APPENDIX

Some Properties of Invariant Polynomials

Some common materials used in this article are presented in this appendix for completeness. Most of these can be found in Kobayashi–Nomizu [50] but they are modified by following the convention in Matsushima [58]. Differences appear in coefficients, for example, $\omega \wedge \eta = \frac{1}{p!\, q!} \mathrm{Alt}(\omega \otimes \eta)$ for a p-form ω and a q-form η , where Alt stands for the alternizer. Another example is the formula $d\omega(X,Y) = X(\omega(Y)) - Y(\omega(X)) - \omega([X,Y])$.

Let G be a Lie group, and \mathfrak{g} its Lie algebra. We denote by $I^k(G)$ the set of invariant polynomials of degree k.

DEFINITION A.1. Let $f \in I^k(G)$ and let $\varphi_1, \ldots, \varphi_k$ be \mathfrak{g} -valued differential forms of degree q_1, \ldots, q_k , respectively. We define a $(q_1 + \cdots + q_k)$ -form $f(\varphi_1, \ldots, \varphi_k)$ as follows. Let $\{E_1, \ldots, E_r\}$ be a basis for \mathfrak{g} . Then, we can write $\varphi_i = \sum_{i=1}^r E_j \varphi_i^j$. We set

$$f(\varphi_1, \dots, \varphi_k) = \sum_{j_1, \dots, j_k=1}^r f(E_{j_1}, \dots, E_{j_k}) \varphi_1^{j_1} \wedge \dots \wedge \varphi_k^{j_k}.$$

NOTATION A.2 (Chern convention). Let $f \in I^k(G)$ and let $\varphi_1, \ldots, \varphi_l$ be \mathfrak{g} -valued differential forms as above. If l < k, then we set

$$f(\varphi_1, \dots, \varphi_l) = f(\varphi_1, \dots, \varphi_{l-1}, \overbrace{\varphi_l, \dots, \varphi_l}^{k-l+1 \text{ times}}).$$

DEFINITION A.3. Let $f: \mathfrak{gl}(n; C) \to \mathbb{C}$ be a multilinear mapping invariant under the adjoint action. The polarization of f is the unique element \widehat{f} of $I^k(\mathrm{GL}(n; \mathbb{C}))$ such that

$$\widehat{f}(X, X, \dots, X) = f(X)$$

for any $X \in \mathfrak{gl}(n;\mathbb{C})$, where k is the degree of f as a polynomial. By abuse of notation, \hat{f} is denoted again by f.

REMARK A.4. The polarization is compatible with the Chern convention, namely,

$$\widehat{f}(\Omega, \dots, \Omega) = f(\Omega)$$

for any even form Ω and any multilinear mapping f.

DEFINITION A.5. Let $f \in I^k(G)$, $g \in I^l(G)$. We define $fg \in I^{k+l}(G)$ by setting

$$fg(X_1, X_2, ..., X_{k+l}) = \frac{1}{(k+l)!} \sum_{\sigma \in \mathfrak{S}_{k+l}} f(X_{\sigma(1)}, ..., X_{\sigma(k)}) g(X_{\sigma(k+1)}, ..., X_{\sigma(k+l)}).$$

LEMMA A.6. Let $f \in I^k(G)$ and $g \in I^l(G)$. If θ, η are of odd degree and if Ω is of even degree, then we have

(A.6a)
$$(k+l)fg(\theta,\Omega) = kf(\theta,\Omega)g(\Omega) + lf(\Omega)g(\theta,\Omega),$$

and

(A.6b)
$$(k+l)(k+l-1)fg(\theta,\eta,\Omega)$$

$$= k(k-1)f(\theta,\eta,\Omega) \wedge g(\Omega) + klf(\theta,\Omega) \wedge g(\eta_2,\Omega)$$

$$- klf(\eta,\Omega) \wedge g(\theta,\Omega) + l(l-1)f(\Omega) \wedge g(\theta,\eta_2,\Omega).$$

PROOF. We will show the formula (A.6b). Let E_1, \ldots, E_r be a basis for \mathfrak{g} and write $\theta = \sum E_j \theta^j$, $\eta = \sum E_j \eta^j$ and $\Omega = \sum E_j \Omega^j$. We have

$$fg(\theta,\eta,\Omega) = \sum_{j_1,j_2,\ldots,j_{k+l}} fg(E_{j_1},\ldots,E_{j_{k+l}}) \,\theta^{j_1} \wedge \eta^{j_2} \wedge \Omega^{j_3} \wedge \cdots \wedge \Omega^{j_{k+l}},$$

where

$$fg(E_{j_1}, \dots, E_{j_{k+l}}) = \frac{1}{(k+l)!} \sum_{\sigma \in \mathfrak{S}_{k+l}} f(E_{j_{\sigma(1)}}, \dots, E_{j_{\sigma(k)}}) g(E_{j_{\sigma(k+1)}}, \dots, E_{j_{\sigma(k+l)}}).$$

Let
$$\omega(j_1, j_2, \dots, j_{k+l}) = \theta^{j_1} \wedge \eta^{j_2} \wedge \Omega^{j_3} \wedge \dots \wedge \Omega^{j_{k+l}}$$
. Then

$$(k+l)! fg(\theta, \eta, \Omega)$$

$$= (k+l)! \sum_{j_1, j_2, \dots, j_{k+l}} fg(E_{j_1}, \dots, E_{j_{k+l}}) \,\omega(j_1, j_2, \dots, j_{k+l})$$

$$= \sum_{j_1, j_2, \dots, j_{k+l}} \sum_{\sigma \in \mathfrak{S}_{k+l}} f(E_{j_{\sigma(1)}}, \dots, E_{j_{\sigma(k)}}) g(E_{j_{\sigma(k+1)}}, \dots, E_{j_{\sigma(k+l)}}) \omega(j_1, j_2, \dots, j_{k+l}).$$

On the other hand, elements of \mathfrak{S}_{k+l} are divided into four types, namely,

1)
$$\sigma(1), \sigma(2) \le k$$
,

$$2) \ \sigma(1) \le k < \sigma(2),$$

$$3) \ \sigma(2) \le k < \sigma(1),$$

4)
$$k < \sigma(1), \sigma(2)$$
.

The number of such elements are (k+l-2)! k(k-1), (k+l-2)! kl, (k+l-2)! kl, (k+l-2)! l(l-1), respectively. The formula (A.6b) follows from this.