Chapter 3

Noneffectively hyperbolic characteristics

3.1 Elementary decomposition

In what follows we assume that the doubly characteristic set

$$
\Sigma=\{(x, \xi) \mid p(x, \xi)=d p(x, \xi)=0\}
$$

of p is a smooth conic manifold. In this section we study p of the form

$$
p=-\xi_{0}^{2}+a_{1}\left(x, \xi^{\prime}\right) \xi_{0}+a_{2}\left(x, \xi^{\prime}\right)
$$

which is hyperbolic with respect to ξ_{0}.
Definition 3.1.1 We say that $p(x, \xi)$ admits an elementary decomposition if there exist real valued symbols $\lambda\left(x, \xi^{\prime}\right), \mu\left(x, \xi^{\prime}\right), Q\left(x, \xi^{\prime}\right)$ defined near $x=0$, depending smoothly on x_{0}, homogeneous of degree $1,1,2$ respectively and $Q\left(x, \xi^{\prime}\right) \geq$ 0 such that

$$
\begin{array}{r}
p(x, \xi)=-\Lambda(x, \xi) M(x, \xi)+Q\left(x, \xi^{\prime}\right), \\
\Lambda(x, \xi)=\xi_{0}-\lambda\left(x, \xi^{\prime}\right), M(x, \xi)=\xi_{0}-\mu\left(x, \xi^{\prime}\right), \\
\left|\left\{\Lambda(x, \xi), Q\left(x, \xi^{\prime}\right)\right\}\right| \leq C Q\left(x, \xi^{\prime}\right), \tag{3.1.1}\\
(3.1 .1) \quad|\{\Lambda(x, \xi), M(x, \xi)\}| \leq C\left(\sqrt{Q\left(x, \xi^{\prime}\right)}+\left|\Lambda\left(x, \xi^{\prime}\right)-M\left(x, \xi^{\prime}\right)\right|\right)
\end{array}
$$

with some constant C. If we can find such symbols defined in a conic neighborhood of ρ then we say that $p(x, \xi)$ admits an elementary decomposition at ρ.

Lemma 3.1.1 ([26]) Assume that p admits an elementary decomposition. Then there is no null bicharacteristic which has a limit point in Σ.

Proof: Note that $\Sigma=\left\{(x, \xi) \mid \Lambda(x, \xi)=M(x, \xi)=Q\left(x, \xi^{\prime}\right)=0\right\}$ because $\partial_{\xi_{0}} p=-(\Lambda(x, \xi)+M(x, \xi))=0$ and $p(x, \xi)=0$ implies $\Lambda(x, \xi)^{2}+Q\left(x, \xi^{\prime}\right)=0$. Let $\gamma(s)$ be a null bicharacteristic of p which lies outside Σ. Since $p(\gamma(s))=0$ we may assume that $d x_{0}(s) / d s=-\Lambda(\gamma(s))-M(\gamma(s))<0$ so that we can take x_{0} as a parameter:

$$
\frac{d}{d x_{0}} \Lambda\left(\gamma\left(x_{0}\right)\right)=\frac{d}{d s} \Lambda(\gamma(s)) \frac{d s}{d x_{0}}=\{p, \Lambda\}(\gamma(s)) \frac{d s}{d x_{0}}
$$

Since $M \Lambda=Q \geq 0$ we have $\Lambda(\gamma(s)) \geq 0$ and $M(\gamma(s)) \geq 0$. Noting $p=$ $-M \Lambda+Q$ we see on $\gamma(s)$

$$
\begin{array}{r}
|\{p, \Lambda\}| \leq C(Q+\Lambda \sqrt{Q}+\Lambda|\Lambda-M|) \\
\quad=C \Lambda(M+\sqrt{\Lambda M}+|\Lambda-M|)
\end{array}
$$

Since

$$
\frac{M+\sqrt{\Lambda M}+|\Lambda-M|}{\Lambda+M} \leq 3
$$

one has

$$
\begin{equation*}
\left|\frac{d}{d x_{0}} \Lambda\left(\gamma\left(x_{0}\right)\right)\right| \leq C \Lambda\left(\gamma\left(x_{0}\right)\right) \tag{3.1.3}
\end{equation*}
$$

Suppose that $\gamma\left(x_{0}\right) \notin \Sigma$ for $x_{0} \neq 0$ and $\lim _{x_{0} \rightarrow 0} \gamma\left(x_{0}\right) \in \Sigma$ so that $\Lambda(\gamma(0))=0$. From (3.1.3) it follows that $\Lambda\left(\gamma\left(x_{0}\right)\right)=0$ and hence $Q\left(\gamma\left(x_{0}\right)\right)=0$ for $p\left(\gamma\left(x_{0}\right)\right)=$ 0 . Since Q is non-negative it follows that $\{Q, M\}\left(\gamma\left(x_{0}\right)\right)=0$. This proves

$$
\left|\frac{d}{d x_{0}} M\left(\gamma\left(x_{0}\right)\right)\right| \leq C M\left(\gamma\left(x_{0}\right)\right)
$$

and hence $M\left(\gamma\left(x_{0}\right)\right)=0$ so that $\gamma\left(x_{0}\right) \in \Sigma$ which is a contradiction.

3.2 Case $\operatorname{Im} F_{p}^{2} \cap \operatorname{Ker} F_{p}^{2}=\{0\}$

Here we work with

$$
p(x, \xi)=-\xi_{0}^{2}+q\left(x, \xi^{\prime}\right), \quad q\left(x, \xi^{\prime}\right) \geq 0
$$

We assume that the doubly characteristic set

$$
\Sigma=\{(x, \xi) \mid p(x, \xi)=d p(x, \xi)=0\}
$$

is a smooth manifold near $\bar{\rho}$ such that

$$
\begin{equation*}
\operatorname{dim} T_{\rho} \Sigma=\operatorname{dim} \operatorname{Ker} F_{p}(\rho), \quad \rho \in \Sigma \tag{3.2.1}
\end{equation*}
$$

that is, the codimension of Σ is equal to the rank of the Hessian of p at every point on Σ and

$$
\begin{equation*}
\operatorname{rank}\left(\left.\sigma\right|_{\Sigma}\right)=\text { constant } \quad \text { on } \Sigma \tag{3.2.2}
\end{equation*}
$$

where $\sigma=\sum d \xi_{j} \wedge d x_{j}$ and finally we assume that p is noneffectively hyperbolic at every $\rho \in \Sigma$ and

$$
\begin{equation*}
\operatorname{Ker} F_{p}^{2}(\rho) \cap \operatorname{Im} F_{p}^{2}(\rho)=\{0\}, \quad \forall \rho \in \Sigma \tag{3.2.3}
\end{equation*}
$$

From the hypothesis (3.2.1), near every $\bar{\rho} \in \Sigma$, one can write

$$
\begin{equation*}
p(x, \xi)=-\xi_{0}^{2}+\sum_{j=1}^{r} \phi_{j}\left(x, \xi^{\prime}\right)^{2} \tag{3.2.4}
\end{equation*}
$$

where $d \phi_{j}$ are linearly independent at $\bar{\rho}$ and Σ is given by

$$
\Sigma=\left\{(x, \xi) \mid \phi_{j}(x, \xi)=0, j=0, \ldots, r\right\}
$$

near $\bar{\rho}$ where we have set $\phi_{0}(x, \xi)=\xi_{0}$. Let $Q(u, v)$ be the polar form of $p_{\bar{\rho}}$. Since

$$
\frac{1}{2} Q(u, v)=-d \phi_{0}(u) d \phi_{0}(v)+\sum_{j=1}^{r} d \phi_{j}(u) d \phi_{j}(v)
$$

where $d \phi_{j}(u)=d \phi_{j}(\bar{\rho} ; u)$ then it follows that

$$
\begin{aligned}
& \frac{1}{2} Q(u, v)=-\sigma\left(u, H_{\phi_{0}}\right) \sigma\left(v, H_{\phi_{0}}\right)+\sum_{j=1}^{r} \sigma\left(u, H_{\phi_{j}}\right) \sigma\left(v, H_{\phi_{j}}\right) \\
= & \sigma\left(u,-\sigma\left(v, H_{\phi_{0}}\right) H_{\phi_{0}}+\sum_{j=1}^{r} \sigma\left(v, H_{\phi_{j}}\right) H_{\phi_{j}}\right)=\sigma\left(u, F_{p}(\bar{\rho}) v\right) .
\end{aligned}
$$

Thus we have

$$
\begin{equation*}
F_{p}(\bar{\rho}) v=-\sigma\left(v, H_{\xi_{0}}\right) H_{\xi_{0}}+\sum_{j=1}^{r} \sigma\left(v, H_{\phi_{j}}(\bar{\rho})\right) H_{\phi_{j}}(\bar{\rho}) . \tag{3.2.5}
\end{equation*}
$$

In particular we see

$$
\begin{equation*}
\operatorname{Im} F_{p}(\bar{\rho})=\left\langle H_{\phi_{0}}(\bar{\rho}), H_{\phi_{1}}(\bar{\rho}), \ldots, H_{\phi_{r}}(\bar{\rho})\right\rangle \tag{3.2.6}
\end{equation*}
$$

It is also clear that

$$
\begin{align*}
\operatorname{Ker} F_{p}(\bar{\rho}) & =\left\{v \in \mathbb{R}^{2(n+1)} \mid \sigma\left(v, H_{\phi_{j}}\right)=0, j=0,1, \ldots, r\right\} \\
& =\left\langle H_{\phi_{0}}, H_{\phi_{1}}, \ldots, H_{\phi_{r}}\right\rangle^{\sigma}=\left(\operatorname{Im} F_{p}(\bar{\rho})\right)^{\sigma}=T_{\bar{\rho}} \Sigma \tag{3.2.7}
\end{align*}
$$

Here we remark
Lemma 3.2.1 The condition (3.2.2) is equivalent to

$$
\operatorname{rank}\left(\left\{\phi_{i}, \phi_{j}\right\}\right)(\rho)=\mathrm{const}, \quad \rho \in \Sigma
$$

Proof: Note that

$$
\left(T_{\rho} \Sigma\right)^{\sigma}=\left\langle H_{\phi_{0}}(\rho), \ldots, H_{\phi_{r}}(\rho)\right\rangle
$$

and $\sigma\left(H_{\phi_{i}}(\rho), H_{\phi_{j}}(\rho)\right)=\left\{\phi_{i}, \phi_{j}\right\}(\rho)$. From this it is enough to show that (3.2.2) is equivalent to

$$
\operatorname{rank}\left(\left.\sigma\right|_{\left(T_{\rho} \Sigma\right)^{\sigma}}\right)=\text { const. }
$$

Let us consider the map

$$
L: T_{\rho} \Sigma \ni v \mapsto \sum_{j=1}^{s} \sigma\left(v, f_{j}(\rho)\right) f_{j}(\rho) \in T_{\rho} \Sigma
$$

where $T_{\rho} \Sigma=\left\langle f_{1}(\rho), \ldots, f_{s}(\rho)\right\rangle$. The assumption (3.2.2) implies that the rank of the matrix $\left(\sigma\left(f_{i}(\rho), f_{j}(\rho)\right)\right)$ is constant and hence

$$
\operatorname{dim} \operatorname{Ker} L=\operatorname{dim}\left(T_{\rho} \Sigma \cap\left(T_{\rho} \Sigma\right)^{\sigma}\right)=\text { const. }
$$

This proves the desired assertion because the kernel of

$$
\tilde{L}:\left(T_{\rho} \Sigma\right)^{\sigma} \ni v \mapsto \sum_{j=0}^{r} \sigma\left(v, H_{\phi_{j}}(\rho)\right) H_{\phi_{j}}(\rho) \in\left(T_{\rho} \Sigma\right)^{\sigma}
$$

is just $\operatorname{Ker} L$.
Assume (3.2.3) then from Corollary 2.3 .1 the quadratic form p_{ρ} takes the form, in a suitable symplectic coordinates

$$
\begin{equation*}
p_{\rho}=-\xi_{0}^{2}+\sum_{j=1}^{k} \mu_{j}^{2}\left(x_{j}^{2}+\xi_{j}^{2}\right)+\sum_{j=k+1}^{k+\ell} \xi_{j}^{2} \tag{3.2.8}
\end{equation*}
$$

where we have
Lemma 3.2.2 The number k in (3.2.8) is independent of $\rho \in \Sigma$.
Proof: With $\left\{\psi_{j}\right\}=\left\{\xi_{0}, x_{j}, \xi_{j}, 1 \leq j \leq k, \xi_{j}, k+1 \leq j \leq k+\ell\right\}$ it follows from Lemma 3.2.1 that the rank of $\left(\left\{\psi_{i}, \psi_{j}\right\}\right)$ is constant. This shows that k is independent of $\rho \in \Sigma$.

Lemma 3.2.3 There exist a conic neighborhood V of $\bar{\rho}$ and a smooth vector $h(\rho)$ defined in $V \cap \Sigma$ such that

$$
\begin{equation*}
h(\rho) \in \operatorname{Ker} F_{p}^{2}(\rho), \quad p_{\rho}(h(\rho))<0, \quad \sigma\left(H_{x_{0}}, F_{p}(\rho) h(\rho)\right)=-1 \tag{3.2.9}
\end{equation*}
$$

on $\rho \in V \cap \Sigma$.
Proof: Let p_{ρ} take the form (3.2.8). Then from (3.2.5)

$$
F_{p}^{2}(\rho) v=\sum_{j=1}^{k} \mu_{j}^{2}\left(\sigma\left(v, H_{\xi_{j}}\right) H_{x_{j}}-\sigma\left(v, H_{x_{j}}\right) H_{\xi_{j}}\right)
$$

so that

$$
\operatorname{Ker} F_{p}^{2}(\rho)=\left\{v \mid \sigma\left(v, H_{\xi_{j}}\right)=0, \sigma\left(v, H_{x_{j}}\right)=0, j=1, \ldots, k\right\}
$$

and hence $\operatorname{dim} \operatorname{Ker} F_{p}^{2}(\rho)=2 n+2-2 k$ which is independent of $\rho \in \Sigma$ by Lemma 3.2.2. Let $p_{\bar{\rho}}$ take the form (3.2.8). Since we have that $F_{p}^{2}(\bar{\rho}) H_{x_{0}}=0$, $p_{\bar{\rho}}\left(H_{x_{0}}\right)=-1$ and $\sigma\left(H_{x_{0}}, F_{p}(\bar{\rho}) H_{x_{0}}\right)=-1$ then there is a conic neighborhood V of $\bar{\rho}$ such that one can choose smooth $h(\rho)$ defined in $V \cap \Sigma$ such that

$$
\begin{equation*}
h(\rho) \in \operatorname{Ker} F_{p}^{2}(\rho), \quad p_{\rho}(h(\rho))<0, \quad \sigma\left(H_{x_{0}}, F_{p}(\rho) h(\rho)\right)=-1 \tag{3.2.10}
\end{equation*}
$$

for $\rho \in V \cap \Sigma$. We can assume that $h(\rho)$ is homogeneous of degree 0 in ξ, for if not we can just restrict to the sphere $|\xi|=1$ and extend the restriction so that it becomes homogeneous of degree 0 .

Lemma 3.2.4 Assume that $h(\rho)$ satisfies (3.2.10). Then we have

$$
\sigma\left(v, F_{p}(\rho) h(\rho)\right)=0 \Longrightarrow p_{\rho}(v)>0
$$

Proof: Let us fix $\rho \in V \cap \Sigma$. We can assume that p_{ρ} has the form (3.2.8). Set $w=F_{p}(\rho) h(\rho)$ and hence $w \in \operatorname{Ker} F_{p}(\rho)$. From (3.2.10) one can put $h(\rho)=$ $\left(y_{0}, \ldots, y_{n},-1, \eta_{1}, \ldots, \eta_{n}\right)$ where $y_{1}=\cdots=y_{k}=0, \eta_{1}=\cdots=\eta_{k}=0$ then we see

$$
1>\sum_{j=k+1}^{k+\ell} \eta_{j}^{2}, \quad w=H_{\xi_{0}}-\sum_{j=k+1}^{k+\ell} \eta_{j} H_{\xi_{j}}
$$

because $p_{\rho}(h(\rho))<0$ and $\sigma\left(H_{x_{0}}, w\right)=-1$. Let $v=\left(x_{0}, \ldots, x_{n}, \xi_{0}, \ldots, \xi_{n}\right)$ and $\sigma(v, w)=0$ hence $\xi_{0}-\sum_{j=k+1}^{k+\ell} \eta_{j} \xi_{j}=0$ so that we conclude

$$
\xi_{0}^{2}<\sum_{j=k+1}^{k+\ell} \xi_{j}^{2}
$$

and hence the assertion otherwise we would have

$$
\xi_{0}^{2}=\left(\sum_{j=k+1}^{k+\ell} \eta_{j} \xi_{j}\right)^{2} \leq\left(\sum_{j=k+1}^{k+\ell} \eta_{j}^{2}\right)\left(\sum_{j=k+1}^{k+\ell} \xi_{j}^{2}\right) \leq \delta \xi_{0}^{2}
$$

with some $\delta<1$ which is a contradiction.

Proposition 3.2.1 Assume that $\operatorname{Ker} F_{p}^{2} \cap \operatorname{Im} F_{p}^{2}=\{0\}$ on Σ. Then p admits an elementary decomposition

$$
p=-M \Lambda+Q
$$

such that $|M-\Lambda| \leq C \sqrt{Q}$ with some $C>0$.

Proof: We first work in a neighborhood V of any $\bar{\rho} \in \Sigma$. Let $h(\rho)$ be in Lemma 3.2.3 and put $w(\rho)=F_{p}(\rho) h(\rho)$. Since $\operatorname{Im} F_{p}(\rho)=\left\langle H_{\xi_{0}}, H_{\phi_{1}}, \ldots, H_{\phi_{r}}\right\rangle$ then one can write

$$
w(\rho)=\gamma_{0} H_{\xi_{0}}-\sum_{j=1}^{r} \gamma_{j} H_{\phi_{j}}
$$

where $\gamma_{j}(\rho)$ are smooth in $V \cap \Sigma$. From $\sigma\left(H_{x_{0}}, w(\rho)\right)=-1$ we have $\gamma_{0}=1$. As remarked above we can assume that γ_{j} are homogeneous of degree 0 in ξ. Let us put

$$
\lambda=\sum_{j=1}^{r} \gamma_{j}\left(x, \xi^{\prime}\right) \phi_{j}\left(x, \xi^{\prime}\right)
$$

so that $w(\rho)=H_{\xi_{0}-\lambda}$ on $V \cap \Sigma$. Let us write

$$
p=-\left(\xi_{0}+\lambda\right)\left(\xi_{0}-\lambda\right)+\hat{q}, \quad \hat{q}=\sum_{j=1}^{r} \phi_{j}^{2}-\left(\sum_{j=1}^{r} \gamma_{j} \phi_{j}\right)^{2}=q-\lambda^{2}
$$

We now check that

$$
\sum_{j=1}^{r} \gamma_{j}^{2}<1
$$

From Lemma 3.2.4 it follows that

$$
\sigma\left(v, H_{\xi_{0}-\lambda}\right)=0 \Longrightarrow \sigma\left(v, F_{p}(\rho) v\right)=\sigma\left(v, F_{\hat{q}}(\rho) v\right)>0
$$

This implies that

$$
\sigma\left(v, H_{\xi_{0}-\lambda}\right)=0 \Longrightarrow \sum_{j=1}^{r} \sigma\left(v, H_{\phi_{j}}\right)^{2}-\left(\sum_{j=1}^{r} \gamma_{j} \sigma\left(v, H_{\phi_{j}}\right)\right)^{2}>0
$$

Note that the map

$$
\left\langle H_{\xi_{0}-\lambda}\right\rangle^{\sigma} / T_{\rho} \Sigma \ni v \mapsto\left(\sigma\left(v, H_{\phi_{j}}\right)\right)_{j=1, \ldots, r} \in \mathbb{R}^{r}
$$

is surjective. Indeed if $\sigma\left(v, H_{\xi_{0}-\lambda}\right)=0, \sigma\left(v, H_{\phi_{j}}\right)=0$ for $j=1, \ldots, r$ then it follows that

$$
v \in\left\langle H_{\xi_{0}-\lambda}, H_{\phi_{1}}, \ldots, H_{\phi_{r}}\right\rangle^{\sigma}=\left\langle H_{\xi_{0}}, H_{\phi_{1}}, \ldots, H_{\phi_{r}}\right\rangle^{\sigma}=\operatorname{Ker} F_{p}(\rho)=T_{\rho} \Sigma
$$

From this it follows that $\langle\gamma, t\rangle^{2}<|t|^{2}$ for any $t \in \mathbb{R}^{r}$ and hence we conclude

$$
|\gamma(\rho)|=\left(\sum_{j=1}^{r} \gamma_{j}(\rho)^{2}\right)^{1 / 2}<1
$$

We extend $\gamma_{j}(\rho)(\rho \in V \cap \Sigma)$ to V such a way that $|\gamma|<1$ in V. This proves that

$$
\hat{q} \geq c \sum_{j=1}^{r} \phi_{j}\left(x, \xi^{\prime}\right)^{2}
$$

with some $c>0$ and hence we have

$$
|\lambda|^{2} \leq \delta q
$$

with some $\delta<1$. Recall that $H_{\xi_{0}-\lambda} \in \operatorname{Ker} F_{p}$ in $V \cap \Sigma$ and this shows that $\left\{\xi_{0}-\lambda, \phi_{j}\right\}=0$ in $V \cap \Sigma$ and hence

$$
\left\{\xi_{0}-\lambda, \lambda\right\}=0 \quad \text { in } \quad V \cap \Sigma
$$

Thus we can find a family of conic open sets $\left\{V_{i}\right\}$ and smooth $\left\{\lambda_{i}\right\}$ defined on V_{i}, homogeneous of degree 0 such that one can write in V_{i}

$$
\begin{aligned}
& p=-\xi_{0}^{2}+q=-\xi_{0}^{2}+\sum_{\alpha=1}^{r(i)} \phi_{i \alpha}^{2} \\
&=-\left(\xi_{0}+\lambda_{i}\right)\left(\xi_{0}-\lambda_{i}\right)+q_{i}, \quad q_{i}=q-\lambda_{i}^{2} \\
&\left|\lambda_{i}\right| \leq \sqrt{\delta} \sqrt{q} \quad \text { in } \quad V_{i} \\
&\left\{\xi_{0}-\lambda_{i}, \phi_{i \alpha}\right\}=0 \quad \text { on } \quad V_{i} \cap \Sigma, \quad \alpha=1, \ldots, r(i) .
\end{aligned}
$$

Take a partition of unity $\left\{\chi_{i}\right\}$ subordinate to $\left\{V_{i}\right\}$ such that $0 \leq \chi_{i} \leq 1$, $\chi_{i} \in C_{0}^{\infty}\left(V_{i}\right)$, homogeneous of degree 0 and $\sum \chi_{i}=1$. Define

$$
\begin{aligned}
& \lambda=\sum \chi_{i} \lambda_{i} \\
& p=-\left(\xi_{0}+\lambda\right)\left(\xi_{0}-\lambda\right)+Q, \quad Q=q-\lambda^{2}
\end{aligned}
$$

Here we note that

$$
\begin{array}{r}
|\lambda| \leq \sum \chi_{i}\left|\lambda_{i}\right| \leq \sqrt{\delta} \sqrt{q} \sum \chi_{i}=\sqrt{\delta} \sqrt{q} \\
Q=q-\lambda^{2} \geq q-\delta^{2} q=\left(1-\delta^{2}\right) q \geq 0
\end{array}
$$

We now show that this gives an elementary decomposition. Note that

$$
\begin{array}{r}
\left\{\xi_{0}-\lambda, Q\right\}=\sum \chi_{i}\left\{\xi_{0}-\lambda_{i}, Q\right\}+\sum\left(\xi_{0}-\lambda_{i}\right)\left\{\chi_{i}, Q\right\} \\
=\sum \chi_{i}\left\{\xi_{0}-\lambda_{i}, Q\right\}-\sum \lambda_{i}\left\{\chi_{i}, Q\right\}
\end{array}
$$

because $\sum\left\{\chi_{i}, Q\right\}=0$. Recall that $\left\{\xi_{0}-\lambda_{i}, \phi_{i \alpha}\right\}=0$ on $V_{i} \cap \Sigma$ and hence $\left\{\xi_{0}-\lambda_{i}, \phi_{i \alpha}\right\}$ is a linear combination of $\left\{\phi_{i \alpha}\right\}$ there. Since $c_{1} \sum \phi_{i \alpha}^{2} \geq Q \geq$ $c_{2} \sum \phi_{i \alpha}^{2}$ in V_{i} with some $c_{i}>0$ and hence $Q=\sum Q_{\alpha \beta} \phi_{i \alpha} \phi_{i \beta}$ then on the support of χ_{i} we have

$$
\left|\left\{\xi_{0}-\lambda_{i}, Q\right\}\right| \leq C \sum_{\alpha} \phi_{i \alpha}^{2} \leq C^{\prime} q_{i} \leq C^{\prime} q \leq C^{\prime \prime} Q
$$

On the other hand we have $\left|\left\{\chi_{i}, Q\right\}\right| \leq C \sqrt{Q}$ because $Q \geq 0$ and

$$
\left|\lambda_{i}\right| \leq \delta \sqrt{q} \leq C \sqrt{Q}
$$

then we get

$$
\begin{equation*}
\left|\left\{\xi_{0}-\lambda, Q\right\}\right| \leq C Q . \tag{3.2.11}
\end{equation*}
$$

We now study $\left|\left\{\xi_{0}-\lambda, \xi_{0}+\lambda\right\}\right|=2\left|\left\{\xi_{0}-\lambda, \lambda\right\}\right|$. Note that

$$
\left\{\xi_{0}-\lambda, \lambda\right\}=\sum \chi_{i}\left\{\xi_{0}-\lambda, \lambda_{i}\right\}+\sum \lambda_{i}\left\{\xi_{0}-\lambda, \chi_{i}\right\}
$$

and

$$
\chi_{i}\left\{\xi_{0}-\lambda, \lambda_{i}\right\}=\chi_{i} \sum \chi_{k}\left\{\xi_{0}-\lambda_{k}, \lambda_{i}\right\}-\chi_{i} \sum \lambda_{k}\left\{\chi_{k}, \lambda_{i}\right\}
$$

Since we have $\left\{\xi_{0}-\lambda_{k}, \lambda_{i}\right\}=0$ on $V_{k} \cap V_{i} \cap \Sigma$ the same arguments as above give

$$
\left|\left\{\xi_{0}-\lambda_{k}, \lambda_{i}\right\}\right| \leq C \sqrt{q_{i}} \leq C \sqrt{q} \leq C^{\prime} \sqrt{Q}
$$

We check other terms

$$
\begin{gathered}
\left|\lambda_{k}\left\{\chi_{k}, \lambda_{i}\right\}\right| \leq C \sqrt{q_{k}} \leq C \sqrt{q} \leq C^{\prime} \sqrt{Q} \quad \text { on } \quad V_{k} \\
\left|\lambda_{i}\left\{\xi_{0}-\lambda, \chi_{i}\right\}\right| \leq C \sqrt{q_{i}} \leq C \sqrt{q} \leq C^{\prime} \sqrt{Q} \quad \text { on } \quad V_{i} .
\end{gathered}
$$

Hence we have

$$
\left|\left\{\xi_{0}-\lambda, \lambda\right\}\right| \leq C \sqrt{Q}
$$

which shows $\left|\left\{\xi_{0}-\lambda, \xi_{0}+\lambda\right\}\right| \leq C \sqrt{Q}$. This together with (3.2.11) proves the assertion.

3.3 Case $\operatorname{Im} F_{p}^{2} \cap \operatorname{Ker} F_{p}^{2} \neq\{0\}$

We next discuss the same problem studied in Section 4.2 for the case $\operatorname{Im} F_{p}^{2} \cap$ $\operatorname{Ker} F_{p}^{2} \neq\{0\}$. In particular we give a necessary and sufficient condition in order that p admits an elementary decomposition for general case in terms of some vector field defined near the doubly characteristic manifold.

Recall that we are working with

$$
p(x, \xi)=-\xi_{0}^{2}+q\left(x, \xi^{\prime}\right), \quad q\left(x, \xi^{\prime}\right) \geq 0
$$

where $p(x, \xi)$ is noneffectively hyperbolic and verifies the conditions (3.2.1), (3.2.2) and

$$
\begin{equation*}
\operatorname{Ker} F_{p}^{2}(\rho) \cap \operatorname{Im} F_{p}^{2}(\rho) \neq\{0\}, \quad \forall \rho \in \Sigma \tag{3.3.1}
\end{equation*}
$$

This means that the Hamilton map $F_{p}(\rho)$ has a Jordan block of size four at every $\rho \in \Sigma$. Recall that from the hypothesis (3.2.1) one can write

$$
p(x, \xi)=-\xi_{0}^{2}+\sum_{j=1}^{r} \phi_{j}\left(x, \xi^{\prime}\right)^{2}
$$

near every $\rho \in \Sigma$ where $d \phi_{j}$ are linearly independent at ρ and Σ is given by

$$
\Sigma=\left\{\phi_{j}(x, \xi)=0, j=0, \ldots, r\right\}
$$

where $\phi_{0}(x, \xi)=\xi_{0}$ as before. Assume (3.3.1) then by Theorem 2.3.1 the quadratic form $Q=p_{\rho}$ takes the form, in a suitable symplectic coordinates

$$
\begin{equation*}
Q=\left(-\xi_{0}^{2}+2 \xi_{0} \xi_{1}+x_{1}^{2}\right) / \sqrt{2}+\sum_{j=2}^{k} \mu_{j}\left(x_{j}^{2}+\xi_{j}^{2}\right)+\sum_{j=k+1}^{k+\ell} \xi_{j}^{2} . \tag{3.3.2}
\end{equation*}
$$

Lemma 3.3.1 The number k in (3.3.2) is independent of $\rho \in \Sigma$.
Proof: With $\left\{\psi_{j}\right\}=\left\{\xi_{0}, \xi_{1}, x_{1}, x_{j}, \xi_{j}, 2 \leq j \leq k, \xi_{j}, k+1 \leq j \leq k+\ell\right\}$ it follows from Lemma 3.2.1 that the rank of $\left(\left\{\psi_{i}, \psi_{j}\right\}\right)$ is constant. This shows that k is independent of $\rho \in \Sigma$.

Examining the standard canonical model (3.3.2) it is easy to see that

$$
\operatorname{dim} \operatorname{Im} F_{p}^{2}(\rho)=2+2(k-1), \quad \operatorname{dim} \operatorname{Im} F_{p}^{3}(\rho)=1+2(k-1)
$$

which are independent of ρ as we observed above. Since

$$
\begin{equation*}
\operatorname{dim}\left(\operatorname{Ker} F_{p}(\rho) \cap \operatorname{Im} F_{p}^{3}(\rho)\right)=1, \quad \operatorname{dim}\left(\operatorname{Ker} F_{p}^{2}(\rho) \cap \operatorname{Im} F_{p}^{2}(\rho)\right)=2 \tag{3.3.3}
\end{equation*}
$$

which is easily verified examining the standard model (3.3.2) then one can choose smooth vectors $z_{1}(\rho), h_{j}(\rho), j=1,2$ defined near a reference point $\bar{\rho} \in \Sigma$ so that
$\operatorname{Ker} F_{p}(\rho) \cap \operatorname{Im} F_{p}^{3}(\rho)=\left\langle z_{1}(\rho)\right\rangle, \quad \rho \in \Sigma$, $\operatorname{Ker} F_{p}^{2}(\rho) \cap \operatorname{Im} F_{p}^{2}(\rho)=\left\langle h_{1}(\rho), h_{2}(\rho)\right\rangle, \quad \rho \in \Sigma$.

Lemma 3.3.2 There are smooth $z_{1}(\rho)$ and $z_{2}(\rho)$ defined near the reference point such that

$$
\begin{aligned}
& \operatorname{Ker} F_{p}^{2}(\rho) \cap \operatorname{Im} F_{p}^{2}(\rho)=\left\langle z_{1}(\rho), z_{2}(\rho)\right\rangle \\
& \quad F_{p}(\rho) z_{1}(\rho)=0, \quad F_{p}(\rho) z_{2}(\rho) \neq 0
\end{aligned}
$$

Proof: Let $\operatorname{Ker} F_{p}^{2}(\rho) \cap \operatorname{Im} F_{p}^{2}(\rho)=\left\langle h_{1}(\rho), h_{2}(\rho)\right\rangle$. Since $F_{p}(\rho) h_{j}(\rho), j=1,2$ are in $\operatorname{Ker} F_{p}(\rho) \cap \operatorname{Im} F_{p}^{3}(\rho)$ there exist smooth $\alpha(\rho), \beta(\rho)$ such that

$$
\alpha(\rho) F_{p}(\rho) h_{1}(\rho)+\beta(\rho) F_{p}(\rho) h_{2}(\rho)=0 .
$$

Then it is enough to choose

$$
\begin{aligned}
& z_{1}(\rho)=\alpha(\rho) h_{1}(\rho)+\beta(\rho) h_{2}(\rho) \\
& z_{2}(\rho)=\beta(\rho) h_{1}(\rho)-\alpha(\rho) h_{2}(\rho)
\end{aligned}
$$

Note that, in the canonical model (3.3.2) it is easy to see that

$$
\begin{equation*}
\operatorname{Ker} F_{p}^{2}(\rho) \cap \operatorname{Im} F_{p}^{2}(\rho)=\left\langle H_{\xi_{0}}, H_{x_{1}}\right\rangle \tag{3.3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
z_{2}(\rho)=a H_{\xi_{0}}+b H_{x_{1}}, \quad b \neq 0 \tag{3.3.5}
\end{equation*}
$$

Lemma 3.3.3 There exists a smooth $S(x, \xi)$ defined near the reference point vanishing on Σ such that

$$
H_{S}(\rho)=z_{2}(\rho), \quad \rho \in \Sigma
$$

Proof: Note that from (3.2.5) it follows that

$$
\begin{equation*}
F_{p}(\rho) v=\sum_{j=0}^{r} \epsilon_{j} \sigma\left(v, H_{\phi_{j}}(\rho)\right) H_{\phi_{j}}(\rho), \quad \epsilon_{0}=-1, \epsilon_{j}=1, \quad j \geq 1 \tag{3.3.6}
\end{equation*}
$$

and hence

$$
\begin{equation*}
F_{p}^{2}(\rho) v=\sum_{k=0}^{r} \epsilon_{k} \sigma\left(v, H_{\phi_{k}}(\rho)\right)\left[\sum_{j=0}^{r} \epsilon_{j} \sigma\left(H_{\phi_{k}}(\rho), H_{\phi_{j}}(\rho)\right) H_{\phi_{j}}(\rho)\right] . \tag{3.3.7}
\end{equation*}
$$

This shows that

$$
\operatorname{Im} F_{p}^{2}(\rho)=\left\langle\sum_{j=0}^{r} \epsilon_{j} \sigma\left(H_{\phi_{k}}(\rho), H_{\phi_{j}}(\rho)\right) H_{\phi_{j}}(\rho) ; k=0, \ldots, r\right\rangle
$$

and with $A(\rho)=\left(a_{k j}(\rho)\right)=\left(\left\{\phi_{k}, \phi_{j}\right\}(\rho)\right)$ we have $\operatorname{Im} F_{p}^{2}(\rho)=\left\langle f_{1}(\rho), \ldots, f_{r}(\rho)\right\rangle$ where $f(\rho)=A(\rho) H_{\phi}(\rho), H_{\phi}={ }^{t}\left(-H_{\phi_{0}}, \ldots, H_{\phi_{r}}\right)$. Since the rank of $A(\rho)$ is constant there exists $\beta_{i k}(\rho)$ such that with

$$
g_{i}(\rho)=\sum_{k=0}^{r} \beta_{i k}(\rho) f_{k}(\rho), \quad i=1, \ldots, s
$$

we have

$$
\operatorname{Im} F_{p}^{2}(\rho)=\left\langle g_{1}(\rho), \ldots, g_{s}(\rho)\right\rangle
$$

Since $z_{2}(\rho) \in \operatorname{Im} F_{p}^{2}(\rho)$ one can write

$$
z_{2}(\rho)=\sum_{k=1}^{s} \alpha_{k}(\rho) g_{k}(\rho)
$$

with smooth $\alpha_{k}(\rho)$. Then

$$
z_{2}(\rho)=\sum_{k=1}^{s} \alpha_{k}(\rho) \sum_{j=0}^{r} \beta_{k j}(\rho) f_{j}(\rho)=\sum_{k=1}^{s} \sum_{j=0}^{r} \sum_{\ell=0}^{r} \alpha_{k}(\rho) \beta_{k j}(\rho) a_{j \ell}(\rho) H_{\phi_{\ell}(\rho)} .
$$

Let us define

$$
S=\sum_{k=1}^{s} \sum_{j=0}^{r} \sum_{\ell=0}^{r} \tilde{\alpha}_{k} \tilde{\beta}_{k j} \tilde{a}_{j \ell} \phi_{\ell}
$$

where $\tilde{\alpha}_{k}, \tilde{\beta}_{k j}$ and $\tilde{a}_{j \ell}$ are smooth extensions outside Σ of $\alpha_{k}, \beta_{k j}$ and $a_{j \ell}$. This is a desired one.

Lemma 3.3.4 There exists a smooth $\Lambda(x, \xi)$ defined near the reference point vanishing on Σ such that

$$
H_{\Lambda}(\rho)=z_{1}(\rho), \quad \rho \in \Sigma
$$

Proof: Repeat the same arguments as in the proof of Lemma 3.3.3.

Lemma 3.3.5 In a neighborhood of the reference point we have

$$
\forall w \in\left\langle z_{1}(\rho)\right\rangle^{\sigma} \Longrightarrow \sigma\left(w, F_{p}(\rho) w\right) \geq 0
$$

Proof: Choose a symplectic coordinates on which p_{ρ} takes the form (3.3.2). Then it is easy to see that

$$
\left\langle z_{1}(\rho)\right\rangle=\left\langle H_{\xi_{0}}\right\rangle
$$

and hence if $w \in\left\langle z_{1}(\rho)\right\rangle^{\sigma}$ then

$$
\sigma\left(w, F_{p}(\rho) w\right)=Q(w)=x_{1}^{2} / \sqrt{2}+\sum_{j=2}^{k} \mu_{j}\left(x_{j}^{2}+\xi_{j}^{2}\right)+\sum_{j=k+1}^{k+\ell} \xi_{j}^{2} \geq 0
$$

which is the assertion.
We summarize what we have proved in
Proposition 3.3.1 Assume that p satisfies (3.2.1), (3.2.2) and (3.3.1). Then there exist smooth vectors $z_{1}(\rho), z_{2}(\rho), \rho \in \Sigma$ defined near the reference point such that

$$
\begin{gather*}
z_{1}(\rho) \in \operatorname{Ker} F_{p}(\rho) \cap \operatorname{Im} F_{p}^{3}(\rho), \quad \rho \in \Sigma \tag{3.3.8}\\
z_{2}(\rho) \in \operatorname{Ker} F_{p}^{2}(\rho) \cap \operatorname{Im} F_{p}^{2}(\rho), \quad \rho \in \Sigma \\
w \in\left\langle z_{1}(\rho)\right\rangle^{\sigma} \Longrightarrow \sigma\left(w, F_{p}(\rho) w\right) \geq 0 \tag{3.3.10}
\end{gather*}
$$

Since $F_{p}(\rho) z_{2}(\rho)$ is proportional to $z_{1}(\rho), \rho \in \Sigma$ we may assume, without restrictions, that

$$
\begin{equation*}
F_{p}(\rho) z_{2}(\rho)=-z_{1}(\rho), \quad \rho \in \Sigma \tag{3.3.11}
\end{equation*}
$$

We have

Proposition 3.3.2 One can write p, near every $\rho \in \Sigma$, as

$$
\begin{aligned}
& p=-\xi_{0}^{2}+\sum_{j=1}^{r} \phi_{j}\left(x, \xi^{\prime}\right)^{2} \\
& =-\left(\xi_{0}+\phi_{1}\left(x, \xi^{\prime}\right)\right)\left(\xi_{0}-\phi_{1}\left(x, \xi^{\prime}\right)\right)+\sum_{j=2}^{r} \phi_{j}\left(x, \xi^{\prime}\right)^{2}
\end{aligned}
$$

where Σ is given by $\left\{\xi_{0}=0, \phi_{1}=\cdots=\phi_{r}=0\right\}$ and

$$
\begin{equation*}
\left\{\xi_{0}-\phi_{1}, \phi_{j}\right\}=0, \quad j=1, \ldots, r, \quad\left\{\phi_{1}, \phi_{2}\right\} \neq 0 \quad \text { on } \quad \Sigma \tag{3.3.12}
\end{equation*}
$$

Proof: Let $\Lambda(x, \xi)$ be a smooth function vanishing on Σ such that $H_{\Lambda}(\rho)$ is proportional to $z_{1}(\rho)$ of which existence is assured by Lemma 3.3.4. Since $\sigma\left(z_{1}, H_{x_{0}}\right) \neq 0$ by (3.3.10), without restrictions, we may assume that

$$
\Lambda=\xi_{0}-\lambda, \quad \lambda=\sum_{j=1}^{r} \gamma_{j}\left(x, \xi^{\prime}\right) \phi_{j}
$$

where ϕ_{j} are those in (3.2.4). Writing

$$
p=-\left(\xi_{0}-\lambda\right)\left(\xi_{0}+\lambda\right)+\sum_{j=1}^{r} \phi_{j}^{2}-\left(\sum_{j=1}^{r} \gamma_{j} \phi_{j}\right)^{2}
$$

one obtains

$$
\begin{array}{r}
\sigma\left(v, F_{p} v\right)=-2 \sigma\left(v, H_{\Lambda}\right) \sigma\left(v, H_{\xi_{0}+\lambda}\right) \\
+\sum_{j=1}^{r} \sigma\left(v, H_{\phi_{j}}\right)^{2}-\left(\sum_{j=1}^{r} \gamma_{j}(\rho) \sigma\left(v, H_{\phi_{j}}\right)\right)^{2} .
\end{array}
$$

Because of (3.3.10) we have

$$
\begin{equation*}
\sum_{j=1}^{r} \sigma\left(v, H_{\phi_{j}}\right)^{2}-\left(\sum_{j=1}^{r} \gamma_{j}(\rho) \sigma\left(v, H_{\phi_{j}}\right)\right)^{2} \geq 0 \tag{3.3.13}
\end{equation*}
$$

if $v \in\left\langle H_{\Lambda}(\rho)\right\rangle^{\sigma}$. As observed in Section 4.2, the mapping

$$
\begin{equation*}
\left\langle H_{\Lambda}(\rho)\right\rangle^{\sigma} / T_{\rho} \Sigma \ni v \mapsto\left(\sigma\left(v, H_{\phi_{j}}\right)\right)_{j=1, \ldots, r} \in \mathbb{R}^{r} \tag{3.3.14}
\end{equation*}
$$

is surjective and hence (3.3.13) shows that

$$
\sum_{j=1}^{r} \gamma_{j}(\rho)^{2}=|\gamma(\rho)|^{2} \leq 1
$$

We now show that

$$
\begin{equation*}
|\gamma(\rho)|=1, \quad \rho \in \Sigma \tag{3.3.15}
\end{equation*}
$$

We first note that $\sigma\left(z_{2}, F_{p} z_{2}\right)=\sigma\left(z_{1}, z_{2}\right)=\sigma\left(F_{p}^{3} w, z_{2}\right)=-\sigma\left(w, F_{p}^{3} z_{2}\right)=0$ because $z_{1}=F_{p}^{3} w$ with some w and $z_{2} \in \operatorname{Ker} F_{p}^{2}$. Since $\sigma\left(z_{2}, z_{1}\right)=\sigma\left(z_{2}, H_{\Lambda}\right)=$ 0 we have

$$
0=\sigma\left(z_{2}, F_{p} z_{2}\right)=\sum_{j=1}^{r} \sigma\left(z_{2}, H_{\phi_{j}}\right)^{2}-\left(\sum_{j=1}^{r} \gamma_{j}(\rho) \sigma\left(z_{2}, H_{\phi_{j}}\right)\right)^{2}
$$

If $\sigma\left(z_{2}, H_{\phi_{j}}\right)=0$ for $j=1, \ldots, r$ then $z_{2} \in\left\langle H_{\Lambda}, H_{\phi_{1}}, \ldots, H_{\phi_{r}}\right\rangle^{\sigma}=\operatorname{Ker} F_{p}$ which contradicts to $F_{p} z_{2}=-z_{1}$. This proves that $\sigma\left(z_{2}(\rho), H_{\phi_{j}}(\rho)\right)_{1 \leq j \leq r}$ is different from zero and hence one get (3.3.15) because

$$
\sum_{j=1}^{r} \sigma\left(z_{2}, H_{\phi_{j}}\right)^{2}=\left(\sum_{j=1}^{r} \gamma_{j} \sigma\left(z_{2}, H_{\phi_{j}}\right)\right)^{2} \leq|\gamma|^{2} \sum_{j=1}^{r} \sigma\left(z_{2}, H_{\phi_{j}}\right)^{2}
$$

We still denote by $\gamma\left(x, \xi^{\prime}\right)$ an extension of $\gamma(\rho)$ outside Σ such that $\left|\gamma\left(x, \xi^{\prime}\right)\right|=1$. Thus we can write

$$
p(x, \xi)=-\left(\xi_{0}+\langle\gamma, \phi\rangle\right)\left(\xi_{0}-\langle\gamma, \phi\rangle\right)+|\phi|^{2}-\langle\gamma, \phi\rangle^{2}
$$

where $\left\{\xi_{0}-\langle\gamma, \phi\rangle, \phi_{j}\right\}=0, j=1, \ldots, r$ on Σ since $H_{\xi_{0}+\langle\gamma, \phi\rangle} \in \operatorname{Im} F_{p}$. Let us set $\psi_{1}\left(x, \xi^{\prime}\right)=\sum_{j=1}^{r} \gamma_{j}\left(x, \xi^{\prime}\right) \phi_{j}\left(x, \xi^{\prime}\right)$ and taking a smooth orthonormal basis

$$
\gamma\left(x, \xi^{\prime}\right), e_{2}\left(x, \xi^{\prime}\right), \ldots, e_{r}\left(x, \xi^{\prime}\right), \quad e_{j}=\left(e_{j 1}, \ldots, e_{j r}\right)
$$

and define

$$
\psi_{j}\left(x, \xi^{\prime}\right)=\sum_{h=1}^{r} e_{j h}\left(x, \xi^{\prime}\right) \phi_{h}\left(x, \xi^{\prime}\right)
$$

so that $\sum_{j=1}^{r} \psi_{j}\left(x, \xi^{\prime}\right)^{2}=\sum_{j=1}^{r} \phi_{j}\left(x, \xi^{\prime}\right)^{2}$. Switching the notation to $\left\{\phi_{j}\right\}$ we can thus write

$$
p(x, \xi)=-\left(\xi_{0}+\phi_{1}\left(x, \xi^{\prime}\right)\right)\left(\xi_{0}-\phi_{1}\left(x, \xi^{\prime}\right)\right)+\sum_{j=2}^{r} \phi_{j}\left(x, \xi^{\prime}\right)^{2}
$$

where $\left\{\xi_{0}-\phi_{1}, \phi_{j}\right\}=0$ on Σ for $j=1, \ldots, r$. We finally check that $\left\{\phi_{1}, \phi_{k}\right\} \neq 0$ for some k. Indeed if otherwise we would have $\left\{\xi_{0}, \phi_{j}\right\}=0, j=1, \ldots, r$ and this would contradict (3.3.1). In fact if this would happen then we have

$$
p_{\rho}=-\xi_{0}^{2}+\sum_{j=1}^{r} \ell_{j}^{2}, \quad\left\{\xi_{0}, \ell_{j}\right\}=0, \quad j=1, \ldots, r
$$

Since $\sum_{j=1}^{r} \ell_{j}^{2}$ is a non negative definite quadratic form, in a suitable symplectic basis, p_{ρ} takes the form (1) of Theorem 2.3.1. Renumbering the coordinates so that $k=2$ we have the assertion.

Remark: From Proposition 3.3.2 one can write $\left\{\xi_{0}-\phi_{1}, \phi_{j}\right\}=\sum_{k=1}^{r} c_{j k} \phi_{k}$ but if $c_{j 1} \neq 0$ then $\left\{\xi_{0}-\phi_{1}, \phi_{j}\right\}$ could not controlled by $\sum_{j=2}^{r} \phi_{j}^{2}$.

3.4 Vector field H_{S}

Let $S(x, \xi)$ be a smooth real function defined on $T^{*} \Omega$, homogeneous of degree 0 , such that

$$
\begin{equation*}
S(x, \xi)=0, \quad(x, \xi) \in \Sigma \tag{3.4.1}
\end{equation*}
$$

and we have on Σ

$$
\begin{equation*}
H_{S}(\rho) \in \operatorname{Ker} F_{p}^{2}(\rho) \cap \operatorname{Im} F_{p}^{2}(\rho), \quad F_{p}(\rho) H_{S}(\rho) \neq 0 \tag{3.4.2}
\end{equation*}
$$

We first remark that it is possible to choose S independent of ξ_{0}. In fact from Lemma 3.3.4 one can take $\Lambda(x, \xi)$ so that

$$
\Lambda(\rho)=0, \quad H_{\Lambda}(\rho)=z_{1}(\rho), \quad \rho \in \Sigma
$$

Since $\sigma\left(H_{x_{0}}, F_{p}(\rho) H_{x_{0}}\right)=-1$ it follows that $\sigma\left(H_{x_{0}}, H_{\Lambda}(\rho)\right) \neq 0, \rho \in \Sigma$ due to (3.3.10). This proves that one can write, without restrictions,

$$
\Lambda(x, \xi)=\xi_{0}-\lambda\left(x, \xi^{\prime}\right)
$$

Let us write $S(x, \xi)=\alpha \xi_{0}+f\left(x, \xi^{\prime}\right)$ and put

$$
\tilde{S}\left(x, \xi^{\prime}\right)=S(x, \xi)-\alpha \Lambda(x, \xi)
$$

Then it is clear that $\tilde{S}\left(x, \xi^{\prime}\right)$ verifies (3.4.1) and (3.4.2) for $H_{\Lambda}(\rho) \in \operatorname{Ker} F_{p}(\rho) \cap$ $\operatorname{Im} F_{p}^{3}(\rho)$.

Recall that $p(x, \xi)$ takes the form

$$
\begin{equation*}
p(x, \xi)=-\xi_{0}^{2}+q\left(x, \xi^{\prime}\right), \quad q\left(x, \xi^{\prime}\right) \geq 0 \tag{3.4.3}
\end{equation*}
$$

Lemma 3.4.1 Assume that p admits an elementary decomposition such that $p=-M \Lambda+Q$. Then $H_{\Lambda}(\rho)$ is proportional to $z_{1}(\rho), \rho \in \Sigma$.

Proof: Let $\Lambda=\xi_{0}-\lambda$. It is obvious that $q=Q+\lambda^{2} \geq 0$ and hence λ and Q vanishes on Σ at least of order 1 and 2 respectively. Then it is clear that $H_{\Lambda}(\rho) \in \operatorname{Im} F_{p}(\rho)$. Recall

$$
F_{p} H_{\Lambda}=-\sigma\left(H_{\Lambda}, H_{M}\right) H_{\Lambda}+F_{Q} H_{\Lambda} .
$$

It is clear that $\sigma\left(H_{\Lambda}, H_{M}\right)=\{\Lambda, M\}=0$ and from (3.1.1) we have $F_{Q} H_{\Lambda}=$ $H_{\{Q, \Lambda\}}=0$ on Σ. This shows that $F_{p} H_{\Lambda}=0$ and hence H_{Λ} is in $\operatorname{Im} F_{p} \cap \operatorname{Ker} F_{p}$ on Σ.

Let S be a smooth function verifying (3.4.1) and (3.4.2). Since $H_{S} \in \operatorname{Im} F_{p}$ then $\sigma\left(H_{\Lambda}, H_{S}\right)=\{\Lambda, S\}=0$ on Σ. Thus one has

$$
F_{p} H_{S}=-(1 / 2) \sigma\left(H_{S}, H_{M}\right) H_{\Lambda}+F_{Q} H_{S}
$$

which gives $\sigma\left(H_{S}, F_{p} H_{S}\right)=\sigma\left(H_{S}, F_{Q} H_{S}\right)=0$ because $F_{p} H_{S} \in \operatorname{Ker} F_{p}$ and $H_{S} \in \operatorname{Im} F_{p}$. This proves

$$
\begin{equation*}
F_{Q} H_{S}=0 \quad \text { on } \quad \Sigma \tag{3.4.4}
\end{equation*}
$$

because $\sigma\left(H_{S}, F_{Q} H_{S}\right)=Q_{\rho}\left(H_{S}\right)$ and Q_{ρ} is non negative definite. Thus we have

$$
F_{p} H_{S}=-\frac{1}{2} \sigma\left(H_{S}, H_{M}\right) H_{\Lambda}
$$

By definition of S we have $F_{p} H_{S} \neq 0$ and this proves the assertion.

Lemma 3.4.2 Assume that p admits a decomposition

$$
p(x, \xi)=-\left(\xi_{0}+\lambda\right)\left(\xi_{0}-\lambda\right)+Q\left(x, \xi^{\prime}\right)=-M \Lambda+Q
$$

with $Q\left(x, \xi^{\prime}\right) \geq 0$. If $F_{Q} H_{\Lambda}=0$ on Σ and F_{p} has no non zero real eigenvalues then (3.1.2) holds.

Proof: We first note that

$$
\Sigma=\{\Lambda=0, M=0, Q=0\}
$$

Since $F_{p} H_{\Lambda}=-(1 / 2) \sigma\left(H_{\Lambda}, H_{M}\right) H_{\Lambda}$ by $F_{Q} H_{\Lambda}=0$. If $\sigma\left(H_{\Lambda}, H_{M}\right) \neq 0$ then F_{p} would have a non zero real eigenvalue which contradicts the assumption. Hence

$$
\sigma\left(H_{\Lambda}, H_{M}\right)=\{\Lambda, M\}=0 \quad \text { on } \quad \Sigma
$$

Then one can write

$$
\begin{equation*}
\{M, \Lambda\}=\sum_{j=1}^{r} c_{j} \psi_{j} \tag{3.4.5}
\end{equation*}
$$

where

$$
q=Q+\lambda^{2}=\sum_{j=1}^{r} \psi_{j}^{2}
$$

because $\{M, \Lambda\}$ is independent of ξ_{0}. The assertion follows from (3.4.5).
We now show
Proposition 3.4.1 ([6]) Let S_{1}, S_{2} be two smooth functions verifying (3.4.1) and (3.4.2). Then there exists $C \neq 0$ such that

$$
\left.H_{S_{1}}^{3} p\right|_{\Sigma}=\left.C H_{S_{2}}^{3} p\right|_{\Sigma}
$$

We first show

Lemma 3.4.3 Assume that p admits a decomposition $p=-M \Lambda+Q$ with $\Lambda=\xi_{0}-\lambda, M=\xi_{0}+\lambda, Q \geq 0$ such that H_{Λ} is proportional to $z_{1}(\rho)$ for $\rho \in \Sigma$. Let S be a smooth function verifying (3.4.1) and (3.4.2). Then we have

$$
H_{S}^{3} Q=0 \quad \text { on } \quad \Sigma .
$$

Proof: Let ϕ_{j} be as in (3.2.4). It is clear that $\Sigma=\left\{\xi_{0}=0, \lambda=0, Q=0\right\}$ and hence one can write

$$
\Lambda=\xi_{0}-\sum_{j=1}^{r} \gamma_{j} \phi_{j}, \quad Q=|\phi|^{2}-\langle\gamma, \phi\rangle^{2} .
$$

It is also clear that $\left|\gamma\left(x, \xi^{\prime}\right)\right| \leq 1$ near Σ because $Q \geq 0$ by assumption. Repeating the same arguments in the proof of Proposition 3.3.2 we conclude that

$$
|\gamma(\rho)|=1 \quad \rho \in \Sigma
$$

and $\gamma(\rho)$ is proportional to $\sigma\left(H_{S}(\rho), H_{\phi}(\rho)\right)$

$$
\begin{equation*}
H_{S} \phi(\rho)=\sigma\left(H_{S}(\rho), H_{\phi}(\rho)\right)=\alpha(\rho) \gamma(\rho), \quad \rho \in \Sigma \tag{3.4.6}
\end{equation*}
$$

where we have denoted $\sigma\left(H_{S}, H_{\phi}\right)=\left(\sigma\left(H_{S}, \phi_{1}\right), \ldots, \sigma\left(H_{S}, H_{\phi_{r}}\right)\right)$. As shown in the proof of Lemma 3.4.1 we have

$$
0=\sigma\left(H_{S}, F_{p} H_{S}\right)=\sigma\left(H_{S}, F_{Q} H_{S}\right)
$$

and hence $F_{Q} H_{S}=0$ on Σ because $Q \geq 0$. We now study $H_{S}^{3}\left(|\phi|^{2}-\langle\gamma, \phi\rangle^{2}\right)$. It is clear that $H_{S}^{3}\langle\phi, \phi\rangle=6\left\langle H_{S}^{2} \phi, H_{S} \phi\right\rangle$ on Σ and hence

$$
\begin{equation*}
H_{S}^{3}\langle\phi, \phi\rangle=6 \alpha\left\langle H_{S}^{2} \phi, \gamma\right\rangle \quad \text { on } \quad \Sigma . \tag{3.4.7}
\end{equation*}
$$

On the other hand one obtains

$$
\begin{array}{r}
H_{S}^{3}\langle\gamma, \phi\rangle^{2}=4\left(\left\langle H_{S} \gamma, \phi\right\rangle+\left\langle\gamma, H_{S} \phi\right\rangle\right) \\
\times\left(2\left\langle H_{S} \gamma, H_{S} \phi\right\rangle+\left\langle\gamma, H_{S}^{2} \phi\right\rangle\right) \\
+2\left\langle\gamma, H_{S} \phi\right\rangle\left(\left\langle H_{S}^{2} \gamma, \phi\right\rangle+2\left\langle H_{S} \gamma, H_{S} \phi\right\rangle+\left\langle\gamma, H_{S}^{2} \phi\right\rangle\right) .
\end{array}
$$

On Σ this becomes

$$
\begin{equation*}
6 \alpha\left\langle\gamma, H_{S}^{2} \phi\right\rangle+12 \alpha^{2}\left\langle H_{S} \gamma, \gamma\right\rangle \tag{3.4.8}
\end{equation*}
$$

Since $1-|\gamma|^{2} \geq 0$ near Σ and $1-|\gamma|^{2}=0$ on Σ it follows that

$$
H_{S}\left(1-|\gamma|^{2}\right)=-H_{S}\langle\gamma, \gamma\rangle=-2\left\langle H_{S} \gamma, \gamma\right\rangle=0 \text { on } \Sigma
$$

Thus (3.4.8) is equal to $6 \alpha\left\langle\gamma, H_{S}^{2} \phi\right\rangle$ and hence the assertion.
Proof of Proposition 3.4.1: Let S_{1}, S_{2} be two functions verifying our assumptions. From Proposition 3.3.2 we can write

$$
p=-M \Lambda+Q, \quad Q \geq 0
$$

where H_{Λ} is proportional to $z_{1}(\rho)$ and $\{\Lambda, Q\}$ vanishes of second order on Σ. By (3.4.2) one can write $F_{p} H_{S_{j}}=c_{j} H_{\Lambda}$ with $c_{j} \neq 0, j=1,2$. Now

$$
\begin{array}{r}
H_{S_{j}}^{3} p=\left\{S_{j},\left\{S_{j},\left\{S_{j},-\Lambda M+Q\right\}\right\}\right\} \\
\\
=-3\left\{S_{j}, M\right\}\left\{S_{j},\left\{S_{j}, \Lambda\right\}\right\}
\end{array}
$$

on Σ because $\left\{S_{j}, \Lambda\right\}=0$ and $H_{S_{j}}^{3} Q=0$ on Σ by Lemma 3.4.3. Since one can write

$$
H_{S_{j}}=\theta_{j} z_{2}(\rho)+H_{f_{j}}(\rho), \quad \rho \in \Sigma, j=1,2
$$

with $H_{f_{j}} \in \operatorname{Ker} F_{p} \cap \operatorname{Im} F_{p}^{3}$ where f_{j} vanishes on Σ then we obtain that

$$
H_{S_{1}}(\rho)=\frac{\theta_{1}}{\theta_{2}} H_{S_{2}}(\rho)+H_{f}(\rho)
$$

where $H_{f}(\rho) \in \operatorname{Ker} F_{p}$ and f vanishes on Σ. Let us set

$$
-3\left\{S_{j}, M\right\}=\alpha_{j}, \quad j=1,2
$$

which is different from zero. Indeed if $\left\{S_{j}, M\right\}=0$ then we would have $\left\{S_{j}, \xi_{0}\right\}=\sigma\left(H_{S_{j}}, H_{\xi_{0}}\right)=0$ and hence $F_{p} H_{S_{j}}=\sum \sigma\left(H_{S_{j}}, H_{\phi_{k}}\right) H_{\phi_{k}}$ which is not proportional to H_{Λ}. Then we have

$$
\begin{array}{r}
H_{S_{1}}^{3} p=\alpha_{1}\left\{S_{1},\left\{S_{1}, \Lambda\right\}\right\} \\
=\alpha_{1}\left\{\frac{\theta_{1}}{\theta_{2}} S_{2}+f,\left\{\frac{\theta_{1}}{\theta_{2}} S_{2}+f, \Lambda\right\}\right\} \\
=\alpha_{1}\left[\left(\frac{\theta_{1}}{\theta_{2}}\right)^{2}\left\{S_{2},\left\{S_{2}, \Lambda\right\}\right\}+\frac{\theta_{1}}{\theta_{2}}\left\{S_{2},\{f, \Lambda\}\right\}\right. \\
\left.+\frac{\theta_{1}}{\theta_{2}}\left\{f,\left\{S_{2}, \Lambda\right\}\right\}+\{f,\{f, \Lambda\}\}\right] .
\end{array}
$$

Since $\left\{S_{j}, \Lambda\right\}=0,\{f, \Lambda\}=0$ on Σ and hence

$$
\left\{f,\left\{S_{2}, \Lambda\right\}\right\}=0, \quad\{f,\{f, \Lambda\}\}=0, \quad \text { on } \quad \Sigma
$$

This shows that the third and fourth terms in the above formula vanish on Σ. Taking into account the Jacobi identity

$$
\left\{S_{2},\{f, \Lambda\}\right\}=-\left\{f,\left\{\Lambda, S_{2}\right\}\right\}-\left\{\Lambda,\left\{S_{2}, f\right\}\right\}
$$

we see that the second term also vanishes on Σ because $H_{f} \in \operatorname{Im} F_{p} \cap \operatorname{Ker} F_{p}$. Hence one has

$$
\left.H_{S_{1}}^{3} p\right|_{\Sigma}=\left.\frac{\alpha_{1}}{\alpha_{2}}\left(\frac{\theta_{1}}{\theta_{2}}\right)^{2} H_{S_{2}}^{3} p\right|_{\Sigma}
$$

This is the desired assertion.

3.5 Elementary decomposition revisited

Recall that we are assuming (3.2.1) and (3.2.2) throughout this chapter. The next result was proved in [44] under some restrictions on the double characteristic manifold and in [6] in full generality removing the previous restrictions.

Theorem 3.5.1 ([6], [44]) Let S be a smooth function verifying (3.4.1) and (3.4.2). Then the following assertions are equivalent.

44CHAPTER 3. NONEFFECTIVELY HYPERBOLIC CHARACTERISTICS
(i) $H_{S}^{3} p(\rho)=0, \rho \in \Sigma$,
(ii) p admits an elementary decomposition at every $\rho \in \Sigma$.

Proof: We start by proving that $(\mathrm{ii}) \Longrightarrow(\mathrm{i})$. From Lemma 3.4 .1 we see that H_{Λ} is proportional to $z_{1}(\rho)$. Then due to Lemma 3.4.3 one has $H_{S}^{3} Q=0$ on Σ and hence

$$
\begin{equation*}
\left.H_{S}^{3} p\right|_{\Sigma}=-\left.3\{S, M\}\{S,\{S, \Lambda\}\}\right|_{\Sigma} \tag{3.5.1}
\end{equation*}
$$

From (3.5.1) it suffices to show

$$
\sigma\left(H_{S}, H_{\{S, \Lambda\}}\right)=0
$$

on Σ. Thanks to (3.1.1) we have $\operatorname{Ker} F_{Q} \subset \operatorname{Ker} F_{\{\Lambda, Q\}}$. This together with (3.4.4) shows that

$$
H_{\{S,\{\Lambda, Q\}\}}=-F_{\{\Lambda, Q\}} H_{S}=0
$$

on Σ. Recall the Jacobi identity

$$
\begin{equation*}
\{Q,\{S, \Lambda\}\}+\{S,\{\Lambda, Q\}\}+\{\Lambda,\{Q, S\}\}=0 \tag{3.5.2}
\end{equation*}
$$

Considering the Hamilton vector field of (3.5.2) we obtain

$$
\begin{equation*}
F_{Q} H_{\{S, \Lambda\}}+H_{\{\Lambda,\{Q, S\}\}}=0 \quad \text { on } \quad \Sigma . \tag{3.5.3}
\end{equation*}
$$

Let us study the second term in (3.5.3)

$$
H_{\{\Lambda,\{Q, S\}\}}=\left[H_{\Lambda}, H_{\{Q, S\}}\right] .
$$

Since $\left.H_{\{Q, S\}}\right|_{\Sigma}=\left.F_{Q} H_{S}\right|_{\Sigma}=0$ and $H_{\Lambda} \in T_{\rho} \Sigma=\operatorname{Ker} F_{p}, \rho \in \Sigma$ it follows that $\left[H_{\Lambda}, H_{\{Q, S\}}\right]=0$. This gives

$$
\begin{equation*}
F_{Q} H_{\{S, \Lambda\}}=0 . \tag{3.5.4}
\end{equation*}
$$

Then we have $F_{p} H_{\{\Lambda, S\}}=-(1 / 2) \sigma\left(H_{\{\Lambda, S\}}, H_{M}\right) H_{\Lambda}$ because $\sigma\left(H_{\{\Lambda, S\}}, H_{\Lambda}\right)=0$ which follows from $\{S, \Lambda\}=0$ on Σ. From Lemma 3.4.1, H_{Λ} is proportional to z_{1} and then $F_{p} H_{S}$ is so

$$
\begin{equation*}
H_{\Lambda}=\alpha(\rho) F_{p} H_{S} \tag{3.5.5}
\end{equation*}
$$

This gives that

$$
H_{\{\Lambda, S\}}+\frac{1}{2} \alpha(\rho) \sigma\left(H_{\{\Lambda, S\}}, H_{M}\right) H_{S} \in \operatorname{Ker} F_{p}(\rho)
$$

which proves clearly

$$
\sigma\left(H_{S}, H_{\{\Lambda, S\}}\right)=0
$$

and thus we have proved $(\mathrm{ii}) \Longrightarrow$ (i).

The implication $(\mathrm{i}) \Longrightarrow$ (ii) follows immediately from the following result which will be key observations in this chapter. To make the statement of the following proposition to be clear, using $\tilde{\phi}_{j}$ instead of ϕ_{j}, assume that p is written as

$$
p=-\xi_{0}^{2}+\sum_{j=1}^{r} \tilde{\phi}_{j}^{2}
$$

near ρ.
Proposition 3.5.1 Assume (3.3.1). Let S be a smooth function verifying (3.4.1) and (3.4.2) and assume that

$$
H_{S}^{3} p=0
$$

near ρ on Σ. Then near ρ we can rewrite p as

$$
p=-\left(\xi_{0}+\lambda\right)\left(\xi_{0}-\lambda\right)+Q
$$

with

$$
\begin{aligned}
& \lambda=\phi_{1}+L\left(\phi^{\prime}\right) \phi_{1}+\gamma \phi_{1}^{3}\left|\xi^{\prime}\right|^{-2} \\
& Q=\sum_{j=2}^{r} \phi_{j}^{2}+a(\phi) \phi_{1}^{4}\left|\xi^{\prime}\right|^{-2}+b\left(\phi^{\prime}\right) L\left(\phi^{\prime}\right) \phi_{1}^{2} \geq c\left(\left|\phi^{\prime}\right|^{2}+\phi_{1}^{4}\left|\xi^{\prime}\right|^{-2}\right)
\end{aligned}
$$

with some $c>0$ where ϕ_{j} are linear combinations of $\tilde{\phi}_{j}, j=1, \ldots, r$ and $\phi=$ $\left(\phi_{1}, \phi_{2}, \ldots, \phi_{r}\right), \phi^{\prime}=\left(\phi_{2}, \ldots, \phi_{r}\right)$. Here $\xi_{0}-\lambda$ and ϕ_{j} satisfy

$$
\begin{align*}
& \left|\left\{\xi_{0}-\lambda, Q\right\}\right| \leq C\left(\left|\phi^{\prime}\right|^{2}+\phi_{1}^{4}\left|\xi^{\prime}\right|^{-2}\right) \tag{3.5.6}\\
& \left\{\xi_{0}-\lambda, \phi_{j}\right\}=O(|\phi|), \quad j=1, \ldots, r, \tag{3.5.7}\\
& \left\{\phi_{1}, \phi_{j}\right\}=O(|\phi|), \quad j \geq 3 \tag{3.5.8}\\
& \left\{\phi_{1}, \phi_{2}\right\}>0 \tag{3.5.9}
\end{align*}
$$

near ρ. Here $L\left(\phi^{\prime}\right)=O\left(\left|\phi^{\prime}\right|\left|\xi^{\prime}\right|^{-1}\right)$ and γ is a real constant.
Proof: Denote $\tilde{\phi}_{j}$ by ϕ_{j}. Let p be as in (3.4.3). From Proposition 3.3.2 we can write

$$
\begin{equation*}
p(x, \xi)=-\left(\xi_{0}+\phi_{1}\left(x, \xi^{\prime}\right)\right)\left(\xi_{0}-\phi_{1}\left(x, \xi^{\prime}\right)\right)+\left|\phi^{\prime}\left(x, \xi^{\prime}\right)\right|^{2} \tag{3.5.10}
\end{equation*}
$$

where

$$
\begin{equation*}
\left.\left\{\xi_{0}-\phi_{1}, \phi_{j}\right\}\right|_{\Sigma}=0, \quad j=1, \ldots, r, \quad\left\{\phi_{1}, \phi_{2}\right\}(\rho) \neq 0 \tag{3.5.11}
\end{equation*}
$$

Recall that $H_{\xi_{0}-\phi_{1}}$ is proportional to $z_{1}(\rho)$ on Σ near ρ.
Let us consider

$$
\tilde{\phi}_{j}=\sum_{k=2}^{r} O_{j k} \phi_{k}, \quad j=2, \ldots, r .
$$

where $O=\left(O_{j k}\right)$ is an orthogonal matrix which is smooth near ρ. Choosing O suitably and switching the notation $\left\{\tilde{\phi}_{j}\right\}$ to $\left\{\phi_{j}\right\}$ again we can assume that

$$
\left\{\phi_{1}, \phi_{2}\right\}(\rho) \neq 0, \quad\left\{\phi_{1}, \phi_{j}\right\}=0 \text { near } \rho \text { on } \Sigma, j=3, \ldots, r .
$$

We may assume $\left\{\phi_{1}, \phi_{2}\right\}>0$ without restrictions. Thus the assertion (3.5.9) are proved.

We now determine $L\left(\phi^{\prime}\right)=\left\langle\beta^{\prime}, \phi^{\prime}\right\rangle$ where $\beta^{\prime}=\left(\beta_{2}, \ldots, \beta_{r}\right)$ and β_{j} are smooth functions of $\left(x, \xi^{\prime}\right)$, homogeneous of degree -1 in ξ^{\prime}, following the arguments in [6]. We rewrite (3.5.10) as

$$
\begin{gather*}
p(x, \xi)=-\left(\xi_{0}+\phi_{1}+L\left(\phi^{\prime}\right) \phi_{1}+\gamma \hat{\phi}_{1}^{3}\left|\xi^{\prime}\right|^{-2}\right) \\
\times\left(\xi_{0}-\phi_{1}-L\left(\phi^{\prime}\right) \phi_{1}-\gamma \phi_{1}^{3}\left|\xi^{\prime}\right|^{-2}\right)+\left|\phi^{\prime}\right|^{2}-L\left(\phi^{\prime}\right)^{2} \phi_{1}^{2} \\
-\gamma^{2} \phi_{1}^{6}\left|\xi^{\prime}\right|^{-4}-2 \phi_{1}^{2} L\left(\phi^{\prime}\right)-2 \gamma \phi_{1}^{4}\left|\xi^{\prime}\right|^{-2}-2 \gamma L\left(\phi^{\prime}\right) \phi_{1}^{4}\left|\xi^{\prime}\right|^{-2} \\
=-\left(\xi_{0}+\phi_{1}+L\left(\phi^{\prime}\right) \phi_{1}+\gamma \phi_{1}^{3}\left|\xi^{\prime}\right|^{-2}\right) \tag{3.5.12}\\
\times\left(\xi_{0}-\phi_{1}-L\left(\phi^{\prime}\right) \phi_{1}-\gamma \phi_{1}^{3}\left|\xi^{\prime}\right|^{-2}\right) \\
+\left|\phi^{\prime}\right|^{2}-2 \gamma\left(1+L\left(\phi^{\prime}\right)+\gamma \phi_{1}^{2}\left|\xi^{\prime}\right|^{-2} / 2\right) \phi_{1}^{4}\left|\xi^{\prime}\right|^{-2} \\
-2 L\left(\phi^{\prime}\right)\left(1+L\left(\phi^{\prime}\right) / 2\right) \phi_{1}^{2}=-\left(\xi_{0}+\lambda\right)\left(\xi_{0}-\lambda\right)+Q
\end{gather*}
$$

where

$$
\begin{aligned}
& \lambda=\phi_{1}+L\left(\phi^{\prime}\right) \phi_{1}+\gamma \phi_{1}^{3}\left|\xi^{\prime}\right|^{-2} \\
& Q=\left|\phi^{\prime}\right|^{2}-2 \gamma\left(1+L\left(\phi^{\prime}\right)+\gamma \phi_{1}^{2}\left|\xi^{\prime}\right|^{-2} / 2\right) \phi_{1}^{4}\left|\xi^{\prime}\right|^{-2}-2 L\left(\phi^{\prime}\right)\left(1+L\left(\phi^{\prime}\right) / 2\right) \phi_{1}^{2}
\end{aligned}
$$

Now the assertion (3.5.7) follows from (3.5.11) immediately. Taking γ negative large enough it is clear that

$$
\begin{equation*}
Q \geq c\left(\left|\phi^{\prime}\right|^{2}+\phi_{1}^{4}\left|\xi^{\prime}\right|^{-2}\right) \tag{3.5.13}
\end{equation*}
$$

with some $c>0$. We prove that we can choose β^{\prime} so that (3.5.6) holds. Note that

$$
\begin{align*}
\left\{\xi_{0}-\lambda, Q\right\}= & \left\{\xi_{0}-\phi_{1},\left|\phi^{\prime}\right|^{2}-2 L\left(\phi^{\prime}\right)\left(1+L\left(\phi^{\prime}\right) / 2\right) \phi_{1}^{2}\right\} \\
& -\left\{L\left(\phi^{\prime}\right) \phi_{1},\left|\phi^{\prime}\right|^{2}\right\}+O(Q) \tag{3.5.14}
\end{align*}
$$

where one can write

$$
\begin{equation*}
\left\{\xi_{0}-\phi_{1}, \phi_{j}\right\}=\sum_{k=1}^{r} \alpha_{j k} \phi_{k}, \quad j=1, \ldots, r \tag{3.5.15}
\end{equation*}
$$

with smooth $\alpha_{j k}$. Using (3.5.15) and (3.5.13), (3.5.14) reads as

$$
\begin{array}{r}
\left\{\xi_{0}-\lambda, Q\right\}=2 \sum_{\ell=2}^{r} \phi_{\ell} \sum_{k=1}^{r} \alpha_{\ell k} \phi_{k} \\
-2 \phi_{1}^{2} \sum_{\ell=2}^{r} \beta_{\ell} \sum_{k=1}^{r} \alpha_{\ell k} \phi_{k}\left(1+L\left(\phi^{\prime}\right) / 2\right) \tag{3.5.16}\\
-2 \phi_{1} \sum_{\ell=2}^{r} \phi_{\ell} \sum_{k=2}^{r} \beta_{k}\left\{\phi_{k}, \phi_{\ell}\right\}+O(Q) .
\end{array}
$$

Distinguishing the role of ϕ_{1} from that of ϕ^{\prime}, we can write

$$
\begin{array}{r}
\left\{\xi_{0}-\lambda, Q\right\}=2 \sum_{\ell=2}^{r} \alpha_{\ell 1} \phi_{\ell} \phi_{1}-2 \phi_{1} \sum_{\ell=2}^{r} \phi_{\ell} \sum_{k=2}^{r} \beta_{k}\left\{\phi_{k}, \phi_{\ell}\right\} \\
-2 \phi_{1}^{3} \sum_{\ell=2}^{r} \beta_{\ell} \alpha_{\ell 1}+O(Q) . \tag{3.5.17}
\end{array}
$$

Put $\alpha_{1}^{\prime}=\left(\alpha_{21}, \ldots, \alpha_{r 1}\right)$ then (3.5.17) becomes

$$
\begin{array}{r}
\left\{\xi_{0}-\lambda, Q\right\}=2\left(\left\langle\alpha_{1}^{\prime}, \phi^{\prime}\right\rangle+\left\langle\left\{\phi^{\prime}, \phi^{\prime}\right\} \beta^{\prime}, \phi^{\prime}\right\rangle\right) \phi_{1} \\
-2 \phi_{1}^{3}\left\langle\alpha_{1}^{\prime}, \beta^{\prime}\right\rangle+O(Q) \tag{3.5.18}
\end{array}
$$

We show that we can choose $\beta^{\prime}=\left(\beta_{2}, \ldots, \beta_{r}\right)$ such that

$$
\begin{equation*}
\left\{\phi^{\prime}, \phi^{\prime}\right\} \beta^{\prime}+\alpha_{1}^{\prime}=0, \quad\left\langle\alpha_{1}^{\prime}, \beta^{\prime}\right\rangle=0 \tag{3.5.19}
\end{equation*}
$$

on Σ so that the right-hand side of $(3.5 .18)$ is $O(Q)$.
Lemma 3.5.1 We have

$$
\left\langle\alpha_{1}^{\prime}, v\right\rangle=0
$$

for any v satisfying $\left\{\phi^{\prime}, \phi^{\prime}\right\} v=0$.
Proof: We first make a closer look at our assumption $H_{S}^{3} p=0$. Since S vanishes on Σ and one can assume that S is independent of ξ_{0} then we can write

$$
\begin{equation*}
S\left(x, \xi^{\prime}\right)=\sum_{j=1}^{r} c_{j}\left(x, \xi^{\prime}\right) \phi_{j}\left(x, \xi^{\prime}\right) \tag{3.5.20}
\end{equation*}
$$

Since $H_{\xi_{0}-\phi_{1}}$ is proportional to $z_{1}(\rho)$ on Σ then $F_{p} H_{S}$ is also proportional to $H_{\xi_{0}-\phi_{1}}$ on Σ. Thanks to Proposition 3.4.1, multiplying S by a non zero function if necessary, we may assume that

$$
\begin{equation*}
F_{p} H_{S}=-H_{\xi_{0}-\phi_{1}} \quad \text { on } \quad \Sigma \tag{3.5.21}
\end{equation*}
$$

We study the identity (3.5.21). Plugging (3.5.20) into (3.5.21) to get

$$
\begin{array}{r}
F_{p} H_{S}(\rho)=-\frac{1}{2}\left\{S, \xi_{0}+\phi_{1}\right\} H_{\xi_{0}-\phi_{1}}+\sum_{j=2}^{r}\left\{S, \phi_{j}\right\} H_{\phi_{j}} \\
=-\frac{1}{2} \sum_{h=1}^{r} c_{h}\left\{\phi_{h}, \xi_{0}+\phi_{1}\right\} H_{\xi_{0}-\phi_{1}}+\sum_{j=2}^{r} \sum_{h=1}^{r} c_{h}\left\{\phi_{h}, \phi_{j}\right\} H_{\phi_{j}} \\
=-H_{\xi_{0}-\phi_{1}}
\end{array}
$$

on Σ because $\left\{S, \xi_{0}-\phi_{1}\right\}=0$. Hence we have on Σ

$$
\begin{align*}
& \frac{1}{2} \sum_{h=1}^{r} c_{h}\left\{\phi_{h}, \xi_{0}+\phi_{1}\right\}=1 \\
& c_{1}\left\{\phi_{1}, \phi_{j}\right\}+\sum_{h=2}^{r} c_{h}\left\{\phi_{h}, \phi_{j}\right\}=0, \quad j=2, \ldots, r \tag{3.5.22}
\end{align*}
$$

and, taking $\left\{\phi_{h}, \xi_{0}+\phi_{1}\right\}=\left\{\phi_{h}, \xi_{0}-\phi_{1}\right\}+2\left\{\phi_{h}, \phi_{1}\right\}$ into account, we have

$$
\begin{equation*}
c_{2}\left\{\phi_{2}, \phi_{1}\right\}=1 \tag{3.5.23}
\end{equation*}
$$

because $\left\{\phi_{j}, \phi_{1}\right\}=0$ for $j \geq 3$. We multiply (3.5.22) by c_{j} and sum up over $j=2, \ldots, r$ which yields

$$
-c_{1}+\sum_{h=2}^{r} \sum_{j=2}^{r} c_{j} c_{h}\left\{\phi_{h}, \phi_{j}\right\}=0
$$

The second term in the left-hand side vanishes because $\left(\left\{\phi_{k}, \phi_{h}\right\}\right)$ is anti symmetric and thus we get $c_{1}=0$ and (3.5.22) gives

$$
\begin{equation*}
\left\{S, \phi_{j}\right\}=0, \quad j=2, \ldots, r, \quad S=\sum_{h=2}^{r} c_{h} \phi_{h} \tag{3.5.24}
\end{equation*}
$$

near ρ on Σ where $c_{2}=\left\{\phi_{2}, \phi_{1}\right\}^{-1} \neq 0$.
By Lemma 3.4.3 one obtains

$$
H_{S}^{3} p=-3\left\{S, \xi_{0}+\phi_{1}\right\}\left\{S,\left\{S, \xi_{0}-\phi_{1}\right\}\right\}=c\left\{S,\left\{S, \xi_{0}-\phi_{1}\right\}\right\}
$$

with some $c \neq 0$ which is examined in the proof of Lemma 3.4.3. Take (3.5.23) and (3.5.24) into account we see that $H_{S}^{3} p=0$ on Σ implies that

$$
\begin{equation*}
\left\{S, \xi_{0}-\phi_{1}\right\}=O\left(\left|\phi^{\prime}\right|+\phi_{1}^{2}\right) \tag{3.5.25}
\end{equation*}
$$

Since $\left\{S, \phi_{1}\right\}=1$ then from (3.5.24) it follows that $\alpha_{j 1}=\left\{S,\left\{\xi_{0}-\phi_{1}, \phi_{j}\right\}\right\}$. Thanks to the Jacobi identity we get for $j \geq 2$

$$
\begin{array}{r}
\alpha_{j 1}=-\left\{\xi_{0}-\phi_{1},\left\{\phi_{j}, S\right\}\right\}-\left\{\phi_{j},\left\{S, \xi_{0}-\phi_{1}\right\}\right\} \\
=-\left\{\phi_{j},\left\{S, \xi_{0}-\phi_{1}\right\}\right\}
\end{array}
$$

on Σ because of (3.5.24). Thus from (3.5.25) we can write

$$
\alpha_{j 1}=\sum_{k=2}^{r} w_{k}\left\{\phi_{j}, \phi_{k}\right\}
$$

with some w_{k}. Then one has

$$
\sum_{j=2}^{r} v_{j} \alpha_{j 1}=\sum_{k=2}^{r} w_{k} \sum_{j=2}^{r}\left\{\phi_{j}, \phi_{k}\right\} v_{j}=0
$$

which is the desired assertion.
Thanks to Lemma 3.5.1 it follows that the equation

$$
\left\{\phi^{\prime}, \phi^{\prime}\right\} \beta^{\prime}=-\alpha_{1}^{\prime}
$$

has a smooth solution β^{\prime}. Finally we note that $\left\langle\alpha_{1}^{\prime}, \beta^{\prime}\right\rangle=0$ holds since $\left\{\phi^{\prime}, \phi^{\prime}\right\}$ is anti-symmetric. Thus we have proved the assertion (3.5.6).

