
Chapter 6

Implementation

6.1 Implementation of RWS

6.1.1 Implementation of Example 2.9
The computation of Example 2.9 was done by the following C program.

/*==*/

/* file name: rws_example.c */

/*==*/

#include <stdio.h>

#define SAMPLE_NUM 1000000

#define M 100

#define M_PLUS_J 119

/* seed */

char xch[M_PLUS_J] =

"1110110101" "1011101101" "0100000011" "0110101001" "0101000100"

"0101111101" "1010000000" "1010100011" "0100011001" "1101111101"

"1101010011" "111100100";

char ach[M_PLUS_J] =

"1100000111" "0111000100" "0001101011" "1001000001" "0010001000"

"1010101101" "1110101110" "0010010011" "1000000011" "0101000110"

"0101110010" "010111111";

int x[M_PLUS_J], a[M_PLUS_J];

void longadd(void) /* x = x + a (long digit addition) */

{

int i, s, carry = 0;

for (i = M_PLUS_J-1; i >= 0; i--){

s = x[i] + a[i] + carry;

if (s >= 2) {carry = 1; s = s - 2; } else carry = 0;

x[i] = s;

113

114 6 Implementation

}

}

int maxLength(void) /* count the longest run of 1’s */

{

int len = 0, count = 0, i;

for (i = 0; i <= M-1; i++){

if (x[i] == 0){ if (len < count) len = count; count = 0;}

else count++ ; /* if x[i]==1 */

}

if (len < count) len = count;

return len;

}

int main()

{

int n, s = 0;

for(n = 0; n <= M_PLUS_J-1; n++){

if(xch[n] == ’1’) x[n] = 1; else x[n] = 0;

if(ach[n] == ’1’) a[n] = 1; else a[n] = 0;

}

for (n = 1 ; n <= SAMPLE_NUM ; ++n){

longadd();

if (maxLength() >= 6) s++;

}

printf ("s=%6d, p=%7.6f\n", s, (double)s/(double)SAMPLE_NUM);

return 0;

}

/*================ End of rws_example.c ===================*/

6.1.2 Implementation of Example 5.9
The computation of Example 5.9 and Figure 5.2 was done by the following C program.†1

It uses two functions m90setseeds and m90randombit of the C language library ran-
dom sampler which will be introduced in § 6.2.

/*==*/

/* file name: rws_S500.c */

/*==*/

#include <stdio.h>

#include <time.h>

#include "random_sampler.h"

#define SAMPLE_NUM 10000000

#define M 500

#define M_PLUS_J 523

†1The output of this program is very long, so redirect it to a text file.

6.2. C language library : random sampler 115

int x[M_PLUS_J], a[M_PLUS_J], hist[M+1];

void longadd(void) /* x = x + a (long digit addition) */

{

int i, s, carry = 0;

for (i = M_PLUS_J-1; i >= 0; i--){

s = x[i] + a[i] + carry;

if (s >= 2) {carry = 1; s = s - 2; } else carry = 0;

x[i] = s;

}

}

int s500(void)

{

int s = 0, i;

for (i = 0; i <= M-1; i++) s += x[i];

return s;

}

int main()

{

int n,i;

m90setseeds(664426,5161592,7773372,84171419,1545);

for(i = 0; i <= M ; i++) hist[i] = 0;

for(i = 0; i <= M_PLUS_J-1; i++) x[i] = m90randombit();

for(i = 0; i <= M_PLUS_J-1; i++) a[i] = m90randombit();

for (n = 1 ; n <= SAMPLE_NUM ; n++){

longadd();

hist[s500()]++;

if (n == 1000 || n == 10000 || n == 100000 || n == 10000000){

printf ("%d samples:\n",n);

for(i = 0; i <= M ; i++)

printf ("%3d : %8.7f\n", i,(double)hist[i]/(double)n);

printf ("\n");

}

}

return 0;

}

/*================ End of rws_S500.c ====================*/

6.2 C language library : random sampler

We introduce a C language library random sampler, which provides the pseudorandom
generator by means of Weyl transformation and the dynamic random Weyl sampling
(DRWS).

116 6 Implementation

• m90random
The pseudorandom generator by means of Weyl transformation (§ 4.2.1) with α =
(
√

5− 1)/2, m = 90 and j = 60 by the discretization (4.6), (4.7) and (4.8).†2 This is
a multi-purpose pseudorandom generator.

• DRWS
DRWS (§ 5.4.1) with K = j = 31 by (5.12), (5.13) and (5.14). This is a pseudo-
random generator exclusively for the Monte Carlo integration. Its random source is
m90random.

6.2.1 Source code
The source code consists of two files; random sampler.c (body of the library) and
random sampler.h (header).

• random sampler.c
/*==*/

/* file name: random_sampler.c */

/*==*/

#include <stdlib.h>

#define LIMIT_30 0x3fffffff

#define LIMIT_31 0x7fffffff

#define CARRY_31 0x40000000

#define CARRY_32 0x80000000

static unsigned long omega[5]; /* for m90random */

struct data_pair_s { /* for DRWS */

unsigned long x1;

unsigned long x2;

unsigned long a1;

unsigned long a2;

struct data_pair_s *next;

};

typedef struct data_pair_s data_pair_t;

static long location;

static long locmax;

static long locmaxmax=-1;

static data_pair_t random_list;

static data_pair_t *current_ptr;

/*==*/

/* Functions for pseudo-random generation "m90random"　　　*/

†2The prefix “m90” indicates m = 90.

6.2. C language library : random sampler 117

/* Initialization */

void m90setseeds(unsigned long s0, unsigned long s1,

unsigned long s2, unsigned long s3,

unsigned long s4)

{

omega[0] = s0 & LIMIT_30; omega[1] = s1 & LIMIT_30;

omega[2] = s2 & LIMIT_30; omega[3] = s3 & LIMIT_30;

omega[4] = s4 & LIMIT_30;

}

/* Returns the current seeds */

void m90getseeds(unsigned long *sp0, unsigned long *sp1,

unsigned long *sp2, unsigned long *sp3,

unsigned long *sp4)

{

*sp0 = omega[0]; *sp1 = omega[1]; *sp2 = omega[2];

*sp3 = omega[3]; *sp4 = omega[4];

}

/* Generates a random bit */

char m90randombit(void)

{

static unsigned long alpha[5] = { /* Data of (sqrt(5)-1)/2 */

0x278dde6e, 0x17f4a7c1, 0x17ce7301, 0x205cedc8, 0x0d042089

};

char data_byte;

union bitarray {

unsigned long of_32bits;

char of_8bits[4];

} data_bitarray;

int j;

for (j=4; j>=1;){

omega[j] += alpha[j];

if (omega[j] & CARRY_31){ omega[j] &= LIMIT_30; omega[--j]++; }

else --j;

}

omega[0] += alpha[0]; omega[0] &= LIMIT_30;

data_bitarray.of_32bits = omega[0] ˆ omega[1] ˆ omega[2];

data_byte = data_bitarray.of_8bits[0] ˆ data_bitarray.of_8bits[1]

ˆ data_bitarray.of_8bits[2] ˆ data_bitarray.of_8bits[3];

data_byte ˆ= (data_byte >> 4);

data_byte ˆ= (data_byte >> 2);

data_byte ˆ= (data_byte >> 1);

return(1 & data_byte);

}

/* Generates a 31 bit random integer */

118 6 Implementation

unsigned long m90random31(void)

{

int j;

unsigned long b=0;

for (j=0; j<30; j++) { b |= m90randombit(); b <<= 1; }

b |= m90randombit();

return b;

}

/* Generates a 31 bit random real in [0,1) */

double m90randomu(void)

{

return (double)m90random31()/CARRY_32;

}

/*==*/

/* Functions for dynamic random Weyl sampling "DRWS" */

/* Initialization */

void init_drws(void)

{

locmax = -1; location = -1; random_list.next = 0;

}

/* Finalization */

void end_drws(void)

{

data_pair_t *previous_ptr;

if (random_list.next != 0){

current_ptr = random_list.next;

previous_ptr = &random_list;

while (current_ptr -> next !=0){

previous_ptr = current_ptr;

current_ptr = current_ptr -> next;

}

free(current_ptr);

previous_ptr -> next = 0;

end_drws();

}

}

/* Returns the locmax */

long get_locmax(void)

{

return locmax;

}

/* Sets the locmaxmax */

void set_locmaxmax(long n)

6.2. C language library : random sampler 119

{

locmaxmax = n;

}

/* Sets the first location */

void set_first_location(void)

{

location = -1; current_ptr = &random_list;

}

/* Generates a dynamic random Weyl sample (31 bit integer) */

unsigned long drws31(void)

{

data_pair_t *p;

location++;

if ((locmaxmax > 0)&&(location > locmaxmax)) return m90random31();

if (location > locmax){

p = (data_pair_t *) malloc(sizeof(data_pair_t));

if (p == 0) return CARRY_32;

current_ptr -> next = p;

p -> x1 = m90random31(); p -> x2 = m90random31();

p -> a1 = m90random31(); p -> a2 = m90random31();

p -> next = 0;

locmax++;

}

current_ptr = current_ptr -> next;

current_ptr -> x2 += current_ptr -> a2;

current_ptr -> x1 += current_ptr -> a1;

if (current_ptr -> x2 & CARRY_32) {

current_ptr -> x2 &= LIMIT_31;

current_ptr -> x1 ++;

}

return (current_ptr -> x1 &= LIMIT_31);

}

/* Generates a dynamic random Weyl sample in [0,1) */

double drwsu(void)

{

unsigned long drws31copy = drws31();

if (drws31() == CARRY_32) return -1.0;

else return (double)drws31copy/(double)CARRY_32;

}

/*================ End of random_sampler.c ====================*/

120 6 Implementation

• random sampler.h
/*==*/

/* file name: random_sampler.h */

/* (header for random_sampler.c) */

/*==*/

/* Constant */

#define RANDMAX 0x80000000

/* Functions for pseudo-random generation "m90random" */

extern void m90setseeds(unsigned long, unsigned long,

unsigned long, unsigned long,

unsigned long);

extern void m90getseeds(unsigned long *, unsigned long *,

unsigned long *, unsigned long *,

unsigned long *);

extern char m90randombit(void);

extern unsigned long m90random31(void);

extern double m90randomu(void);

/* Functions for dynamic random Weyl sampling "DRWS" */

extern void init_drws(void);

extern void end_drws(void);

extern long get_locmax(void);

extern void set_locmaxmax(long);

extern void set_first_location(void);

extern unsigned long drws31(void);

extern double drwsu(void);

/*================ End of random_sampler.h ====================*/

6.2.2 Specification of constant and function
The constant and the functions included in random sampler are;

• Constant

– RANDMAX
Its value is 0x80000000 = 231 = 2, 147, 483, 648．

• m90random

– void m90setseeds(unsigned long, unsigned long, ...);
assigns 5 unsigned long integers as a seed to initialize m90random. This
seed corresponds to x̃ of (4.6)(4.7) in § 4.2.1. In any Monte Carlo methods,

6.2. C language library : random sampler 121

all results are function of the seed, and hence, this initialization must always
be done.

– void m90getseeds(unsigned long *, unsigned long *, ...);
saves the present status of m90random to 5 unsigned long variables. Pass-
ing them to m90setseeds, we can make m90random recover the saved status.

– char m90randombit();
returns a 1 bit integer (0 or 1) at random. This corresponds to Y (m)

n (x̃; ⌊α⌋m+ j)
defined by (4.6), (4.7) and (4.8). Y (m)

n (x̃; ⌊α⌋m+ j) is the parity of the upper m
bit of x̃ + n⌊α⌋m+ j, which is quickly calculated here.

– unsigned long m90random31();
returns an unsigned 31 bit integer (0 ∼ 231−1 = RANDMAX −1 = 0x7fffffff)
at random. This function makes 31 calls of m90randombit() to make a 31
bit integer.

– double m90randomu();
returns a [0, 1]-valued real number in 31 bit precision at random. More pre-
cisely, it returns m90random31()/RANDMAX.

• DRWS
Here we assume that the integrand in question satisfies Assumption 1.9 in § 1.3.1,
and we use the symbols appeared in § 5.4.3.

– void init drws();
initializes DRWS. This function must be called at the beginning of DRWS.

– void end drws();
releases the computer memory that DRWS has used. This function must be
called at the end of DRWS.

– void set first location();
should be called once, before Z1 is generated to produce each sample.

– unsigned long drws31();
returns an unsigned 31 bit integer. Call this function when you generate
Z1,Z2, . . . to compute each sample of f . If the current number of Zl’s gets
bigger than the upper limit specified by set locmaxmax, random sampler
switches from DRWS to i.i.d.-sampling, i.e., drws31() calls m90random31()
and returns its value. If the memory is exhausted, drws31() returns RANDMAX
to warn the programmer.

– double drwsu();
returns a [0, 1]-valued real number in 31 bit precision. Call this function when
you generate Z1,Z2, . . . to compute each sample of f . More precisely, it re-
turns drws31()/RANDMAX, unless the memory is exhausted. If it is exhausted,
drwsu() returns −1.0 to warn the programmer.

– long get locmax();
returns the maximum number T of Z1, . . . , ZT that have been currently gener-
ated to sample f .

122 6 Implementation

– void set locmaxmax(long);
specifies the upper limit of the number of Zl’s. Assigning −1 means specifying
no upper limit. In the default setting, no upper limit is specified.

6.2.3 Sample codes

• m90random
Some functions of the pseudorandom generator m90random have been used in § 6.1.2.
They are also used in the following program drws.c.

• DRWS
A sample program drws.c below computes the mean of f of Example 1.12 in § 1.3.1.
Namely, it computes the mean of the first time when the total number of Heads becomes
5 in successive coin tosses.

01:/*===*/

02:/* drws.c : A sample program for DRWS */

03:/*===*/

04:#include <stdio.h>

05:#include "random_sampler.h"

07:

08:#define SAMPLE_SIZE 1000000

09:

10:int main()

11:{

12: unsigned long halfmax = RANDMAX >> 1;

13: long i;

14: int number_of_heads, f;

15: double sum_of_f;

16:

17: m90setseeds(0,53,0,0,0);

18: init_drws();

19:

20: sum_of_w=0.0;

21: for (i=1; i <= SAMPLE_SIZE; i++){

22: number_of_heads=0;

23: f=0;

24: set_first_location();

25: while (number_of_heads < 5){

26: f++;

27: if (drws31() >= halfmax) number_of_heads++;

28: }

29: sum_of_f += f;

30: }

31: printf("Mean of hitting time = %f\n", sum_of_f/SAMPLE_SIZE);

6.2. C language library : random sampler 123

32: printf("locmax = %d\n", get_locmax());

33: end_drws();

34: return 0;

35:}

Comments are given with line numbers.

05: loads the header random sampler.h.

12: The constant RANDMAX is defined in random sampler.h as 0x80000000. The
maximum value that the functions

m90random31(), drws31()

can take is RANDMAX−1. In this line, the variable halfmax is defined as half of it,
i.e., as 0x40000000.

17: initializes the pseudo-random generator m90random. The arguments should be set
by the user, but here, to make the program short, we fixed them.

18: initializes DRWS.

21: The body of for loop is repeated SAMPLE SIZE = 1, 000, 000 times.

24: prepares to generate the first Z1.

27: Each time drws31() is called, a 31 bit integer is generated, which corresponds
to Z1,Z2, If it is larger than halfmax, which occurs with probability 1/2, the
variable number of heads increases by 1.

28: The end of the loop of while in line 25. When number of heads = 5, the thread
comes out of the loop. By that time, the number of calls of drws31() varies by
circumstances.

29: The value of f in the right-hand side is the realized value of the random variable f .

31: Getting out of the for loop in line 21, the experiment is over. The mean of W is
estimated by

sum of w/SAMPLE SIZE.

This sample program outputs 10.000073 for it.

32: get locmax() returns the maximum number T of Z1, . . . , ZT that have been gen-
erated through the whole process. This sample program outputs 37 for it.

33: Finally, end drws() releases the memory used by DRWS.

The point of using DRWS of random sampler is to call

set first location()

before generating each sample. Then, call drws31() or drwsu() to generate Z1,Z2, . . .
in oder.

124 6 Implementation

6.2.4 Restrictions of use

• m90random: The upper limit of sample size
The upper limit of sample size that m90randombit() can generate is thought to be the
critical sample number defined by (4.18), which is N(90)

c (10000) = 8.7×1014 bits. The up-
per limit of sample size that m90random31() and m90randomu() can generate is thought
to be N(90)

c (10000)/31 = 2.8 × 1013.†3

• DRWS: The upper limit of sample size
The upper limit of sample size of DRWS is 232 = 4, 294, 967, 296. This means, for
example, that SAMPLE SIZE in the sample program (§ 6.2.3) must not be larger than
4, 294, 967, 296.†4

• DRWS: Memory administration
For each Zl, DRWS spends 160 bits (= 20 bytes) †5 of computer memory. For example, the
sample program (§ 6.2.3) outputs locmax = 37, which means that it spent 37×20 = 740
byte memory. Recently, computers have a lot of memory, and so, usually, this is not a
big problem. But, in some large scale computations, namely, when the probability that f
requires too many Zl’s is not negligible, DRWS may exhaust the memory.

So, it is recommended to call get locmax() to always check how much memory
is currently used. The more practical method is the following; set the upper limit by
set locmaxmax so as to switch to i.i.d.-sampling from DRWS, if the current number of
Zl’s exceeds the upper limit.

†3It is actually possible to generate more samples than the upper limit of sample size stated here, but in
that case, non-zero correlation that cannot be ignored might appear.
†4It is actually possible to generate more samples than the upper limit of sample size stated here, but in

that case, the pairwise independence of samples is not assured.
†5In the case where unsigned long is 32 bit = 4byte.

