
Chapter 3

Stationary solutions

3.1 Unique existence of stationary solutions

This section is devoted to discussion about the unique existence of stationery solutions for the
hydrodynamic, the energy-transport and the drift-diffusion models. We write the solution
for the hydrodynamic model by (ρ̃εζ , j̃

ε

ζ , θ̃
ε

ζ , ϕ̃
ε

ζ) for the clarity of its dependence on ε and ζ.
Namely,
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ζ
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log ρ̃εζ

)
x
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3
κ0(θ̃

ε

ζ)xx =

(
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3
− ε

3ζ

)
(j̃

ε

ζ)
2

ρ̃εζ
−
ρ̃εζ
ζ
(θ̃

ε

ζ − 1),

(ϕ̃
ε

ζ)xx = ρ̃εζ −D.

The stationary solution for the energy-transport model is written by (ρ̃0ζ , j̃
0

ζ , θ̃
0

ζ , ϕ̃
0

ζ) and sat-
isfies

(j̃
0

ζ)x = 0, (3.1a)

j̃
0

ζ(θ̃
0

ζ)x −
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3
j̃
0

ζ θ̃
0

ζ

(
log ρ̃0ζ

)
x
− 2

3
κ0(θ̃

0

ζ)xx =
2

3

(j̃
0
)2

ρ̃0
−
ρ̃0ζ
ζ
(θ̃

0

ζ − 1), (3.1b)

(ϕ̃
0

ζ)xx = ρ̃0ζ −D, (3.1c)

j̃
0

ζ = −(θ̃
0

ζ ρ̃
0
ζ)x + ρ̃0ζ(ϕ̃

0

ζ)x (3.1d)
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with the boundary condition (2.18)–(2.20). Moreover, the stationary solution (ρ̃00, j̃
0

0, ϕ̃
0

0) of
the drift-diffusion model satisfies

(j̃
0

0)x = 0, (3.2a)

(ϕ̃
0

0)xx = ρ̃00 −D, (3.2b)

j̃
0

0 = −ρ̃00x + ρ̃00(ϕ̃
0

0)x (3.2c)

with the boundary condition (2.18) and (2.20). The unique existence of the stationary
solution for the drift-diffusion model is proven in the author’s previous paper [33], which
reads

Lemma 3.1. Let the doping profile and the boundary data satisfy conditions (2.2), (2.4)
and (2.6). Then the boundary value problem (3.2), (2.18) and (2.20) has a unique solution
(ρ̃00, j̃

0

0, ϕ̃
0

0) ∈ B2(Ω) satisfying the conditions (2.10a). Moreover, it verifies the estimates

min

{
ρl, ρr, inf

x∈Ω
D(x)

}
≤ ρ̃00 ≤ max

{
ρl, ρr, sup

x∈Ω
D(x)

}
, (3.3)

|(ρ̃00, ϕ̃
0

0)|2 ≤ C, (3.4)

|j̃00| ≤ Cδ, (3.5)

where C is a positive constant independent of ε, and j̃00 is a constant given by a formula

j̃
0

0 = (ϕr − log ρr + log ρl)

(∫ 1

0

1

ρ̃00
dx

)−1

. (3.6)

Hence, we show the unique existence of the stationary solution for the hydrodynamic
and the energy-transport models. Here the boundary value problem (2.17)–(2.20) for the
hydrodynamic model covers the problem (3.1) and (2.18)–(2.20) for the energy-transport
model as a special case ε = 0. Thus it suffices to solve the problem (2.17)–(2.20) for ε ≥ 0
to construct the stationary solutions for both models. We begin detailed discussions with
deriving several equalities and formulae. Divide (2.17b) by ρ̃εζ and differentiate the resultant
equality in x to get(

1

ρ̃εζ
S[ρ̃εζ , j̃

ε

ζ , θ̃
ε

ζ ](ρ̃
ε
ζ)x

)
x

+ (θ̃
ε

ζ)xx −
j̃
ε

ζ

(ρ̃εζ)
2
(ρ̃εζ)x − ρ̃εζ = −D. (3.7)

By dividing (2.17b) by ρ̃εζ and integrating the resultant over the domain Ω, we have the
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current-voltage relationship

ϕr =
ε

2

(
1

ρ2r
− 1

ρ2l

)
(j̃

ε

ζ)
2 +

(∫ 1

0

1

ρ̃εζ
dx

)
j̃
ε

ζ

+ θ̃
ε

ζ(1)− θ̃
ε

ζ(0) + θ̃
ε

ζ(1) log ρr − θ̃
ε

ζ(0) log ρl −
∫ 1

0

(θ̃
ε

ζ)x log ρ̃
ε
ζdx. (3.8)

Furthermore, solving the equation (3.8) with respect to j̃εζ gives the formula of the electric
current

j̃
ε

ζ = J [ρ̃εζ , θ̃
ε

ζ ] := 2

(
L[θ̃εζ ] +

∫ 1

0

(θ̃
ε

ζ)x log ρ̃
ε
ζ dx

)
K[ρ̃εζ , θ̃

ε

ζ ]
−1, (3.9a)

K[ρ, θ] :=

∫ 1

0

ρ−1 dx+

√(∫ 1

0

ρ−1 dx

)2

+ 2ε

(
L[θ] +

∫ 1

0

θx log ρ dx

)(
ρ−2
r − ρ−2

l

)
, (3.9b)

L[θ] := ϕr − θ(1) + θ(0)− θ(1) log ρr + θ(0) log ρl. (3.9c)

Although the equality (3.8) is the quadratic equation in j̃
ε

ζ and has two distinct roots if
ε ̸= 0 and ρl ̸= ρr, we see that the other solution violates the subsonic condition (2.13) for
sufficiently small δ. Hence, the admissible quantity of the electric current is given by (3.9a).
Moreover, the formula of potential

ϕ̃
ε

ζ(x) = Φ[ρ̃εζ ] =

∫ x

0

∫ y

0

(ρ̃εζ −D)(z) dzdy +

(
ϕr −

∫ 1

0

∫ y

0

(ρ̃εζ −D)(z) dzdy

)
x (3.10)

follows from the same computation as the derivation of (2.8). Here and hereafter, we fre-
quently use the constants and the function

Bm := min

{
ρl, ρr, inf

x∈Ω
D(x)

}
, BM := max

{
ρl, ρr, sup

x∈Ω
D(x)

}
,

Γ(x) := ρl(1− x) + ρrx.

The existences of the stationary solutions (ρ̃εζ , j̃
ε

ζ , ϕ̃
ε

ζ , θ̃
ε

ζ) for the hydrodynamic model, and
(ρ̃0ζ , j̃

0

ζ , ϕ̃
0

ζ , θ̃
0

ζ) for the energy-transport model are summarized in the next lemma, where the
latter is covered as the special case ε = 0.

Lemma 3.2. Let the doping profile and the boundary data satisfy conditions (2.2), (2.4)
and (2.6). For arbitrary ρl, there exist positive constants δ0 and ζ0 such that if δ ≤ δ0 and
0 ≤ ε < ζ ≤ ζ0, then the boundary value problem (2.17)–(2.20) has a solution (ρ̃εζ , j̃

ε

ζ , θ̃
ε

ζ , ϕ̃
ε

ζ) ∈
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B2(Ω)× B2(Ω)× B3(Ω)× B2(Ω) satisfying the conditions

1

2
Bm ≤ ρ̃εζ ≤ 2BM , (3.11a)

|θ̃εζ − 1|0 ≤ Cδ (3.11b)

and (2.13), where the positive constant C is independent of ε, ζ and δ.

Proof. The proof is given by the following procedures, which is divided into three parts. To
construct the stationary solutions by the Schauder fixed-point theorem, we define a mapping
T : (r, q) 7→ (R,Q) over

W [N0, N1, N2, N3] :=

(f, g) ∈ H2(Ω)

∣∣∣∣∣∣
1
2
Bm ≤ f ≤ 2BM ,

∥fx∥ ≤ N0, ∥fxx∥ ≤ N1,
∥g − 1∥1 ≤ δN2, ∥gxx∥ ≤ N3

 ,

where N0, N1, N2 and N3 are positive constants to be determined latter. For given (r, q),
define Q by solving the linearized problem

JQx −
2

3
Jq (log r)x −

2

3
κ0Qxx =

(
2

3
− ε

3ζ

)
J2

r
− r

ζ
(Q− 1), (3.12a)

Qx(0) = Qx(1) = 0, (3.12b)
J := J [r, q], (3.12c)

where J is defined in (3.9a). Next R is defined by solving(
1

r
S[r, J,Q]Rx

)
x

+Qxx −
J

r2
Rx −R = −D, (3.13a)

R(0) = ρl, R(1) = ρr, (3.13b)

where (3.13a) is the linearization of (3.7). We show the solvability of the problems (3.12)
and (3.13) in First step. In Second step, it is proven that the mapping T has a fixed-point.
The desired solution to (2.17)–(2.20) is constructed from the fixed-point of the mapping T
in Third step.

First step. Since the equation (3.12a) is uniformly elliptic, the solvability of the problem
(3.12) in B2(Ω) immediately follows from the standard theory for the linear elliptic equations.
Hence, Q is determined from (r, q). We show the unique existence of solution R in B2(Ω) to
the problem (3.13). For this purpose, it is sufficient to show S[r, J,Q] ≥ c > 0 which means
(3.13a) is uniformly elliptic, thanks to the standard theory again. Multiply the equation
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(3.12a) by Q− 1 and integrate the result by part over the domain Ω to obtain∫ 1

0

2

3
κ0Q

2
x +

r

ζ
(Q− 1)2 dx = −

∫ 1

0

{
JQx −

2

3
Jq(log r)x −

(
2

3
− ε

3ζ

)
J2

r

}
(Q− 1) dx

≤ δ2 + C[Bm, BM , N2]δ∥Qx∥2 + C[Bm, BM , N0, N2]∥Q− 1∥2.
(3.14)

In deriving the above inequality, we have used the Schwartz inequality and the estimate

|J | ≤ C[Bm, BM , N2]δ, (3.15)

which follows from (3.9). Then taking δ and ζ sufficiently small in (3.14) yields

∥Qx∥+
1√
ζ
∥Q− 1∥ ≤ C2[Bm, BM ]δ, (3.16)

where C2 is a positive constant independent of N0, N1, N2 and N3. Thus we see from (3.15),
(3.16) and the smallness of δ that there exists a certain positive constant c, independent of
N0, N1, N2 and N3, such that

S[r, J∗, Q] ≥ c̄ > 0. (3.17)

Consequently, the mapping T is defined over W [N0, N1, N2, N3] → B2(Ω).

Second step. In order to apply the Schauder fixed-point theorem, we determine the constants
N0, N1, N2, N3 so that the image of T is contained in W [N0, N1, N2, N3]. Firstly, we derive
the estimate of Rx as follows. Multiplying (3.13a) by −R + Γ and integrating the resultant
equality by part over Ω give∫ 1

0

1

r
S[r, J,Q](R− Γ)2x + (R− Γ)2 dx

= −
∫ 1

0

{
Γ−D +

J

r2
(R− Γ + Γ)x

}
(R− Γ) +

(
1

r
S[r, J,Q]Γx +Qx

)
(R− Γ)x dx

≤ (µ+ δ)∥R− Γ∥21 + C[µ,Bm, BM , C2, N2], (3.18)

where µ is an arbitrary positive constant to be determined. In deriving the above inequality,
we have used (3.15), (3.16) and the Schwarz inequality. Then let µ and δ in (3.18) so small
that

∥Rx∥ ≤ C0[Bm, BM , C2, N2], (3.19)

where C0 is a positive constant independent of N0, N1 and N3.
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Secondly, we show the estimates of Qxx and Rxx. Multiplying (3.12a) by −Qxx/r and
integrating the resultant equality by part over Ω yield∫ 1

0

2κ0
3r

Q2
xx +

1

ζ
Q2

x dx =

∫ 1

0

{
JQx −

2

3
Jq (log r)x −

(
2

3
− ε

3ζ

)
J2

r

}
Qxx

r
dx

≤ (µ+ C[Bm, BM , N2]δ) ∥Qx∥21 + C[µ,Bm, BM , N0, N2]δ
2,

where we have also used (3.15) and the Schwarz inequality. Then, making µ and δ sufficiently
small, we obtain

∥Qxx∥+
1√
ζ
∥Qx∥ ≤ C3[Bm, BM , N0, N2]δ, (3.20)

where C0 is a positive constant independent of N1 and N3. Solve (3.13a) with respect to Rxx,
take the L2–norm, and then estimate the result by using (3.15), (3.17), (3.19) and (3.20).
These computations give

∥Rxx∥ ≤ C1[Bm, BM , N0, N2, C0, C2], (3.21)

where C1 is a positive constant independent of N1 and N3.
Thirdly, we prove the estimate

1

2
Bm ≤ R ≤ 2BM . (3.22)

Divide the equation (3.12a) by r and differentiate the resultant equation. Multiply the result
by −Qxxx, integrate it by part over Ω and then use (3.15) and (3.20) as well as the Schwarz
and the Sobolev inequalities. The resulting inequality is∫ 1

0

2κ0
3r

Q2
xxx +

1

ζ
Q2

xx dx =

∫ 1

0

{
2κ0rx
3r2

Qxx +

(
J

ρ
Qx −

2

3
Jq
rx
r2

−
(
2

3
− ε

3ζ

)
J2

r2

)
x

}
Qxxx

r
dx

≤ µ∥Qxxx∥21 + C[µ,Bm, BM , C3, N0, N1, N2]δ
2.

Then, letting µ small enough, we have

∥Qxxx∥+
1√
ζ
∥Qxx∥ ≤ C[Bm, BM , C3, N0, N1, N2]δ. (3.23)

Applying the maximal principle to the elliptic equation (3.13a) with (3.17), we have

inf
x∈Ω

(D(x) +Qxx(x)) ≤ R ≤ sup
x∈Ω

(D(x) +Qxx(x)) . (3.24)
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Taking δ sufficiently small in (3.20) and (3.23) with the aid of the Sobolev inequality, we can
make |Qxx|0 so small that the inequality (3.24) means the estimate (3.22).

Now we determine the constants N0, N1, N3 and N4 by letting N2 := C2, N0 =: C0

N3 := C3 and N1 = C1 in this order. Then the estimates (3.16), (3.19) and (3.20)–(3.22)
show that the image of the mapping T is contained in W [ · ] := W [N0, N1, N2, N3]. Here the
set W [ · ] is a compact convex subset in B1(Ω). We also easily confirm that the mapping
T : W [ · ] →W [ · ] is continuous in B1(Ω)-norm. Hence, the mapping T has a fixed-point

(ρ̃εζ , θ̃
ε

ζ) = T [(ρ̃εζ , θ̃
ε

ζ)] ∈ W [N0, N1, N2, N3],

owing to the Schauder fixed-point theorem (see Theorem 11.1 in [12] for example).

Third step. Finally we construct the solution to the boundary value problem (2.17)–(2.20)
from the fixed-point (ρ̃εζ , θ̃

ε

ζ). We define a constant j̃εζ := J [ρ̃εζ , θ̃
ε

ζ ] and a function ϕ̃
ε

ζ := Φ[ρ̃εζ ],
where J and Φ are given in (3.9a) and (3.10). Then we see that

(ρ̃εζ , j̃
ε

ζ , θ̃
ε

ζ , ϕ̃
ε

ζ) ∈ B2(Ω)× B2(Ω)× B3(Ω)× B2(Ω)

is the desired solution to (2.17)–(2.20). It satisfies the subsonic condition (2.13), owing to
(3.17). Moreover, the estimates (3.11a) and (3.11b) follow from (3.22) and (3.16), respec-
tively.

Consequently, we have shown the existence of the stationary solutions for the hydrody-
namic and the energy-transport models. Before proving their uniqueness, we derive several
estimates.

Lemma 3.3. Let (ρ̃εζ , j̃
ε

ζ , θ̃
ε

ζ , ϕ̃
ε

ζ) be a solution in B2(Ω)×B2(Ω)×B3(Ω)×B2(Ω) to the bound-
ary value problem (2.17)–(2.20) satisfying the conditions (2.13) and (3.11a). For arbitrary
constant ρl, there exist positive constants δ0, ζ0 and η0 such that if δ ≤ δ0, 0 ≤ ε < ζ ≤ ζ0
and |θ̃ − 1|0 ≤ η0, the solution (ρ̃εζ , j̃

ε

ζ , θ̃
ε

ζ , ϕ̃
ε

ζ) verifies the formula (3.9a) and the estimates

|j̃εζ | ≤ Cδ, (3.25a)

S[ρ̃εζ , j̃
ε

ζ , θ̃
ε

ζ ] ≥ c, (3.25b)

|(ρ̃εζ , ϕ̃
ε

ζ)|2 ≤ C, (3.25c)
1

ζ
∥θ̃εζ − 1∥1 +

1√
ζ
∥(θ̃εζ)xx∥+ ∥(θ̃εζ)xxx∥ ≤ Cδ, (3.25d)

where C and c are positive constants independent of ε, ζ and δ.

Proof. Note that the current j̃ must be given by a solution to the quadratic equation (3.8).
As it is also required to satisfy the subsonic condition (2.13), the current is explicitly given by
the formula (3.9a) for sufficiently small δ. By estimating (3.9a), we show (3.25a) as follows.
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Estimating (3.9a) by using (3.11a) and |θ̃ε − 1|0 ≤ η0 gives the estimate

|j̃εζ | = |J [ρ̃εζ , θ̃
ε

ζ ]| ≤ C[Bm, BM ](δ + ∥(θ̃εζ)x∥). (3.26)

Multiply the equation (2.17c) by θεζ − 1 and integrate the resulting equality by part over the
domain Ω to obtain∫ 1

0

2

3
κ0(θ̃

ε

ζ)
2
x +

ρ̃εζ
ζ
(θ̃

ε

ζ − 1)2 dx =
2

3
j̃
ε

ζ

∫ 1

0

(log ρ̃εζ)x(θ̃
ε

ζ − 1) dx

+
2

3
j̃
ε

ζ

∫ 1

0

(log ρ̃εζ)x(θ̃
ε

ζ − 1)2 dx−
∫ 1

0

{
j̃
ε

ζ(θ̃
ε

ζ)x −
(
2

3
− ε

3ζ

)
(j̃

ε

ζ)
2

ρ̃εζ

}
(θ̃

ε

ζ − 1) dx. (3.27)

We estimate each term in the right hand side of (3.27) one by one. Substituting (3.9a) in the
first term in the right hand side of (3.27) and applying the integration by part, the Sobolev
and the Young inequalities, we have

(First term) =
4

3
K−1[ρ̃εζ , θ̃

ε

ζ ]

(
L[θ̃εζ ] +

∫ 1

0

(θ̃
ε

ζ)x log ρ̃
ε
ζ dx

)
×
(
(θ̃

ε

ζ(1)− 1) log ρr − (θ̃
ε

ζ(0)− 1) log ρl −
∫ 1

0

(θ̃
ε

ζ)x log ρ̃
ε
ζ dx

)
≤ 4

3
K−1[ρ̃εζ , θ̃

ε

ζ ]
(
(θ̃

ε

ζ(1)− 1) log ρr − (θ̃
ε

ζ(0)− 1) log ρl

)∫ 1

0

(θ̃
ε

ζ)x log ρ̃
ε
ζ dx

+
4

3
K−1[ρ̃εζ , θ̃

ε

ζ ]L[θ̃
ε

ζ ]
(
(θ̃

ε

ζ(1)− 1) log ρr − (θ̃
ε

ζ(1)− 1) log ρl

)
+

4

3
K−1[ρ̃εζ , θ̃

ε

ζ ]L[θ̃
ε

ζ ]

∫ 1

0

(θ̃
ε

ζ)x log ρ̃
ε
ζ dx

≤ C[Bm, BM ]
(
|θ̃εζ − 1|0 + δ

)(
|θ̃εζ − 1|0 + δ + ∥(θ̃εζ)x∥

)
≤ µ∥(θ̃εζ)x∥2 + C[µ,Bm, BM ](∥θ̃εζ − 1∥2 + δ2), (3.28)

where µ is an arbitrary positive constant. In the first inequality above, we have also used
K−1[ρ̃εζ , θ̃

ε

ζ ](
∫ 1

0
(θ̃

ε

ζ)x log ρ̃
ε
ζ dx)

2 ≥ 0. By the integration by part, the Sobolev inequality and
the estimate (3.26), the second term is estimated as

(Second term) =
2

3
j̃
ε

ζ

{
(θ̃

ε

ζ(1)− 1)2 log ρl − (θ̃
ε

ζ(0)− 1)2 log ρr

}
− 2

3
j̃
ε

ζ

∫ 1

0

{
(θ̃

ε

ζ − 1)2
}

x
log ρ̃εζ dx

≤ C[Bm, BM ]
(
δ + ∥θ̃εζ − 1∥

)
∥θ̃εζ − 1∥21. (3.29)
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Furthermore, the straightforward computation gives

(Third term) ≤ C[Bm, BM ]
{(
δ + ∥θ̃εζ − 1∥

)
∥θ̃εζ − 1∥21 + ∥θ̃εζ − 1∥2 + δ2

}
. (3.30)

Substituting (3.28)–(3.30) in (3.27) and successively making µ, δ, ζ and η0 sufficiently small
yield

∥(θ̃εζ)x∥+
1√
ζ
∥θ̃εζ − 1∥ ≤ C[Bm, BM ]δ. (3.31)

Combining (3.31) and (3.26), we have the desired estimate (3.25a), which together with the
estimates (3.11a) and (3.31) means that (3.25b) holds for sufficiently small δ.

We show the estimates (3.25c) and (3.25d). The inequality |ϕ̃ε

ζ |2 ≤ C in (3.25c) immedi-
ately follows from the formula (3.10) and the inequality (3.11a). The estimates of ρ̃εζ and θ̃

ε

ζ

in (3.25c) and (3.25d) are derived as follows. By a similar computation as the derivation of
(3.19), we have the estimate ∥(ρ̃εζ)x∥ ≤ C. Moreover, similar computations as the derivation
of (3.20) and (3.21) give the estimates ∥(θ̃εζ)xx∥ ≤ Cδ and ∥(ρ̃εζ)xx∥ ≤ C, respectively. The
estimate ∥(θ̃εζ)xxx∥+∥(θ̃εζ)xx∥/

√
ζ ≤ Cδ is also shown similarly as (3.23). Furthermore, solve

the equation (3.7) with respect to (ρ̃εζ)xx and then take B0-norm of the result to obtain the
estimate |(ρ̃εζ)xx|0 ≤ C. Similarly, with using (2.17c), ∥θ̃εζ − 1∥1/ζ ≤ C. Hence, we have the
desired estimates (3.25c) and (3.25d).

Now we are at a position to show the uniqueness of the stationary solutions for the
hydrodynamic and the energy-transport models.

Lemma 3.4. Under the same conditions in Lemma 3.3, the solution (ρ̃εζ , j̃
ε

ζ , θ̃
ε

ζ , ϕ̃
ε

ζ) ∈ B2(Ω)×
B2(Ω)× B3(Ω)× B2(Ω) is unique.

Proof. Let (ρ̃1, j̃1, θ̃1, ϕ̃1) and (ρ̃2, j̃2, θ̃2, ϕ̃2) be solutions to the stationary problem (2.17)–
(2.20). By using the estimates (3.11a) and (3.25), the mean value theorem and the Poincaré
inequality, we estimate the difference between j̃1 = J [ρ̃1, θ̃1] and j̃2 = J [ρ̃2, θ̃2] as

|j̃1 − j̃2| ≤ C (δ∥r̄x∥+ ∥q̄∥1) , (3.32)

r̄ := log ρ̃1 − log ρ̃2, q̄ := θ̃1 − θ̃2,

where C is a positive constant independent of ε, ζ and δ.
Notice that the function q̄ = θ̃1 − θ̃2 verifies the equation

j̃1θ̃1x − j̃2θ̃2x −
2

3
j̃1(log ρ̃1)xθ̃1 +

2

3
j̃2(log ρ̃2)xθ̃2 −

2

3
κ0q̄xx

=

(
2

3
− ε

3ζ

)(
j̃
2

1

ρ̃1
− j̃

2

2

ρ̃2

)
− ρ̃1

ζ
q̄ − ρ̃1 − ρ̃2

ζ
(θ̃2 − 1), (3.33)
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owing to the equation (2.17c). Multiplying the equation (3.33) by q̄, integrating the resultant
equality by part over Ω and then using the boundary condition q̄x(0) = q̄x(1) = 0, we have∫ 1

0

2

3
κ0q̄

2
x +

ρ̃1
ζ
q̄2 dx =

∫ 1

0

{
2

3
j̃1(log ρ̃1)xθ̃1 −

2

3
j̃2(log ρ̃2)xθ̃2 − j̃1θ̃1x + j̃2θ̃2x

}
q̄

+

{(
2

3
− ε

3ζ

)(
j̃
2

1

ρ̃1
− j̃

2

2

ρ̃2

)
− ρ̃1 − ρ̃2

ζ
(θ̃2 − 1)

}
q̄ dx

≤ µ∥q̄x∥2 + Cδ(∥r̄x∥2 + ∥q̄x∥2) + C[µ]∥q̄∥2,

where we have also used the mean value theorem, the Schwarz and the Poincaré inequalities
as well as (3.25) and (3.32). Thus, letting µ, δ and ζ small enough leads to

∥q̄∥1 ≤ δC∥r̄x∥. (3.34)

We see from (2.17a) that the function r̄ = log ρ̃1 − log ρ̃2 satisfies

S[ρ̃1, j̃1, θ̃1]r̄x +
(
S[ρ̃1, j̃1, θ̃1]− S[ρ̃2, j̃2, θ̃2]

)
(log ρ̃2)x + q̄x

= (ϕ̃1 − ϕ̃2)x −
(
j̃1
ρ̃1

− j̃2
ρ̃2

)
. (3.35)

Multiply (3.35) by r̄x, integrate the resultant equality by parts over Ω using the boundary
condition r̄(0) = r̄(1) = 0 and the equation (2.17d) to get∫ 1

0

S[ρ̃1, j̃1, θ̃1]r̄
2
x + (ρ̃1 − ρ̃2)r̄ dx

= −
∫ 1

0

{(
S[ρ̃1, j̃1, θ̃1]− S[ρ̃2, j̃2, θ̃2]

)
(log ρ̃2)x + q̄x +

(
j̃1
ρ̃1

− j̃2
ρ̃2

)}
r̄x dx. (3.36)

The right hand side of the equality (3.36) is estimated by δC∥r̄x∥2 by the mean value theorem
and the Poincaré inequality as well as the estimates (3.25), (3.32) and (3.34). Taking δ small
enough, we have ∥r̄x∥2 ≤ 0 with aid of (ρ̃1 − ρ̃2)r̄ ≥ 0 and (3.25b). Consequently, we see
ρ̃1 ≡ ρ̃2 holds, which immediately shows θ̃1 ≡ θ̃2, j̃1 ≡ j̃2 and ϕ̃1 ≡ ϕ̃2 thanks to (3.10).
(3.32) and (3.34).

Lemmas 3.2 and 3.4 immediately give the unique existence of the stationary solution to
both the hydrodynamic and the energy-transport models.

Theorem 3.5. Let the doping profile and the boundary data satisfy conditions (2.2), (2.4)
and (2.6). For arbitrary ρl, there exist positive constants δ0, ζ0 and η0 such that if δ ≤ δ0
and 0 ≤ ε < ζ ≤ ζ0, then the boundary value problem (2.17)–(2.20) has a unique solution
(ρ̃εζ , j̃

ε

ζ , θ̃
ε

ζ , ϕ̃
ε

ζ) ∈ B2(Ω)×B2(Ω)×B3(Ω)×B2(Ω) satisfying the conditions (2.13), (3.11a) and
|θ̃εζ − 1|0 ≤ η0.
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3.2 Relaxation limits of stationary solutions
In this section, we justify the relaxation limits of stationary solutions. Firstly, it is shown
that the stationary solution for the hydrodynamic model converges to that for the energy-
transport model as the parameter ε tends to zero. Secondly, we prove that the stationary
solution for the energy-transport model converges to that for the drift-diffusion model as the
parameter ζ tends to zero. These results also give the justification of relaxation limit from
the hydrodynamic model to the drift-diffusion model.

Lemma 3.6. Under the same assumptions as in Theorem 3.5, the stationary solution
(ρ̃εζ , j̃

ε

ζ , θ̃
ε

ζ , ϕ̃
ε

ζ) for (2.17) converges to the stationary solution (ρ̃0ζ , j̃
0

ζ , θ̃
0

ζ , ϕ̃
0

ζ) for (3.1) as ε
tends to zero. Precisely, there exists a positive constant ζ0 such that, for ε < ζ ≤ ζ0,

1√
ζ
∥θ̃εζ − θ̃

0

ζ∥+ ∥(ρ̃εζ − ρ̃0ζ , θ̃
ε

ζ − θ̃
0

ζ)∥1 + |j̃εζ − j̃
0

ζ | ≤ Cδ2
(
ε+

ε

ζ

)
, (3.37)

1√
ζ
∥(θ̃εζ − θ̃

0

ζ)x∥+
∥∥∥({ρ̃εζ − ρ̃0ζ

}
xx
,
{
θ̃
ε

ζ − θ̃
0

ζ

}
xx

)∥∥∥+ ∥ϕ̃ε

ζ − ϕ̃
0

ζ∥4 ≤ Cδ2
(
ε+

ε

ζ

)
, (3.38)

where the positive constant C is independent of ε, ζ and δ.

Proof. In this proof, we omit the suffix ζ to express the solution for simplicity as (ρ̃εζ , j̃
ε

ζ , θ̃
ε

ζ , ϕ̃
ε

ζ)

is denoted by (ρ̃ε, j̃
ε
, θ̃

ε
, ϕ̃

ε
), and (ρ̃0ζ , j̃

0

ζ , θ̃
0

ζ , ϕ̃
0

ζ) by (ρ̃0, j̃
0
, θ̃

0
, ϕ̃

0
). By virtue of the formula of

the current densities j̃ε and j̃0, we have the estimate

|j̃ε − j̃
0| ≤ C

(
δ∥rεx∥+ ∥qε∥1 + δ2ε

)
, (3.39)

rε := log ρ̃ε − log ρ̃0, qε := θ̃
ε − θ̃

0

owing to the mean value theorem and the Poincaré inequality with (3.11a) and (3.25d).
Subtracting the equation (2.17c) from the equation (3.1b) gives

−2

3
κ0q

ε
xx +

ρ̃ε

ζ
qε = F, (3.40)

F :=− j̃
ε
θ̃
ε

x + j̃
0
θ̃
0

x +
2

3
j̃
ε
(log ρ̃ε)xθ̃

ε − 2

3
j̃
0
(log ρ̃0)xθ̃

0

+
2

3

(
(j̃

ε
)2

ρ̃ε
− (j̃

0
)2

ρ̃0

)
− ε

3ζ

(j̃
ε
)2

ρ̃ε
− ρ̃ε − ρ̃0

ζ
(θ̃

0 − 1).

Note that the L2-norm of F in (3.40) is estimated as

∥F∥ ≤ Cδ∥rεx∥+ C∥qε∥1 + Cδ2
(
ε+

ε

ζ

)
(3.41)
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by the mean value theorem, the Poincaré and the Sobolev inequalities as well as (3.11a),
(3.25) and (3.39). Multiply the equation (3.40) by qε, integrate the result over the domain Ω
by part and utilize the boundary conditions qεx(0) = qεx(1) = 0. Then estimate the resulting
equality with using (3.41). These calculations lead to∫ 1

0

2

3
κ0(q

ε
x)

2 +
ρ̃ε

ζ
(qε)2 dx =

∫ 1

0

Fqε dx

≤ (µ+ Cδ)(∥rεx∥2 + ∥qεx∥2) + C[µ]∥qε∥2 + Cδ4
(
ε2 +

ε2

ζ2

)
,

where µ is an arbitrary positive constant. Successively, making µ, δ and ζ small enough, we
have

∥qεx∥2 +
1

ζ
∥qε∥2 ≤ Cδ∥rεx∥2 + Cδ4

(
ε2 +

ε2

ζ2

)
. (3.42)

Divide (2.17b) by ρ̃ε and (3.1d) by ρ̃0, respectively. Then take the difference between the
two resultant equations to obtain

θ̃
ε
rεx + (log ρ0)xq

ε + qεx + (ϕ̃ε − ϕ̃0)x − ε

(
j̃
ε

ρ̃ε

)2

(log ρ̃ε)x +
j̃
ε

ρ̃ε
− j̃

0

ρ̃0
= 0. (3.43)

Multiplying (3.43) by rεx and then integrating the resulting equality over the domain Ω by
part with using rε(0) = rε(1) = 0, (2.17d) and (3.1c), we have∫ 1

0

θ̃
ε
(rεx)

2 + (ρ̃ε − ρ̃0)rε dx

=

∫ 1

0

−qε(log ρ̃0)x − qεx −
j̃
ε

ρ̃ε
+
j̃
0

ρ̃0
+ ε

(
j̃
ε

ρ̃ε

)2

(log ρ̃ε)x

 rεx dx

≤ (µ+ Cδ)∥rεx∥2 + C[µ]δ4
(
ε2 +

ε2

ζ2

)
, (3.44)

where we have also used (3.39) and (3.42). Since (ρ̃ε − ρ̃0)rε ≥ 0, making µ and δ small
enough in (3.44) yields the estimate ∥rεx∥2 ≤ Cδ4 (ε2 + ε2/ζ2), which means

∥rε∥21 ≤ Cδ4
(
ε2 +

ε2

ζ2

)
(3.45)

with aid of the Poincaré inequality. The inequality (3.45) together with (3.11a) yields the
estimate of (ρ̃ε−ρ̃0) in (3.37). Estimating (3.45) with (3.42), we have the estimate of (θ̃

ε−θ̃0)



3.2. RELAXATION LIMITS OF STATIONARY SOLUTIONS 35

in (3.37). Substituting this estimate and (3.45) in (3.39) gives the estimate of (j̃ε − j̃
0
) in

(3.37), which completes the derivation of the desired estimate (3.37).
To completion of the proof, it suffices to show the estimate (3.38). Multiplying (3.40) by

−qεxx/ρ̃ε and integrating the resulting equality over the domain Ω by part gives∫ 1

0

2κ0
3ρ̃ε

(qεxx)
2 +

1

ζ
(qεx)

2 dx =

∫ 1

0

qεxx
ρ̃ε
F dx ≤ µ∥qεxx∥2 + C[µ]δ4

(
ε2 +

ε2

ζ2

)
, (3.46)

where µ is an arbitrary constant. In deriving the above inequality, we have also used the
estimates (3.37) and (3.41). Then take µ sufficiently small in (3.46) to get

∥qεxx∥2 +
1

ζ
∥qεx∥2 ≤ Cδ4

(
ε2 +

ε2

ζ2

)
. (3.47)

Differentiate the equation (3.43), solve the resultant equation with respect to rεxx, take the
L2-norm of the result. Then applying (3.37) and (3.47), we obtain the estimate

∥rε∥22 ≤ Cδ4
(
ε2 +

ε2

ζ2

)
, (3.48)

which also shows the estimate of (ρ̃ε − ρ̃0)xx and ϕ̃
ε − ϕ̃

0
in (3.38) with aid of (3.10) and

(3.11a). Consequently, the proof is completed.

Lemma 3.7. Under the same assumptions as in Lemmas 3.1–3.3, the stationary solution
(ρ̃0ζ , j̃

0

ζ , θ̃
0

ζ , ϕ̃
0

ζ) for (2.17) converges to the stationary solution (ρ̃00, j̃
0

0, ϕ̃
0

0) for (3.2) as ζ tends
to zero. Precisely, there exists a positive constant ζ0 such that, for ζ ≤ ζ0,

∥(ρ̃0ζ − ρ̃00, θ̃
0

ζ − 1)∥1 + |j̃0ζ − j̃
0

0|+ ∥ϕ̃0

ζ − ϕ̃
0

0∥3 ≤ Cδζ, (3.49)

∥({ρ̃0ζ − ρ̃00}xx, {θ̃
0

ζ − 1}xx)∥ ≤ Cδ
√
ζ, (3.50)

where the positive constant C is independent of ζ and δ.

Proof. For simplicity, we abbreviate (ρ̃0ζ , j̃
0

ζ , θ̃
0

ζ , ϕ̃
0

ζ) as (ρ̃ζ , j̃ζ , θ̃ζ , ϕ̃ζ) and (ρ̃00, j̃
0

0, ϕ̃
0

0) as (ρ̃0, j̃0, ϕ̃0)

in this proof. The estimates of the difference θ̃ζ − 1 in (3.49) and (3.50) have been already
shown in (3.25d). In the similar way as in the derivation of (3.39), the difference between j̃ζ
and j̃0 are estimated as

|j̃ζ − j̃0| ≤ Cδ (∥(rζ)x∥+ ζ) , rζ := log ρ̃ζ − log ρ̃0, (3.51)

thanks to the formula (3.6) and (3.9a). Once the estimate of ρ̃ζ − ρ̃0 in (3.49) is shown, the
estimate of j̃ζ − j̃0 in (3.49) immediately follows. Hence, it suffices to derive the estimates
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of the rζ . Divide (3.1d) by ρ̃ζ and (3.2c) by ρ̃0, take the difference of the results and then
multiply the difference by rεx. Integrate the result over the domain Ω by part and estimate
the resultant equality by using (3.25d) and (3.51). These calculations lead to∫ 1

0

(rζ)
2
x + (ρ̃ζ − ρ̃0)rζ dx = −

∫ 1

0

{
1

ρ̃ε
{(θ̃ζ − 1)ρ̃ζ}x +

j̃ζ
ρ̃ζ

− j̃0
ρ̃0

}
(rζ)x dx

≤ (µ+ Cδ)∥(rζ)x∥2 + C[µ]δ2ζ2,

where µ is an arbitrary constant. Take µ and δ so small that µ + Cδ < 1 and then use the
Poincaré inequality to obtain

∥rζ∥1 ≤ Cδζ, (3.52)

since (ρ̃ζ − ρ̃0)rζ ≥ 0. Finally, the similar manner as in the estimation of (3.48) gives

∥rζ∥2 ≤ Cδ
√
ζ. (3.53)

Combining the estimates (3.51), (3.52) and (3.53) completes the proof.

Lemmas 3.6 and 3.7 immediately give the next corollary, concerning the relaxation limit
from the hydrodynamic to the drift-diffusion model.

Corollary 3.8. Under the same assumptions as in Lemmas 3.1–3.3, the stationary solution
(ρ̃εζ , j̃

ε

ζ , θ̃
ε

ζ , ϕ̃
ε

ζ) for (2.17) converges to the stationary solution (ρ̃00, j̃
0

0, ϕ̃
0

0) for (3.2) as ε and ζ
tend to zero. Precisely, there exists a positive constant ζ0 such that, for ε < ζ ≤ ζ0,

∥(ρ̃εζ − ρ̃ε0, θ̃
ε

ζ − 1)∥1 + |j̃εζ − j̃
0

0|+ ∥ϕ̃ε

ζ − ϕ̃
0

0∥3 ≤ Cδ

(
ε+

ε

ζ
+ ζ

)
, (3.54)

∥({ρ̃εζ − ρ̃00}xx, {θ̃
ε

ζ − 1}xx)∥ ≤ Cδ

(
ε+

ε

ζ
+
√
ζ

)
, (3.55)

where the positive constant C is independent of ε, ζ and δ.


