
CHAPTER 10

Reducibility

We examine the condition for the decomposition Pm = Pm′Pm′′ of universal
operators with or without fixing the characteristic exponents (cf. Theorem 4.19 i)),
which implies the reducibility of the equation Pmu = 0. Note that the irreducibility
of a Fuchsian differential equation equals the irreducibility of the monodromy of
the equation and that it is kept under our reduction of the equation. In §10.2 we
study the value of spectral parameters which makes the equation reducible and
obtain Theorem 10.10. In particular we have a necessary and sufficient condition
on characteristic exponents so that the monodromy of the solutions of the equation
Pmu = 0 with a rigid spectral type m is irreducible, which is given in Theorem
10.13.

10.1. Direct decompositions

For a realizable (p + 1)-tuple m ∈ P(n)
p+1, Theorem 6.14 gives the universal

Fuchsian differential operator Pm(λj,ν , gi) with the Riemann scheme (4.15). Here
g1, . . . , gN are accessory parameters and N = Ridxm.

First suppose m is basic. Choose positive numbers n′, n′′, m′
j,1 and m′′

j,1 such
that

(10.1)
n = n′ + n′′, 0 < m′

j,1 ≤ n′, 0 < m′′
j,1 ≤ n′′,

m′
0,1 + · · ·+m′

p,1 ≤ (p− 1)n′, m′′
0,1 + · · ·+m′′

p,1 ≤ (p− 1)n′′.

We choose other positive integers m′
j,ν and m′′

j,ν so that m′ =
(
m′

j,ν

)
and m′′ =(

m′′
j,ν

)
are monotone tuples of partitions of n′ and n′′, respectively, and moreover

(10.2) m = m′ +m′′.

Theorem 6.6 shows that m′ and m′′ are realizable. If {λj,ν} satisfies the Fuchs
relation

(10.3)

p∑
j=0

nj∑
ν=1

m′
j,νλj,ν = n′ − idxm′

2

for the Riemann scheme
{
[λj,ν ](m′

j,ν)

}
, Theorem 4.19 shows that the operators

(10.4) Pm′′(λj,ν +m′
j,ν − δj,0(p− 1)n′, g′′i ) · Pm′(λj,ν , g

′
i)

has the Riemann scheme {[λj,ν ](mj,ν)}. Hence the equation Pm(λj,ν , gi)u = 0 is not
irreducible when the parameters take the values corresponding to (10.4).

In this section, we study the condition

(10.5) Ridxm = Ridxm′ +Ridxm′′

for realizable tuples m′ and m′′ with m = m′ + m′′. Under this condition the
Fuchs relation (10.3) assures that the universal operator is reducible for any values
of accessory parameters.
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96 10. REDUCIBILITY

Definition 10.1 (direct decomposition). If realizable tuples m, m′ and m′′

satisfy (10.2) and (10.5), we define that m is the direct sum of m′ and m′′ and call
m = m′ +m′′ a direct decomposition of m and express it as follows.

(10.6) m = m′ ⊕m′′.

Theorem 10.2. Let (10.6) be a direct decomposition of a realizable tuple m.
i) Suppose m is irreducibly realizable and idxm′′ > 0. Put m′ = gcd(m′)−1m′.

If m′ is indivisible or idxm ≤ 0, then

αm = αm′ − 2
(αm′′ |αm′)

(αm′′ |αm′′)
αm′′(10.7)

or m = m′ ⊕m′′ is isomorphic to one of the decompositions

(10.8)

32, 32, 32, 221 = 22, 22, 22, 220⊕ 10, 10, 10, 10, 001

322, 322, 2221 = 222, 222, 2220⊕ 100, 100, 0001

54, 3222, 22221 = 44, 2222, 22220⊕ 10, 1000, 00001

76, 544, 2222221 = 66, 444, 2222220⊕ 10, 100, 0000001

under the action of W̃∞.
ii) Suppose idxm ≤ 0 and idxm′ ≤ 0 and idxm′′ ≤ 0. Then m = m′ ⊕m′′

or m = m′′ ⊕m′ is transformed into one of the decompositions

(10.9)

Σ = 11, 11, 11, 11 111, 111, 111 22, 14, 14 33, 222, 16

mΣ = kΣ⊕ ℓΣ
mm,mm,mm,m(m− 1)1 = kk, kk, kk, k(k − 1)1⊕ ℓℓ, ℓℓ, ℓℓ, ℓℓ0
mmm,mmm,mm(m− 1)1 = kkk, kkk, kkk, kk(k − 1)1⊕ ℓℓℓ, ℓℓℓ, ℓℓℓ0
(2m)2,m4,mmm(m− 1)1 = (2k)2, k4, k4, kkk(k − 1)1⊕ (2ℓ)2, ℓ4, ℓ40

(3m)2, (2m)3,m5(m− 1)1 = (3k)2, (2k)3, k5(k − 1)1⊕ (3ℓ)2, (2ℓ)3, ℓ60

under the action of W̃∞. Here m, k and ℓ are positive integers satisfying m = k+ℓ.
These are expressed by

(10.10)
mD̃4 = kD̃4 ⊕ ℓD̃4, mẼj = kẼj ⊕ ℓẼj (j = 6, 7, 8),

D
(m)
4 = D

(k)
4 ⊕ ℓD̃4, E

(m)
j = E

(k)
j ⊕ ℓẼj (j = 6, 7, 8).

Proof. Put m′ = km′ and m′′ = ℓm′′ with indivisible m′ and m′′. First note
that

(10.11) (αm|αm) = (αm′ |αm′) + 2(αm′ |αm′′) + (αm′′ |αm′′).

ii) Using Lemma 10.3, we will prove the theorem. If idxm = 0, then (10.11)
and (10.12) show 0 = (αm′ |αm′′) = kℓ(αm′ |αm′′), Lemma 10.3 proves idxm′ = 0
and m′ = m′′ and we have the theorem.

Suppose idxm < 0.
If idxm′ < 0 and idxm′′ < 0, we have Pidxm = Pidxm′ + Pidxm′′, which

implies (αm′ |αm′′) = −1 and contradicts to Lemma 10.3.
Hence we may assume idxm′′ = 0.
Case: idxm′ < 0. It follows from (10.11) that 2− 2Ridxm = 2− 2Ridxm′ +

2ℓ(m,m). Since Ridxm = Ridxm′ + ℓ, we have (αm|αm′) = −1 and the theorem
follows from Lemma 10.3.

Case: idxm′ = 0. It follows from (10.11) that 2 − 2Ridxm = 2kℓ(αm′ |αm′′).
Since the condition Ridxm = k + ℓ shows (αm′ |αm′′) = 1

kℓ −
1
k −

1
ℓ and we have

(αm′ |αm′′) = −1. Hence the theorem also follows from Lemma 10.3.
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i) First suppose idxm′ ̸= 0. Note that m and m′ are rigid if idxm′ > 0.
We have idxm = idxm′ and idxm = (αm′ + ℓαm′′ |αm′ + ℓαm′′) = idxm′ +
2ℓ(αm|αm′′) + 2ℓ2, which implies (10.7).

Thus we may assume idxm < 0 and idxm′ = 0. If k = 1, idxm = idxm′ = 0
and we have (10.7) as above. Hence we may moreover assume k ≥ 2. Then (10.11)
and the assumption imply 2− 2k = 2kℓ(αm′ |αm′′) + 2ℓ2, which means

−(αm′ |αm′′) =
k − 1 + ℓ2

kℓ
.

Here k and ℓ are mutually prime and hence there exists a positive integer m with
k = mℓ+ 1 and

−(αm′ |αm′′) =
m+ ℓ

mℓ+ 1
=

1

ℓ+ 1
m

+
1

m+ 1
ℓ

< 2.

Thus we have m = ℓ = 1, k = 2 and (αm′ |αm′′) = −1. By the transformation

of an element of W̃∞, we may assume m′ ∈ Pp+1 is a tuple in (10.16). Since
(αm′ |αm′′) = −1 and αm′′ is a positive real root, we have the theorem by a similar
argument as in the proof of Lemma 10.3. Namely, m′

p,n′
p
= 2 and m′

p,n′
p+1 = 0 and

we may assume m′′
j,n′

j+1 = 0 for j = 0, . . . , p− 1 and m′′
p,n′

p+1 +m′′
p,n′

p+2 + · · · = 1,

which proves the theorem in view of αm′′ ∈ ∆re
+ . □

Lemma 10.3. Suppose m and m′ are realizable and idxm ≤ 0 and idxm′ ≤ 0.
Then

(αm|αm′) ≤ 0.(10.12)

If m and m′ are basic and monotone,

(10.13) (αm|wαm′) ≤ (αm|αm′) (∀w ∈W∞).

If (αm|αm′) = 0 and m and m′ are indivisible, then idxm = 0 and m = m′.
If (αm|αm′) = −1, then the pair is isomorphic to one of the pairs

(10.14)

(D
(k)
4 , D̃4) :

(
(kk, kk, kk, k(k − 1)1), (11, 11, 11, 110)

)
(E

(k)
6 , Ẽ6) :

(
(kkk, kkk, k(k − 1)1), (111, 111, 1110)

)
(E

(k)
7 , Ẽ7) :

(
((2k)2, kkkk, kkk(k − 1)1), (22, 1111, 11110)

)
(E

(k)
8 , Ẽ8) :

(
((3k)2, (2k)3, kkkkk(k − 1)1), (33, 222, 1111110)

)
under the action of W̃∞.

Proof. We may assume that m and m′ are indivisible. Under the transfor-
mation of the Weyl group, we may assume that m is a basic monotone tuple in
Pp+1, namely, (αm|α0) ≤ 0 and (αm|αj,ν) ≤ 0.

If m′ is basic and monotone, wαm′ −αm′ is a sum of positive real roots, which
proves (10.13).

Put αm = nα0 +
∑
nj,ναj,ν and m′ = n′0α0 +

∑
n′j,ναj,ν . Then

(αm|αm′) = n′0(αm|α0) +
∑

n′j,ν(αm|αj,ν),

(αm|α) ≤ 0 (∀α ∈ suppαm).
(10.15)

Let kj be the maximal positive integer satisfying mj,kj = mj,1 and put Π0 =
{α0, αj,ν ; 1 ≤ ν < kj , j = 0, . . . , p}. Note that Π0 defines a classical root system
if idxm < 0 (cf. Remark 7.12).

Suppose (αm|αm′) = 0 and m ∈ Pp+1. Then m0,1 + · · ·+mp,1 = (p− 1) ordm
and suppαm′ ⊂ Π0 because (αm|α) = 0 for α ∈ suppαm′ . Hence it follows from
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idxm′ ≤ 0 that idxm = 0 and we may assume that m is one of the tuples (10.16).
Since suppαm′ ⊂ suppαm and idxm′ ≤ 0, we conclude that m′ = m.

Lastly suppose (αm|αm′) = −1.
Case: idxm = idxm′ = 0. If m′ is basic and monotone and m′ ̸= m, then it is

easy to see that (αm|αm′) < −1 (cf. Remark 7.1). Hence (10.13) assures m′ = wm
with a certain w ∈ W∞ and therefore suppm ⊊ suppm′. Moreover there exists
j0 and L ≥ kj0 such that suppm′ = suppm ∪ {αj0,kj0

, αj0,kj+1, . . . , αj0,L} and

mj0,kj0
= 1 and m′

j0,kj0+1 = 1. Then by a transformation of an element of the

Weyl group, we may assume L = kj0 and m′ = riN · · · ri1r(j0,kj0 )
m with suitable iν

satisfying αiν ∈ suppm for ν = 1, . . . , N . Applying ri1 · · · riN to the pair (m,m′),
we may assume m′ = r(j0,kj0 )

m. Hence the pair (m,m′) is isomorphic to one of

the pairs in the list (10.14) with k = 1.
Case: idxm < 0 and idxm′ ≤ 0. There exists j0 such that suppαm′ ∋ αj0,kj .

Then the fact idx(m,m′) = −1 implies n′j0,k0
= 1 and n′j,kj

= 0 for j ̸= j0.

Let L be the maximal positive integer with n′j0,L ̸= 0. Since (αm|αj0,ν) = 0 for
k0+1 ≤ ν ≤ L, we may assume L = k0 by the transformation r(j0,k0+1) ◦· · ·◦r(j0,L)

if L > k0. Since the Dynkin diagram corresponding to Π0 ∪ {αj0,kj0
} is classical or

affine and suppm′ is contained in this set, idxm′ = 0 and m′ is basic and we may
assume that m′ is one of the tuples

(10.16) 11, 11, 11, 11 111, 111, 111 22, 1111, 1111 33, 222, 111111

and j0 = p. In particular m′
p,1 = · · · = m′

p,kp
= 1 and m′

p,kp+1 = 0. It follows

from (αm|αp,kp) = −1 that there exists an integer L′ ≥ kp +1 satisfying suppm =
suppm′∪{αp,ν ; kp ≤ ν < L′} and mp,kp = mp,kp−1−1. In particular, mj,ν = mj,1

for ν = 1, . . . , kj − δj,p and j = 0, . . . , p. Since
∑p

j=0mj,1 = (p − 1) ordm, there
exists a positive integer k such that

mj,ν =

{
km′

j,1 (j = 0, . . . , p, ν = 1, . . . , kj − δj,p),
km′

p,1 − 1 (j = p, ν = kp).

Hence mp,kp+1 = 1 and L′ = kp + 1 and the pair (m,m′) is one of the pairs in the
list (10.14) with k > 1. □

Remark 10.4. Let k be an integer with k ≥ 2 and let P be a differential opera-

tor with the spectral typeD
(k)
4 , E

(k)
6 , E

(k)
7 or E

(k)
8 . It follows from Theorem 4.19 and

Theorem 6.14 that P is reducible for any values of accessory parameters when the
characteristic exponents satisfy Fuchs relation with respect to the subtuple given
in (10.14). For example, the Fuchsian differential operator P with the Riemann
scheme [λ0,1](k) [λ1,1](k) [λ2,1](k) [λ3,1](k)

[λ0,2](k) [λ1,2](k) [λ2,2](k) [λ3,2](k−1)

λ3,2 + 2k − 2


is reducible.

Example 10.5. i) (generalized Jordan-Pochhammer) If m = km′⊕ ℓm′′ with
a rigid tuples m, m′ and m′′ and positive integers k and ℓ satisfying 1 ≤ k ≤ ℓ, we
have

(10.17) (αm′ |αm′′) = −k
2 + ℓ2 − 1

kℓ
∈ Z.

For positive integers k and ℓ satisfying 1 ≤ k ≤ ℓ and

(10.18) p :=
k2 + ℓ2 − 1

kℓ
+ 1 ∈ Z,
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we have an example of direct decompositions

p+1 partitions︷ ︸︸ ︷
ℓk, ℓk, . . . , ℓk = 0k, 0k, . . . , 0k ⊕ ℓ0, ℓ0, . . . , ℓ0

= ((p− 1)k − ℓ)k, ((p− 1)k − ℓ)k, . . . , ((p− 1)k − ℓ)k
⊕ (2ℓ− (p− 1)k)0, (2ℓ− (p− 1)k)0, . . . , (2ℓ− (p− 1)k)0.

(10.19)

Here p = 3 + (k−ℓ)2−1
kℓ ≥ 2 and the condition p = 2 implies k = ℓ = 1 and the

condition p = 3 implies ℓ = k + 1. If k = 1, then (αm′ |αm′′) = −ℓ and we have an
example corresponding to Jordan-Pochhammer equation:

(10.20)

ℓ+2 partitions︷ ︸︸ ︷
ℓ1, · · · , ℓ1 = 01, · · · , 01⊕ ℓ0, · · · , ℓ0.

When ℓ = k + 1, we have (αm′ |αm′′) = −2k and an example

(k + 1)k, (k + 1)k, (k + 1)k, (k + 1)k

= 0k, 0k, 0k, 0k ⊕ (k + 1)0, (k + 1)0, (k + 1)0, (k + 1)0

= (k − 1)k, (k − 1)k, (k − 1)k, (k − 1)k ⊕ 20, 20, 20, 20.

(10.21)

We have another example

83, 83, 83, 83, 83 = 03, 03, 03, 03, 03⊕ 80, 80, 80, 80, 80

= 13, 13, 13, 13, 13⊕ 70, 70, 70, 70, 70
(10.22)

in the case (k, ℓ) = (3, 8), which is a special case where ℓ = k2 − 1, p = k + 1 and
(αm′ |αm′′) = −k.

When p is odd, the equation (10.18) is equal to the Pell equation

(10.23) y2 − (m2 − 1)x2 = 1

by putting p− 1 = 2m, x = ℓ and y = mℓ− k and hence the reduction of the tuple
of partition (10.19) by ∂max and its inverse give all the integer solutions of this Pell
equation.

The tuple of partitions ℓk, ℓk, . . . , ℓk ∈ P(ℓ+k)
p+1 with (10.18) is called a general-

ized Jordan-Pochhammer tuple and denoted by Pp+1,ℓ+k. In particular, Pn+1,n is
simply denoted by Pn.

ii) We give an example of direct decompositions of a rigid tuple:

3322, 532, 532 = 0022, 202, 202⊕ 3300, 330, 330 : 1

= 1122, 312, 312⊕ 2200, 220, 220 : 1

= 0322, 232, 232⊕ 3000, 300, 300 : 2

= 3302, 332, 332⊕ 0020, 200, 200 : 2

= 1212, 321, 321⊕ 2110, 211, 211 : 4

= 2211, 321, 312⊕ 1111, 211, 220 : 2

= 2212, 421, 322⊕ 1110, 111, 210 : 4

= 2222, 431, 422⊕ 1100, 101, 110 : 2

= 2312, 422, 422⊕ 1010, 110, 110 : 4

= 2322, 522, 432⊕ 1000, 010, 100 : 4.

They are all the direct decompositions of the tuple 3322, 532, 532 modulo obvious
symmetries. Here we indicate the number of the decompositions of the same type.

Corollary 10.6. Let m ∈ P be realizable. Put m = gcd(m)m. Then m has
no direct decomposition (10.6) if and only if

ordm = 1(10.24)
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or

idxm = 0 and basic(10.25)

or

idxm < 0 and m is basic and m is not isomorphic to any one of tuples

in Example 7.14 with m > 1.
(10.26)

Moreover we have the following result.

Proposition 10.7. The direct decomposition m = m′ ⊕ m′′ is called rigid
decomposition if m, m′ and m′′ are rigid. If m ∈ P is rigid and ordm > 1, there
exists a rigid decomposition.

Proof. We may assume that m is monotone and there exist a non-negative
integer p such that mj,2 ̸= 0 if and only if 0 ≤ j < p + 1. If ord ∂m = 1, then

we may assume m = (p − 1)1, (p − 1)1, . . . , (p − 1)1 ∈ P(p)
p+1 and there exists a

decomposition

(p− 1)1, (p− 1)1, . . . , (p− 1)1 = 01, 10, . . . , 10⊕ (p− 1)0, (p− 2)1, . . . , (p− 2)1.

Suppose ord ∂m > 1. Put d = idx(m,1) = m0,1 + · · ·+mp,1 − (p− 1) · ordm > 0.
The induction hypothesis assures the existence of a decomposition ∂m = m̄′⊕

m̄′′ such that m̄′ and m̄′′ are rigid. If ∂m̄′ and ∂m̄′′ are well-defined, we have the
decomposition m = ∂2m = ∂m̄′ ⊕ ∂m̄′′ and the proposition.

If ord m̄′ > 1, ∂m̄′ is well-defined. Suppose m̄′ =
(
δν,ℓj

)
j=0,...,p
ν=1,2,...

. Then

idx(∂m,1)− idx(∂m, m̄′) =

p∑
j=0

(
(mj,1 − d− (mj,ℓj − dδℓj ,1)

)
≥ −d#{j ; ℓj > 1, 0 ≤ j ≤ p}.

Since idx(∂m,1) = −d and idx(∂m, m̄′) = 1, we have d#{j ; ℓj > 1, 0 ≤ j ≤ p} ≥
d+ 1 and therefore #{j ; ℓj > 1, 0 ≤ j ≤ p} ≥ 2. Hence ∂m̄′ is well-defined. □

Remark 10.8. The author’s original construction of a differential operator with
a given rigid Riemann scheme doesn’t use the middle convolutions and additions
but uses Proposition 10.7.

Example 10.9. We give direct decompositions of a rigid tuple:

721, 3331, 22222 = 200, 2000, 20000⊕ 521, 1331, 02222 : 15

= 210, 1110, 11100⊕ 511, 2221, 11122 : 10

= 310, 1111, 11110⊕ 411, 2220, 11112 : 5

(10.27)

The following irreducibly realizable tuple has only two direct decompositions:

44, 311111, 311111 = 20, 200000, 200000⊕ 24, 111111, 111111

= 02, 200000, 200000⊕ 42, 111111, 111111
(10.28)

But it cannot be a direct sum of two irreducibly realizable tuples.

10.2. Reduction of reducibility

We give a necessary and sufficient condition so that a Fuchsian differential equa-
tion is irreducible, which follows from [Kz] and [DR, DR2]. Note that a Fuchsian
differential equation is irreducible if and only if its monodromy is irreducible.
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Theorem 10.10. Retain the notation in §10.1. Suppose m is monotone, real-
izable and ∂maxm is well-defined and

d := m0,1 + · · ·+mp,1 − (p− 1) ordm ≥ 0.(10.29)

Put P = Pm (cf. (6.25)) and

µ := λ0,1 + λ1,1 + · · ·+ λp,1 − 1,(10.30)

Q := ∂maxP,(10.31)

P o := P |λj,ν=λo
j,ν , gi=go

i
, Qo := Q|λj,ν=λo

j,ν , gi=go
i

(10.32)

with some complex numbers λoj,ν and goi satisfying the Fuchs relation |{λom}| = 0.

i) The Riemann scheme {λ̃m̃} of Q is given by

(10.33)

{
m̃j,ν = mj,ν − dδν,1,
λ̃j,ν = λj,ν +

(
(−1)δj,0 − δν,1

)
µ.

ii) Assume that the equation P ou = 0 is irreducible. If d > 0, then µ /∈ Z. If the
parameters given by λoj,ν and goi are locally non-degenerate, the equation Qov = 0
is irreducible and the parameters are locally non-degenerate.

iii) Assume that the equation Qov = 0 is irreducible and the parameters given
by λoj,ν and goi are locally non-degenerate. Then the equation P ov = 0 is irreducible
if and only if

p∑
j=0

λoj,1+δj,jo (νo−1) /∈ Z for any (jo, νo) satisfying mjo,νo > mjo,1 − d.(10.34)

If the equation P ov = 0 is irreducible, the parameters are locally non-degenerate.
iv) Put m(k) := ∂kmaxm and P (k) = ∂kmaxP . Let K be a non-negative integer

such that ordm(0) > ordm(1) > · · · > ordm(K) and m(K) is fundamental. The
operator P (k) is essentially the universal operator of type m(k) but parametrized
by λj,ν and gi. Put P (k)o = P (k)|λj,ν=λo

j,ν
.

If the equation P ou = 0 is irreducible and the parameters are locally non-
degenerate, so are P (k)ou = 0 for k = 1, . . . ,K.

If the equation P ou = 0 is irreducible and locally non-degenerate, so is the
equation P (K)ou = 0.

Suppose the equation P (K)ou = 0 is irreducible and locally non-degenerate,
which is always valid when m is rigid. Then the equation P ou = 0 is irreducible if
and only if the equation P (k)ou = 0 satisfy the condition (10.34) for k = 0, . . . ,K−
1. If the equation P ou = 0 is irreducible, it is locally non-degenerate.

Proof. The claim i) follows from Theorem 5.2 and the claims ii) and iii) follow
from Lemma 5.3 and Corollary 9.10, which implies the claim iv). □

Remark 10.11. i) In the preceding theorem the equation P ou = 0 may not be
locally non-degenerate even if it is irreducible. For example the equation satisfied
by 3F2 is contained in the universal operator of type 111, 111, 111.

ii) It is also proved as follows that the irreducible differential equation with a
rigid spectral type is locally non-degenerate.

The monodromy generators Mj of the equation with the Riemann scheme at
x = cj satisfy

rank(M ′
j−e2π

√
−1λj,1) · · · (M ′

j−e2π
√
−1λj,k) ≤ mj,k+1+ · · ·+mj,nj

(k = 1, . . . , nj)

for j = 0, . . . , p. The equality in the above is clear when λj,ν − λj,ν′ /∈ Z for
1 ≤ ν < ν′ ≤ nj and hence the above is proved by the continuity for general λj,ν .
The rigidity index of M is calculated by the dimension of the centralizer of Mj
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and it should be 2 if M is irreducible and rigid, the equality in the above is valid
(cf. [Kz], [O6]), which means the equation is locally non-degenerate.

iii) The same results as in Theorem 10.10 are also valid in the case of the
Fuchsian system of Schlesinger canonical form (9.1) since the same proof works. A
similar result is given by a different proof (cf. [CB]).

iv) Let (M0, . . . ,Mp) be a tuple of matrices inGL(n,C) withMpMp−1 · · ·M0 =
In. Then (M0, . . . ,Mp) is called rigid if for any g0, . . . , gp ∈ GL(n,C) satisfying

gpMpg
−1
p · gp−1Mp−1g

−1
p−1 · · · g0M0g

−1
0 = In, there exists g ∈ GL(n,C) such that

giMig
−1
i = gMig

−1 for i = 0, . . . , p. The tuple (M0, . . . ,Mp) is called irreducible if
no subspace V of Cn satisfies {0} ⫋ V ⫋ Cn andMiV ⊂ V for i = 0, . . . , p. Choose

m ∈ P(n)
p+1 and {µj,ν} such that L(m;µj,1, . . . , µj,nj ) are in the conjugacy classes

containing Mj , respectively. Suppose (M0, . . . ,Mp) is irreducible and rigid. Then
Katz [Kz] shows that m is rigid and gives a construction of irreducible and rigid
(M0, . . . ,Mp) for any rigid m (cf. Remark 9.4 ii)). It is an open problem given
by Katz [Kz] whether the monodromy generators Mj are realized by solutions
of a single Fuchsian differential equations without an apparent singularity, whose
affirmative answer is given by the following corollary.

Corollary 10.12. Let m =
(
mj,ν

)
0≤j≤p
1≤ν≤nj

be a rigid monotone (p + 1)-tuple

of partitions with ordm > 1. Retain the notation in Definition 5.12.
i) Fix complex numbers λj,ν for 0 ≤ j ≤ p and 1 ≤ ν ≤ nj satisfying the Fuchs

relation (4.32). The universal operator Pm(λ)u = 0 with the Riemann scheme
(0.11) is irreducible if and only if the condition

(10.35)

p∑
j=0

λ(k)j,ℓ(k)j+δj,jo (νo−ℓ(k)j) /∈ Z

for any (jo, νo) satisfying m(k)jo,νo > m(k)jo,ℓ(k)jo − d(k)
is satisfied for k = 0, . . . ,K − 1.

ii) Fix complex numbers µj,ν for 0 ≤ j ≤ p and 1 ≤ ν ≤ nj and define µ̃(k)
and µ(k)j,ν for k = 0, . . . ,K by

µ(0)j,ν = µj,ν (j = 0, . . . , p, ν = 1, . . . , nj),(10.36)

µ̃(k) =

p∏
j=0

µ(k)j,ℓ(k)j ,(10.37)

µ(k + 1)j,ν = µ(k)j,ν · µ̃(k)(−1)δj,0−δν,1 .(10.38)

Then there exists an irreducible tuple (M0, . . . ,Mp) of matrices satisfying

(10.39)
Mp · · ·M0 = In,

Mj ∼ L(mj,1, . . . ,mj,nj ;µj,1, . . . , µj,nj ) (j = 0, . . . , p)

under the notation (4.33) if and only if

(10.40)

p∏
j=0

nj∏
ν=1

µ
mj,ν

j,ν = 1

and moreover the condition

(10.41)

p∏
j=0

µ(k)j,ℓ(k)j+δj,jo (νo−ℓ(k)j) ̸= 1

for any (jo, νo) satisfying m(k)jo,νo > m(k)jo,ℓ(k)jo − d(k)
is satisfied for k = 0, . . . ,K − 1.
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iii) Let (M0, . . . ,Mp) be an irreducible tuple of matrices satisfying (10.39). Then
there uniquely exists a Fuchsian differential equation Pu = 0 with p + 1 singular
points c0, . . . , cp and its local independent solutions u1, . . . , uordm in a neighborhood
of a non-singular point q such that the monodromy generators around the points cj
with respect to the solutions equal Mj, respectively, for j = 0, . . . , p (cf. (9.25)).

Proof. The clam i) is a direct consequence of Theorem 10.10 and the claim
ii) is proved by Theorem 9.3 and Lemma 9.11 as in the case of the proof of Theo-
rem 10.10 (cf. Remark 9.4 ii)).

iii) Since gcdm = 1, we can choose λj,ν ∈ C such that e2π
√
−1λj,ν = µj,ν and∑

j,ν mj,νλj,ν = ordm− 1. Then we have a universal operator Pm(λj,ν)u = 0 with

the Riemann scheme (0.11). The irreducibility of (Mp, . . . ,M0), Remark 10.11 ii)
(or Theorem 9.6) and Theorem 6.14 assure the claim. □

Now we state the condition (10.35) using the terminology of the Kac-Moody
root system. Suppose m ∈ P is monotone and irreducibly realizable. Let {λm} be
the Riemann scheme of the universal operator Pm. According to Remark 5.9 iii) we
may relax the definition of ℓmax(m) as is given by (5.43) and then we may assume

(10.42) vks0 · · · v1s0Λ(λ) ∈W ′
∞Λ
(
λ(k)

)
(k = 1, . . . ,K)

under the notation in Definition 5.12 and (7.31). Then we have the following
theorem.

Theorem 10.13. Let m =
(
mj,ν

)
0≤j≤p
1≤ν≤nj

be an irreducibly realizable monotone

tuple of partition in P. Under the notation in Corollary 10.12 and §7.1, there
uniquely exists a bijection

ϖ : ∆(m)
∼−→
{
(k, j0, ν0) ; 0 ≤ k < K, 0 ≤ j0 ≤ p, 1 ≤ ν0 ≤ nj0 ,

ν0 ̸= ℓ(k)j0 and m(k)j0,ν0 > m(k)j0,ℓ(k)j0 − d(k)
}

∪
{
(k, 0, ℓ(k)0) ; 0 ≤ k < K

}(10.43)

such that

(10.44) (Λ(λ)|α) =
p∑

j=0

λ(k)j,ℓ(k)j+δj,jo (νo−ℓ(k)j) when ϖ(α) = (k, j0, ν0).

Moreover we have

(α|αm) = m(k)j0,ν0 −m(k)j0,ℓ(k)j0 + d(k)

(α ∈ ∆(m), (k, j0, ν0) = ϖ(α))
(10.45)

and if the universal equation Pm(λ)u = 0 is irreducible, we have

(10.46) (Λ(λ)|α) /∈ Z for any α ∈ ∆(m).

In particular, if m is rigid and (10.46) is valid, the universal equation is irreducible.

Proof. Assume ordm > 1 and use the notation in Theorem 10.10. Since
m̃ may not be monotone, we consider the monotone tuple m′ = sm̃ in S′

∞m̃
(cf. Definition 4.11). First note that

d−mj,1 +mj,ν = (α0 + αj,1 + · · ·+ αj,ν−1|αm).

Let ν̄j be the positive integers defined by

mj,ν̄j+1 ≤ mj,1 − d < mj,ν̄j

for j = 0, . . . , p. Then

αm′ = v−1αm̃ with v :=

p∏
j=0

(
sj,1 · · · sj,ν̄j−1

)
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and w(m) = s0vsαm̃
and

∆(m) = Ξ ∪ s0v∆(m′),

Ξ := {α0} ∪
∪

0≤j≤p
νj ̸=1

{α0 + αj,1 + · · ·+ αj,ν ; ν = 1, . . . , ν̄j − 1}.

Note that ℓ(0) = (1, . . . , 1) and the condition mj0,ν0 > mj0,1 − d(0) is valid if
and only if ν0 ∈ {1, . . . , ν̄j0}. Since

p∑
j=0

λ(0)j,1+δj,j0 (ν0−1) = (Λ(λ)|α0 + αj0,1 + · · ·+ αj0,ν0−1) + 1,

we have

L(0) =
{
(Λ(λ)|α) + 1 ; α ∈ Ξ

}
by denoting

L(k) :=
{ p∑
j=0

λ(k)j,ℓ(k)j+δj,jo (νo−ℓ(k)j) ; m(k)jo,νo > m(k)jo,ℓ(k)jo − d(k)
}
.

Applying v−1s0 to m and {λm}, they changes into m′ and {λ′m′}, respectively, such
that Λ(λ′) − v−1s0Λ(λ) ∈ CΛ0. Hence we obtain the theorem by the induction as
in the proof of Corollary 10.12. □

Remark 10.14. Let m be an irreducibly realizable monotone tuple in P. Fix
α ∈ ∆(m). We have α = αm′ with a rigid tuple m′ ∈ P and

(10.47) |{λm′}| = (Λ(λ)|α).

Definition 10.15. Define an index idxm
(
ℓ(λ)

)
of the non-zero linear form

ℓ(λ) =
∑p

j=0

∑nj

ν=1 kj,νλj,ν of with kj,ν ∈ Z≥0 as the positive integer di such that

(10.48)
{ p∑
j=0

nj∑
ν=1

kj,νϵj,ν ; ϵj,ν ∈ Z and

p∑
j=0

nj∑
ν=1

mj,νϵj,ν = 0
}
= Zdi.

Proposition 10.16. For a rigid tuple m in Corollary 10.12, define rigid tuples
m(1), . . . ,m(N) with a non-negative integer N so that ∆(m) = {m(1), . . . ,m(N)}
and put

(10.49) ℓi(λ) :=

p∑
j=0

nj∑
ν=1

m
(i)
j,νλj,ν (i = 1, . . . , N).

Here we note that Theorem 10.13 implies that Pm(λ) is irreducible if and only if
ℓi(λ) /∈ Z for i = 1, . . . , n.

Fix a function ℓ(λ) of λj,ν such that ℓ(λ) = ℓi(λ) − r with i ∈ {1, . . . , N}
and r ∈ Z. Moreover fix generic complex numbers λj,ν ∈ C under the condition
ℓ(λ) = |{λm}| = 0 and a decomposition Pm(λ) = P ′′P ′ such that P ′, P ′′ ∈ W (x),
0 < n′ := ordP ′ < n and the differential equation P ′v = 0 is irreducible. Then
there exists an irreducibly realizable subtuple m′ of m compatible to ℓ(λ) such that
the monodromy generators M ′

j of the equation P ′u = 0 satisfies

rank(Mj−e2π
√
−1λj,1) · · · (Mj−e2π

√
−1λj,k) ≤ m′

j,k+1+ · · ·+m′
j,nj

(k = 1, . . . , nj)

for j = 0, . . . , p. Here we define that the decomposition

(10.50) m = m′ +m′′ (m′ ∈ P(n′)
p+1 , m′′ ∈ P(n′′)

p+1 , 0 < n′ < n)
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is compatible to ℓ(λ) and that m′ is a subtuple of m compatible to ℓ(λ) if the
following conditions are valid

|{λm′}| ∈ Z≤0 and |{λm′′}| ∈ Z,(10.51)

m′ is realizable if there exists (j, ν) such that m′′
j,ν = mj,ν > 0,(10.52)

m′′ is realizable if there exists (j, ν) such that m′
j,ν = mj,ν > 0.(10.53)

Here we note |{λm′}|+ |{λm′′}| = 1 if m′ and m′′ are rigid.

Proof. The equation Pm(λ)u = 0 is reducible since ℓ(λ) = 0. We may assume
λj,ν − λj,ν′ ̸= 0 for 1 ≤ ν < ν′ ≤ nj and j = 0, . . . , p. The solutions of the equation
define the map F given by (2.15) and the reducibility implies the existence of
an irreducible submap F ′ such that F ′(U) ⊂ F(U) and 0 < n′ := dimF ′(U) <
n. Then F ′ defines a irreducible Fuchsian differential equation P ′v = 0 which
has regular singularities at x = c0 = ∞, c1, . . . , cp and may have other apparent
singularities c′1, . . . , c

′
q. Then the characteristic exponents of P ′ at the singular

points are as follows.
There exists a decomposition m = m′ + m′′ such that m′ ∈ P(n′) and m′′ ∈

P(n′′) with n′′ := n − n′. The sets of characteristic exponents of P ′ at x = cj are
{λ′j,ν,i ; i = 1, . . . ,m′

j,ν , ν = 1, . . . , n} which satisfy

λ′j,ν,i − λj,ν ∈ {0, 1, . . . ,mj,ν − 1} and λ′j,ν,1 < λ′j,ν,2 < · · · < λ′j,ν,m′
j,ν

for j = 0, . . . , p. The sets of characteristic exponents at x = c′j are {µj,1, . . . , µj,n′},
which satisfy µj,i ∈ Z and 0 ≤ µj,1 < · · · < µj,n′ for j = 1, . . . , q. Then Remark 4.17
ii) says that the Fuchs relation of the equation P ′v = 0 implies |{λm′}| ∈ Z≤0.

Note that there exists a Fuchsian differential operator P ′′ ∈ W (x) such that
P = P ′′P ′. If there exists jo and νo such that m′

jo,no
= 0, namely, m′′

jo,νo
=

mjo,νo > 0, the exponents of the monodromy generators of the solution P ′v = 0
are generic and hence m′ should be realizable. The same claim is also true for the
tuple m′′. Hence we have the proposition. □

Example 10.17. i) The reduction of the universal operator with the spectral
type 11, 11, 11 which is given by Theorem 10.10 isx =∞ 0 1

λ0,1 λ1,1 λ2,1
λ0,2 λ1,2 λ2,2

 (
∑

λj,ν = 1)

−→
{

x =∞ 0 1
2λ0,2 + λ1,1 + λ2,1 −λ0,2 − λ2,2 −λ0,2 − λ1,2

}(10.54)

because µ = λ0,1 + λ1,1 + λ2,1 − 1 = −λ0,2 − λ1,2 − λ2,2. Hence the necessary and
sufficient condition for the irreducibility of the universal operator given by (10.34)
is 

λ0,1 + λ1,1 + λ2,1 /∈ Z,
λ0,2 + λ1,1 + λ2,1 /∈ Z,
λ0,1 + λ1,2 + λ2,1 /∈ Z,
λ0,1 + λ1,1 + λ2,2 /∈ Z,

which is equivalent to

(10.55) λ0,i + λ1,1 + λ2,j /∈ Z for i = 1, 2 and j = 1, 2.

The rigid tuple m = 11, 11, 11 corresponds to the real root αm = 2α0 + α0,1 +
α1,1 + α2,1 under the notation in §7.1. Then ∆(m) = {α0, α0 + αj,1 ; j = 0, 1, 2}
and (Λ|α0) = λ0,1 + λ1,1 + λ2,1 and (Λ|α0 + α0,1) = λ0,2 + λ1,1 + λ2,1, etc. under
the notation in Theorem 10.13.



106 10. REDUCIBILITY

The Riemann scheme for the Gauss hypergeometric series 2F1(a, b, c; z) is given

by

x =∞ 0 1
a 0 0
b 1− c c− a− b

 and therefore the condition for the irreducibility

is

(10.56) a /∈ Z, b /∈ Z, c− b /∈ Z and c− a /∈ Z.

ii) The reduction of the Riemann scheme for the equation corresponding to

3F2(α1, α2, α3, β1, β2;x) is
x =∞ 0 1
α1 0 [0](2)
α2 1− β1 −β3
α3 1− β2

 (

3∑
i=1

αi =

3∑
i=1

βi)

−→

 x =∞ 0 1
α2 − α1 + 1 α1 − β1 0
α3 − α1 + 1 α1 − β2 α1 − β3 − 1


(10.57)

with µ = α1−1. Hence Theorem 10.10 says that the condition for the irreducibility
equals {

αi /∈ Z (i = 1, 2, 3),

α1 − βj /∈ Z (j = 1, 2)

together with

αi − βj /∈ Z (i = 2, 3, j = 1, 2).

Here the second condition follows from i). Hence the condition for the irreducibility
is

(10.58) αi /∈ Z and αi − βj /∈ Z (i = 1, 2, 3, j = 1, 2).

iii) The reduction of the even family is as follows:
x =∞ 0 1
α1 [0](2) [0](2)
α2 1− β1 [−β3](2)
α3 1− β2
α4

 −→


x =∞ 0 1
α2 − α1 + 1 0 0
α3 − α1 + 1 α1 − β1 [α1 − β3 − 1](2)
α4 − α1 + 1 α1 − β2


(x−1)−α1+β3+1

−−−−−−−−−−→


x =∞ 0 1
α2 − β3 0 −α1 + β3 + 1
α3 − β3 α1 − β1 [0](2)
α4 − β3 α1 − β2

 .

Hence the condition for the irreducibility is{
αi /∈ Z (i = 1, 2, 3, 4),

α1 − β3 /∈ Z

together with {
αi − β3 /∈ Z (i = 2, 3, 4).

α1 + αi − βj − β3 /∈ Z (i = 2, 3, 4, j = 1, 2)

by the result in ii). Thus the condition is

αi /∈ Z, αi − β3 /∈ Z and α1 + αk − βj − β3 /∈ Z
(i = 1, 2, 3, 4, j = 1, 2, k = 2, 3, 4).

(10.59)
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Hence the condition for the irreducibility for the equation with the Riemann scheme

(10.60)


λ0,1 [λ1,1](2) [λ2,1](2)
λ0,2 λ1,2 [λ2,2](2)
λ0,3 λ1,3
λ0,4


of type 1111, 211, 22 is

(10.61)

{
λ0,ν + λ1,1 + λ2,k /∈ Z (ν = 1, 2, 3, 4, k = 1, 2)

λ0,ν + λ0,ν′ + λ1,1 + λ1,2 + λ2,1 + λ2,2 /∈ Z (1 ≤ ν < ν′ ≤ 4).

This condition corresponds to the rigid decompositions

(10.62) 14, 212, 22 = 1, 10, 1⊕ 13, 112, 21 = 12, 11, 12 ⊕ 12, 11, 12,

which are also important in the connection formula.
iv) (generalized Jordan-Pochhammer) The reduction of the universal operator

of the rigid spectral type 32, 32, 32, 32 is as follows:{
[λ0,1](3) [λ1,1](3) [λ2,1](3) [λ3,1](3)
[λ0,2](2) [λ1,2](2) [λ2,2](2) [λ3,2](2)

}
(3

3∑
j=0

λj,1 + 2
3∑

j=0

λj,2 = 4)

−→
{

λ0,1 − 2µ λ1,1 λ2,1 λ3,1
[λ0,2 − µ](2) [λ1,2 + µ](2) [λ2,2 + µ](2) [λ3,2 + µ](2)

}
with µ = λ0,1 + λ1,1 + λ2,1 + λ3,1 − 1. Hence the condition for the irreducibility is

(10.63)

{∑3
j=0 λj,1+δj,k /∈ Z (k = 0, 1, 2, 3, 4),∑3
j=0(1 + δj,k)λj,1 +

∑3
j=0(1− δj,k)λj,2 /∈ Z (k = 0, 1, 2, 3, 4).

Note that under the notation defined by Definition 10.15 we have

(10.64) idxm
(
λ0,1 + λ1,1 + λ2,1 + λ3,1

)
= 2

and the index of any other linear form in (10.63) is 1.
In general, the universal operator with the Riemann scheme{

[λ0,1](k) [λ1,1](k) [λ2,1](k) [λ3,1](k)
[λ0,2](k−1) [λ1,2](k−1) [λ2,2](k−1) [λ3,2](k−1)

}
(k

3∑
j=0

λj,1 + (k − 1)

3∑
j=0

λj,2 = 2k)

(10.65)

is irreducible if and only if

(10.66)

{∑3
j=0(ν − δj,k)λj,1 +

∑3
j=0(ν − 1 + δj,k)λj,1 /∈ Z (k = 0, 1, 2, 3, 4),∑3

j=0(ν
′ + δj,k)λj,1 +

∑3
j=0(ν

′ − δj,k)λj,2 /∈ Z (k = 0, 1, 2, 3, 4)

for any integers ν and ν′ satisfying 1 ≤ 2ν ≤ k and 1 ≤ 2ν′ ≤ k − 1.
The rigid decomposition

(10.67) 65, 65, 65, 65 = 12, 21, 21, 21⊕ 53, 44, 44, 44

gives an example of the decomposition m = m′ ⊕m′′ with suppαm = suppαm′ =
suppαm′′ .

v) The rigid Fuchsian differential equation with the Riemann scheme
x = 0 1 c3 c4 ∞
[0](9) [0](9) [0](9) [0](9) [e0](8)
[a](3) [b](3) [c](3) [d](3) [e1](3)

e2
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is reducible when
a+ b+ c+ d+ 3e0 + e1 ∈ Z,

which is equivalent to 1
3 (e0 − e2 − 1) ∈ Z under the Fuchs relation. At the generic

point of this reducible condition, the spectral types of the decomposition in the
Grothendieck group of the monodromy is

93, 93, 93, 93, 831 = 31, 31, 31, 31, 211 + 31, 31, 31, 31, 310 + 31, 31, 31, 31, 310.

Note that the following reduction of the spectral types

93, 93, 93, 93, 831 → 13, 13, 13, 13, 031 → 10, 10, 10, 10, 001
31, 31, 31, 31, 211 → 11, 11, 11, 11, 011
31, 31, 31, 31, 310 → 01, 01, 01, 01, 010

and idx(31, 31, 31, 31, 211) = −2.


