
Chapter 3

Random number

For a given finite {0, 1}-sequence x, let us consider a computer program which produces
it. If x can be produced by a short program, it is considered to be regular, and otherwise,
it is considered to be irregular. Consequently, it is a good idea to call x a random number
if a very long program is needed to produce it ([5, 18, 19, 20, 26]). To make this idea
precise and universal, we use the notion of partial recursive function ([5, 18, 19, 20,
21, 26], cf. [23, 54]). In this chapter, two fundamental theorems (Theorem 3.3 and
Theorem 3.6, whose detailed proofs are not given here) are introduced as the basis of
discussion, from which other theorems are derived. In particular, Theorem 3.15, which
asserts that it is impossible to judge whether a given {0, 1}-sequence is a random number
or not, and Theorem 3.20, which says about the relation between random numbers and
statistical tests, are very important.

The notion of random number may not directly solve practical problems, but recogniz-
ing it brings us profound understanding of the Monte Carlo method as well as probability
theory itself (§ 3.6).

3.1 Partial recursive function

Modern computers can deal with many kinds of data; as input, data from keyboard,
mouse, scanner, and video camera, . . . , as output, document, picture, sound, video, con-
trol sequence for electronic machine, But in the final analysis, all of them are binary
strings, i.e., finite {0, 1}-sequences.†1 Since each finite {0, 1}-sequence can be associated
with a non-negative integer via dyadic expansion (§ 3.1.3), all data that computers deal
with can be essentially regarded as non-negative integers. Namely, any action of computer
can be regarded as a function f : N→ N.

Each action of computer is determined by a program, which, just like all input/output
data, can be regarded as a finite {0, 1}-sequence, or a non-negative integer, too. The set
of all programs is therefore a countable set. In other words, among uncountably many
functions f : N→ N, only countably many ones can be realized by actions of computer.

The notion of partial recursive function is used to express the actions of computer
mathematically. By this notion, every action of computer, including infinite loops that do

†1Here we do not assume data processing of infinite input or infinite output.

23

24 3 Random number

not stop, can be expressed. In this section, for the later use, we introduce some relevant
concepts and theorems about partial recursive functions.

3.1.1 Primitive recursive function and partial recursive function
Definition 3.1 (Primitive recursive function, cf. [6, 32])

1. (Basic functions)

zero : N0 → N, zero() := 0
suc : N→ N, suc(x) := x + 1
pn

i : Nn → N, pn
i (x1, . . . , xn) := xi, i = 1, . . . , n,

are primitive recursive functions.

2. (Composition)
If g : Nm → N, g j : Nn → N, j = 1, . . . ,m, are primitive recursive functions, then
so is

f : Nn → N, f (x1, . . . , xn) := g(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)).

3. (Recursion)
If g : Nn → N and h : Nn+2 → N are primitive recursive functions, then so is
f : Nn+1 → N defined by{

f (x1, . . . , xn, 0) := g(x1, . . . , xn),
f (x1, . . . , xn, y + 1) := h(x1, . . . , xn, y, f (x1, . . . , xn, y)).

4. (Direct product)
If g j : Nn j → N, j = 1, . . . ,m, are primitive recursive functions, then so is

g : Nn1+···+nm → Nm, g := (g1, . . . , gm).

5. A function Nm → Nn obtained from the basic functions by a finite combination of
compositions, recursions, and direct products is a primitive recursive function, and
any primitive recursive function can be obtained in this way.

Definition 3.2 (Partial recursive function, cf. [6, 32])

1. (µ-operation)
For a partial function†2 p : Nn+1 → N, we define µy(p(•, · · · , •, y)) : Nn → N by

µy(p(x1, . . . , xn, y)) :=


y0 (∃y0 s.t. 0 ≤ ∀y < y0, p(x1, . . . , xn, y) > 0,

and p(x1, . . . , xn, y0) = 0),
undefined (otherwise).

†2 f : Nm → Nn is called a partial function if f is defined on a subset of Nm and it is Nn-valued. It is
called a total function if it is defined on the whole domain Nm.

3.1. Partial recursive function 25

2. A function Nm → Nn obtained from the basic functions by a finite combination
of compositions, recursions, direct products, and µ-operations is a partial recursive
function, and any partial recursive function can be obtained in this way.

Primitive recursive functions are partial recursive functions. If a partial recursive func-
tion happens to be defined on the whole domain, it is called a total recursive function. Any
action of computer can be expressed as a partial recursive function, and any partial recur-
sive function can be realized by a Turing machine.†3

3.1.2 Kleene’s normal form
The following theorem describes the general structure of partial recursive functions.

Theorem 3.3 (Kleene’s normal form) For any partial recursive function f : Nn → N,
there exist two primitive recursive functions g, p : Nn+1 → N such that

f (x1, x2, . . . , xn) = g(x1, x2, . . . , xn, µy(p(x1, x2, . . . , xn, y))), (x1, x2, . . . , xn) ∈ Nn.
(3.1)

See [6, 32] for a detailed proof. We here only give an idea of the proof by explaining
an example. The point is that even if a given program has more than one loops, which
correspond to µ-operations, we can rearrange them into a single loop.

Figure 3.1: Flow chart (A)

Input(x1, . . . , xn); z := 0 - A ?
1

no
yes
?

B
2

?
C ?

3

no
yes

-

?

E
5

�

D ?
4

no
yes

6 6
- Output(z)

0

Let Figure 3.1 (Flow chart (A)†4) be a flow chart to compute the function f . A ?
C ? D ? denote conditions of branches, and B E are procedures without loops (i.e.,

calculation of primitive recursive functions) which set some values of z, respectively. This
program includes the main loop A ? → B → C ? → D ? → A ? , a nested loop C ?
→ E → C ? , and an escape branch from the main loop at D ? . Let us show that these
loops can be rearranged into a single loop by introducing a new variable u. To do this, we
put numbers 0 ∼ 5 respectively at left-top of the boxes of all procedures A ? C ? D ?
B E and the output procedure in order for the variable u to refer (Figure 3.1).
†3A virtual computer, having infinite memory. See [6, 32]
†4Flow charts (A), (B) are slight modifications of Figure 3 (p.12), Figure 4 (p.13) of [45], respectively.

26 3 Random number

Figure 3.2: Flow chart (B)

Input(x1, . . . , xn); z := 0

?
u := 1

?
u , 0 ?

?
Output(z)

-
yes

no
u=1 ? -

yes

?

no
A ? -

yes
no

-

u:=2 -

u:=0 -

u=2 ? -
yes

?
no

B - u:=3 -

u=3 ? -
yes

?

no
C ? -

yes
no

-

u:=4 -

u:=5 -

u=4 ? -
yes

no
(u = 5)

-

D ? -
yes

no
-

u:=1 -

u:=0 -

E - u:=3 -

�

Q

Figure 3.2 (Flow chart (B)) shows a rearrangement of Flow chart (A). It is easy to
confirm that Flow chart (B) also computes the same function f . Let us show that f ,
which Flow chart (B) computes, can be expressed in the form (3.1). Let Q be a procedure
consisting of all the procedures enclosed by the thick lines in Flow chart (B). Define
g(x1, . . . , xn, y) as the value of the output variable z that is produced after Q being executed
y times under the input (x1, . . . , xn), and define p(x1, . . . , xn, y) as the value of u after Q
being executed y times under the input (x1, . . . , xn). Then we see (3.1) holds.

3.1.3 Canonical order

Each finite {0, 1}-sequence can be regarded as a non-negative integer by dyadic expansion.
This is explicitly formulated as follows.

Let {0, 1}∗ :=
∪

n∈N{0, 1}n. Namely {0, 1}∗ is the set of all finite {0, 1}-sequences. In
particular, the {0, 1}-sequence of length 0 is called the empty word. The canonical order
of {0, 1}∗ is defined in the following way; for x, y ∈ {0, 1}∗, if x is longer than y then
define x > y, if x and y have a same length then define the order regarding them as dyadic
integer. From now on, we identify {0, 1}∗ with N by the canonical order. Namely, the
empty word= 0, “0”= 1, “1”= 2, “00”= 3, “01”= 4, “10”=5”, “11”= 6, “000”= 7,

3.1. Partial recursive function 27

3.1.4 Enumeration theorem and halting problem

We introduce a function Gn : ({0, 1}∗)n → {0, 1}∗ to make a given function of n variables
into a function of a single variable that is equivalent to the original one.

First, if xi ∈ {0, 1}mi , i = 1, 2, are given by

xi = (xi1, xi2, . . . , ximi), xi j ∈ {0, 1}, i = 1, 2,

define

G2(x1, x2) := (x11, x11, x12, x12, . . . , x1m1 , x1m1 , 0, 1, x21, x22, . . . , x2m2). (3.2)

Next, define inductively as†5

Gn(x1, x2, . . . , xn) := G2(x1,Gn−1(x2, . . . , xn)), n = 3, 4,

For simplicity, we use the following notation;

⟨x1, . . . , xn⟩ := Gn(x1, . . . , xn).

The inverse function is written for u = ⟨x1, x2, . . . , xn⟩ as

(u)i := xi, i = 1, 2, . . . , n.

Definition 3.4 A subset U ⊂ Nn is called a recursively enumerable set if there exists a
partial recursive function f : Nn → N such that U is the domain of definition of f , i.e.,

U = {(x1, x2, . . . , xn) ∈ Nn | ∃ y s.t. f (x1, x2, . . . , xn) = y}.

The origin of the term “recursively enumerable” can be found in the following theorem
(in particular (ii) and (iii) of it).

Theorem 3.5 For U ⊂ Nn, the followings are equivalent to each other.
(i) U is a recursively enumerable set.
(ii) U is an empty set, or it is the image of a primitive recursive function f : N→ Nn, i.e.,
U = f (N).
(iii) U is the image of a partial recursive function f : N→ Nn, i.e., U = f (N).
(iv) There exists a primitive recursive function p : Nn+1 → N such that

U = {(x1, x2, . . . , xn) | ∃ y s.t. p(x1, x2, . . . , xn, y) = 0 }.

(v) There exists a partial recursive function p : Nn+1 → N such that

U = {(x1, x2, . . . , xn) | ∃ y s.t. p(x1, x2, . . . , xn, y) = 0 }.
†5These functions are simple analogues of so-called Gödel functions.

28 3 Random number

Proof. For simplicity, we prove the theorem for n = 1.
(i)=⇒(ii): Assume that U , ∅. By Theorem 3.3, there exist two primitive recursive

functions g, p : N2 → N such that

U = {x ∈ N | ∃ y s.t. g(x, µz(p(x, z))) = y }.

Fixing any a ∈ U, consider a function defined by

h(u) =
{

(u)1 (u ∈ G2(N2) and p((u)1, (u)2) = 0),
a (otherwise).

Then h is a primitive recursive function such that h(N) = U.
(ii)=⇒(iii): Obvious.
(iii)=⇒(iv): By Theorem 3.3, we can assume that f (x) = g(x, µy(p(x, y))), g, p being

primitive recursive functions, and that U = f (N). Namely,

U = { z ∈ N | ∃ x, y s.t. z = g(x, y), p(x, y) = 0, ∀w < y, p(x,w) , 0 }.

Now define

q(x, y, z) :=
{

0 (z = g(x, y), p(x, y) = 0, ∀w < y, p(x,w) , 0),
1 (otherwise).

Then q(x, y, z) is a primitive recursive function, and hence

q′(u, z) :=
{

q((u)1, (u)2, z) (u ∈ G2(N2)),
1 (u < G2(N2)).

is also a primitive recursive function, which satisfies that

U = { u ∈ N | ∃ z s.t. q′(u, z) = 0 }.

(iv)=⇒(v): Obvious.
(v)=⇒(i): Define f (x) := µy(p(x, y)), then it is a partial recursive function, which

satisfies
U = { x ∈ N | ∃ y s.t. y = f (x) }.

□

Theorem 3.6 (Enumeration theorem) There exists a partial recursive function univn :
N × Nn → N which has the following property; for each partial recursive function f :
Nn → N, there exists an e f ∈ N such that

univn(e f , x1, . . . , xn) = f (x1, . . . , xn), (x1, . . . , xn) ∈ Nn.

The function univn is called an enumerating function or a universal function, and e f is
called the Gödel number of f . The detailed proof of the theorem can be found in textbooks
about computability (e.g., [6, 32, 45]). We here give only an idea of the proof. First, write
a computer (say, universal Turing machine) program of a given partial recursive function
f , and regard it as a non-negative integer. The Gödel number e f is such an integer. The
enumerating function univn(e, x1, . . . , xn) checks if e is a Gödel number of some partial
recursive function f of n variables. If it is, univn(e, x1, . . . , xn) then reconstruct a partial
recursive function f from e = e f , and finally computes f (x1, . . . , xn).

In order for the enumeration theorem to hold, the notion of “partial function” is essen-
tial. The following is a theorem about this.

3.1. Partial recursive function 29

Theorem 3.7 Any total function which is an extension of the enumerating function univn

is not recursive.

Proof. By contradiction.†6 Suppose that there exists a total recursive function g which is
an extension of univn. Then

h(z, x2, . . . , xn) := g(z, z, x2, . . . , xn) + 1 (3.3)

is also a total recursive function. Therefore using the Gödel number eh of h, we can write

h(z, x2, . . . , xn) = univn(eh, z, x2, . . . , xn).

Since h is total, so is univn(eh, ·, ·, . . . , ·). Since g is an extension of univn, we see

h(z, x2, . . . , xn) = univn(eh, z, x2, . . . , xn) = g(eh, z, x2, . . . , xn).

Putting z = eh in the above equality, we get

h(eh, x2, . . . , xn) = g(eh, eh, x2, . . . , xn).

But (3.3) implies that

h(eh, x2, . . . , xn) = g(eh, eh, x2, . . . , xn) + 1,

which is a contradiction. □

As an application of Theorem 3.7, let us consider the following halting problem. Us-
ing the enumerating function univn : N×Nn → N, define a total function haltn : N×Nn →
{0, 1} by

haltn(z, x1, . . . , xn) :=
{

1 (univn(z, x1, . . . , xn) is defined),
0 (univn(z, x1, . . . , xn) is not defined).

Namely, haltn is an indicator function of the domain of univn. It judges whether a given
partial recursive function is defined for a given input (x1, . . . , xn), or equivalently, whether
a given program stops or fall into an infinite loop for a given input (x1, . . . , xn).

Theorem 3.8 ([48]) haltn is not a total recursive function.

Proof. Consider a function g : N × Nn → N defined by

g(z, x1, x2, . . . , xn) :=
{

univn(z, x1, x2, . . . , xn) (haltn(z, x1, . . . , xn) = 1),
0 (haltn(z, x1, . . . , xn) = 0).

If haltn is a total recursive function, so is g. But this is impossible by Theorem 3.7,
because g is an extension of the enumerating function univn. □

Theorem 3.8 asserts that there is no program which computes haltn. This means that
there is no program which judges whether a given program stops or fall into an infinite
loop for a given input (x1, . . . , xn). This situation is expressed in computer science as “the
halting problem is not computable”.
†6In proving impossibilities seen in such theorems of computer science as this theorem or Theorem 3.15

below, some self-referring versions of “diagonal method” are used. The proof below is self-referring in that
we substitute the Gödel number eh for the first argument of h defined by (3.3).

30 3 Random number

—— ⋄—— ⋄——

It is hard to study the theory of partial recursive function rigorously. But even a lit-
tle knowledge about computer will help you understand it. For example, Kleene’s normal
form is used to design a CPU architecture in practice. The new variable u is called the pro-
gram counter of CPU, which indicates the program address where the computer is execut-
ing. The function ⟨x1, . . . , xn⟩ is a mathematical expression of how to hand more than one
parameters to a function. For example, as is seen in an expression like f (1.5, 20.0, −2.1),
a sequence of letters “1.5, 20.0, −2.1” is put into f (·), each parameter being divided by
“ , ”. Here the sequence of letters is coded as a finite {0, 1}-sequence. The delimiter “ , ”
corresponds to “0, 1” seen in the definition (3.2) of ⟨x1, x2⟩. The enumerating function
of partial recursive functions is a mathematical model of multi-purpose computer, whose
action depends on the installed program, or the Gödel number.

About the halting problem, a little knowledge of number theory will help you under-
stand it. Let us consider a partial recursive function

f (x) := inf{ y ≥ x | y ∈ 2N+, y cannot be expressed as a sum of two prime numbers}.
Then if halt1 were a total recursive function, there would exist a program which computes
halt1(e f , 4), i.e., we would be able to know whether the Goldbach conjecture is true or
not. Just like this, the function halt1would solve many other unsolved problems in number
theory. This is quite unlikely.

3.2 Kolmogorov complexity and random number
Definition 3.9 For each p ∈ {0, 1}∗, let L(p) ∈ N denote the n such that p ∈ {0, 1}n,
i.e., L(p) is the length of p. For p ∈ N, L(p) means the length of the corresponding
{0, 1}-sequence to p in the canonical order. For instance, L(5) = L(“10”) = 2. In general,
L(p) = ⌊log2(p + 1)⌋ holds.

Definition 3.10 (Computational complexity depending on algorithm) Let A : {0, 1}∗ ×
{0, 1}∗ → {0, 1}∗ be a partial recursive function as a function N × N → N. We call A an
algorithm. The computational complexity of x ∈ {0, 1}∗ under the algorithm A with input
y ∈ {0, 1}∗ is defined by

KA(x|y) := min{L(p) | p ∈ {0, 1}∗, A(p, y) = x }.
If there is no such p that A(p, y) = x, we set KA(x|y) := ∞.

In Definition 3.10, the first argument p of A is called a program. So A(p, y) = x means
that the program p computes x under the algorithm A from input y. Thus KA(x|y) returns
the length of the shortest program which computes x under A from input y.

Since KA naturally depends on A, it is not a universal index for complexity. Then we
introduce the following theorem.

Theorem 3.11 There exists an algorithm A0 : {0, 1}∗×{0, 1}∗ → {0, 1}∗ such that for any
algorithm A : {0, 1}∗ × {0, 1}∗ → {0, 1}∗, we can find such a constant cA0A ∈ N that

∀x, y ∈ {0, 1}∗, KA0(x|y) ≤ KA(x|y) + cA0A.

A0 is called a universal algorithm or an asymptotically optimal algorithm.

3.2. Kolmogorov complexity and random number 31

Proof. Using univ2, define an algorithm A0 by

A0(z, y) := univ2((z)1, (z)2, y), z, y ∈ {0, 1}∗.

If z is not of the form z = ⟨e, p⟩, we do not define A0(z, y). Since A0(⟨eA, p⟩, y) = A(p, y),
it follows from (3.2) that

∀x, y ∈ {0, 1}∗, KA0(x|y) ≤ KA(x|y) + 2L(eA) + 2.

Therefore with cA0A := 2L(eA) + 2, the theorem holds. □

If A0 and A′0 are two universal algorithms, there exists a constant c > 0 such that

∀x, y ∈ {0, 1}∗,
∣∣∣KA0(x|y) − KA′0

(x|y)
∣∣∣ < c. (3.4)

This means that when KA0(x|y) and KA′0
(x|y) are much greater than c, their difference can

be ignored.

Definition 3.12 We fix an universal algorithm A0, and define

K(x|y) := KA0(x|y), x, y ∈ {0, 1}∗.

We call K(x|y) the computational complexity of x given y. In particular, when y is the
empty word, we write it as K(x) and call it the Kolmogorov complexity †7 of x.

Both K(x|y) and K(x) are defined for all x, y ∈ {0, 1}∗ and they take finite values.

Theorem 3.13 (i) There exists a constant c > 0 such that

∀n ∈ N+, ∀x ∈ {0, 1}n, ∀y ∈ {0, 1}∗, K(x|y) ≤ n + c.

(ii) If n > c′ > 0, then we have

∀y ∈ {0, 1}∗, #{x ∈ {0, 1}n |K(x|y) ≥ n − c′} > 2n − 2n−c′ .

Proof. (i) For an algorithm A(x, y) := p2
1(x, y) = x, we have KA(x|y) = n for x ∈ {0, 1}n.

Consequently, Theorem 3.11 implies K(x|y) ≤ n + c. (ii) The number of p’s such that
L(p) < n − c′ is equal to 20 + 21 + · · · + 2n−c′−1 = 2n−c′ − 1, and hence the number of x’s
∈ {0, 1}∗ such that K(x|y) < n − c′ is at most 2n−c′ − 1. Thus (ii) holds.†8 □

Since K(x) is a special case of K(x|y), the assertions (i) and (ii) of Theorem 3.13 are
valid for K(x) as well. Therefore when n is so large that the constant c can be ignored,
K(x) ≈ n holds for almost all x’s ∈ {0, 1}n. If x ∈ {0, 1}n satisfies K(x) ≈ n, it is called a
random number. †9

†7It is also called the Kolmogorov-Chaitin complexity, algorithmic complexity, description complexity,
. . . etc.
†8These assertions (i) and (ii) have been essentially discussed in § 2.3.
†9Since the value of K(x) has an ambiguity (3.4), the definition of random number should remain a little

bit ambiguous like this.

32 3 Random number

Example 3.14 The world record of computation of π is 2,576,980,370,000 decimal
digits or approximately 8,560,543,490,000 bits (as of August 2009). Since the program
that produced the record is much shorter than this, the {0, 1}-sequence of π in its dyadic
expansion up to 8,560,543,490,000 digit is not a random number.

As is seen in Example 3.14, we know some x’s ∈ {0, 1}∗ which can be proved non-
random. However we know no concrete example of random numbers. Indeed, the follow-
ing theorem implies that there is no algorithm to judge whether a given x ∈ {0, 1}n, n ≫ 1,
is random or not.

Theorem 3.15 For each y ∈ {0, 1}∗, the function K(• |y) is not a total recursive function,
in particular, neither is K(x).

Proof. Let us identify {0, 1}∗ and N. Fix y ∈ {0, 1}∗. We show the theorem by con-
tradiction. Suppose that K(• |y) is a total recursive function. Then a function ψ(x) :=
min{z ∈ N |K(z|y) ≥ x}, x ∈ N, is also a total recursive function. We see x ≤ K(ψ(x)|y) by
definition. Define an algorithm A by A(p, y) := ψ(⟨p, y⟩). Then we have

KA(ψ(x)|y) = min{L(p) | p ∈ N, ψ(⟨p, y⟩) = ψ(x)},

and consequently, for infinitely many x of the form x = ⟨p, y⟩, it holds that KA(ψ(x)|y) ≤
L(p) ≤ L(x). Therefore by Theorem 3.11, we know that there exists a constant c > 0 such
that for infinitely many x,

x ≤ K(ψ(x)|y) ≤ L(x) + c. (3.5)

But this is impossible for x ≫ 1, because L(x) = ⌊log2(x + 1)⌋. □

Let us see a relation between Theorem 3.15 and Theorem 3.8. The following function
complexity seems to compute K(x|y).

function complexity (x : {0, 1}∗) : integer;
begin

Let l := 1.
Repeat what follows below, and increase l by 1,

Repeat what follows below for all z ∈ {0, 1}l,
If z is a Gödel number, then

If A0(z, y) = x, then output l, and stop.
end;

Starting from the shortest program z, the function complexity executes every program z to
check whether it computes x from the input y or not, and stops if it does. But the program
does not necessarily stop. Indeed, for sufficiently long x, it must fall into an infinite loop
before K(x|y) is computed, which cannot be avoided in advance because of Theorem 3.8.

Theorem 3.16 There exists a primitive recursive function K′(t, x, y) such that
(i) for each t, x, y ∈ N, we have K′(t, x, y) ≥ K(x|y),
(ii) for each x, y ∈ N, K′(t, x, y) converges decreasingly to K(x|y) as t → ∞.

3.3. Test and Martin-Löf’s theorem 33

Proof. Let c > 0 be a constant such that K(x|y) = KA0(x|y) < L(x) + c, and let

A0(p, y) = g(p, y, µz(q(p, y, z))),

be Kleene’s normal form of the universal algorithm A0, where g, q : N3 → N are some
primitive recursive functions. For each t ∈ N, we define†10

µz<t(q(p, y, z)) := min ({z < t | q(p, y, z) = 0} ∪ {t}) , p, y ∈ N.

Note that this is a primitive recursive function as a function of (t, p, y) ∈ N3. Let

g′(t, p, y, z) :=
{

g(p, y, z) (z < t),
0 (z ≥ t),

A(t, p, y) := g′(t, p, y, µz<t(q(p, y, z))).

Then A(t, p, y) is also a primitive recursive function. Finally define

K′(t, x, y) := min ({ L(p) | p ∈ N, L(p) < L(x) + c, A(t, p, y) = x } ∪ {L(x) + c}) ,

which is what we wish to get. □

3.3 Test and Martin-Löf’s theorem
In mathematical statistics, whether an individual {0, 1}-sequence is random or not, i.e.,
whether it can be regarded as a generic sample of coin tossing process or not, is judged
by tests. But the totality of all tests is not consistent.

Example 3.17 (Inconsistency of tests) For elements of {0, 1}n, let us consider n− 9 tests
U (1), . . . ,U (n−9) corresponding to rejection regions

R(j) := { (x1, . . . , xn) ∈ {0, 1}n | (x j, x j+1, . . . , x j+9) = (0, . . . , 0) }, j = 1, . . . , n − 9.

The significance levels of each U (j) are all 2−10. Now, let us assume that an x ∈ {0, 1}n is
accepted by all of these tests. Then the test U corresponding to the following rejection
region

R := { (x1, . . . , xn) ∈ {0, 1}n | 1 ≤ ∀ j ≤ n − 9, (x j, x j+1, . . . , x j+9) , (0, . . . , 0) }

rejects x, although its significance level is arbitrarily small if we take n large. This means
that every x is rejected by some U (1), . . . ,U (n−9) or U.

To avoid this inconsistency, adjusting the significance levels of all tests, Martin-Löf
constructed a so-called universal test (Theorem 3.19), and showed that for each x ∈ {0, 1}n,
being a random number in the sense of the last section is equivalent to being accepted by
the universal test (Theorem 3.20).
†10µz<t is called a bounded µ-operation.

34 3 Random number

3.3.1 Formulation of test and universal test
We first give a general definition of tests.

Definition 3.18 We call U ⊂ N × {0, 1}∗ a test†11 if
(i) U is a recursively enumerable set,
(ii) setting Um := {x ∈ {0, 1}∗ | (m, x) ∈ U}, we have Um ⊃ Um+1, m ∈ N,
(iii) # (Um ∩ {0, 1}n) ≤ 2n−m, n > m ≥ 0,
(iv) (0, 0 (= empty word)) ∈ U.†12

For each test U, we define a function

mU(x) := max{m ∈ N | x ∈ Um}. (3.6)

Here Um is regarded as a rejection region of the test U of significance level ≤ 2−m.
Accordingly we can say; the smaller mU(x) is, the more easily x is accepted by U, i.e., the
more random x is.

Theorem 3.19 ([26]) There exists a test V, which is called a universal test, such that for
any test U, there exists such a constant c = cVU ∈ N that

∀m ∈ N, Um+c ⊂ Vm, (3.7)

i.e., those x’s ∈ {0, 1}∗ rejected by U with significance level 2−m−c are rejected by V with
significance level 2−m.

Proof. We first show an idea of the proof. Let {Ue}e∈N be some enumeration of the set of
all tests. Define Vm ⊂ {0, 1}∗, m ∈ N, by

Vm :=
∪
e∈N

(Ue)m+e+1, where (Ue)m+e+1 := {x | (m + e + 1, x) ∈ Ue}.

Then Vm+1 ⊂ Vm is obvious, and for any test U, there exists an e such that U = Ue and
that Um+e+1 = (Ue)m+e+1 ⊂ Vm. Moreover, we see

#(Vm ∩ {0, 1}n) ≤
∑
e∈N

#((Ue)m+e+1 ∩ {0, 1}n) ≤
∑

0≤e≤n−m−1

2n−m−e−1 = 2n−m − 1.

Thus
V :=

∪
m∈N
{(m, x) | x ∈ Vm}

is a universal test, if it is recursively enumerable.
Let us realize the above idea. Let

univ1(e, k) = g(e, k, µz(q(e, k, z))), e, k ∈ N,
†11Tests defined here are generalization or abstraction of usual statistical tests. But they are not practical

ones.
†12The condition (iv) is not essential, and may be removed. But we here assume it to make the proof of

Theorem 3.19 simpler.

3.3. Test and Martin-Löf’s theorem 35

be Kleene’s canonical form of the universal function univ1, where g and q are some
primitive recursive functions. For each t ∈ N, we define a primitive recursive function
ψ : N3 → N by

ψ(e, t, k) := g(e, k, µz<t(q(e, k, z))).

We next define a primitive recursive function ψ′ : N3 → N × {0, 1}∗ as follows; for
e, t, k ∈ N, let y := ψ(e, t, k), and let

ψ′(e, t, k) :=
{

((y)1, (y)2) (µz<t(q(e, k, z)) < t and y ∈ G2(N2)),
(0, 0) (otherwise).

Now, for each e, t ∈ N, let

Ũe, t := {(m′, x) |m′ ≤ m, where ψ′(e, t, k) =: (m, x), k < t} ⊂ N × {0, 1}∗,

and let

Ue, 0 := {(0, 0)},

Ue, t+1 :=
{

Ue, 0 ∪ Ũe, t+1 (Ue, 0 ∪ Ũe, t+1 is a test),
Ue, t (otherwise),

t ∈ N.

It is easy to see that {Ue, t}t∈N is an increasing sequence of tests, and that the limit Ue :=∪
t∈NUe, t is also a test. On the other hand, for any test U, there exists an e such that

U = Ue.
Now, set

Vm :=
∪
e∈N

(Ue)m+e+1 =
∪
t∈N

∪
e∈N

(Ue, t)m+e+1, m ∈ N,

and

V :=
∪
m∈N
{(m, x) | x ∈ Vm} =

∪
m∈N

∪
t∈N

∪
e∈N
{(m, x) | x ∈ (Ue, t)m+e+1}

=
∪
m∈N

∪
t∈N

∪
e∈N
{(m, x) | (m + e + 1, x) ∈ Ue, t},

which is a universal test, if it is recursively enumerable. Let us construct a partial recursive
function f : N → N × {0, 1}∗ that enumerates V . Let n ∈ N. If n ∈ G4(N4), we set
m := (n)1, e := (n)2, t := (n)3, and x := (n)4. Using ψ′, we can enumerate each set of
{Ũe, s}s≤t, accordingly the set Ue, t as well, and we can check if (m + e + 1, x) ∈ Ue, t holds.
If it does, we define f (n) := (m, x). The function f thus defined is a partial recursive
function,†13 which enumerates V . Hence V is a recursively enumerable set. □

The inclusion relation (3.7) can be rewritten as

mU(x) ≤ mV(x) + c. (3.8)

In particular, if V and V ′ are universal tests, there exists a constant c > 0 depending only
on V and V ′ such that

∀x ∈ {0, 1}∗, |mV(x) − mV′(x)| < c.

Namely, they can have only a constant difference. Now, we fix a universal test V and write
mV(x) simply as m(x).
†13The enumeration algorithm such as f is often called dovetailing.

36 3 Random number

3.3.2 Martin-Löf’s theorem
Theorem 3.20 ([26]) There exists a constant c > 0 such that

∀x ∈ {0, 1}∗, |L(x) − K(x|L(x)) − m(x)| ≤ c. (3.9)

Proof. Step 1. The proof of L(x) − K(x|L(x)) ≤ m(x) + c : Set

U := {(m, x) |K(x|L(x)) < L(x) − m}.

If U is a test, we have
mU(x) = L(x) − K(x|L(x)) − 1,

and hence (3.8) implies m(x) + c > L(x) − K(x|L(x)) for some constant c > 0.
Let us show that U is a test. It is obvious that U satisfies the condition (ii) of Defini-

tion 3.18. (iii) follows from Theorem 3.13(ii). Now we have only to show (i), i.e., that
U is a recursively enumerable set.†14 Using the primitive recursive function K′ of Theo-
rem 3.16, we set K′′(t, x) := K′(t, x, L(x)). Then K′′(t, x) is a primitive recursive function
converging decreasingly to K(x|L(x)) as t → ∞, in particular, for each x, there exists a
tx > 0 such that K′′(t, x) = K(x|L(x)) if t ≥ tx. Hence, by a primitive recursive function

x
•− y :=

{
x − y (x > y),
0 (x ≤ y),

U can be written as

U = {(m, x) | ∃ t s.t. K′′(t, x)
•− (L(x) − m − 1) = 0 }, (3.10)

which is recursively enumerable by Theorem 3.5(iv).
Step 2. The proof of K(x|L(x)) ≤ L(x) − m(x) + c : Let ϕ be a primitive recursive

function which enumerates the universal test V (Theorem 3.5(ii)), i.e., ϕ(N) = V . Here
we may assume that ϕ is injective. By using ϕ, define an algorithm A : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗ as follows. Let ϕ(i) =: (mi, xi) ∈ V . First, define

A(0 . . . 00︸ ︷︷ ︸
L(x1)−m1

, L(x1)) := x1.

Next, if (m1, L(x1)) = (m2, L(x2)), then define

A(0 . . . 01︸ ︷︷ ︸
L(x2)−m2

, L(x2)) := x2, (3.11)

and if (m1, L(x1)) , (m2, L(x2)), define

A(0 . . . 00︸ ︷︷ ︸
L(x2)−m2

, L(x2)) := x2.

†14If K(x|L(x)) were a total recursive function, by Theorem 3.5(v), we would see that U is recursively
enumerable (cf. (3.10) below). But a similar argument as the proof of Theorem 3.15 shows that K(x|L(x))
is not recursive, and hence we need the argument below.

3.4. Kolmogorov complexity and entropy 37

In this way, continue to define A. Since V is a test, the number of (m, x)’s having the same
value (m, L(x)) is at most 2L(x)−m, they can be described by programs with length less than
L(x) − m bits. Thus A is certainly well-defined. Then obviously,

KA(x|L(x)) = L(x) − m(x),

from which K(x|L(x)) ≤ L(x) − m(x) + c follows. □

The inequality (3.9) reads “When L(x) is so large that c is negligible, K(x|L(x)) and
L(x) are close to each other, if and only if m(x) is small.” In a word, x is random, if and
only if K(x|L(x)) ≈ L(x).

3.4 Kolmogorov complexity and entropy
Suppose that a random variable X has a discrete distribution

Pr(X = ai) = pi, i = 1, 2, . . . , M, (ai , a j, if i , j).

Then

H(X) := −
M∑

i=1

pi log2 pi ≥ 0

is called the entropy of X. For example, let us consider general (including “unfair”) coin
tossing process; let {X(p)

i }ni=1, 0 < p < 1, be an i.i.d. sequence whose common distribution
is given by Pr(X(p)

1 = 1) = p, Pr(X(p)
1 = 0) = q := 1 − p. Then we see

H
(
{X(p)

i }ni=1

)
= −

∑
x∈{0,1}n

Pr
(
{X(p)

i }ni=1 = x
)

log2 Pr
(
{X(p)

i }ni=1 = x
)

= −
n∑

r=0

Pr (S n = r) log2 prqn−r, S n :=
n∑

i=1

Xi,

= −
n∑

r=0

Pr (S n = r) (r log2 p + (n − r) log2 q)

= −E
[
S n log2 p + (n − S n) log2 q

]
= n(−p log2 p − q log2 q),

where the last equality follows from E[S n] = np.†15 In what follows in this section, we
define

h(p) := −p log2 p − q log2 q.

{X(1/2)
i }ni=1 is a “fair” coin tossing process, which is distributed uniformly in {0, 1}n, and

has the maximum entropy; for any p, it holds that

H
(
{X(p)

i }ni=1

)
≤ H

(
{X(1/2)

i }ni=1

)
= nh (1/2) = n.

†15Note that the entropy of a stationary process is usually defined by the entropy H
(
{X(p)

i }ni=1

)
divided by

the length n.

38 3 Random number

Roughly speaking, H(X) indicates approximate length of the fair coin tossing process
from which X is constructed (Macmillan’s theorem, cf. [33]). On the other hand, the Kol-
mogorov complexity K(x), x ∈ {0, 1}∗, is the length of the shortest program that produces
x. Kolmogorov’s insight revealed the profound relation between them, and he himself
called K(x) the “entropy of x”. The following lemma and theorem make their relation
clear.

Lemma 3.21 (cf. [54]) Suppose that x = (x1, x2, . . . , xn) ∈ {0, 1}n satisfies
∑n

i=1 xi = np.
Then there exists a constant c > 0 independent of n and x such that

K(x) ≤ nh(p) +
7
2

log2 n + c.

Proof. The number of elements of {0, 1}n satisfying the condition of the lemma is
(

n
np

)
.

Among them, let x be the n1-th element in the canonical order. Let A be an algorithm
which produces x from n, np and n1, i.e.,

A(⟨n, np, n1⟩, 0) = x.

Then we have

KA(x) = L(⟨n, np, n1⟩)
= 2L(n) + 2 + 2L(np) + 2 + L(n1)

≤ 2⌊log2(n + 1)⌋ + 2⌊log2(np + 1)⌋ +
⌊
log2

((
n

np

)
+ 1

)⌋
+ 4.

By Stirling’s formula n! ∼ nne−n
√

2πn,(
n

np

)
=

n!
(np)!(nq)!

∼ 1√
2πnpq

· 1
pnpqnq , n ≫ 1,

i.e.,

log2

(
n

np

)
≈ −1

2
(log2 2πpq + log2 n) − np log2 p − nq log2 q, n ≫ 1.

From these, it follows that for some c′ > 0,

KA(x) ≤ nh(p) +
7
2

log2 n + c′.

By Theorem 3.11, taking a new c > c′,

K(x) ≤ nh(p) +
7
2

log2 n + c.

□

Let n ≫ 1. As was mentioned above, the number of all elements x satisfying the
condition of Lemma 3.21 is

(
n

np

)
, which is about

nh(p) − 1
2

log2 n − 1
2

log2 2πpq

3.5. Infinite random sequence 39

bit number. Consequently, by a similar argument as Theorem 3.13(ii), almost all elements
x satisfying the condition of Lemma 3.21 satisfy

K(x) ≥ nh(p) − 1
2

log2 n − 1
2

log2 2πpq − c′′, c′′ > 0.

From this fact, Lemma 3.21, and the weak law of large numbers

∀ ε > 0, lim
n→∞

Pr


∣∣∣∣∣∣∣

n∑
i=1

X(p)
i − np

∣∣∣∣∣∣∣ ≥ nε

 = 0,

we can derive the following theorem.

Theorem 3.22 (cf. [54] Proposition 5.1) Let 0 < p < 1. For any ε > 0, we have

lim
n→∞

Pr


∣∣∣∣∣∣∣∣
K

(
{X(p)

i }ni=1

)
n

− h(p)

∣∣∣∣∣∣∣∣ ≥ ε
 = 0.

Remark 3.23 Let n ≫ 1. Kolmogorov called x ∈ {0, 1}n random if K(x) ≈ n. But, as
a matter of fact, those x ∈ {0, 1}n such that K(x) ≈ rn (0 < r < 1) cannot be chosen by
anyone’s will, either, and hence they may be called random. Therefore generic (typical)
large samples of unfair coin tosses are random in this sense.

3.5 Infinite random sequence
Unlike the case of finite {0, 1}-sequences, the definition of randomness for infinite {0, 1}-
sequences has no ambiguity. It is natural to think that an infinite {0, 1}-sequence belonging
to an event about the coin tossing process of probability 0 which is prescribed by a com-
putable procedure, such as the exceptional set of the strong law of large numbers, is not
a random sequence. Since those computable procedures are countably many, the union N
of the events of probability 0 prescribed by those procedures is of probability 0. We call
N the maximal recursive null set, and each element of Nc a random sequence.

Now let us make it clear what “a computable procedure which prescribes an event of
probability 0” means. For each y ∈ {0, 1}∗, let C(y) be the (cylinder) set of all infinite
{0, 1}-sequences that begin with y, and let P∞ be the distribution of the fair coin tossing
process on {0, 1}∞. An event A ⊂ {0, 1}∞ satisfies P∞(A) = 0, if and only if, for any m ∈ N,
there exists a sequence y(m)

k ∈ {0, 1}∗, k = 1, 2, . . ., such that

Um :=
∪

k

C(y(m)
k) ⊃ A (3.12)∑

k

P∞
(
C(y(m)

k)
)
=

∑
k

2−L(y(m)
k) < 2−m. (3.13)

Now set
U := {(m, x) ∈ N × {0, 1}∗ | x ∈ Um }, (3.14)

where, without loss of generality, we may assume that

(m, x) ∈ U, n ≤ m, and C(y) ⊂ C(x) =⇒ (n, y) ∈ U. (3.15)

40 3 Random number

Then, A is said to be a recursive null set if the U satisfying the conditions (3.12)∼(3.15)
is a recursively enumerable set. Since Um can be regarded as a rejection region of signifi-
cance level 2−m of a test about infinite {0, 1}-sequences, we call U a sequential test.

Applying the enumeration theorem in a similar way as § 3.3.1, we can show that there
exists a sequential test V such that for any sequential test U, it holds that

∀m ∈ N+, Um+c ⊂ Vm. (3.16)

Here c > 0 is a constant depending on only U and V . We call V a universal sequential
test ([26]). A universal sequential test determines a recursive null set, which is nothing
but the maximal recursive null set N. There are more than one universal sequential tests,
but N is uniquely determined.

Example 3.24 The infinite {0, 1}-sequence {di(π − 3)}∞i=1, the dyadic digits of π − 3, is
not a random sequence. Indeed, there exists an algorithm which computes {di(π − 3)}ni=1
for each n. By using this algorithm, we can show that the one point set consisting of only
{di(π − 3)}ni=1 is a recursive null set.

Remark 3.25 Martin-Löf [26] deals with randomness of infinite sequences under gen-
eral computable probability measures including the distributions of unfair coin tossing
processes.

Remark 3.26 For each infinite {0, 1}-sequence, we cannot characterize its randomness
by Kolmogorov complexity K. But slightly modifying it, we can characterize the ran-
domness in terms of complexity. See [23] for details.

3.6 Random number and probability theory
In Kolmogorov’s modern probability theory, a random quantity is expressed as a random
variable X, which is a function defined on a probability space, say ({0, 1}L, 2{0,1}L , PL), i.e.,
X : {0, 1}L → R. We think X random by the following interpretation; an ω ∈ {0, 1}L
is randomly chosen and as a result X(ω) becomes random. But in probability theory,
we always deal with X as just a function and we never mind how ω is chosen. Since
randomness does lie in the process how ω is chosen, probability theory does not mind
what randomness is.

Suffering from Parkinson’s disease in his later years, Kolmogorov devoted himself
to the question “What is randomness?”, which his probability theory had been avoiding.
Finally, he answered the question, as we mentioned in this chapter, by establishing the
notion of random number. Theoretically, we do not need the notion of random number in
studying probability theory, but recognizing it brings us deep understanding of not only
the Monte Carlo method but also probability theory itself. Let us explain it below.

According to Kolmogorov, studying randomness is equivalent to studying random
number. The existence of random numbers becomes prominent, only when the sample
space {0, 1}L in question is huge. We therefore know that it is important to study the case
L ≫ 1. So, let us suppose L ≫ 1. Then, we cannot choose any one of random numbers in
{0, 1}L of our own will, although they account for nearly all sequences. This means that

3.6. Random number and probability theory 41

assuming the uniform probability measure PL implies that ω ∈ {0, 1}L is not assumed to
be chosen by anyone’s will, but by some method beyond man’s will, i.e., at random. Thus
the probability space ({0, 1}L, 2{0,1}L , PL) provides a framework to study randomness.

As Theorem 3.15 implies, it is difficult to get any knowledge about individual random
numbers. But since random numbers account for nearly all sequences, it is a good idea to
study characteristic properties that nearly all sequences share. Such properties have been
minutely studied in probability theory — properties described in various limit theorems,
such as law of large numbers, central limit theorems, etc. Probably, limit theorems are the
only mathematical formulation that enables us to investigate randomness concretely. This
explains why limit theorems are so much studied in probability theory.

What is really amazing is that since a long time before the discovery of the notion of
random number, the probabilists of great insight had recognized the importance of limit
theorems and had made a lot of efforts to study them.

