
Chapter 4

Pseudorandom generator

In this chapter, we discuss multipurpose pseudorandom generators. Those exclusively for
the Monte Carlo integration have been discussed in § 2.5 and will be discussed further in
Chapter 5.

4.1 Computationally secure pseudorandom generator

4.1.1 Definitions
Let us introduce the definition of computationally secure pseudorandom generator as well
as related notions. Basic ideas can be seen in [2, 49]. For details, see [24, 36].

Definition 4.1

1. This chapter mainly deals with partial recursive functions f : {0, 1}∗ → {0, 1}∗ of
the following form; for each n ∈ N+, fn := f |{0,1}r(n) : {0, 1}r(n) → {0, 1}s(n). We
then write f = { fn}n. Let M be a Turing machine which computes f . The time
complexity T f (n) of f is defined as the maximum number of steps that M needs to
compute fn(x) where x runs over {0, 1}r(n). This definition applies to functions of
several variables as well.

2. A sequence of integers {ℓ(n)}n is called a polynomial parameter if there exists a
constant c > 0 such that ℓ(n) = O(nc).

3. f = { fn}n with fn : {0, 1}r(n) → {0, 1}s(n) is called a polynomial time function if
r(n), s(n) and T f (n) are polynomial parameters. This definition applies to functions
of several variables as well.

4. When a random variable Y is distributed uniformly in a finite set B, we write Y ∈U

B. We assume that Y is independent of all other random variables in the context.
The probability measure that governs Y is often written as PrY .

5. A = {An}n is called a random function if A is of the form An : {0, 1}r(n) × {0, 1}s(n) →
{0, 1}t(n) with inputs x ∈ {0, 1}r(n) and Y ∈U {0, 1}s(n). We often omit the random
variable in the notation and say simply “random function An : {0, 1}r(n) → {0, 1}t(n)”.
But the time complexity of A is the one for two variable function An(x, y). These
definitions and notions apply to functions of several variables as well.
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44 4 Pseudorandom generator

In the theory of computational complexity, polynomial time functions are thought to
be feasible functions, while the other functions are thought to be infeasible functions.†1

Definition 4.2 A polynomial time function g = {gn}n is called a pseudorandom genera-
tor if it is of the form gn : {0, 1}n → {0, 1}ℓ(n) where ℓ(n) > n.

Remark 4.3 In Definition 2.5 of Chapter 2, a pseudorandom generator is defined as a
single function g : {0, 1}n → {0, 1}L where n < L. This definition suffices, if we use a
pseudorandom generator to solve a particular single problem. But if we use a pseudo-
random generator for many purposes, we should define it as a sequence of functions as
Definition 4.2, which enables us to choose a suitable gn : {0, 1}n → {0, 1}ℓ(n) for each
individual problem.

The seed which Alice, the player, chooses is regarded as a random variable Zn ∈U

{0, 1}n. The function gn stretches it to a pseudorandom number gn(Zn), which is a {0, 1}ℓ(n)-
valued random variable. Of course, ℓ(n) > n implies that gn(Zn) is not distributed uni-
formly in {0, 1}ℓ(n).

We next consider functions for tests. Let A = {An}n, An : {0, 1}ℓ(n) → {0, 1}, be a
function or a random function, and set†2

δg,A(n) :=
∣∣∣PrZℓ(n)

(
An(Zℓ(n)) = 1

) − PrZn (An(gn(Zn)) = 1)
∣∣∣ . (4.1)

To be a good pseudorandom generator, it is desirable that ℓ(n) is much greater than n, the
calculation of gn is quickly done, and that δg,A(n) is small enough for many A’s. But it is
not necessary that δg,A(n) is small for all A’s. We set

S g,A(n) :=
TA(n)
δg,A(n)

.

Definition 4.4 A pseudorandom generator g is said to be computationally secure†3 if
S g,A(n) is not a polynomial parameter for all A’s.

If TA(n) is not a polynomial parameter, neither is S g,A(n). So Definition 4.4 does not
care about such A. Thus a computationally secure pseudorandom generator is thought to
be one which cannot be rejected by any feasible tests.

4.1.2 Computational security and Monte Carlo method
Pseudorandom numbers are used not only in the Monte Carlo method but also in cryptog-
raphy. The usage of them in cryptography is as follows. A message, such as document,
sound, picture, whatever it may be, is transformed into a finite {0, 1}-sequence x. Gener-
ating a pseudorandom number ({0, 1}-sequence) y of the same length as x, we encode x
†1This is not always true in problems of practical size. For example, en/1000 is greater than every polyno-

mials in n for sufficiently large n, but for small n, it is less than n100.
†2If A is a random function, and if An involves a random variable Y ∈U {0, 1}s(n), the calculation of the

probability in (4.1) must take Y into account.
†3In computer science, or more precisely, in cryptography, a computationally secure pseudorandom gen-

erator is simply called a pseudorandom generator.
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by taking the bit-wise XOR (eXclusive OR) of them; i.e., z := x XOR y, which is a coded
message. To decode it, do just the same thing; x = z XOR y. In this case, the seed of the
pseudorandom number is the common key (or password) for encoding and decoding. If
the pseudorandom generator is computationally secure, no one can decode the message z
in practice without knowing the key (cf. [24, 36]).

In Definition 4.4, the function A stands for an ‘adversary’ who attacks the cryptosys-
tem using every means available. We admit a random function for A, because adversaries
may attack it at random. A computationally secure pseudorandom generator stands up to
every feasible attack, and hence it is also called a cryptographically secure pseudorandom
generator.

Thus the notion of computational security was thought out from a viewpoint other
than the Monte Carlo method. But, as a matter of fact, it is useful in the Monte Carlo
method, too. Let us explain it.

Suppose that our random variable S is a function of Zℓ(n) ∈U {0, 1}ℓ(n); S := S (Zℓ(n)).
Note that S should be a function which can be computed in practice. Suppose further
that ℓ(n) is too large to sample S (Zℓ(n)), so we use a pseudorandom number gn(Zn), Zn ∈U

{0, 1}n, instead of Zℓ(n). Namely, we compute S ′ := S (gn(Zn)) instead of S . Then we ask
if the distribution of S ′ is close to that of S . Let us compare the distribution functions

F(S ; t) := PrZℓ(n)(S ≤ t), F(S ′; t) := PrZn(S
′ ≤ t), t ∈ R,

of the two. If g is computationally secure, it is assured that F(S ; t) and F(S ′; t) are close
to each other. To see this, set a function for test An as

An(x) := 1{S (x)≤t}, x ∈ {0, 1}ℓ(n).

Because S can be computed in practice, the time complexity of An is sufficiently small.
Then by the definition of computationally security, the difference

|F(S ; t) − F(S ′; t)| =
∣∣∣PrZℓ(n)

(
An(Zℓ(n)) = 1

) − PrZn (An(gn(Zn)) = 1)
∣∣∣

must be very small.

4.1.3 Existence problem
The notion of computationally secure pseudorandom generator is very natural and very
simple. However, unfortunately, we do not know if its instance exists.

Let us introduce two computational complexity classes;

P :=
{

L ⊂ {0, 1}∗
∣∣∣∣∣∣ ∃ A : {0, 1}∗ → {0, 1}, a polynomial time function, s.t.
∀x ∈ {0, 1}∗ (x ∈ L ⇐⇒ A(x) = 1)

}
,

NP :=
{

L ⊂ {0, 1}∗
∣∣∣∣∣∣ ∃ A : {0, 1}∗ → {0, 1}, a random polynomial time function, s.t.
∀x ∈ {0, 1}∗ (x ∈ L ⇐⇒ Pr(A(x) = 1) > 0)

}
.

P ⊂ NP is obvious, but the inverse inclusion relation is not known. Most of researchers
believe that P , NP holds. This is one of the most important conjectures in the theory of
computational complexity.

Concerning pseudorandom generator, we have the following theorem.
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Theorem 4.5 If P = NP holds, there exists no computationally secure pseudorandom
generator.†4

Proof. Let g = {gn}n, gn : {0, 1}n → {0, 1}ℓ(n), be an arbitrary pseudorandom generator.
Define Mn : {0, 1}ℓ(n) × {0, 1}n → {0, 1} by

Mn(y, x) :=
{

1 (gn(x) = y),
0 (gn(x) , y).

Then M = {Mn}n is a polynomial time function. If we set

L := {y ∈ {0, 1}∗ | ∃ n ∈ N+, y ∈ {0, 1}ℓ(n), ∃ x ∈ {0, 1}n, Mn(y, x) = 1},

then L ∈ NP. Since we assume P = NP, we have L ∈ P. This means that there exists a
polynomial time function A = {An}n, An : {0, 1}ℓ(n) → {0, 1}, such that y ∈ L⇔ An(y) = 1.
Then for Zn ∈U {0, 1}n and Zℓ(n) ∈U {0, 1}ℓ(n), we have

PrZn(An(gn(Zn)) = 1) = 1, PrZℓ(n)(An(Zℓ(n)) = 1) ≤ 2n

2ℓ(n) ,

which implies δg,A(n) ≥ 1− 2n−ℓ(n). Since TA(n) is a polynomial parameter, so is S g,A(n) =
TA(n)/δg,A(n). Thus g is not computationally secure. □

There are many candidates for computationally secure pseudorandom generator. To
this point, since we do not know if P , NP holds, we do not know if they are computa-
tionally secure. However researchers are optimistic. They think that if some of them are
computationally secure, it would be excellent, and if not, there would be some progress
in the P,NP conjecture. Anyhow, until we come to know that they are not, they may be
regarded as secure.

4.1.4 Next-bit-unpredictability
Let us introduce the following property of pseudorandom generator.

Definition 4.6 Let g = {gn}n, gn : {0, 1}n → {0, 1}ℓ(n), be a pseudorandom generator.
Suppose that random variables Z ∈U {0, 1}n and I ∈U {1, 2, . . . , ℓ(n)} are independent
under PrI,Z. For a function or a random function Ã = {Ãn}n, Ãn : {1, . . . , ℓ(n)}× {0, 1}ℓ(n) →
{0, 1}, define

δ̃g,Ã(n) := PrI,Z

(
Ãn(I, gn(Z){1,...,I−1}) = gn(Z)I

)
− 1

2
.

Here, gn(Z)i denotes the i-th bit of gn(Z), and gn(Z){1,...,i} ∈ {0, 1}ℓ(n) is defined by

gn(Z){1,...,i} := (gn(Z)1, gn(Z)2, . . . , gn(Z)i,

ℓ(n)−i︷  ︸︸  ︷
0, . . . , 0).

Now, g is said to be next-bit-unpredictable if

S̃ g,Ã (n) :=

∣∣∣∣∣∣ TÃ(n)
δ̃g,Ã(n)

∣∣∣∣∣∣
is not a polynomial parameter for any Ã.
†4P , NP does not imply the existence of computationally secure pseudorandom generator.
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Theorem 4.7 A pseudorandom generator g = {gn}n is computationally secure, if and
only if it is next-bit-unpredictable.

Proof. Step 1. (1) Let g be next-bit-predictable, i.e., let there exist an Ã such that TÃ(n)
and S̃ g,Ã (n) are polynomial parameters. Let I ∈U {1, . . . , ℓ(n)} and define a random func-
tion A : {0, 1}ℓ(n) → {0, 1} as

An(x) :=
{

1 (Ãn(I, x{1,...,I−1}) = xI)
0 (Ãn(I, x{1,...,I−1}) , xI)

x ∈ {0, 1}ℓ(n).

Then

δg,A(n) =
∣∣∣PrZℓ(n)

(
An(Zℓ(n)) = 1

) − PrZn (An(gn(Zn)) = 1)
∣∣∣

=

∣∣∣∣∣12 − PrI,Zn

(
Ãn(I, gn(Zn){1,...,I−1}) = gn(Zn)I

)∣∣∣∣∣
=

∣∣∣δ̃g,Ã(n)
∣∣∣ .

On the other hand, since TA(n) is a polynomial parameter, so is S g,A(n). Thus g is not
computationally secure.

Step 2. Let g be not computationally secure, i.e., let there exist an A such that TA(n)
and S g,A(n) are polynomial parameters. Let Y ∈U {0, 1}ℓ(n) and W ∈U {0, 1} be indepen-
dent. For each i ∈ {1, . . . , ℓ(n)} and each x ∈ {0, 1}ℓ(n), define

Ãn(i, x) :=
{

Yi (An(x1, . . . , xi−1,Yi, . . . , Yℓ(n)) = 1),
W (An(x1, . . . , xi−1,Yi, . . . , Yℓ(n)) = 0).

Now, to see that g is next-bit-predictable, let us show that S̃ g,Ã (n) is a polynomial param-
eter. In what follows, we write X := gn(Zn), Pr := PrZn,Y,W . We start with the following
calculation.

Pr
(
Ãn(i, X{1,...,i−1}) = Xi

)
− 1

2
= Pr

(
Xi = Yi, An(X1, . . . , Xi−1,Yi, . . . , Yℓ(n)}) = 1

)
+Pr

(
Xi = W, An(X1, . . . , Xi−1,Yi, . . . , Yℓ(n)) = 0

) − 1
2

= Pr
(
Xi = Yi, An(X1, . . . , Xi,Yi+1, . . . , Yℓ(n)) = 1

)
+

1
2

Pr
(
An(X1, . . . , Xi−1,Yi, . . . , Yℓ(n)) = 0

) − 1
2

=
1
2

Pr
(
An(X1, . . . , Xi,Yi+1, . . . , Yℓ(n)) = 1

)
+

1
2

(
1 − Pr

(
An(X1, . . . , Xi−1,Yi, . . . , Yℓ(n)) = 1

)) − 1
2

=
1
2

Pr
(
An(X1, . . . , Xi,Yi+1, . . . , Yℓ(n)) = 1

)
−1

2
Pr

(
An(X1, . . . , Xi−1,Yi, . . . , Yℓ(n)) = 1

)
.
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By this, we have

δ̃g,Ã(n) =
1
ℓ(n)

ℓ(n)∑
i=1

(
Pr

(
Ãn(i, X{1,...,i−1}) = Xi

)
− 1

2

)

=
1
2
· 1
ℓ(n)

ℓ(n)∑
i=1

(
Pr

(
An(X1, . . . , Xi,Yi+1, . . . , Yℓ(n)) = 1

)
−Pr

(
An(X1, . . . , Xi−1,Yi, . . . , Yℓ(n)) = 1

))
=

1
2ℓ(n)

(Pr(An(X) = 1) − Pr(An(Y) = 1)) .

Therefore we see ∣∣∣δ̃g,Ã(n)
∣∣∣ = δg,A(n)

2ℓ(n)
.

Since TÃ(n) is clearly a polynomial parameter, so is S̃ g,Ã (n). □

There are many pseudorandom generators used in Monte Carlo methods which are
defined by recursive formulas like

zi := f (zi−n, . . . , zi−1), i = n, n + 1, . . . (4.2)

with (z0, . . . , zn−1) being a seed (cf. [17, 27, 29, 47]). Such pseudorandom generators
are clearly next-bit-predictable. Therefore, by Theorem 4.7, pseudorandom generators
defined by recursive formulas and computationally secure ones are poles apart.

According to Theorem 4.7, to construct a computationally secure pseudorandom gen-
erator, we have only to pay attention to its next-bit-unpredictability. This is a guiding
principle of designing computationally secure pseudorandom generator. Indeed, under
this guiding principle, several candidates for computationally secure pseudorandom gen-
erator have been presented. Among them, we introduce the following B-B-S generator
([2, 36]).†5 Let p, q be primes satisfying p = 3(mod 4) and q = 3(mod 4), which are se-
cret. But the product N = pq is open to the public. Let QR(N) denote the set of quadratic
residues modulo N. Choosing a seed x0 ∈ QR(N), we define a pseudorandom number
{yn}n by

xn := F(xn−1) = x2
n−1 mod N, n = 1, 2, . . . , (4.3)

yn := G(xn) = xn mod 2. (4.4)

The inverse function F−1 is easy to calculate if p, q are known. But when p, q are unknown
and they are very large, F−1 is very hard to calculate. Consequently, without knowing the
seed x0, it seems to be almost impossible to predict the next bit ym+1 when {yn}mn=1 is given.

Remark 4.8 Such a function F as in (4.3), which is easy to compute but whose inverse
is hard to compute, is called a one-way function. In general, assuming the existence
of a one-way function F, which is a stronger assumption than P , NP, we can show
that there exists a function G, so-called a hard core bit function, such that {yn}n defined
by yn := G(Fn(x0)), where Fn stands for the n-fold iteration of F, becomes next-bit-
unpredictable ([24]).
†5In the case of B-B-S generator, since the set of seeds is QR(N), a little modification of the definition in
§ 4.1.1 is needed.
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—— ⋄—— ⋄——

The security of pseudorandom generator discussed here is considered for random vari-
ables which are functions of a finite number of coin tosses. But for applications, it should
be considered for general simulatable random variables (§ 1.3). In this context, if we
restrict the use of pseudorandom generator to the Monte Carlo integration, the dynamic
random Weyl sampling, which we will introduce in § 5.4, can be called a secure pseudo-
random generator for general simulatable integrands.

4.2 Pseudorandom generator by means of Weyl transfor-
mation

We introduce a pseudorandom generator which is based on probability theory. Any finite
dimensional distribution of the pseudorandom number it produces can be explicitly com-
puted, and it converges to the corresponding distribution of the coin tossing process as the
size of the seed grows. Of course, we do not know if it is computationally secure, but the
difference between 1/2 and the success probabilities of some special next-bit-predictions
converge to 0 exponentially fast as the size of the seed grows (Theorem 4.11).

4.2.1 Definitions
In § 4.2, we discuss a family of {0, 1}-valued stochastic processes {Y (m)

n (•;α)}∞n=0, α ∈ T1,
m ∈ N+, on the Lebesgue probability space (T1,B,P) defined by Definition 4.9 below.

Definition 4.9 For each α ∈ T1 and m ∈ N+, set

Y (m)
n (x;α) :=

 m∑
i=1

di (x + nα)

 mod 2, n = 0, 1 . . . , x ∈ T1. (4.5)

In order to realize (4.5) by computer, we have to approximate real numbers by finite
dyadic decimals.

Theorem 4.10 ([53]) For each α ∈ T1 and j, j1,m ∈ N+, it holds that

P
(

0 ≤ ∃ n ≤ 2 j1 − 1 s.t. Y (m)
n (•;α) , Y (m)

n (⌊•⌋m+ j ; ⌊α⌋m+ j)
)
< 2−( j−2 j1).

Proof. Note that∣∣∣∣(x + nα) −
(
⌊x⌋m+ j + n⌊α⌋m+ j

)∣∣∣∣ ≤ ∣∣∣x − ⌊x⌋m+ j

∣∣∣ + n
∣∣∣α − ⌊α⌋m+ j

∣∣∣
< 2−m− j + n2−m− j = (n + 1)2−m− j.

By this, we see

P
(
⌊• + nα⌋m , ⌊⌊•⌋m+ j + n⌊α⌋m+ j⌋m

)
≤ (n + 1)2−m− j

2−m = (n + 1)2− j.
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Therefore

P
(

0 ≤ ∃ n ≤ 2 j1 − 1 s.t. Y (m)
n (•;α) , Y (m)

n (⌊•⌋m+ j ; ⌊α⌋m+ j)
)

≤
2 j1−1∑
n=0

P
(
⌊• + nα⌋m , ⌊•⌋m+ j + n⌊α⌋m+ j

)
<

2 j1−1∑
n=0

(n + 1)2− j+1

=
(2 j1 − 1)2 j1

2
· 2− j+1 < 2−( j−2 j1).

□

According to Theorem 4.10, the discretized process {Y (m)
n (⌊•⌋m+ j ; ⌊α⌋m+ j)}2

j1−1
n=0 can be

arbitrarily close to the stochastic process (4.5) in distribution by taking j large enough. †6

Let us regard this discretized stochastic process as a pseudorandom generator;†7

{Y (m)
n (•; ⌊α⌋m+ j)}2

j1−1
n=0 : Dm+ j � {0, 1}m+ j → {0, 1}2 j1

.

In case α is irrational, we call this generator the pseudorandom generator by means of
Weyl transformation.†8 As we will see below, asymptotic behavior of this generator as
m→ ∞ is very interesting.

In order to generate a sample of {Y (m)
n (• ; ⌊α⌋m+ j)}2

j1−1
n=0 , we define mappings Fm+ j,α :

Dm+ j → Dm+ j and Gm : Dm+ j → {0, 1} by

F(x̃) = Fm+ j,α(x̃) := x̃ + ⌊α⌋m+ j, (4.6)

G(x̃) = Gm(x̃) :=

 m∑
i=1

di(x̃)

 mod 2, (4.7)

and choose an x̃0 ∈ Dm+ j � {0, 1}m+ j as a seed. Then we have

Y (m)
n (x̃0 ; ⌊α⌋m+ j) = G(Fn(x̃0)), n = 0, 1, . . . , 2 j1 − 1. (4.8)

Here Fn stands for the n-fold iteration of F. G(x̃) is called the parity of the upper m bit
of x̃, which can be calculated quickly by computer. A concrete implementation of the
pseudorandom generator in C language can be found in § 6.2 or [43].

4.2.2 Hardness of next-bit-prediction
As is seen in (4.6) and (4.7), the pseudorandom generator by means of Weyl transforma-
tion {Y (m)

n (•; ⌊α⌋m+ j)}2
j−1

n=0 has a similar structure as the B-B-S generator (4.3)(4.4). In the
†6Here we used a transformation of entropy 0; T1 ∋ x 7→ x + α ∈ T1. For a chaotic transformation (of

positive entropy), we would have no good estimate of approximation as Theorem 4.10.
†7We should take the parameters j, j1 ∈ N+ large in accordance with m getting large, but for the sake of

simple notation, we do not in this monograph.
†8Weyl transformation is a mapping x 7→ x + α on T1 where α ∈ T1 is irrational. It is also called the

irrational rotation.
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latter case, the next bit seems hard to predict because of the complexity of the inverse
function F−1, while in the former case, it seems hard to predict if m is large because of
the complexity of the function G. More exactly, as m grows,†9 the complexity of G = Gm

becomes large, and accordingly, next-bit-prediction becomes hard. Let us show below
that such phenomena really happen in cases of certain special next-bit-predictions.

To formulate limit theorems, we consider the original process (4.5) instead of the
discretized one. For l ∈ N+ and 0 ≤ k0 < · · · < kl−1, let us introduce a function Ã to
predict the value of Y (m)

kl−1
(x;α) when {Y (m)

k j
(x;α)}l−2

j=0 is given. Set

F(m)(k0, . . . , kl−1;α) := P

 l−1∑
j=0

Y (m)
k j

( • ;α) = odd

 . (4.9)

As is seen in Theorem 4.13 below, there is a fast algorithm to compute this probability.
Using it, we define the following function Ã : {0, 1}l−1 → {0, 1}.

Ã(yk0 , . . . , ykl−2) :=
{

1{yk0+···+ykl−2=even} (F(m)(k0, k1, . . . , kl−1;α) ≥ 1
2 ),

1{yk0+···+ykl−2=odd} (F(m)(k0, k1, . . . , kl−1;α) < 1
2 ).

Suppose that we predict that Y (m)
kl−1

(x;α) will be Ã(Y (m)
k0

(x;α), . . . , Y (m)
kl−2

(x;α)). Then the
success probability of this prediction is

P
(
Ã(Y (m)

k0
(•;α), . . . , Y (m)

kl−2
(•;α)) = Y (m)

kl−1
(•;α)

)
=

∣∣∣∣∣F(m)(k0, k1, . . . , kl−1;α) − 1
2

∣∣∣∣∣+ 1
2
. (4.10)

Indeed, in the case of F(m)(k0, k1, . . . , kl−1;α) ≥ 1/2,

P
(
Ã(Y (m)

k0
(•;α), . . . , Y (m)

kl−2
(•;α)) = Y (m)

kl−1
(•;α)

)
= P

(
Y (m)

k0
(•;α) + · · · + Y (m)

kl−1
(•;α) = odd

)
= F(m)(k0, k1, . . . , kl−1;α),

and in the case of F(m)(k0, k1, . . . , kl−1;α) < 1/2,

P
(
Ã(Y (m)

k0
(•;α), . . . , Y (m)

kl−2
(•;α)) = Y (m)

kl−1
(•;α)

)
= P

(
Y (m)

k0
(•;α) + · · · + Y (m)

kl−1
(•;α) = even

)
= 1 − F(m)(k0, k1, . . . , kl−1;α),

thus in both cases, (4.10) holds.
The prediction of the next bit by the function Ã succeeds with probability ≥ 1/2.

About this success probability (4.10), we have the following theorem.

Theorem 4.11 For P-a.e.α ∈ T1, it holds that for any l ≥ 2, 0 ≤ k0 < . . . < kl−1, there
exists 0 < ρ < 1 which does not depend on α such that as m→ ∞,

P
(
Ã(Y (m)

k0
(•;α), . . . , Y (m)

kl−2
(•;α)) = Y (m)

kl−1
(•;α)

)
− 1

2
=

∣∣∣∣∣F(m)(k0, k1, . . . , kl−1;α) − 1
2

∣∣∣∣∣ = O(ρm).

Theorem 4.11 shows that the next-bit-prediction by Ã becomes very hard as the size of
the seed grows. It is really remarkable that we can see the hardness of next-bit-predictions
analytically, although they are special ones.

In the case of l = 2, for any ρ >

√
(1 +

√
17)/8 = 0.80024 . . ., we can show the

assertion of Theorem 4.11 (§ 4.3.5 Theorem 4.36).
†9m is an approximate size of the seed.
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In view of Theorem 4.11, Theorem 4.36 and the result (Table 4.1) of an experiment
about Hypothesis 4.18 below, The author suspects that for almost all irrational α, the pseu-
dorandom generator by means of the Weyl transformation is computationally secure.†10

4.2.3 Formula of finite dimensional distributions and disappearance
of dependence

There exists an algorithm to compute any finite dimensional distribution of the stochastic
process {Y (m)

n (•;α)}∞n=0.

Lemma 4.12 (i) For each ϵn ∈ {0, 1}, n = 0, 1, . . . , k − 1, it holds that

P
(
Y (m)

n ( • ; α) = ϵn, n = 0, . . . , k − 1
)

= 2−k

 k∑
l=1

∑
0≤k0<···<kl−1≤k−1

l−1∏
j=0

(1 − 2ϵk j)
(
1 − 2F(m)(k0, . . . , kl−1;α)

)
+ 1

 .
(ii) If l ∈ N+ is odd, we have F(m)(k0, . . . , kl−1;α) = 1/2.
(iii) F(m)(k0, . . . , kl−1;α) = F(m)(0, k1 − k0, . . . , kl−1 − k0;α). Thus we may assume k0 = 0 to
know any finite dimensional distribution.

In what follows, we assume l is even and that α ∈ T1 is irrational. Let us introduce
an algorithm to compute F(m)(0, k1, . . . , kl−1;α). To do this, we need some new notation.
First, for each j = 1, . . . , l − 1, set†11

α j := ⟨k jα⟩,
α(m)L

j := ⌊α j⌋m,
α(m)U

j := ⌈α j⌉m,
β(m)

j := 2m(α j − α(m)L
j ),

and
β(m)

0 := 1, β(m)
l := 0.

We next define a permutation σ(m, •) on the set {0, 1, . . . , l − 1, l} so that

1 = β(m)
σ(m,0) > β

(m)
σ(m,1) > β

(m)
σ(m,2) > · · · > β

(m)
σ(m,l−1) > β

(m)
σ(m,l) = 0, (4.11)

in particular, we have σ(m, 0) = 0 and σ(m, l) = l. Set

α(m),s
σ(m, j) :=

 α(m)U
σ(m, j) ( j ≤ s ),

α(m)L
σ(m, j) ( j > s ),

†10Even if this is true, it would be impossible to find a concrete example of such α, so P,NP would not
follow.
†11⟨t⟩ denotes the fractional part of t ≥ 0, i.e., ⟨t⟩ = t − ⌊t⌋.
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and
α(m),s := (α(m),s

1 , . . . , α(m),s
l−1 ), s = 0, 1, . . . , l − 1.

Finally, set
D :=

∪
m∈N+

Dm.

Theorem 4.13 The following formula holds.

F(m)(0, k1, . . . , kl−1;α) =
l−1∑
s=0

(
β(m)
σ(m,s) − β

(m)
σ(m,s+1)

)
B(α(m),s). (4.12)

Here B(•) is a real valued function defined on Dl−1 =

l−1︷        ︸︸        ︷
D × · · · × D, whose value B(α(m),s)

is determined by
B(α(0),s) = 0, s = 0, 1, . . . , l − 1,

and the following recursive formula

B(α(m),s) =


1
2

B(α(m−1),s2) +
1
2

B(α(m−1),s1+s2) ( s1 is even ),

1
2

(
1 − B(α(m−1),s2)

)
+

1
2

(
1 − B(α(m−1),s1+s2)

)
( s1 is odd ),

where s1, s2 are given by

s1 :=
l−1∑
j=1

dm(α(m),s
j ), s2 :=

s∑
j=1

dm(ασ(m, j)). (4.13)

From Theorem 4.11 and Lemma 4.12, the following dependence disappearing theo-
rem†12 follows.

Theorem 4.14 ([37, 51]) For P-a.e.α ∈ T1, each finite dimensional distribution of the
stochastic process {Y (m)

n ( • ;α)}∞n=0 converges to the corresponding finite dimensional dis-
tribution of the coin tossing process as m → ∞ exponentially fast. More exactly, for
P-a.e.α ∈ T1, it holds that for any k and any ϵn ∈ {0, 1}, n = 0, 1, . . . , k − 1, there exists
0 < ρ < 1 which does not depend on α such that∣∣∣∣P (Y (m)

n ( • ; α) = ϵn, n = 0, . . . , k − 1
)
− 2−k

∣∣∣∣ = O(ρm), m→ ∞.

Here is another theorem.

Theorem 4.15 ([52]) For any irrational α ∈ T1, each finite dimensional distribution of
{Y (m)

n ( • ;α)}∞n=0 converges to the corresponding finite dimensional distribution of the coin
tossing process as m→ ∞. More exactly, any k, ϵn ∈ {0, 1}, n = 0, 1, . . . , k − 1,

lim
m→∞
P
(
Y (m)

n ( • ; α) = ϵn, n = 0, . . . , k − 1
)
= 2−k.

†12Yasutomi proved, in his papers [50, 51, 52], several extended versions of Theorem 4.14. In this mono-
graph, we use some of his ideas with a little modification to fit the context here.
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—— ⋄—— ⋄——

The author got the idea of the dependence disappearing theorems from Theorem 5.10
in § 5.2.2 below. Such dependence disappearing phenomena probably occur so often in
practical numerical calculations. It is very likely to occur that a pseudorandom genera-
tor defined by a certain recursive formula such as (4.2) can produce samples of random
variable S which look very random, if S is very complicated. This may be a reason why
simple pseudorandom generators (cf. [17]) are useful to some extent in practice.

4.2.4 A priori estimate of finite dimensional distributions
By using Theorem 4.13, we can investigate statistical properties of the finite dimensional
distributions of {Y (m)

n ( • ;α)}∞n=0.
Let us consider the two-term correlations. Set

η(m)
n;k ( • ;α) := Y (m)

n ( • ;α) + Y (m)
n+k( • ;α) (mod 2),

S (m)
N;k( • ;α) :=

1
N

N−1∑
n=0

η(m)
n;k ( • ;α).

If {Y (m)
n ( • ;α)}∞n=0 were a coin tossing process, the variance of S (m)

N;k( • ;α) would be σ2
N :=

1/(4N). For each k ∈ N+, in order to test the hypothesis

E
[
S (m)

N;k( • ;α)
]
≡ F(m)(0, k;α) =

1
2
, (4.14)

we compute the probability that∣∣∣∣∣S (m)
N;k( • ;α) − 1

2

∣∣∣∣∣ < 2σN =
1
√

N
. (4.15)

If {Y (m)
n ( • ;α)}∞n=0 were a coin tossing process, by the central limit theorem, the probability

of the event (4.15) would be about 0.95.

Theorem 4.16 †13 Let

N(m)(k;α) :=
1

16
(
F(m)(0, k;α) − 1

2

)2 . (4.16)

Then for m ≫ 1, the probability of the event (4.15) is about 0.92 (or more), if N =
N(m)(k;α) (or N < N(m)(k;α)).

Proof.†14 If m ≫ 1, the process {Y (m)
n ( • ;α)}∞n=0 is very close to coin tossing process,

and hence the variance of S (m)
N;k( • ;α) is almost equal to σ2

N . If N is large enough, the
distribution of S (m)

N;k( • ;α) is close to N(1/2 + a, σ2
N) by the central limit theorem, where

†13This is not exactly a theorem because it is a little bit vague.
†14This is not exactly a proof because it is a little bit vague.
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a = F(m)(0, k;α)−1/2. Now suppose N = N(m)(k;α) = 1/(16a2), then since |a| =
√

N/4 =
σN/2, we have

∣∣∣∣∣S (m)
N;k −

1
2

∣∣∣∣∣ < 2σN ⇐⇒


−5σN

2
< S (m)

N;k −
(
1
2
+ a

)
<

3σN

2
(a > 0),

−3σN

2
< S (m)

N;k −
(
1
2
+ a

)
<

5σN

2
(a < 0).

Therefore, in both cases, a simple change of variables shows that the probability of the
above event is approximately∫ 3/2

−5/2

1
√

2π
e−x2/2 dx = 0.926983. □

According to Theorem 4.16, if N ≤ N(m)(k;α), we can expect that the pseudorandom
number {Y (m)

n ( • ;α)}Nn=0 will be accepted by the statistical test of hypothesis (4.14) with
significance level 8%. Theorem 4.16 assumes m ≫ 1, but, in fact, for not so large m, the
estimate of Theorem 4.16 is valid. See the following example.

Example 4.17 Applying Theorem 4.13 to the case where α = (
√

5 − 1)/2, m = 40 and
k = 305, we have F(40)(0, 305;α) = 0.5029834. On the other hand,

1

16
(
F(40)(0, 305;α) − 1

2

)2 =
1

16 × (0.0029834)2 = 7021.94 ≈ 7022.

To show Theorem 4.16 is useful in this case, we computed the following probability
numerically.

P

( ∣∣∣∣∣S (40)
7022;305(•;α) − 1

2

∣∣∣∣∣ < 1
√

7022

)
. (4.17)

To do this, we generated the sequence

{Y (40)
n (0; ⌊α⌋150)}7022×106+305

n=1

by a computer, and we counted

pi :=
1

7022
#{7022(i − 1) + 1 ≤ j ≤ 7022 i | η(40)

j;305(0; ⌊α⌋150) = 1 },

for i = 1, 2, . . . , 106. Then we had

the mean of
{

pi −
1
2

}106

i=1
= 10−6

106∑
i=1

(
pi −

1
2

)
= 0.002983535,

the variance of {pi}106

i=1 = 10−6
106∑
i=1

(pi − 0.502983535)2 = 0.0000370605.

The mean is close to the theoretical value 0.0029834. The variance is larger by 4% than
the theoretical value 1/(4 × 7022) = 0.0000356024 of coin tossing process. The number
of i’s which satisfy ∣∣∣∣∣pi −

1
2

∣∣∣∣∣ < 1
√

7022
is 921514, which means that the probability (4.17) is approximately 92.15%.



56 4 Pseudorandom generator

We continue to adopt the golden ratio as the irrational number α for Weyl transforma-
tion;

α =

√
5 − 1
2

.

Keeping Theorem 4.16 in mind, for K ∈ N+, we set

a(m)(K) := max
1≤k≤K

∣∣∣∣∣F(m)(0, k;α) − 1
2

∣∣∣∣∣ , N(m)
c (K) :=

1

16
(
a(m)(K)

)2 . (4.18)

We call N(m)
c (K) the critical sample number.†15 We computed the quantities of (4.18) with

K = 10, 000, whose results are shown in the left half of Table 4.1. The number written in
( ) to the right of the value a(m)(10000) is the number k which achieves the maximum of∣∣∣F(m)(0, k;α) − 1

2

∣∣∣.†16

Table 4.1: Two-term and multi-term correlations

m a(m)(10000) (k) N(m)
c (10000) b(m)(19) k1, . . .

10 0.4860680 ( 5473 ) 2.6×10−1 0.1187876 18
20 0.1084934 ( 1449 ) 5.3×100 0.0088276 4, 5, 13, 14, 18
30 0.0435756 ( 305 ) 3.3×101 0.0009169 18
40 0.0029834 ( 305 ) 7.0×103 0.0000769 9
50 0.0001943 ( 610 ) 1.7×106 1.5×10−5 18
60 0.0000136 ( 8484 ) 3.4×108 6.4×10−7 18
70 1.2×10−6 ( 7264 ) 4.1×1010 5.9×10−8 1
80 2.0×10−7 ( 7697 ) 1.6×1012 7.7×10−9 18
90 8.5×10−9 ( 165 ) 8.7×1014 2.1×10−9 16

100 2.8×10−9 ( 5201 ) 8.1×1015 3.0×10−10 1

Next, let us estimate general finite dimensional distributions up to K dimension; we
estimate the following for even numbers l.

F(m)(0, k1, . . . , kl−1;α), 1 ≤ k1 < · · · < kl−1 ≤ K.

To compute all of them is computationally hard even for a rather small K. But we have a
little hope. The right half of Table 4.1 shows the computation result of them for K = 19.
The left column indicates

b(m)(19) := max
1≤k1<...<kl−1≤19

∣∣∣∣∣F(m)(0, k1, . . . , kl−1;α) − 1
2

∣∣∣∣∣ ,
and the right one indicates what combination of k1, . . . the maximum value is achieved.
The result of the right half of Table 4.1 convinces us that the following hypothesis should
hold.†17

†15The critical sample number defined in [37] is 4 times as large as N(m)
c (K).

†16Since α is irrational, we approximated it by two finite dyadic decimals ⌊α⌋150 and ⌊α⌋300. For both of
them, we got the same table of results (Table 4.1).
†17More exactly, for K = 19, the equality (4.19) holds for all 37 ≤ m ≤ 100.
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Hypothesis 4.18 For each K ∈ N+, if m ≫ 1, it holds that

max
1≤k1<···<kl−1≤K

∣∣∣∣∣F(m)(0, k1, . . . , kl−1;α) − 1
2

∣∣∣∣∣ = max
1≤k≤K

∣∣∣∣∣F(m)(0, k;α) − 1
2

∣∣∣∣∣ . (4.19)

We have no proof, yet. If Hypothesis 4.18 is correct, we have to estimate only maximum
of the two-term correlations.

4.3 Proofs of theorems
In this section, we will prove Lemma 4.12, Theorem 4.13, Theorem 4.15, and Theo-
rem 4.11 in this order.†18 Proofs will be given not for the stochastic process {Y (m)

n }∞n=0, but
for an equivalent {−1, 1}-valued process {X(m)

n }∞n=0 defined by (4.20) below. {Y (m)
n }∞n=0 is bet-

ter for implementation by computer, while {X(m)
n }∞n=0 is better for mathematical analysis.

Let {ri}∞i=1 denote the Rademacher functions, i.e.,

ri(x) := 1 − 2di(x), x ∈ T1, i ∈ N+.

For irrational α ∈ T1 and m ∈ N+, we define

X(m)
n (x;α) :=

m∏
i=1

ri(x + nα), n ∈ N. (4.20)

The relation between {X(m)
n }∞n=0 and {Y (m)

n }∞n=0 is

X(m)
n (x;α) = 1 − 2Y (m)

n (x;α), or Y (m)
n (x;α) =

1
2

(
1 − X(m)

n (x;α)
)
.

Note the following property; for any k, h ∈ N+ and any ϵ ∈ {−1, 1}k, it holds that

P
(
(X(m)

0 ( • ;α), . . . , X(m)
k−1( • ;α)) = ϵ

)
= P

(
(X(m)

h ( • ;α), . . . , X(m)
k−1+h( • ;α)) = ϵ

)
. (4.21)

This property is called (strong) stationarity. The proof of (4.21) is readily derived from the
translation invariance of the Lebesgue measure — i.e., lengths of intervals do not change
by shift.

4.3.1 Proof of Lemma 4.12
Here is a lemma in terms of {X(m)

n }∞n=0 which is equivalent to Lemma 4.12.

Lemma 4.12′ (i) Any finite dimensional distribution of {X(m)
n }∞n=0 is derived from the

following quantities.

E(m)(k0, . . . , kl−1;α) := E

 l−1∏
j=0

X(m)
k j

( • ;α)

 , 0 ≤ k0 < . . . < kl−1, l ∈ N+.

†18Detailed proofs will be given. The reader may skip this section at the first reading.
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In fact, for any ϵn ∈ {−1, 1}, n = 0, 1, . . . , k − 1, we have

P
(
X(m)

n (•;α) = ϵn, n = 0, . . . , k − 1
)

= 2−k

 k∑
l=1

∑
0≤k0<...<kl−1≤k−1

l−1∏
j=0

ϵk j E(m)(k0, . . . , kl−1;α) + 1

 . (4.22)

(ii) If l ∈ N+ is odd, then E(m)(k0, . . . , kl−1;α) = 0.
(iii) E(m)(k0, . . . , kl−1;α) = E(m)(0, k1 − k0, . . . , kl−1 − k0;α).

Proof. (i) Note the following equality.

k∑
l=1

∑
0≤k0<...<kl−1≤k−1

l−1∏
j=0

(
ϵk j X

(m)
k j

(x;α)
)
=

k−1∏
n=0

(
1 + ϵnX(m)

n (x;α)
)
− 1. (4.23)

The mean of the left hand side is equal to

k∑
l=1

∑
0≤k0<...<kl−1≤k−1

l−1∏
j=0

ϵk j E(m)(k0, . . . , kl−1;α). (4.24)

On the other hand, the mean of the right hand side is equal to

E
 k−1∏

n=0

(
1 + ϵnX(m)

n (•;α)
)  − 1. (4.25)

Now, the stuff inside E[ • ] of (4.25) is 2k, if X(m)
n (x;α) = ϵn holds for each n = 0, . . . , k−1,

and it is 0 otherwise. Therefor (4.25) is reduced to

2kP
(
X(m)

n (•;α) = ϵn, n = 0, . . . , k − 1
)
− 1. (4.26)

Since (4.24) and (4.26) are equal, (4.22) follows.
(ii) Since r1(x + 1

2 ) = −r1(x), ri(x + 1
2 ) = ri(x), i ≥ 2, we readily see

X(m)
k

(
x +

1
2

;α
)
= −X(m)

k (x;α), x ∈ T1. (4.27)

Then if l is odd,
X(m)

0 (x;α) × · · · × X(m)
kl−1

(x;α) = −1

and

X(m)
0

(
x +

1
2

;α
)
× · · · × X(m)

kl−1

(
x +

1
2

;α
)
= 1

are equivalent, and hence their probabilities coincide. But the probability of the latter is
equal to the probability of

X(m)
0 (x;α) × · · · × X(m)

kl−1
(x;α) = 1,

by the shift invariance of the Lebesgue measure, so all of these probabilities must be 1/2.
Form this, the assertion (ii) follows. (iii) is obvious by the stationarity (4.21). □
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4.3.2 Proof of Theorem 4.13
Here is a theorem in terms of {X(m)

n }∞n=0 which is equivalent to Theorem 4.13.

Theorem 4.13′

E(m)(0, k1, . . . , kl−1;α) =
l−1∑
s=0

(
β(m)
σ(m,s) − β

(m)
σ(m,s+1)

)
A(α(m),s). (4.28)

Here A(•) is a real valued function defined on Dl−1 =

l−1︷        ︸︸        ︷
D × · · · × D, whose value A(α(m),s)

is determined by
A(α(0),s) = 1, s = 0, 1, . . . , l − 1,

and a recursive formula

A(α(m),s) =
(−1)s1

2

(
A(α(m−1),s2) + A(α(m−1),s1+s2)

)
,

where s1 and s2 have been defined by (4.13).

We will prove Theorem 4.13′. In what follows, we assume that l is an even number.
By definition, we have

E(m)(0, k1, . . . , kl−1;α) = E
 m∏

i=1

ri(•)ri(• + k1α) × · · · × ri(• + kl−1α)

 .
Keeping this in mind, we define a function A(m) for each α = (α1, . . . , αl−1) ∈ Tl−1 by

A(m)(α) := E
 m∏

i=1

ri(•)ri(• + α1) × · · · × ri(• + αl−1)

 . (4.29)

Lemma 4.19 For each α = (α1, . . . , αl−1) ∈ (Dm)l−1, it holds that

∀m′ ≥ m, A(m′)(α) = A(m)(α).

Proof. Write A(m′)(α) in the following way.

A(m′)(α) = E
 m∏

i=1

ri(•)ri(• + α1) × · · · × ri(• + αl−1)

×
m′∏

i=m+1

ri(•)ri(• + α1) × · · · × ri(• + αl−1)

 .
If α ∈ (Dm)l−1, for i > m, we have

ri(x) = ri(x + α j), j = 1, . . . , l − 1.

Then, since l is even, the latter half product is reduced to 1;

m′∏
i=m+1

ri(x)ri(x + α1) × · · · × ri(x + αl−1) =
m′∏

i=m+1

ri(x)l = 1,

This shows A(m′)(α) = A(m)(α). □
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Definition 4.20 For each α ∈ Dl−1, we define

A(α) := lim
m→∞

A(m)(α).

Definition 4.20 is justified by Lemma 4.19. The function A appeared in Theorem 4.13′

is nothing but the one defined by Definition 4.20. Lemma 4.21 below shows that the
value of A can be obtained by a recursive formula. To state Lemma 4.21, we need some
additional definitions; for each α ∈ Tl−1, we set

α(m)L := (α(m)L
1 , . . . , α(m)L

l−1 ), α(m)L
j := ⌊α j⌋m,

α(m)U := (α(m)U
1 , . . . , α(m)U

l−1 ), α(m)U
j := ⌈α j⌉m.

Then it is obvious that α(m)L,α(m)U ∈ (Dm)l−1.

Lemma 4.21 (i) A(
l︷  ︸︸  ︷

0, . . . , 0 ) = 1.
(ii) For each α = (α1, . . . , αl−1) ∈ (Dm)l−1, set j0 :=

∑l−1
j=1 dm(α j). Then we have

A(α) =
(−1) j0

2

(
A(α(m−1)U) + A(α(m−1)L)

)
. (4.30)

Proof. (i) Since l is even, we see

A(
l︷  ︸︸  ︷

0, . . . , 0 ) = E

 m∏
i=1

l︷               ︸︸               ︷
ri(•) × · · · × ri(•)

 = 1.

(ii) We can show that

m∏
i=1

ri(x + α j) =



m−1∏
i=1

ri

(
x + α j + 2−m

)
( dm(α j) = 1, dm(x) = 1 ),

−
m−1∏
i=1

ri

(
x + α j − 2−m

)
( dm(α j) = 1, dm(x) = 0 ),

−
m−1∏
i=1

ri

(
x + α j

)
( dm(α j) = 0, dm(x) = 1 ),

m−1∏
i=1

ri

(
x + α j

)
( dm(α j) = 0, dm(x) = 0 ).

(4.31)

Indeed, if dm(α j) = 0, then rm(x + α j) = rm(x) and hence

m∏
i=1

ri(x + α j) =
m−1∏
i=1

ri(x + α j) × rm(x).

From this, we see the third and the fourth cases.
Assume next that dm(α j) = 1. Then we have rm(x + α j) = −rm(x). Assume further

that dm(x) = 1. In this case, we have dm(x + α j) = 0, and hence for each i = 1, . . . ,m − 1,
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di(x + α j) = di(x + α j + 2−m) holds, namely, ri(x + α j) = ri(x + α j + 2−m). Consequently,
we see

m∏
i=1

ri(x + α j) =
m−1∏
i=1

ri(x + α j) × rm(x + α j) =
m−1∏
i=1

ri

(
x + α j + 2−m

)
,

which shows the first case.
Finally, let us consider the second case, where dm(α j) = 1 and dm(x) = 0. This time,

since dm(x + α j) = 1, for i = 1, . . . ,m − 1, we have di(x + α j) = di(x + α j − 2−m), i.e.,
ri(x + α j) = ri(x + α j − 2−m). Therefore

m∏
i=1

ri(x + α j) =
m−1∏
i=1

ri(x + α j) × rm(x + α j) = −
m−1∏
i=1

ri

(
x + α j − 2−m

)
,

which shows the second case. Thus (4.31) is proved.
In order to make notation simple, let us assume the following situation.

dm(α j) =

 1 (1 ≤ j ≤ j0),

0 ( j0 + 1 ≤ j ≤ l − 1).

Note that j0 =
∑l−1

j=1 dm(α j). Then

A(α) = E

 m∏
i=1

ri(•)
j0∏

j=1

ri(• + α j)
l−1∏

j= j0+1

ri(• + α j)




= E

− m−1∏
i=1

ri(•)
j0∏

j=1

m−1∏
i=1

ri

(
• + α j + 2−m

) l−1∏
j= j0+1

− m−1∏
i=1

ri(• + α j)

 ; dm(•) = 1


+E

m−1∏
i=1

ri(•)
j0∏

j=1

− m−1∏
i=1

ri

(
• + α j − 2−m

) l−1∏
j= j0+1

m−1∏
i=1

ri(• + α j) ; dm(•) = 0

 .
Each integrand is independent of the given event {dm(x) = ϵ} (ϵ = 0 or 1), so we see

A(α) =
1
2

E

 m−1∏
i=1

ri(•)
l−1∏
j=1

m−1∏
i=1

ri(• + α(m−1)U
j ) × (−1)l− j0


+

1
2

E

 m−1∏
i=1

ri(•)
l−1∏
j=1

m−1∏
i=1

ri(• + α(m−1)L
j ) × (−1) j0

 .
Now, if j0 is even, so is l − j0, and hence

A(α) =
1
2

A(α(m−1)U) +
1
2

A(α(m−1)L),

If j0 is odd, so is l − j0, and hence

A(α) = −1
2

A(α(m−1)U) − 1
2

A(α(m−1)L).

Thus the proof is complete. □
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Proof of Theorem 4.13′

Step 1. Set

C j :=
2m∪
s=1

 s
2m −

β(m)
σ(m, j)

2m ,
s

2m −
β(m)
σ(m, j+1)

2m

 , j = 0, 1, . . . , l − 1,

then for i = 1, . . . ,m, we have

x ∈ C j =⇒ di(x + ασ(m,p)) =

 di

(
x + α(m)U

σ(m,p)

)
(1 ≤ p ≤ j),

di

(
x + α(m)L

σ(m,p)

)
( j + 1 ≤ p ≤ l − 1),

and hence it holds that

E(m)(0, k1, . . . , kl−1;α)

=

l−1∑
j=0

E

 m∏
i=1

ri(•)
j∏

p=1

ri(• + α(m)U
σ(m,p))

l−1∏
p= j+1

ri(• + α(m)L
σ(m,p))

 ; C j

 .
Since the integrand is independent of the event C j,

E(m)(0, k1, . . . , kl−1;α)

=

l−1∑
j=0

P(C j)E

 m∏
i=1

ri(•)
j∏

p=1

ri(• + α(m)U
σ(m,p))

l−1∏
p= j+1

ri(• + α(m)L
σ(m,p))




=

l−1∑
j=0

P(C j)A(α(m), j).

Now, the first half part of Theorem 4.13′ follows from the fact P(C j) = β
(m)
σ(m, j) − β

(m)
σ(m, j+1).

Step 2. The second half part of Theorem 4.13′ can be shown by applying Lemma 4.21.
To do this, we will show (

α(m),s
)(m−1)U

= α(m−1),s1+s2 , (4.32)(
α(m),s

)(m−1)L
= α(m−1),s2 . (4.33)

Step 2.1. Let us prove (4.33) first. To do this, we show

#
{

j
∣∣∣∣ (α(m),s

j

)(m−1)L
= α(m−1)U

j

}
= s2. (4.34)

Confirm the following four implications.

α(m),s
j , α(m)U

j =⇒ α(m),s
j = α(m)L

j

=⇒
(
α(m),s

j

)(m−1)L
=

(
α(m)L

j

)(m−1)L
= α(m−1)L

j
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=⇒
(
α(m),s

j

)(m−1)L
, α(m−1)U

j , (4.35)

α(m),s
j = α(m)U

j =⇒
(
α(m),s

j

)(m−1)U
=

(
α(m)U

j

)(m−1)U
= α(m−1)U

j , (4.36)

dm(α(m),s
j ) = 1 ⇐⇒

(
α(m),s

j

)(m−1)L
,

(
α(m),s

j

)(m−1)U
(4.37)

=⇒
(
α(m),s

j

)(m−1)L
, α(m−1)U

j , (4.38)

dm(α(m),s
j ) = 0 ⇐⇒

(
α(m),s

j

)(m−1)L
=

(
α(m),s

j

)(m−1)U
. (4.39)

The contrapositives of (4.35) and (4.38) imply

(
α(m),s

j

)(m−1)L
= α(m−1)U

j =⇒


α(m),s

j = α(m)U
j

and

dm(α(m),s
j ) = 0.

The converse is also valid because of (4.36) and (4.39). Thus we have

(
α(m),s

j

)(m−1)L
= α(m−1)U

j ⇐⇒


α(m),s

j = α(m)U
j

and

dm(α(m),s
j ) = 0.

Consequently,

J0 :=
{

j
∣∣∣∣ (α(m),s

j

)(m−1)L
= α(m−1)U

j

}
=

{
j
∣∣∣∣α(m),s

j = α(m)U
j , dm(α(m),s

j ) = 0
}

=

{
σ(m, j)

∣∣∣∣α(m),s
σ(m, j) = α

(m)U
σ(m, j), dm(α(m),s

σ(m, j)) = 0
}

=

{
σ(m, j)

∣∣∣∣ 1 ≤ j ≤ s, dm(α(m),s
σ(m, j)) = dm(α(m)U

σ(m, j)) = 0
}

=

{
σ(m, j)

∣∣∣∣ 1 ≤ j ≤ s, dm(α(m)L
σ(m, j)) = dm(ασ(m, j)) = 1

}
=: J1.

Since (4.13) implies #J1 = s2, we see #J0 = s2 (4.34).

Step 2.2. By the definition of β(m)
i , we readily see

β(m−1)
i =

1
2
β(m)

i +
1
2

dm(αi), 1 ≤ i ≤ l − 1.

Therefore when we sort {β(m)
i }i in descending order, those β(m)

i whose subscripts i satisfy
dm(αi) = 1 are ranked highly. In particular,

β(m−1)
i > β(m−1)

j ⇐⇒


1 = dm(αi) > dm(α j) = 0,
or

dm(αi) = dm(α j) and β(m)
i > β(m)

j .
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Step 2.3. Next, let

J2 := { i | 1 ≤ ∃ j ≤ s2 s.t. i = σ(m − 1, j) }.

We want to prove that J1 = J2. Suppose i ∈ J1. Then there exists 1 ≤ j ≤ s such that
i = σ(m, j) and dm(αi) = 1. Therefore the definition of s2 and Step 2.2 imply that β(m−1)

i
ranks within s2-th in descending order. This means that i ∈ J2 and hence that J1 ⊂ J2.
Since #J1 = #J2 = s2, we see J1 = J2.

Step 2.4. i ∈ J2 implies α(m−1),s2
i = α(m−1)U

i , while i < J2 implies α(m−1),s2
i = α(m−1)L

i .

Since J2 = J1 = J0, if i ∈ J0 then α(m−1),s2
i = α(m−1)U

i =
(
α(m),s

i

)(m−1)L
, while if i < J0 then

α(m−1),s2
i = α(m−1)L

i =
(
α(m),s

i

)(m−1)L
. This shows (4.33).

Step 2.5. Now, to prove (4.32), we first show that

#
{

j
∣∣∣∣ (α(m),s

j

)(m−1)U
= α(m−1)U

j

}
= #

{
j
∣∣∣∣ (α(m),s

j

)(m−1)U
, α(m−1)L

j

}
= s1 + s2. (4.40)

Obviously,

(
α(m),s

j

)(m−1)U
, α(m−1)L

j ⇐⇒


(
α(m),s

j

)(m−1)U
,

(
α(m),s

j

)(m−1)L
= α(m−1)L

j

or(
α(m),s

j

)(m−1)U
=

(
α(m),s

j

)(m−1)L
, α(m−1)L

j

⇐⇒



either(
α(m),s

j

)(m−1)U
,

(
α(m),s

j

)(m−1)L

or(
α(m),s

j

)(m−1)L
, α(m−1)L

j

Namely, we have{
j
∣∣∣∣ (α(m),s

j

)(m−1)U
, α(m−1)L

j

}
=

{
j
∣∣∣∣ (α(m),s

j

)(m−1)U
,

(
α(m),s

j

)(m−1)L
}
∪

{
j
∣∣∣∣ (α(m),s

j

)(m−1)L
, α(m−1)L

j

}
,

which is a disjoint union. Note that (4.37) implies

#
{

j
∣∣∣∣ (α(m),s

j

)(m−1)U
,

(
α(m),s

j

)(m−1)L
}
= #

{
j
∣∣∣∣ dm(α(m),s

j ) = 1
}
= s1

and that (4.34) implies

#
{

j
∣∣∣∣ (α(m),s

j

)(m−1)L
, α(m−1)L

j

}
= #

{
j
∣∣∣∣ (α(m),s

j

)(m−1)L
= α(m−1)U

j

}
= s2.

The above three equations show (4.40).
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Step 2.6. Let

J3 :=
{

j
∣∣∣∣ dm(α(m),s

j ) = 1
}
.

From the above arguments, it follows that{
j
∣∣∣∣ (α(m),s

j

)(m−1)U
= α(m−1)U

j

}
= J3 ∪ J0 = J3 ∪ J2,

which is a disjoint union. Now, set

J4 := { i | 1 + s2 ≤ ∃ j ≤ s1 + s2 s.t. i = σ(m − 1, j) }.

Then let us show J3 = J4. By the definition of α(m),s
j , we know that

J3 =
{
σ(m, j)

∣∣∣ 1 ≤ j ≤ s, dm(ασ(m, j)) = 0
}

∪
{
σ(m, j)

∣∣∣ s + 1 ≤ j ≤ l − 1, dm(ασ(m, j)) = 1
}

=: J5 ∪ J6.

Sorting {β(m−1)
i }i in descending order, those β(m−1)

i whose subscripts i belong to J0 = J2

rank within s2-th. Noting Step 2.2, those β(m−1)
i come next whose subscripts i belong to

J6, and those β(m−1)
i finally come whose subscripts i belong to J5. These facts and Step 2.5

imply J3 = J4.
From all the arguments above, we see that{
j
∣∣∣∣ (α(m),s

j

)(m−1)U
= α(m−1)U

j

}
= J2 ∪ J4 = { i | 1 ≤ ∃ j ≤ s1 + s2 s.t. i = σ(m − 1, j) },

which proves (4.32). □

4.3.3 Proof of Theorem 4.15
By Lemma 4.12′, the proof of Theorem 4.15 is reduced to showing the following; for any
even integer l ∈ N+ and any l − 1 integers k1 < · · · < kl−1, it holds that

lim
m→∞

E(m)(0, k1, . . . , kl−1 ; α) = 0

for any irrational α.
We first present the idea of the proof. Let us write down the algorithm of Theo-

rem 4.13′ in a concrete case. Suppose that l = 4 and α = (α1, α2, α3) is given by
α1 = 0.011010110 . . . ,
α2 = 0.110011101 . . . ,
α3 = 0.010111011 . . . .

All these are expressed in dyadic decimals. If m = 6, we see
α(6)L

1 = 0.011010, α(6)U
1 = 0.011011,

α(6)L
2 = 0.110011, α(6)U

2 = 0.110100,
α(6)L

3 = 0.010111, α(6)U
3 = 0.011000,
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and

1 = β(6)
0 > β(6)

1 = 0.110 . . . > β(6)
2 = 0.101 . . . > β(6)

3 = 0.011 . . . > β(6)
4 = 0

In this case, we have σ(6, j) = j, j = 1, 2, 3, and†19

α(6), j =

 0.011010
0.110011
0.010111

 ,
 0.011011

0.110011
0.010111

 ,
 0.011011

0.110100
0.010111

 ,
 0.011011

0.110100
0.011000

 , j = 0, 1, 2, 3.

Now, Figure 4.1 shows a diagram which visualize the algorithm of Theorem 4.13′ and
Lemma 4.21. Let us explain it.

Figure 4.1: The diagram of Theorem 4.13′ and Lemma 4.21

s

0

1

2

3

m 6 5 4 3 2 1 0

0.011010
0.110011
0.010111
(−3/8)

0.011011
0.110011
0.010111
(−1/16)

0.011011
0.110100
0.010111
(+1/4)

0.011011
0.110100
0.011000
(−1/16)

0.01101
0.11001
0.01011
(−3/8)

0.01101
0.11010
0.01011
( 0 )

0.01101
0.11010
0.01100
(−3/8)

0.01110
0.11010
0.01100
(+1/2)

0.0110
0.1100
0.0101
(+1/4)

0.0110
0.1101
0.0101
(−1/2)

0.0110
0.1101
0.0110
(+1/4)

0.0111
0.1101
0.0110
(+1/2)

0.011
0.110
0.010
(−1/2)

0.011
0.110
0.011
( 0 )

0.011
0.111
0.011
(−1/2)

0.100
0.111
0.011
(+1)

0.01
0.11
0.01
( 0 )

0.10
0.11
0.01
(+1)

0.10
0.11
0.10
( 0 )

0.10
0.00
0.10
(+1)

0.0
0.1
0.0
(−1)

0.1
0.1
0.0
(+1)

0.1
0.1
0.1
(−1)

0.1
0.0
0.1
(+1)

0
0
0
(+1)

0
0
0
(+1)

0
0
0
(+1)

0
0
0
(+1)

E
E
E
E
E
E
E
E
E
E
E
E
E
EE

��

��

��

��

EE

EE

EE

EE

EE

EE

EE

EE

�
�
�
�
�
�
��

B
B
B
B
B
B
BB��

��

��

��

EE

EE

EE

EE

EE

EE

EE

EE

EE

EE

EE

E
E
E
E
E
E
E
E
E
E
E
E
E
EE

BB

BB

BB

BB

BB

BB

BB

BB
�
�
�
�
�
�
��

B
B
B
B
B
B
BB��

��

��

��

�
�
�
�
�
�
�
�
�
�
�
�
�
��

BB

BB

BB

BB
�
�
�
�
�
�
��

B
B
B
B
B
B
BB��

��

��

��

��

��

��

��

BB

BB

BB

BB
�
�
�
�
�
�
�
�
�
�
�
�
�
��

EE

EE

EE

EE

EE

EE

EE

EE

E
E
E
E
E
E
E
E
E
E
E
E
E
EE

BB

BB

BB

BB

BB

BB

BB

BB
�
�
�
�
�
�
��

B
B
B
B
B
B
BB��

��

��

��

��

��

��

��

BB

BB

BB

BB
�
�
�
�
�
�
�
�
�
�
�
�
�
��

In the diagram, the vector placed at the m-th (m = 0, . . . , 6) column from right and
the s-th (s = 0, . . . , 3) row from top represents α(m),s. For example, α(6),0 is placed at the
top-left corner of the diagram. The number in ( ) under each vector α(m),s shows the value
of A(α(m),s). According to Lemma 4.21, A(α(m),s) is computed from its parents A(α(m−1),s′)
and A(α(m−1),s′′) as (4.30), which is illustrated in the diagram by solid lines if (−1) j0 = 1
or broken lines if (−1) j0 = −1. For example, the diagram tells that

A(α(6),2) =
1
2

(
A(α(5),1) + A(α(5),3)

)
. (4.41)

†19Vectors are written as column vectors.
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Figure 4.2: Two routes that cancel out

s

0

1

2

3

m 6 5 4 3 2 1 0

0.011010
0.110011
0.010111
(−3/8)

0.011011
0.110011
0.010111
(−1/16)

0.011011
0.110100
0.010111
(+1/4)

0.011011
0.110100
0.011000
(−1/16)

0.01101
0.11001
0.01011
(−3/8)

0.01101
0.11010
0.01011
( 0 )

0.01101
0.11010
0.01100
(−3/8)

0.01110
0.11010
0.01100
(+1/2)

0.0110
0.1100
0.0101
(+1/4)

0.0110
0.1101
0.0101
(−1/2)

0.0110
0.1101
0.0110
(+1/4)

0.0111
0.1101
0.0110
(+1/2)

0.011
0.110
0.010
(−1/2)

0.011
0.110
0.011
( 0 )

0.011
0.111
0.011
(−1/2)

0.100
0.111
0.011
(+1)

0.01
0.11
0.01
( 0 )

0.10
0.11
0.01
(+1)

0.10
0.11
0.10
( 0 )

0.10
0.00
0.10
(+1)

0.0
0.1
0.0
(−1)

0.1
0.1
0.0
(+1)

0.1
0.1
0.1
(−1)

0.1
0.0
0.1
(+1)

0
0
0
(+1)

0
0
0
(+1)

0
0
0
(+1)

0
0
0
(+1)

�
�
�
�
�
�
��

B
B
B
B
B
B
BB

�
�
�
�
�
�
�� BB

BB

BB

BB

�
�
�
�
�
�
�
�
�
�
�
�
�
��

In order to prove Theorem 4.15, we will show that |A(α(m),s)| → 0 as m→ ∞ for each
s. We explain the idea using this diagram. Let us, for example, trace the family line of
A(α(6),2) through four generations. The number of all possible routes is 24 = 16. Among
them, the two routes shown in Figure 4.2 cancel out. That is, along the lower route of
Figure 4.2, A(α(2),1) contributes to the calculation of A(α(6),2) by 2−4A(α(2),1), while along
the upper route, it contributes by −2−4A(α(2),1), and hence the two contributions cancel
out. From this, it follows that

|A(α(6),2)| ≤
(
1 − 1

24 × 2
)
× max

s=0,...,3
|A(α(2),s)|.

The proof of Theorem 4.15 will be done by finding infinitely many such pairs of
canceling routes, accordingly iterating the above estimation infinitely many times, and
finally by showing |A(α(m),s)| → 0 as m→ ∞ (Lemma 4.27).

For the proof of Theorem 4.15, we need several lemmas.

Lemma 4.22 Let α = (α1, . . . , αl−1) ∈ (T1 \ D)l−1 and m ≥ 1.

(i) ∀ j, dm(α(m)U
j ) = dm(α(m),l−1

j ) , dm(α(m),0
j ) = dm(α(m)L

j ) = dm(α j).

(ii)
(
α(m),0

)(m−1)L
= α(m−1),0.

(iii)
(
α(m),l−1

)(m−1)U
= α(m−1),l−1.
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(iv)
l−1∑
j=1

dm(α(m),0
j ) ,

l−1∑
j=1

dm(α(m),l−1
j ) (mod 2).

(v)
(
α(m),l−1

)(m−1)L
=

(
α(m),0

)(m−1)U
.

Proof. (i) Obvious from the relations below.
α(m),l−1

j = α(m)U
j ,

α(m)U
j , α(m)L

j ,

α(m),0
j = α(m)L

j , dm(α j) = dm(α(m)L
j ).

(ii) By the definition of s2 (4.13), s = 0 implies s2 = 0, which shows (ii).
(iii) By (i), if s = l − 1, we see

s1 =

l−1∑
j=1

dm(α(m),l−1
j ) =

l−1∑
j=1

(
1 − dm(α j)

)
= l − 1 −

l−1∑
j=1

dm(α j).

On the other hand,

s2 =

l−1∑
j=1

dm(ασ(m, j)) =
l−1∑
j=1

dm(α j).

Thus if s = l − 1, then s1 + s2 = l − 1, which shows (iii).
(iv) By (i), we see

l−1∑
j=1

dm(α(m),0
j ) =

l−1∑
j=1

(
1 − dm(α(m),l−1

j )
)

= l − 1 −
l−1∑
j=1

dm(α(m),l−1
j ). (4.42)

Since l − 1 is odd, (iv) follows.
(v) Take p, q ∈ N so that 

(
α(m),l−1

)(m−1)L
= α(m−1),p,(

α(m),0
)(m−1)U

= α(m−1),q.

Then by (4.13) and (i), we see

p =

l−1∑
j=1

dm(ασ(m, j)) =
l−1∑
j=1

dm(α j),

q =

l−1∑
j=1

dm(α(m),0
j ) =

l−1∑
j=1

dm(α j),

i.e., p = q. □
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Definition 4.23 In order to make notation simple, we introduce the following mappings.
L : (Dm)l−1 ∋ α 7→ α(m−1)L ∈ (Dm−1)l−1,

U : (Dm)l−1 ∋ α 7→ α(m−1)U ∈ (Dm−1)l−1.

Lp andUp are regarded as mappings (Dm)l−1 → (Dm−p)l−1.

Lemma 4.24 Let α = (α1, . . . , αl−1) ∈ (T1 \ D)l−1 and r ∈ N+.
(i) If Lrα(m+r),l−1 = α(m),0, then ∀s, Lrα(m+r),s = α(m),0.
(ii) IfUrα(m+r),0 = α(m),l−1, then ∀s, Urα(m+r),s = α(m),l−1.
(iii) If

∀ j = 1, . . . , l − 1, 1 ≤ ∃ p ≤ r, dm+p(α j) = 0, (4.43)

then ∀s, Lrα(m+r),s = α(m),0.
(iv) If

∀ j = 1, . . . , l − 1, 1 ≤ ∃ p ≤ r, dm+p(α j) = 1, (4.44)

then ∀s, Urα(m+r),s = α(m),l−1.

Proof. (i) By (4.13), s2 is an increasing function of s. From this (i) follows.
(ii) By (4.40), s1 + s2 is an increasing function of s. From this (ii) follows.
(iii) By (4.43) and Lemma 4.22(i), for each j there exists a p such that dm+p(α(m+r),l−1

j ) = 1.
Hence α(m+p−1),l−1

j > α
(m+p)L
j . By this and Lemma 4.22(ii), we see Lrα(m+r),l−1 = α(m),0.

Now (i) therefore implies (iii).
(iv) By (4.44), for each j there exists a p such that α(m+p−1),0

j < α
(m+p)U
j . By this and

Lemma 4.22(iii), we seeUrα(m+r),0 = α(m),l−1. Now (ii) therefore implies (iv). □

Lemma 4.25 ([52]) let r := 3kl−1, let α be any irrational number, and let α j := ⟨k jα⟩.
Then there exist infinitely many m’s that satisfy both (4.43) and (4.44).

Proof. By contradiction. Assume that there exist only a finite number of m’s that satisfy
both (4.43) and (4.44), namely, assume that there exists an N ∈ N+ such that for any
m ≥ N, there is a jm such that dm+1(α jm) = . . . = dm+r(α jm) = 0 or dm+1(α jm) = . . . =
dm+r(α jm) = 1. Then we will prove that α is rational by showing {dN+i(α)}∞i=1 is periodic.

Step 1. Fix an m ≥ N. We will show that a finite sequence {dm+i(α)}ri=1 is periodic
with period at most k jm .

We investigate the dyadic expansion of α by dividing k jm⟨2mα⟩ by k jm . First, set R1 :=
⌊k jm⟨2mα⟩⌋. Then we have

R1 + ⟨2mk jmα⟩ = ⌊k jm⟨2mα⟩⌋ + ⟨k jm⟨2mα⟩⟩ = k jm⟨2mα⟩.

Multiplying both sides by 2,

2R1 + dm+1(k jmα) + ⟨2m+1k jmα⟩ = k jmdm+1(α) + k jm⟨2m+1α⟩.

Since

k jm⟨2m+1α⟩ − ⟨2m+1k jmα⟩ = ⌊k jm⟨2m+1α⟩⌋ + ⟨k jm⟨2m+1α⟩⟩ − ⟨2m+1k jmα⟩
= ⌊k jm⟨2m+1α⟩⌋,
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note that 0 ≤ k jm⟨2m+1α⟩ − ⟨2m+1k jmα⟩ < k jm . Dividing 2R1 + dm+1(k jmα) by k jm , we get the
quotient Q1 and the remainder R2, where

Q1 = dm+1(α),
R2 = k jm⟨2m+1α⟩ − ⟨2m+1k jmα⟩,

or
R2 + ⟨2m+1k jmα⟩ = k jm⟨2m+1α⟩.

As above, dividing 2R2+dm+2(k jmα) by k jm , we next get the quotient Q2 and the remainder
R3, where

Q2 = dm+2(α),
R3 = k jm⟨2m+2α⟩ − ⟨2m+2k jmα⟩.

Similarly, we can get (Qu,Ru+1) so that 2Ru + dm+u(k jmα) = k jm Qu + Ru+1, 0 ≤ Ru+1 < k jm .
Now, by the assumption dm+1(k jmα) = . . . = dm+r(k jmα), the sequence {(Qu,Ru+1)}ru=1
depends only on {Ru}ru=1. Since Ru can take at most k jm values , this sequence becomes
periodic with period at most k jm . In particular, Qu = dm+u(α) is also periodic with period
at most k jm .

Step 2. Let a(0), a(1), . . . , a(p − 1) be a sequence with the smallest period w ≤ p/2.
Then we will show that if p′ ≥ 2w, the smallest period of any subsequence a(q), a(q +
1), . . . , a(q + p′ − 1), 0 ≤ q < q + p′ ≤ p, is equal to w.

Let the smallest period of a(q), a(q + 1), . . . , a(q + p′ − 1) be w′. Obviously w′ ≤ w.
Since, for any 0 ≤ u ≤ p−w′−1, there exist j ∈ Z and 0 ≤ v < w such that u−q = w j+v,
by v + w′ < w + w′ ≤ 2w ≤ p′, we have

a(u) = a(q + w j + v) = a(q + v) = a(q + v + w′) = a(q + w j + v + w′) = a(u + w′).

This means that w′ is a period of the original sequence a(0), a(1), . . . , a(p − 1). Because
of the minimality of w, we see w′ = w.

Step 3. Let us show the assertion of the lemma. Let m ≥ N. Step 1 implies that
the sequence {dm+i(α)}ri=1 is periodic with the smallest period, say wm ≤ k jm . Similarly
{dm+i(α)}r+1

i=2 is also periodic with the smallest period wm+1 ≤ k jm+1 . Then Step 2 implies
that {dm+i(α)}ri=2 is periodic with the smallest period w, which must coincide with both wm

and wm+1. Iterating this procedure, we see that {dN+i(α)}∞i=1 is periodic with the common
period w. □

Let us return to the proof of Theorem 4.15. By Lemma 4.12′, our aim is to show that
for any even l and any 1 ≤ k1 < · · · < kl−1,

lim
m→∞

E(m)(0, k1, . . . , kl−1;α) = 0. (4.45)

Let α be irrational and and let us again set

α := (α1, . . . , αl−1), α j := ⟨k jα⟩. (4.46)
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Then by Theorem 4.13′, in order to show (4.45), it is sufficient to show that

lim
m→∞

max
0≤s≤l−1

∣∣∣A(α(m),s)
∣∣∣ = 0. (4.47)

By Lemma 4.21, we see

A(α(m),s) = ± 1
2

{
A(Uα(m),s) + A(Lα(m),s)

}
. (4.48)

The following lemma follows immediately from (4.48).

Lemma 4.26 max
1≤s≤l−1

|A(α(m′),s)| ≤ max
1≤s≤l−1

|A(α(m),s)|, m′ > m.

Now, we present a key lemma.

Lemma 4.27 Let α be irrational, let r := 3kl−1, and let {mn}∞n=0 be a sequence of those
infinitely many m’s in Lemma 4.25 such that m ≥ 2 and mn + r + 2 ≤ mn+1. Then we have

max
1≤s≤l−1

∣∣∣A(α(mn+r),s)
∣∣∣ ≤ (

1 − 1
2r+1

)
max

1≤s≤l−1

∣∣∣A(α(mn−2),s)
∣∣∣ .

Proof. Applying (4.48) r times, we get

A(α(mn+r),s) =
1
2r ϵUr A(Urα(mn+r),s) +

1
2r ϵLUr−1 A(LUr−1α(mn+r),s)+

...

+
1
2r ϵULr−1 A(ULr−1α(mn+r),s) +

1
2r ϵLr A(Lrα(mn+r),s),

(4.49)

where ϵUr , . . . , ϵLr = ±1. By Lemma 4.24 and Lemma 4.25,

∀s, Urα(mn+r),s = α(mn),l−1, Lrα(mn+r),s = α(mn),0. (4.50)

Case 1. Suppose that ϵUr = ϵLr . By (4.48), for some ϵ, ϵ′ = ±1, we have
ϵUr A(Urα(mn+r),s) = ϵUrϵ

{
1
2

A(Ur+1α(mn+r),s) +
1
2

A(LUrα(mn+r),s)
}
,

ϵLr A(Lrα(mn+r),s) = ϵLrϵ′
{

1
2

A(ULrα(mn+r),s) +
1
2

A(Lr+1α(mn+r),s)
}
.

(4.51)

Lemma 4.21, Lemma 4.22(iv), and (4.50) imply that ϵ , ϵ′. Then note that from (4.50)
and Lemma 4.22(v), it follows that

LUrα(mn+r),s = ULrα(mn+r),s. (4.52)

Now, using (4.51), we expand (4.49) once again and we get

A(α(mn+r),s) =
1

2r+1 ϵUrϵA(Ur+1α(mn+r),s) +
1

2r+1 ϵUrϵA(LUrα(mn+r),s)+
...

+
1

2r+1 ϵLrϵ′A(ULrα(mn+r),s) +
1

2r+1 ϵLrϵ′A(Lr+1α(mn+r),s).

(4.53)
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Since ϵUrϵ , ϵLrϵ′, by (4.52), we see
1

2r+1 ϵUrϵA(LUrα(mn+r),s) +
1

2r+1 ϵLrϵ′A(ULrα(mn+r),s) = 0. (4.54)

Thus we get the following estimate.∣∣∣A(α(mn+r),s)
∣∣∣ ≤ (

1 − 1
2r+1 × 2

)
max

0≤q≤l−1

∣∣∣A(α(mn−1),q)
∣∣∣ . (4.55)

Case 2. Suppose that ϵUr , ϵLr . This time, we have ϵUrϵ = ϵLrϵ′ in (4.53), and hence
applying the same method as Case 1 to (4.53), we get the following estimate.∣∣∣A(α(mn+r),s)

∣∣∣ ≤ (
1 − 1

2r+2 × 2
)

max
0≤q≤l−1

∣∣∣A(α(mn−2),q)
∣∣∣ . (4.56)

By Lemma 4.26, (4.55) implies (4.56). Thus in both cases, we have the desired esti-
mate (4.56). □

Now, the proof of Theorem 4.15 is easy. By Lemma 4.27, we finally get

max
0≤s≤l−1

∣∣∣A(α(mn+r),s)
∣∣∣ ≤ (

1 − 1
2r+1

)
max

0≤s≤l−1

∣∣∣A(α(mn−1),s)
∣∣∣

≤
(
1 − 1

2r+1

)2

max
0≤s≤l−1

∣∣∣A(α(mn−2),s)
∣∣∣

≤ · · · · · · · · ·

≤
(
1 − 1

2r+1

)n

max
0≤s≤l−1

∣∣∣A(α(m0),s)
∣∣∣

≤
(
1 − 1

2r+1

)n

−→ 0, n→ ∞. (4.57)

Thus we see (4.47). □

Remark 4.28 Roughly speaking, for almost all α, the sequence {mn}∞n=0 is almost arith-
metic progression due to the law of large numbers. This convinces us that the convergence
(4.47) should be exponentially fast in n for almost all α (cf. Theorem 4.11′).

Remark 4.29 If l ≥ 4, the cancellations (4.54) seen in the above proof is a very special
ones, and usually there occur many other cancellations in the expansion (4.49). But if
l = 2, the cancellations seen in the proof are the all that can occur.

4.3.4 Proof of Theorem 4.11
Using ergodic theory, we will prove Theorem 4.11′ below which is equivalent to Theo-
rem 4.11.

Theorem 4.11′ For P-a.e.α ∈ T1, it holds that for any l ∈ N+, 0 ≤ k0 < . . . < kl−1, there
exists 0 < ρ < 1 which does not depend on α such that

E
[

X(m)
0 ( • ;α)X(m)

k1
( • ;α) × · · · × X(m)

kl−1
( • ;α)

]
= o(ρm), m→ ∞. (4.58)
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Formulation by group extension
We will show that the left hand side of (4.58) is a two term correlation of a certain Markov
chain, and that its mixing property implies Theorem 4.11′. To this end, we need the
following framework.

Note first that by Lemma 4.12′(ii), we have only to show Theorem 4.11′ for each even
l. Fix any 0 < k1 < · · · < kl−1 ∈ N+. Define a function f : T2 → {−1, 1} by

f (x, α) := r1(x)r1(x + k1α) × · · · × r1(x + kl−1α), (x, α) ∈ T2. (4.59)

Here r1(x) is the first Rademacher function. By using f , we define the group extension
(or skew product) of the dyadic transformation β : T3 → T3,

β(x, y, α) := (2x, 2y, 2α), (4.60)

as follows.

Definition 4.30 Let Ω := T3 × {−1, 1}2 and let µ be the uniform probability measure on
Ω, i.e.,

µ := P3 ⊗ δ−1 + δ1

2
⊗ δ−1 + δ1

2
. (4.61)

Here ⊗ denotes the direct product of probability measures, and δi denotes Dirac’s δ-
measure concentrated at i. Define a transformation T f : Ω→ Ω by †20

T f (x, y, α, ϵ1, ϵ2) := (2x, 2y, 2α, ϵ1 f (x, α), ϵ2 f (y, α)). (4.62)

Obliviously, T f preserves µ. Define a subset C ⊂ T3 by

C := {(x, y, α) | (x, y, α) is a discontinuous point of f (x, α) or f (y, α)}. (4.63)

Then C is of probability 0 and βC ⊂ C. Let E j, j = 1, . . . , J, be the connected components
of T3 \C. Define F j ⊂ Ω as

{F j}4J
j=1 :=

{
E j × {−1} × {−1}

}J

j=1

∪{
E j × {−1} × {1}

}J

j=1∪{
E j × {1} × {−1}

}J

j=1

∪{
E j × {1} × {1}

}J

j=1
.

Then Ω =
∪4J

j=1 F j, µ-a.e.

Definition 4.31 We define a {1, 2, 3, . . . , 4J}-valued stochastic process {ζm}∞m=0 on (Ω, µ)
as follows; ζm(x, y, α, ϵ1, ϵ2) := j if T m

f (x, y, α, ϵ1, ϵ2) ∈ F j .

Now, we present a key lemma.
†20The method of group extension introduced here is a modification of Yasutomi’s idea seen in [50].

There are also a pioneering work by Takanobu[46], in which he proved the strong mixing property of the
transformation T : (x, α, ϵ) 7→ (2x, 2α, ϵ f (x, α)) on T2 × {−1, 1}.
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Lemma 4.32 The process {ζm}∞m=0 is an irreducible aperiodic stationary Markov chain
with transition matrix†21

p(i, j) := µ
(
T−1

f (F j)
∣∣∣ Fi

)
, i, j = 1, . . . , 4J.

We will prove Lemma 4.32 later. Let pm(i, j) := µ(ζm = j | ζ0 = i). Then from
Lemma 4.32, the following corollary immediately follows (cf. [1] Theorem 8.9).

Corollary 4.33 For any i, j = 1, . . . , 4J, it holds that

pm(i, j) −→ µ(F j), m→ ∞,

and this convergence takes place at an exponential rate in m.

Using Corollary 4.33, Theorem 4.11′ is proved in the following way. First, define four
mappings below; for i = 1, 2,

Φi : Ω→ {−1, 1}, Φi(x, y, α, ϵ1, ϵ2) := ϵi,

Φ̃i : {1, . . . , 4J} → {−1, 1}, Φ̃i( j) := Φi(F j) = ϵi -component of F j.

We then have

X(m)
0 (x;α) × · · · × X(m)

kl−1
(x;α) = f (x, α) × · · · × f (2m−1x, 2m−1α)

= Φ1(x, y, α, ϵ1, ϵ2)Φ1(T m
f (x, y, α, ϵ1, ϵ2))

= Φ̃1(ζ0(x, y, α, ϵ1, ϵ2))Φ̃1(ζm(x, y, α, ϵ1, ϵ2)).

Note that the right hand side of this does not dependent on (y, ϵ1, ϵ2). Hence

E
[
X(m)

0 ( • ;α) × · · · × X(m)
kl−1

( • ;α)
]
=

∫
T1

dx Φ̃1(ζ0(x, y, α, ϵ1, ϵ2))Φ̃1(ζm(x, y, α, ϵ1, ϵ2)).

We calculate the following.∫
T1

dα
(∫
T1

dx Φ̃1(ζ0(x, y, α, ϵ1, ϵ2))Φ̃1(ζm(x, y, α, ϵ1, ϵ2))
)2

=

∫
T1

dα
(∫
T1

dx Φ̃1(ζ0(x, y, α, ϵ1, ϵ2))Φ̃1(ζm(x, y, α, ϵ1, ϵ2))

×
∫
T1

dy Φ̃2(ζ0(x, y, α, ϵ1, ϵ2))Φ̃2(ζm(x, y, α, ϵ1, ϵ2))
)
. (4.64)

If we fix α, then Φ1(ζm(x, y, α, ϵ1, ϵ2)) and Φ2(ζm(x, y, α, ϵ1, ϵ2)) are random variables with
respect to (x, y, ϵ1, ϵ2) which are independent under the probability measure P2 ⊗ (δ−1 +

†21The partition {F j} j is called a Markov partition, and the dynamical system (Ω,T f ) is called a Markov
transformation. For details about Markov chain, see [1] Section 8.
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δ1)/2 ⊗ (δ−1 + δ1)/2. Therefore the value of (4.64) becomes

=

∫
T1

dα
(∫
T2

dxdy Φ̃1(ζ0(x, y, α, ϵ1, ϵ2))Φ̃1(ζm(x, y, α, ϵ1, ϵ2))

× Φ̃2(ζ0(x, y, α, ϵ1, ϵ2))Φ̃2(ζm(x, y, α, ϵ1, ϵ2))
)

=

∫
Ω

dµ Φ̃3(ζ0(x, y, α, ϵ1, ϵ2))Φ̃3(ζm(x, y, α, ϵ1, ϵ2))

=
∑

i, j

Φ̃3(i)Φ̃3( j)pm(i, j)µ(Fi),

where Φ̃3 := Φ̃1 × Φ̃2. Because of Corollary 4.33, as m→ ∞, we have

∑
i, j

Φ̃3(i)Φ̃3( j)pm(i, j)µ(Fi) −→
∑

i, j

Φ̃3(i)Φ̃3( j)µ(F j)µ(Fi) =

∑
i

Φ̃3(i)µ(Fi)

2

=

(∫
Ω

ϵ1ϵ2 dµ
)2

= 0,

which convergence takes place at an exponential rate in m. Hence we have
∞∑

m=1

∫
T1

dα
(∫
T1

dx Φ̃1(ζ0(x, y, α, ϵ1, ϵ2))Φ̃1(ζm(x, y, α, ϵ1, ϵ2))
)2

(4.65)

=

∞∑
m=1

∑
i, j

Φ̃3(i)Φ̃3( j)pm(i, j)µ(Fi) < ∞,

where each term of (4.65) decays exponentially in m. Therefore there exists 0 < ρ1 < 1
such that

∞∑
m=1

ρ−m
1

∫
T1

dα
(∫
T1

dx Φ̃1(ζ0(x, y, α, ϵ1, ϵ2))Φ̃1(ζm(x, y, α, ϵ1, ϵ2))
)2

< ∞. (4.66)

Consequently,∫
T1

dα
∞∑

m=1

(
ρ−m/2

1

∫
T1

dx Φ̃1(ζ0(x, y, α, ϵ1, ϵ2))Φ̃1(ζm(x, y, α, ϵ1, ϵ2))
)2

< ∞.

Finally, we see

ρ−m/2
1

∫
T1

dx Φ̃1(ζ0(x, y, α, ϵ1, ϵ2))Φ̃1(ζm(x, y, α, ϵ1, ϵ2)) → 0, m→ ∞, a.e.α. (4.67)

This shows that for almost every α, (4.58) holds. □

Proof of Markov property
Now, let us begin to prove Lemma 4.32. First of all, since T f preserves µ, the stationarity
of the precess {ζm}∞m=0 is obvious. By this stationarity, we have

µ(ζm = j | ζm−1 = i) = p(i, j), i, j = 1, . . . , 4J, m ∈ N+.
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In the proof below, we use the following abbreviations.

T−m
f := (T m

f )−1, β−m := (βm)−1. (4.68)

Lemma 4.34 Let ∆−m denote the partition of Ω consisting of all the connected compo-
nents T−m

f F j, j = 1, . . . , 4J. Then, if m′ < m, ∆−m is a refinement of ∆−m′ , i.e., for any
A ∈ ∆−m and A′ ∈ ∆−m′ , we have either A ⊂ A′ or A ∩ A′ = ∅.

Proof. Let C̃ := ∪ϵ1,ϵ2=−1,1C × {ϵ1} × {ϵ2}.†22 Then T f C̃ ⊂ C̃. If there are A ∈ ∆−m,
A′, B′ ∈ ∆−m′ (B′ , A′) such that A ∩ A′ , ∅ and A ∩ B′ , ∅, then A ∩ T−m′

f C̃ , ∅.
Therefore

∅ , T m
f (A ∩ T−m′

f C̃) ⊂ T m
f A ∩ T m

f T−m′
f C̃ = T m

f A ∩ T m−m′
f C̃ ⊂ T m

f A ∩ C̃.

But this is impossible, because T m
f (A) = F j for some j. □

Let us show the Markov property of {ζm}∞m=0. Assume m ≥ 2 and µ(ζ0 = i0, . . . , ζm−1 =

im−1) > 0.

µ(ζm = j | ζ0 = i0, . . . , ζm−1 = im−1)
= µ

(
T−m

f F j

∣∣∣ Fi0 ∩ T−1
f Fi1 ∩ · · · ∩ T−m+1

f Fim−1

)
=
µ
(
Fi0 ∩ T−1

f Fi1 ∩ · · · ∩ T−m+1
f Fim−1 ∩ T−m

f Fim

)
µ
(
Fi0 ∩ T−1

f Fi1 ∩ · · · ∩ T−m+1
f Fim−1

)
=
µ
(
Fi0 ∩ T−1

f Fi1 ∩ · · · ∩ T−m+1
f

(
Fim−1 ∩ T−1

f Fim

))
µ
(
Fi0 ∩ T−1

f Fi1 ∩ · · · ∩ T−m+1
f Fim−1

) .

The set T−m+1
f Fim−1 consists of 8m−1 connected components of equal measure. It follows

from Lemma 4.34 that some of them, say l connected components, are included in F :=
Fi0 ∩T−1

f Fi1 ∩ · · · ∩T−m+2
f Fm−2, and the other 8m−1 − l ones are outside of F. The situation

is the same for T−m+1
f

(
Fim−1 ∩ T−1

f Fim

)
as well. Therefore

µ
(
F ∩ T−m+1

f

(
Fim−1 ∩ T−1

f Fim

))
=

l
8m−1µ

(
T−m+1

f

(
Fim−1 ∩ T−1

f Fim

))
,

µ
(
F ∩ T−m+1

f Fim−1

)
=

l
8m−1µ

(
T−m+1

f Fim−1

)
.

Using µ-invariance of T f , we have

µ(ζm = j | ζ0 = i0, . . . , ζm−1 = im−1) =
µ
(
T−m+1

f

(
Fim−1 ∩ T−1

f Fim

))
µ
(
T−m+1

f Fim−1

)
=

µ
(
Fim−1 ∩ T−1

f Fim

)
µ(Fim−1)

= µ(ζm = j | ζm−1 = im−1),

which proves the Markov property of {ζm}∞m=0. □
†22C is the set defined by (4.63).
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Proof of ergodicity
The irreducibility follows from the ergodicity of T f . Let us begin with the following
Lemma.

Lemma 4.35 Let ϕi : T3 → C, i = 1, 2, be measurable functions which satisfy

ϕ1(x, y, α) = ϕ1(2x, 2y, 2α) f (x, α), a.e., (4.69)
ϕ2(x, y, α) = ϕ2(2x, 2y, 2α) f (x, α) f (y, α), a.e. (4.70)

Then we have ϕ1 = ϕ2 = 0, a.e.

Proof. Let i = 1, 2. Since f has no 0’s, (4.69) shows that the set of 0’s of ϕi(x, y, α) and the
set of 0’s of ϕi(2x, 2y, 2α) coincide, which means it is β-invariant, and hence, of Lebesgue
measure 0 or 1 by the ergodicity of β. If its measure is 1, then the proof ends. So suppose
that ϕi , 0, a.e.. If ϕ1 and ϕ2 satisfy (4.69) and (4.70), then the signs of the real parts of
ϕ1 and ϕ2 also satisfy (4.69) and (4.70). Therefore we may assume that ϕi ∈ {−1, 1}.

We pay attention to the following subset of T3.

A :=
{

(x, y, α)

∣∣∣∣∣∣ 1
2 < x < 1, 1

2 < x + kl−2α < 1, 1 < x + kl−1α <
3
2 ,

1
2 < y < 1, 1

2 < y + kl−1α < 1

}
. (4.71)

It is easy to see that A is a non-empty domain. If (x, y, α) ∈ A then

r1(x) = r1(x + k1α) = · · · = r1(x + kl−2α) = −1, r1(x + kl−1α) = 1,
r1(y) = r1(y + k1α) = · · · = r1(y + kl−1α) = −1,

so, by the fact that l is even and the definition of f (4.59), we see

f (x, α) = −1, f (y, α) = 1, (x, y, α) ∈ A. (4.72)

Let us recall the abbreviations (4.68).

β−mA := { (x, y, α) ∈ T3 | βm(x, y, α) ∈ A }.

Each connected component of β−1A is similar to A itself, in particular, the set

B(−1)
0 :=

{
(x, y, α)

∣∣∣∣∣∣ 3
4 < x < 1, 3

4 < x + kl−2α < 1, 1 < x + kl−1α <
5
4 ,

3
4 < y < 1, 3

4 < y + kl−1α < 1

}
.

is a subset of A. So, by (4.72), we have f (x, α) = −1, f (y, α) = 1 on B(−1)
0 .

Now, the given equations (4.69) and (4.70) imply that

ϕi(x, y, α)ϕi(2x, 2y, 2α) = −1, (x, y, α) ∈ B(−1)
0 . (4.73)

If ϕi(x, y, α) ≡ 1, a.e. on A, we would have ϕi(2x, 2y, 2α) ≡ 1, a.e. on B(−1)
0 , which contra-

dicts (4.73). Therefore ϕi . 1 on A. Similarly, ϕi . −1 on A. Hence

1
|A|

∫
A
ϕi(x, y, α)dxdydα =: ai ∈ (−1, 1), (4.74)
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where |A| stands for the Lebesgue measure of A. Next, Lemma 4.34 implies that, for any
m, f (x, α) and f (y, α) are constant on any connected component B(−m) of β−mA. Therefore,
by (4.69) and (4.70), on B(−m),

ϕi(x, y, α)ϕi(2x, 2y, 2α) ≡ 1 or ϕi(x, y, α)ϕi(2x, 2y, 2α) ≡ −1. (4.75)

Let us show
1∣∣∣B(−m)

∣∣∣
∫

B(−m)
ϕi(x, y, α)dxdydα = ±ai (4.76)

by induction. First, when m = 1, by (4.75) and a change of variables x′ = 2x, y′ =
2y, α′ = 2α,∫

B(−1)
ϕi(x, y, α)dxdydα = ±

∫
B(−1)

ϕi(2x, 2y, 2α)dx = ±1
8

∫
A
ϕi(x′, y′, α′)dx′dy′dα′.

(4.77)
Since |B(−1)| = 1

8 |A|,
1∣∣∣B(−1)

∣∣∣
∫

B(−1)
ϕi(x, y, α)dxdydα = ±ai. (4.78)

Next, assume (4.76) up to m− 1. Then for m, by (4.75), in a similar way as (4.77), we see∫
B(−m)

ϕi(x, y, α)dxdydα = ±
∫

B(−m)
ϕi(2x, 2y, 2α)dxdydα = ±1

8

∫
βB(−m)

ϕi(x, y, α)dxdydα.

Here βB(−m) is a connected component, say B(−m+1), of β−m+1A. We also have |B(−m)| =
1
8 |B(−m+1)|, and hence

1∣∣∣B(−m)
∣∣∣
∫

B(−m)
ϕi(x, y, α)dxdydα = ± 1∣∣∣B(−m+1)

∣∣∣
∫

B(−m+1)
ϕi(x, y, α)dxdydα.

Thus (4.76) holds for any m = 1, 2, . . ..
Now, the set ∪∞m=1β

−mA is dense in T3, and any cube of edge length 0 < ε < 1 includes
at least one connected component of β−mA, if m ≥ ⌊− log2 ε⌋ + 2. Consequently, there
exists a δ > 0 such that for any cube S ⊂ T3, it holds that

−1 + δ <
1
|S |

∫
S
ϕi(x, y, α)dxdydα < 1 − δ. (4.79)

On the other hand, since ϕi is a {−1, 1}-valued measurable function, by Lebesgue’s density
theorem, it holds that, S (x, y, α; ε) being the cube of edge length ε > 0 and center (x, y, α),
we have

lim
ε→0

1
|S (x, y, α; ε)|

∫
S (x,y,α;ε)

ϕi(x′, y′, α′)dx′dy′dα′ = −1 or 1, a.e.(x, y, α) ∈ T3.

This contradicts (4.79). Thus ϕi ≡ 0 a.e. □

Let us show the ergodicity of T f to prove Lemma 4.32. We will show that if a mea-
surable function ϕ : Ω = T3 × {−1, 1}2 → C is T f -invariant, i.e.,

ϕ(x, y, α, ϵ1, ϵ2) = ϕ(2x, 2y, 2α, ϵ1 f (x, α), ϵ2 f (y, α)), µ-a.e., (4.80)
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then ϕ ≡constant µ-a.e.
Let ψ1(x, y, α) :=

∑
ϵ1,ϵ2

ϕ(x, y, α, ϵ1, ϵ2). Then

ψ1(x, y, α) =
∑
ϵ1,ϵ2

ϕ(2x, 2y, 2α, ϵ1 f (x, α), ϵ2 f (y, α))

=
∑
ϵ1,ϵ2

ϕ(2x, 2y, 2α, ϵ1, ϵ2)

= ψ1(2x, 2y, 2α),

i.e., ψ1 is invariant under the dyadic transformation β. By the ergodicity of β, we see that
ψ1 ≡ c = constant, a.e. If we take ϕ − c/4 instead of ϕ, then we have ψ1 ≡ 0, a.e., so we
may assume ψ1 ≡ 0, a.e.

Next, let ψ2(x, y, α, ϵ1) :=
∑
ϵ2
ϕ(x, y, α, ϵ1, ϵ2). Then

ψ2(x, y, α, ϵ1) =
∑
ϵ2

ϕ(2x, 2y, 2α, ϵ1 f (x, α), ϵ2 f (y, α))

=
∑
ϵ2

ϕ(2x, 2y, 2α, ϵ1 f (x, α), ϵ2)

= ψ2(2x, 2y, 2α, ϵ1 f (x, α)),

i.e.,

ψ2(x, y, α,−1) = ψ2(2x, 2y, 2α,− f (x, α))
= ψ2(2x, 2y, 2α,−1)1{ f (x,α)=1} + ψ2(2x, 2y, 2α, 1)1{ f (x,α)=−1}.

Since ψ2(2x, 2y, 2α,−1) + ψ2(2x, 2y, 2α, 1) = ψ1(x, y, α) ≡ 0,

ψ2(x, y, α,−1) = ψ2(2x, 2y, 2α,−1)
(
1{ f (x,α)=1} − 1{ f (x,α)=−1}

)
= ψ2(2x, 2y, 2α,−1) f (x, α).

By Lemma 4.35, we see ψ2(x, y, α,−1) ≡ 0, a.e., and hence ψ2(x, y, α, 1) ≡ 0, a.e. Thus
we see ψ2(x, y, α, ϵ1) ≡ 0, a.e.(x, y, α, ϵ1). Consequently, by definition,

ϕ(x, y, α, ϵ1,−1) + ϕ(x, y, α, ϵ1, 1) = ψ2 ≡ 0, a.e.,

i.e., we can write as
ϕ(x, y, α, ϵ1, ϵ2) = ϕ(x, y, α, ϵ1, 1)ϵ2.

Now exchanging the roles of ϵ1 and ϵ2, the same argument leads to

ϕ(x, y, α, ϵ1, ϵ2) = ϕ(x, y, α, 1, ϵ2)ϵ1, a.e.

From the last two equalities, it immediately follows that

ϕ(x, y, α, ϵ1, ϵ2) = ϕ(x, y, α, 1, 1)ϵ1ϵ2, a.e.

Therefore, ϕ is T f -invariant (4.80), if and only if

ϕ(x, y, α, 1, 1) = ϕ(2x, 2y, 2α, 1, 1) f (x, α) f (y, α), a.e.

Then Lemma 4.35 implies ϕ ≡ 0, a.e., thus T f is ergodic, and hence {ζm}∞m=0 is irreducible.
□
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Proof of aperiodicity

Now we have only to prove the aperiodicity of the process {ζm}∞m=0 to prove Lemma 4.32.
Since we proved the irreducibility, it is sufficient to show that µ(ζ0 = ζ1) > 0.

We first set

F′ :=
{

(x, y, α)

∣∣∣∣∣∣ 0 < x < 1
2 , 0 < x + kl−1α <

1
2 ,

0 < y < 1
2 , 0 < y + kl−1α <

1
2

}
,

F := F′ × {1} × {1} ⊂ Ω,

F′′ :=
{

(x, y, α)

∣∣∣∣∣∣ 0 < x < 1
4 , 0 < x + kl−1α <

1
4 ,

0 < y < 1
4 , 0 < y + kl−1α <

1
4

}
,

H := F′′ × {1} × {1} ⊂ Ω.

Then F = F j for some j = 1, . . . , 4J, and H ⊂ F. Since f (x, α) = f (y, α) = 1 for
(x, y, α) ∈ F′′, we see

∀(x, y, α, ϵ1, ϵ2) ∈ H, ζ0(x, y, α, ϵ1, ϵ2) = ζ1(x, y, α, ϵ1, ϵ2) = j.

Since µ(H) > 0, we finally see that {ζm}∞m=0 is aperiodic.

Thus we have completed the proof of Lemma 4.32, and hence Theorem 4.11′ (Theo-
rem 4.11). □

4.3.5 Precise estimate of exponential decay of two-term correlation

We will estimate the exponent ρ of the convergence rate appeared in Theorem 4.11′ (The-
orem 4.11). For the two-term correlation, we have the following theorem.†23

Theorem 4.36 (cf. [41]) For any ρ > ρ0 :=
√(

1 +
√

17
)
/8 = 0.80024 . . ., it holds that

E
[
X(m)

0 ( • ;α)X(m)
k ( • ; α)

]
= o (ρm) , m→ ∞, k ∈ N+, a.e. α.

In fact, more precisely, the following equality holds.

Theorem 4.37∫
T1

dα
(
E

[
X(m)

0 ( • ;α)X(m)
k ( • ; α)

])2

=

1
2
+

5
√

17
102

 1 +
√

17
8

m

+

1
2
− 5
√

17
102

 1 −
√

17
8

m

, m, k ∈ N+.

†23Takanobu determined ρ for a special four-term correlation. (a private communication)
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Theorem 4.37 implies Theorem 4.36, which can be shown just like (4.66) implies (4.67).
The constant ρ0 in Theorem 4.36 is best possible, i.e., it cannot be taken smaller.

Proof of Theorem 4.37. We use a recursion formula to prove the theorem ([41]). First,
note that since the Lebesgue measure is invariant under the transformation T1 ∋ x 7→ kx ∈
T1, it is sufficient to prove it for k = 1 only.

Now, for each m ∈ N+, set

am :=
∫
T1

dα
(
E

[
X(m)

0 ( • ;α)X(m)
1 ( • ; α)

])2
=

∫
T1

dα

∫
T1

m∏
i=1

ri(x)ri(x + α) dx

2

.

By showing the following two equality, we prove Theorem 4.37.

a1 = a2 =
1
3

(4.81)

am+2 =
1
4

am+1 +
1
4

am, m ∈ N+ (4.82)

Proof of (4.81). Using ∫
T1

r1(x)r1(x + α)dx = |2 − 4α| − 1, (4.83)

we have

a1 =

∫
T1

dα
(∫
T1

r1(x)r1(x + α)dx
)2

=

∫
T1

( |2 − 4α| − 1 )2 dα =
1
3
.

Next, note that r1(x)r2(x) = r1

(
x + 1

4

)
, and we see

a2 =

∫
T1

dα
(∫
T1

r1(x)r2(x)r1(x + α)r2(x + α)dx
)2

=

∫
T1

dα
(∫
T1

r1

(
x +

1
4

)
r1

(
x + α +

1
4

)
dx

)2

=

∫
T1

dα
(∫
T1

r1(x)r1(x + α)dx
)2

= a1.

Proof of (4.82). Imitating (4.29), we define

A(m)(α) :=
∫
T1

m∏
i=1

ri(x)ri(x + α) dx.

In this section below, we let E denote the mean (Lebesgue integral) with respect to α. In
particular, we have am = E

[
A(m)(α)2

]
. Set ξm := E
[
A(α(m)U)2 + A(α(m)L)2

]
,

ηm := E
[
A(α(m)U)A(α(m)L)

]
.

Using these quantities, we give a heuristic method to find the recursion formula (4.82).



82 4 Pseudorandom generator

Lemma 4.38

am =
1
3
ξm +

1
3
ηm, (4.84)

(
ξm+1

ηm+1

)
=

 3
4

1
2

−1
4 −

1
2

 (ξm

ηm

)
. (4.85)

Proof. By Theorem 4.13′,

A(m)(α) = (1 − 2m⟨α⟩m) A(α(m)L) + 2m⟨α⟩mA(α(m)U),

where A( • ) is the function given in Definition 4.20, and ⟨α⟩m := α − ⌊α⌋m. From this
equality, it follows that

am = E
[
(1 − 2m⟨α⟩m)2 A(α(m)L)2

]
+ E

[
(2m⟨α⟩m)2A(α(m)U)2

]
+2E

[
(1 − 2m⟨α⟩m) A(α(m)L)(2m⟨α⟩m)A(α(m)U)

]
= E

[
(1 − 2m⟨α⟩m)2

]
E

[
A(α(m)L)2

]
+ E

[
(2m⟨α⟩m)2

]
E

[
A(α(m)U)2

]
+2E [(1 − 2m⟨α⟩m) (2m⟨α⟩m)] E

[
A(α(m)U)A(α(m)L)

]
,

where we used the independence of ⟨α⟩m and α(m)L or α(m)U . Since 2m⟨α⟩m = ⟨2mα⟩, its
distribution is equal to the distribution of α itself, i.e., the uniform distribution, and hence,

am = E
[
(1 − α)2

]
E

[
A(α(m)L)2

]
+ E

[
α2

]
E

[
A(α(m)U)2

]
+2E [(1 − α)α] E

[
A(α(m)U)A(α(m)L)

]
=

1
3

E
[
A(α(m)U)2

]
+

1
3

E
[
A(α(m)L)2

]
+

1
3

E
[
A(α(m)U)A(α(m)L)

]
,

which shows (4.84). Next, by Lemma 4.21,

E
[
A(α(m+1)U)2 + A(α(m+1)L)2

]
= E

[
1
4

(
A(Uα(m+1)U) + A(Lα(m+1)U)

)2
+

1
4

(
A(Uα(m+1)L) + A(Lα(m+1)L)

)2
]

= E
[
1
4

(
A(α(m)U) + A(α(m)L)

)2
+ A(α(m)L)2 ; dm+1(α) = 0

]

+E
[
A(α(m)U)2 +

1
4

(
A(α(m)U) + A(α(m)L)

)2
; dm+1(α) = 1

]

=
1
2

E
[
1
4

(
A(α(m)U) + A(α(m)L)

)2
+ A(α(m)L)2

]

+
1
2

E
[
A(α(m)U)2 +

1
4

(
A(α(m)U) + A(α(m)L)

)2
]

=
3
4

E
[
A(α(m)U)2 + A(α(m)L)2

]
+

1
2

E
[
A(α(m)U)A(α(m)L)

]
.
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And Similarly,

E
[
A(α(m+1)U)A(α(m+1)L)

]
= E

[(
−1

2
A(α(m)U) − 1

2
A(α(m)L)

)
A(α(m)L) ; dm+1(α) = 0

]

+E
[
A(α(m)U)

(
−1

2
A(α(m)U) − 1

2
A(α(m)L)

)
; dm+1(α) = 1

]
= −1

4
E

[(
A(α(m)U) + A(α(m)L)

)
A(α(m)L)

]
− 1

4
E

[
A(α(m)U)

(
A(α(m)U) + A(α(m)L)

)]
= −1

4
E

[
A(α(m)U)2 + A(α(m)L)2

]
− 1

2
E

[
A(α(m)U)A(α(m)L)

]
.

From these (4.85) follows. □

Now, let us go back to the proof of (4.82). First, by (4.85),(
ξm+2

ηm+2

)
=

 3
4

1
2

−1
4 −

1
2

2 (
ξm

ηm

)
=

 7
16

1
8

− 1
16

1
8

 (ξm

ηm

)
,

and hence

am+2 =
1
3
ξm+2 +

1
3
ηm+2

=
1
3

(
7

16
ξm +

1
8
ηm

)
+

1
3

(
− 1

16
ξm +

1
8
ηm

)
=

1
8
ξm +

1
12
ηm. (4.86)

Similarly,

am+1 =
1
3
ξm+1 +

1
3
ηm+1 =

1
6
ξm. (4.87)

Then to find constants c1, c2 such that

am+2 = c1am+1 + c2am, m ∈ N+,

because of (4.84), (4.86) and (4.87), we have to solve

1
8
ξm +

1
12
ηm = c1

1
6
ξm + c2

(
1
3
ξm +

1
3
ηm

)
=

(
1
6

c1 +
1
3

c2

)
ξm +

1
3

c2ηm, m ∈ N+.

Comparing the coefficients of both hand sides, we know that

c1 = c2 =
1
4
.

This completes the proof of (4.82), and consequently, the proof of Theorem 4.37. □


