
S p

∣∣
Σ

= −3{S, M}{S, {S, ⇤}}
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Σ
.

From (3.5.1) it suffices to show

σ(HS , H{S,Λ}) = 0

on ⌃. Thanks to (3.1.1) we have Ker FQ ⊂ Ker F{Λ,Q}. This together with
(3.4.4) shows that

H{S,{Λ,Q}} = −F{Λ,Q}HS = 0

on ⌃. Recall the Jacobi identity

(3.5.2) {Q, {S, ⇤}} + {S, {⇤, Q}} + {⇤, {Q, S}} = 0.

Considering the Hamilton vector field of (3.5.2) we obtain

(3.5.3) FQH{S,Λ} + H{Λ,{Q,S}} = 0 on ⌃.

Let us study the second term in (3.5.3)

H{Λ,{Q,S}} = [HΛ, H{Q,S}].

Since H{Q,S}|Σ = FQHS |Σ = 0 and HΛ ∈ T⇢⌃ = Ker Fp, ρ ∈ ⌃ it follows that
[HΛ, H{Q,S}] = 0. This gives

(3.5.4) FQH{S,Λ} = 0.

Then we have FpH{Λ,S} = −(1/2)σ(H{Λ,S}, HM )HΛ because σ(H{Λ,S}, HΛ) = 0
which follows from {S, ⇤} = 0 on ⌃. From Lemma 3.4.1, HΛ is proportional to
z1 and then FpHS is so

(3.5.5) HΛ = α(ρ)FpHS .

This gives that

H{Λ,S} +
1
2
α(ρ)σ(H{Λ,S}, HM )HS ∈ Ker Fp(ρ)

which proves clearly
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and thus we have proved (ii)=⇒(i).
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The implication (i)=⇒ (ii) follows immediately from the following result
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p = −ξ2
0 +

rX
j=1

φ̃2
j

near ρ.

Proposition 3.5.1 Assume (3.3.1). Let S be a smooth function verifying (3.4.1)
and (3.4.2) and assume that

H3
S p = 0

near ρ on ⌃. Then near ρ we can rewrite p as

p = −(ξ0 + λ)(ξ0 − λ) + Q

with

λ = φ1 + L(φ′)φ1 + γφ3
1|ξ′|−2,

Q =
rX

j=2

φ2
j + a(φ)φ4

1|ξ′|−2 + b(φ′)L(φ′)φ2
1 ≥ c(|φ′|2 + φ4

1|ξ′|−2)

with some c > 0 where φj are linear combinations of φ̃j, j = 1, ..., r and φ =
(φ1, φ2, ..., φr), φ′ = (φ2, ..., φr). Here ξ0 − λ and φj satisfy

|{ξ0 − λ, Q}| ≤ C(|φ′|2 + φ4
1|ξ′|−2),(3.5.6)

{ξ0 − λ, φj} = O(|φ|), j = 1, ..., r,(3.5.7)

{φ1, φj} = O(|φ|), j ≥ 3,(3.5.8)
{φ1, φ2} > 0(3.5.9)

near ρ. Here L(φ′) = O(|φ′||ξ′|−1) and γ is a real constant.

Proof: Denote φ̃j by φj . Let p be as in (3.4.3). From Proposition 3.3.2 we can
write

(3.5.10) p(x, ξ) = −(ξ0 + φ1(x, ξ′))(ξ0 − φ1(x, ξ′)) + |φ′(x, ξ′)|2

where

(3.5.11) {ξ0 − φ1, φj}
��
Σ

= 0, j = 1, ..., r, {φ1, φ2}(ρ) ∕= 0.

Recall that H⇠0−φ1 is proportional to z1(ρ) on ⌃ near ρ.
Let us consider

φ̃j =
rX

k=2

Ojkφk, j = 2, ..., r.
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where O = (Ojk) is an orthogonal matrix which is smooth near ρ. Choosing O

suitably and switching the notation {φ̃j} to {φj} again we can assume that

{φ1, φ2}(ρ) ∕= 0, {φ1, φj} = 0 near ρ on ⌃, j = 3, ..., r.

We may assume {φ1, φ2} > 0 without restrictions. Thus the assertion (3.5.9)
are proved.

We now determine L(φ′) = 〈β′, φ′〉 where β′ = (β2, ..., βr) and βj are smooth
functions of (x, ξ′), homogeneous of degree −1 in ξ′, following the arguments in
[6]. We rewrite (3.5.10) as

p(x, ξ) = −(ξ0 + φ1 + L(φ′)φ1 + γφ̂3
1|ξ′|−2)

×(ξ0 − φ1 − L(φ′)φ1 − γφ3
1|ξ′|−2) + |φ′|2 − L(φ′)2φ2

1

−γ2φ6
1|ξ′|−4 − 2φ2

1L(φ′) − 2γφ4
1|ξ′|−2 − 2γL(φ′)φ4

1|ξ′|−2

= −(ξ0 + φ1 + L(φ′)φ1 + γφ3
1|ξ′|−2)(3.5.12)

×(ξ0 − φ1 − L(φ′)φ1 − γφ3
1|ξ′|−2)

+|φ′|2 − 2γ
�
1 + L(φ′) + γφ2

1|ξ′|−2/2
�
φ4

1|ξ′|−2

−2L(φ′)
�
1 + L(φ′)/2

�
φ2

1 = −(ξ0 + λ)(ξ0 − λ) + Q

where

λ = φ1 + L(φ′)φ1 + γφ3
1|ξ′|−2,

Q = |φ′|2 − 2γ(1 + L(φ′) + γφ2
1|ξ′|−2/2)φ4

1|ξ′|−2 − 2L(φ′)(1 + L(φ′)/2)φ2
1.

Now the assertion (3.5.7) follows from (3.5.11) immediately. Taking γ negative
large enough it is clear that

(3.5.13) Q ≥ c(|φ′|2 + φ4
1|ξ′|−2)

with some c > 0. We prove that we can choose β′ so that (3.5.6) holds. Note
that

{ξ0 − λ, Q} = {ξ0 − φ1, |φ′|2 − 2L(φ′)(1 + L(φ′)/2)φ2
1}

−{L(φ′)φ1, |φ′|2} + O(Q)(3.5.14)

where one can write

(3.5.15) {ξ0 − φ1, φj} =
rX

k=1

αjkφk, j = 1, ..., r
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with smooth αjk. Using (3.5.15) and (3.5.13), (3.5.14) reads as

{ξ0 − λ, Q} = 2
rX

`=2

φ`

rX
k=1

α`kφk

−2φ2
1

rX
`=2

β`

rX
k=1

α`kφk(1 + L(φ′)/2)(3.5.16)

−2φ1

rX
`=2

φ`

rX
k=2

βk{φk, φ`} + O(Q).

Distinguishing the role of φ1 from that of φ′, we can write

{ξ0 − λ, Q} = 2
rX

`=2

α`1φ`φ1 − 2φ1

rX
`=2

φ`

rX
k=2

βk{φk, φ`}

−2φ3
1

rX
`=2

β`α`1 + O(Q).(3.5.17)

Put α′
1 = (α21, ..., αr1) then (3.5.17) becomes

{ξ0 − λ, Q} = 2
�
〈α′

1, φ
′〉 + 〈{φ′, φ′}β′, φ′〉

�
φ1

−2φ3
1〈α′

1, β
′〉 + O(Q).(3.5.18)

We show that we can choose β′ = (β2, ..., βr) such that

(3.5.19) {φ′, φ′}β′ + α′
1 = 0, 〈α′

1, β
′〉 = 0

on ⌃ so that the right-hand side of (3.5.18) is O(Q).

Lemma 3.5.1 We have

〈α′
1, v〉 = 0

for any v satisfying {φ′, φ′}v = 0.

Proof: We first make a closer look at our assumption H3
S p = 0. Since S vanishes

on ⌃ and one can assume that S is independent of ξ0 then we can write

(3.5.20) S(x, ξ′) =
rX

j=1

cj(x, ξ′)φj(x, ξ′).

Since H⇠0−φ1 is proportional to z1(ρ) on ⌃ then FpHS is also proportional to
H⇠0−φ1 on ⌃. Thanks to Proposition 3.4.1, multiplying S by a non zero function
if necessary, we may assume that

(3.5.21) FpHS = −H⇠0−φ1 on ⌃.
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where O = (Ojk) is an orthogonal matrix which is smooth near ρ. Choosing O
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We may assume {φ1, φ2} > 0 without restrictions. Thus the assertion (3.5.9)
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Now the assertion (3.5.7) follows from (3.5.11) immediately. Taking γ negative
large enough it is clear that
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with some c > 0. We prove that we can choose β′ so that (3.5.6) holds. Note
that
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S p = 0. Since S vanishes

on ⌃ and one can assume that S is independent of ξ0 then we can write
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We study the identity (3.5.21). Plugging (3.5.20) into (3.5.21) to get

FpHS(ρ) = −1
2
{S, ξ0 + φ1}H⇠0−φ1 +

rX
j=2

{S, φj}Hφj

= −1
2

rX
h=1

ch{φh, ξ0 + φ1}H⇠0−φ1 +
rX

j=2

rX
h=1

ch{φh, φj}Hφj

= −H⇠0−φ1

on ⌃ because {S, ξ0 − φ1} = 0. Hence we have on ⌃
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rX
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rX

h=2

ch{φh, φj} = 0, j = 2, ..., r(3.5.22)
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near ρ on ⌃ where c2 = {φ2, φ1}−1 ∕= 0.
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H3
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with some c ∕= 0 which is examined in the proof of Lemma 3.4.3. Take (3.5.23)
and (3.5.24) into account we see that H3

S p = 0 on ⌃ implies that

(3.5.25) {S, ξ0 − φ1} = O(|φ′| + φ2
1).
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48CHAPTER 3. NONEFFECTIVELY HYPERBOLIC CHARACTERISTICS

We study the identity (3.5.21). Plugging (3.5.20) into (3.5.21) to get

FpHS(ρ) = −1
2
{S, ξ0 + φ1}H⇠0−φ1 +

rX
j=2

{S, φj}Hφj

= −1
2

rX
h=1

ch{φh, ξ0 + φ1}H⇠0−φ1 +
rX

j=2

rX
h=1

ch{φh, φj}Hφj

= −H⇠0−φ1

on ⌃ because {S, ξ0 − φ1} = 0. Hence we have on ⌃

1
2

rX
h=1

ch{φh, ξ0 + φ1} = 1,

c1{φ1, φj} +
rX

h=2

ch{φh, φj} = 0, j = 2, ..., r(3.5.22)

and, taking {φh, ξ0 + φ1} = {φh, ξ0 − φ1} + 2{φh, φ1} into account, we have

(3.5.23) c2{φ2, φ1} = 1

because {φj , φ1} = 0 for j ≥ 3. We multiply (3.5.22) by cj and sum up over
j = 2, ..., r which yields

−c1 +
rX

h=2

rX
j=2

cjch{φh, φj} = 0.

The second term in the left-hand side vanishes because ({φk, φh}) is anti sym-
metric and thus we get c1 = 0 and (3.5.22) gives

(3.5.24) {S, φj} = 0, j = 2, ..., r, S =
rX

h=2

chφh

near ρ on ⌃ where c2 = {φ2, φ1}−1 ∕= 0.
By Lemma 3.4.3 one obtains

H3
S p = −3{S, ξ0 + φ1}{S, {S, ξ0 − φ1}} = c{S, {S, ξ0 − φ1}}

with some c ∕= 0 which is examined in the proof of Lemma 3.4.3. Take (3.5.23)
and (3.5.24) into account we see that H3

S p = 0 on ⌃ implies that

(3.5.25) {S, ξ0 − φ1} = O(|φ′| + φ2
1).

Since {S, φ1} = 1 then from (3.5.24) it follows that αj1 = {S, {ξ0 − φ1, φj}}.
Thanks to the Jacobi identity we get for j ≥ 2

αj1 = −{ξ0 − φ1, {φj , S}}− {φj , {S, ξ0 − φ1}}
= −{φj , {S, ξ0 − φ1}}

3.5. ELEMENTARY DECOMPOSITION REVISITED 49

on ⌃ because of (3.5.24). Thus from (3.5.25) we can write

αj1 =
rX

k=2

wk{φj , φk}

with some wk. Then one has

rX
j=2

vjαj1 =
rX

k=2

wk

rX
j=2

{φj , φk}vj = 0

which is the desired assertion. □
Thanks to Lemma 3.5.1 it follows that the equation

{φ′, φ′}β′ = −α′
1

has a smooth solution β′. Finally we note that 〈α′
1, β

′〉 = 0 holds since {φ′, φ′}
is anti-symmetric. Thus we have proved the assertion (3.5.6). □


