CHAPTER 5

Relations with the Residue Theory

It is pointed out by Hurder [46] that every known example of transversely holomorphic foliation with non-vanishing secondary classes is related to the residue theory by Heitsch [41]. The examples considered in Chapter 3 can be also related to the residue.

We begin by recalling the notion of the residue for transversely holomorphic foliations by Heitsch [41]. The original paper deals with real foliations. Here we formulate the residue theory for transversely holomorphic foliations after straightforward modifications.

Let \mathcal{F} be a transversely holomorphic foliation on M and let $T_{\mathbb{C}} M, E$ and $Q(\mathcal{F})$ be as in Definition 1.1.4. Sections of $T_{\mathbb{C}} M$ are nothing but \mathbb{C}-valued vector fields on M.

Definition 5.1. A \mathbb{C}-valued vector field X is called a Γ-vector field for \mathcal{F} if $[E, X] \subset E$, namely, if $[s, X]$ is a local section of E for any local section s of E.

Definition 5.2. Let X be a Γ-vector field. The singular set of X is the union of points x of M where $X(x) \in E_{x}$ and denoted by $\operatorname{Sing} X$.

A Γ-vector field is locally of the form $X=\sum_{i=1}^{q} f_{i} \frac{\partial}{\partial z_{i}}$ modulo sections of E, where f_{i} 's are locally constant along the leaves and holomorphic in the transversal direction. The singular set $\operatorname{Sing} X$ is saturated, namely, it is a union of leaves of \mathcal{F}.

Let E and X be as above. Then they span an integrable subbundle of $T_{\mathbb{C}} M$ on $M \backslash \operatorname{Sing} X$. The induced foliation \mathcal{F}_{X} is transversely holomorphic and of complex codimension $q-1$, where q is the complex codimension of \mathcal{F}.

Definition 5.3. Let X be a Γ-vector field for \mathcal{F} and let U be an open neighborhood of $\operatorname{Sing} X$. A Bott connection ∇ for \mathcal{F} is called a basic X-connection supported off U if $\nabla_{X} Y=\mathcal{L}_{X} Y$ for any section Y of $Q(\mathcal{F})$ on a neighborhood of $M \backslash U$, where $\mathcal{L}_{X} Y$ denotes the Lie derivative of Y with respect to X.

Remark 5.4. Basic X-connections are Bott connections for \mathcal{F}_{X} on the neighborhood of $M \backslash U$ in Definition 5.3.

When residues are considered, the complex normal bundle $Q(\mathcal{F})$ is often assumed to be trivial. But it suffices to assume the triviality of the canonical bundle $\bigwedge^{q} Q(\mathcal{F})^{*}$ for our purpose. The residue of the Bott class is constructed as follows. If $\bigwedge^{q} Q(\mathcal{F})^{*}$ is trivial, then the Bott class $\operatorname{Bott}_{q}(\mathcal{F})=u_{1} v_{1}^{q}(\mathcal{F})$ is well-defined as an element of $H^{2 q+1}(M ; \mathbb{C})$. More precisely, the Bott class is calculated by choosing a Bott connection ∇^{b} and a flat connection ∇^{s} of $\bigwedge^{q} Q(\mathcal{F})$ (see Chapter 1). By using these connections, a well-defined 1-form $u_{1}\left(\nabla^{b}, \nabla^{s}\right)$ and a 2-form $v_{1}\left(\nabla^{b}\right)$ such that $d u_{1}\left(\nabla^{b}, \nabla^{s}\right)=v_{1}\left(\nabla^{b}\right)$ are obtained. Let X be a Γ-vector field for \mathcal{F} and choose a basic X-connection supported off U as a Bott connection ∇^{b}. Then the support of the differential form $u_{1}\left(\nabla^{b}, \nabla^{s}\right) v_{1}\left(\nabla^{b}\right)^{q}$ is contained in U because $v_{1}\left(\nabla^{b}\right)^{q}=0$ by the Bott vanishing theorem for \mathcal{F}_{X}. Thus an element of $H_{c}^{2 q+1}(U ; \mathbb{C})$ is obtained, where $H_{c}^{*}(U ; \mathbb{C})$ denotes the compactly supported cohomology.

The residue theorem due to Heitsch is formulated as follows. For simplicity we state the theorem assuming that $Q(\mathcal{F})$ is trivial on a neighborhood of $\operatorname{Sing} X$. In such a case, secondary classes are obtained from $H^{*}\left(\mathrm{~W}_{q}\right)$ and $H^{*}\left(\mathrm{~W}_{q}^{\mathbb{C}}\right)$ (see Definitions 1.1.19 and 1.1.14). Recall that there is a natural inclusion of $H^{*}\left(\mathrm{~W}_{q}\right)$ into $H^{*}\left(\mathrm{~W}_{q}^{\mathbb{C}}\right)$.

Theorem 5.5 (Heitsch [43]). Let X and U be as above and let s be a trivialization of $Q(\mathcal{F})$ on U. Then there is a well-defined element $\operatorname{res} \omega(\mathcal{F}, X, s) \in$ $H_{c}^{2 q+1}(U ; \mathbb{C})$ for each $\omega \in H^{2 q+1}\left(\mathrm{~W}_{q}\right)$. This element depends on \mathcal{F}_{X} and the homotopy type of s, and is called the residue of $\omega(\mathcal{F})$ with respect to X and s. Under the natural mapping from $H_{c}^{*}(U ; \mathbb{C})$ to $H^{*}(M ; \mathbb{C})$, the residue is mapped to $\omega(\mathcal{F})$.

The original situation considered by Heitsch in [41], [43] is as follows. In what follows, coefficients of the cohomologies are chosen in \mathbb{C}. Let $M \cong W \times \mathbb{C}^{q+1}$ and assume that $W=W \times\{0\}$ is a compact leaf of \mathcal{F}. We also assume that $\operatorname{Sing} X=W$ and \mathcal{F}_{X} is transversal to $M^{\prime}=W \times S^{2 q+1}$ so that \mathcal{F}_{X} induces a foliation \mathcal{F} of M^{\prime}, where $S^{2 q+1}$ is the unit sphere in \mathbb{C}^{q+1}. The Gysin exact sequence associated with M, M^{\prime} and W is as follows:

$$
\cdots \longrightarrow H^{r}(M) \longrightarrow H^{r}\left(M^{\prime}\right) \xrightarrow{f} H^{r-2 q-1}(W) \longrightarrow H^{r+1}(M) \longrightarrow \cdots,
$$

where f denotes the integration along the fiber. Recall that f is the composition $H^{r}\left(M^{\prime}\right) \xrightarrow{\partial} H^{r+1}\left(W \times D^{2(q+1)}, M^{\prime}\right) \cong H_{c}^{r+1}(M) \xrightarrow{\int_{D}} H^{r-2 q-1}(W)$, where ∂ is the connecting homomorphism and \int_{D} is the integration along the fiber of $W \times D^{q+1} \rightarrow$ W. Let $\iota: M^{\prime} \rightarrow M \backslash W$ be the inclusion. Then ι^{*} induces an isomorphism of cohomology and $\iota^{*}\left(\operatorname{Bott}_{q}\left(\mathcal{F}_{X}\right)\right)=\operatorname{Bott}_{q}(\mathcal{F})$ by the naturality. Hence $\operatorname{Bott}_{q}(\mathcal{F})$ is mapped to $\int_{D} v_{1}^{q+1}\left(\nabla^{b}\right)$ under f. Thus obtained class is the residue in the original sense.

Example 5.6. Example 1.1 .6 can be slightly modified. Let X_{A} be a holomorphic vector field determined by $A \in \mathrm{GL}(q+1 ; \mathbb{C})$, namely, let

$$
X_{A}=\sum_{\substack{0 \leq i \leq q \\ 0 \leq j \leq q}} a_{i j} z_{j} \frac{\partial}{\partial z_{i}}
$$

where $a_{i j}$ denotes the (i, j)-entry of A. The vector field X_{A} has the origin as an isolated singularity. If X_{A} is transversal to $S^{2 q+1}$, then the same construction as in Example 1.1.6 can be done. It is not always the case, however, X_{A} induces a foliation of a Hopf manifold as follows. Let $\widetilde{\mathcal{F}}_{A}$ be the foliation of $\mathbb{C}^{q+1} \backslash\{0\}$ by the orbits of X_{A}. Then $\widetilde{\mathcal{F}}_{A}$ is invariant under the \mathbb{Z}-action on $\mathbb{C}^{q+1} \backslash\{0\}$ defined by $v \cdot n=\lambda^{n} v$, where λ is a complex number such that $|\lambda|>1$. If we set $H_{\lambda}=\left(\mathbb{C}^{q+1} \backslash\{0\}\right) / \mathbb{Z}$, then $H_{\lambda} \cong S^{2 q+1} \times S^{1}$ and $\widetilde{\mathcal{F}}_{A}$ induces a foliation \mathcal{F}_{A} of H_{λ}.

The canonical bundle of \mathcal{F}_{A} is trivial so that the classes $u_{1} v_{J}\left(\mathcal{F}_{A}\right),|J|=q$, are well-defined. To see the triviality, we fix the $\operatorname{logarithm} \log \lambda$ of λ and define a
function $\Psi:(0,+\infty) \rightarrow \mathbb{C}$ by $\Psi(r)=\exp \left(\frac{\log r}{\log |\lambda|} \log \lambda\right)$. Let $\|\cdot\|$ be the standard norm on \mathbb{C}^{q+1} and set

$$
\tilde{\sigma}_{A}=\frac{1}{\Psi(\|z\|)^{q+1}} \sum_{i=0}^{q} \zeta_{i} d z_{0} \wedge \cdots \wedge \widehat{d z_{i}} \wedge \cdots \wedge d z_{q}
$$

where $\zeta=A z$ and $\zeta={ }^{t}\left(\zeta_{0}, \ldots, \zeta_{q}\right)$, then $\widetilde{\sigma}_{A}$ induces a trivialization of $K_{\mathcal{F}_{A}}$.
Let $S^{2 q+1}$ be the unit sphere in \mathbb{C}^{q+1} and let S be the natural image of $S^{2 q+1}$ in H_{λ}. Then, we have

$$
u_{1} v_{J}\left(\mathcal{F}_{A}\right)=\frac{v_{1} v_{J}(A)}{\operatorname{det} A}[S]
$$

The formula is shown as follows. If we set

$$
\omega=\frac{1}{\|z\|^{2}} z^{*} A^{-1} d z
$$

then $\omega\left(X_{A}\right)=1$. We set $e_{i}=\Psi(\|z\|) \frac{\partial}{\partial z_{i}}$ for $i=0, \ldots, q$. Then e_{0}, \ldots, e_{q} are invariant under the multiplication by λ so that they induce vector fields on H_{λ}. Let ∇ be the unique connection on $\mathbb{C}^{q+1} \backslash\{0\}$ which satisfies $\nabla_{Y} e_{i}=\omega(Y)\left[X_{A}, e_{i}\right]$. The connection ∇ is a Bott connection for $\widetilde{\mathcal{F}}_{A}$ and induces a Bott connection for \mathcal{F}_{A} on H_{λ}. In order to evaluate $u_{1} v_{J}\left(\mathcal{F}_{A}\right)$, it suffices to compute $\int_{S} u_{1} v_{J}\left(\mathcal{F}_{A}\right)$. Let $\rho: \mathbb{R} \rightarrow \mathbb{R}$ be a non-decreasing smooth function such that $\rho(r)=0$ if $r \leq 0$ and that $\rho(r)=1$ if $r \geq \frac{1}{2}$. If we set $\nabla^{\prime}=\rho(\|z\|) \nabla$, then ∇^{\prime} is a basic $X_{A^{\prime}}$-connection supported off U, where U is the open round ball of radius $\frac{2}{3}$ centered at the origin.

We denote by $u_{1} v_{J}(\nabla)$ and $u_{1} v_{J}\left(\nabla^{\prime}\right)$ the representatives of $u_{1} v_{J}\left(\widetilde{\mathcal{F}}_{A}\right)$ calculated by ∇ and ∇^{\prime}, respectively. Then,

$$
\int_{S} u_{1} v_{J}\left(\mathcal{F}_{A}\right)=\int_{S^{2 q+1}} u_{1} v_{J}(\nabla)=\int_{S^{2 q+1}} u_{1} v_{J}\left(\nabla^{\prime}\right)=\int_{D^{2 q+2}} v_{1} v_{J}\left(\Omega_{A}^{\prime}\right)
$$

where Ω_{A}^{\prime} is the curvature of ∇^{\prime}. The right-most term is by definition the residue of the trivial foliation of \mathbb{C}^{q+1} at $\{0\}$ with respect to X_{A}. Therefore the formula follows from a more general formula of Baum-Bott [13, Proposition 8.67]. Under our setting, the proof is as follows. Let $\widetilde{\nabla}$ be the connection on $\mathbb{C}^{q+1} \backslash\{0\}$ such that $\widetilde{\nabla} \frac{\partial}{\partial z_{i}}=\omega\left[X_{A}, \frac{\partial}{\partial z_{i}}\right]$. Then $\widetilde{\nabla}$ is also a basic X_{A}-connection. If we denote by $\widetilde{\eta}$ the
connection form of $\widetilde{\nabla}$ with respect to $\left\{\frac{\partial}{\partial z_{0}}, \ldots, \frac{\partial}{\partial z_{q}}\right\}$, then $\widetilde{\eta}=-A \omega$. Note that $(d \omega)^{q+1}=0$ by the Bott vanishing for $\widetilde{\mathcal{F}}_{A}$. We set $\widetilde{\nabla}^{\prime}=\rho(\|z\|) \widetilde{\nabla}$. Then $\widetilde{\nabla}^{\prime}$ is a basic X_{A}-connection supported off U. Hence $\int_{D^{2 q+2}} v_{1} v_{J}\left(\Omega_{A}^{\prime}\right)=\int_{D^{2 q+2}} v_{1} v_{J}\left(\widetilde{\Omega}_{A}^{\prime}\right)$, where $\widetilde{\Omega}_{A}^{\prime}$ is the connection form of $\widetilde{\nabla}^{\prime}$. We have

$$
\begin{aligned}
\widetilde{\Omega}_{A}^{\prime} & =-\frac{d \rho}{d r}(\|z\|) \frac{z^{*} d z+z d z^{*}}{2\|z\|} A \wedge \omega-\rho(\|z\|) A d \omega \\
& =-A\left(\frac{d \rho}{d r}(\|z\|) \frac{z^{*} d z+z d z^{*}}{2\|z\|} \wedge \omega+\rho(\|z\|) d \omega\right) .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
v_{1} v_{J}\left(\widetilde{\Omega}_{A}^{\prime}\right) & =\left(\frac{-1}{2 \pi \sqrt{-1}}\right)^{q+1} v_{1} v_{J}(-A)\left(\frac{d \rho}{d r}(\|z\|) \frac{z^{*} d z+z d z^{*}}{2\|z\|} \wedge \omega+\rho(\|z\|) d \omega\right)^{q+1} \\
& =\left(\frac{-1}{2 \pi \sqrt{-1}}\right)^{q+1} v_{1} v_{J}(-A)(q+1) \frac{d \rho}{d r} \rho^{q}(\|z\|) \frac{z^{*} d z+z d z^{*}}{2\|z\|} \wedge \omega \wedge(d \omega)^{q}
\end{aligned}
$$

We set $\omega^{\prime}=z^{*} A^{-1} d z$. Then

$$
d \omega=d\left(\frac{1}{\|z\|^{2}} \omega^{\prime}\right)=-\frac{z^{*} d z+z d z^{*}}{\|z\|^{4}} \omega^{\prime}+\frac{1}{\|z\|^{2}} d \omega^{\prime}
$$

Hence, if we set $C=\left(\frac{-1}{2 \pi \sqrt{-1}}\right)^{q+1}$, then we have

$$
\begin{aligned}
& v_{1} v_{J}\left(\widetilde{\Omega}_{A}^{\prime}\right) \\
= & C v_{1} v_{J}(-A)(q+1) \frac{d \rho}{d r}(\|z\|) \rho(\|z\|)^{q} \frac{z^{*} d z+z d z^{*}}{2\|z\|^{2 q+3}} \wedge \omega^{\prime} \wedge\left(d \omega^{\prime}\right)^{q} \\
= & C v_{1} v_{J}(-A)(q+1) \frac{d \rho}{d r}(\|z\|) \rho(\|z\|)^{q} \frac{z d z^{*}}{2\|z\|^{2 q+3}} \wedge \omega^{\prime} \wedge\left(d \omega^{\prime}\right)^{q} \\
= & C v_{1} v_{J}(-A)(q+1)!\frac{d \rho}{d r}(\|z\|) \rho(\|z\|)^{q} \frac{1}{2\|z\|^{2 q+1}} \wedge \operatorname{det}\left(A^{-1}\right)\left(\bigwedge_{i=0}^{q} d \overline{z_{i}} \wedge d z_{i}\right) \\
= & \frac{1}{\pi^{q+1}} v_{1} v_{J}(A)(q+1) \rho(r)^{q} \frac{d \rho}{d r}(\|z\|) \frac{1}{2\|z\|^{2 q+1}} \wedge \operatorname{det}\left(A^{-1}\right) \operatorname{vol}_{\mathbb{R}^{2 q+2}} \\
= & v_{1} v_{J}(A)(q+1) \rho(r)^{q} \frac{d \rho}{d r}(r) d r \wedge \operatorname{det}\left(A^{-1}\right) \operatorname{vol}_{S^{2 q+1}},
\end{aligned}
$$

where $\operatorname{vol}_{\mathbb{R}^{2 q+2}}$ denotes the standard volume form of $\mathbb{R}^{2 q+2}$, and $\operatorname{vol}_{S^{2 q+1}}$ is the volume form of $S^{2 q+1}$ normalized so that $\operatorname{vol}\left(S^{2 q+1}\right)=1$. Therefore

$$
\int_{D^{2 q+2}} v_{1} v_{J}\left(\widetilde{\Omega}_{A}^{\prime}\right)=\frac{v_{1} v_{J}(A)}{\operatorname{det} A}
$$

Note that if A is diagonal and X_{A} is transversal to $S^{2 q+1}$, then \mathcal{F}_{A} induces the foliation \mathcal{F}_{λ} of $S^{2 q+1}$ in Example 1.1.6.

Example 3.3.6 is also related to residues as follows. Let $\widetilde{M}=\mathrm{SL}(q+1 ; \mathbb{C}) \times \mathbb{C}^{q+1}$. Then $\operatorname{SL}(q+1 ; \mathbb{C})$ acts on \widetilde{M} by $(g, v) h=\left(g h, h^{-1} v\right)$. In particular, $\mathrm{SU}(q+1)$ also acts on \widetilde{M}. We denote by π the quotient map and denote by \widetilde{N} the image of π. Let $\widetilde{M}^{*}=\operatorname{SL}(q+1 ; \mathbb{C}) \times\left(\mathbb{C}^{q+1} \backslash\{0\}\right)$ and $\widetilde{M^{\prime}}=\mathrm{SL}(q+1 ; \mathbb{C}) \times S^{2 q+1}$. Then \widetilde{M}^{*} is invariant under the $\mathrm{SL}(q+1 ; \mathbb{C})$-action and \widetilde{M}^{\prime} is invariant under the $\mathrm{SU}(q+1)$ action. We set $\widetilde{N}^{*}=\pi\left(\widetilde{M}^{*}\right)$ and $\widetilde{N}^{\prime}=\pi\left(\widetilde{M^{\prime}}\right)$. Let Γ be a cocompact lattice of $\mathrm{SL}(q+1 ; \mathbb{C})$ such that $B=\Gamma \backslash \mathrm{SL}(q+1 ; \mathbb{C}) / \mathrm{SU}(q+1)$ is a closed manifold. Set then $M=\Gamma \backslash \widetilde{M}, M^{*}=\Gamma \backslash \widetilde{M}^{*}, M^{\prime}=\Gamma \backslash \widetilde{M}^{\prime}, N=\Gamma \backslash \widetilde{N}, N^{*}=\Gamma \backslash \widetilde{N}^{*}$ and $N^{\prime}=\Gamma \backslash \widetilde{N}^{\prime}$, where $\operatorname{SL}(q+1 ; \mathbb{C})$ acts on these manifolds on the left by $h(g, v)=(h g, v)$.

Let $\widetilde{\mathcal{F}}$ be the foliation of \widetilde{M} induced by the right $\mathrm{SL}(q+1 ; \mathbb{C})$-action. If T is the holomorphic vector field on \mathbb{C}^{q+1} defined by $T=\sum_{i=0}^{q} z_{i} \frac{\partial}{\partial z_{i}}$, where $\left(z_{0}, \ldots, z_{q}\right)$ is the standard coordinates of \mathbb{C}^{q+1}, then T is a Γ-vector field for $\widetilde{\mathcal{F}}$. Note that T induces the Hopf fibration on $S^{2 q+1}$. We also call the foliation of $\mathbb{C}^{2 q+1} \backslash\{0\}$ by the orbits of T the Hopf fibration.

Let $\widetilde{\mathcal{F}}_{T}$ be the singular foliation $\widetilde{\mathcal{F}}_{T}$ of \widetilde{M}. Then $\widetilde{\mathcal{F}}_{T}$ is regular on \widetilde{M}^{*}. Indeed, if we define $f: \operatorname{SL}(q+1 ; \mathbb{C}) \times\left(\mathbb{C}^{q+1} \backslash\{0\}\right) \rightarrow \mathbb{C}^{q+1} \backslash\{0\}$ by $f(g, z)=g z$, then $\widetilde{\mathcal{F}}_{T}$ is the pull-back of the Hopf fibration of $\mathbb{C}^{q+1} \backslash\{0\}$ by f. Moreover, $\widetilde{\mathcal{F}}$ and $\widetilde{\mathcal{F}}_{T}$ naturally induce foliations \mathcal{F} of M and \mathcal{F}_{T} of M^{*} because they are invariant under the natural left action of $\operatorname{SL}(q+1 ; \mathbb{C})$ on \widetilde{M} and \widetilde{M}^{*}. Finally, $\widetilde{\mathcal{F}}_{T}$ is transversal to \widetilde{M} so that it induces a foliation $\widetilde{\mathcal{F}}_{T}^{\prime}$ of \widetilde{M}^{\prime}. The foliation $\widetilde{\mathcal{F}}_{T}^{\prime}$ is also invariant under the left $\mathrm{SL}(q+1 ; \mathbb{C})$-action so that it induces a foliation \mathcal{F}_{T}^{\prime} of M^{\prime}. The foliations $\widetilde{\mathcal{F}}, \widetilde{\mathcal{F}}_{T}$ and $\widetilde{\mathcal{F}}_{T}^{\prime}$ are invariant under the right $\mathrm{SU}(q+1)$-action. Hence they naturally induce foliations of $\widetilde{N}, \widetilde{N}^{*}$ and \widetilde{N}^{\prime}. We denote them by $\widetilde{\mathcal{G}}, \widetilde{\mathcal{G}}_{T}$ and $\widetilde{\mathcal{G}}_{T}^{\prime}$, respectively. Foliations of N, N^{*} and N^{\prime} can be constructed in a similar way. We denote them by $\mathcal{G}, \mathcal{G}_{T}$ and \mathcal{G}_{T}^{\prime}, respectively.

The canonical bundles of $\widetilde{\mathcal{F}}_{T}, \widetilde{\mathcal{F}}_{T}^{\prime}, \widetilde{\mathcal{G}}_{T}$ and $\widetilde{\mathcal{G}}_{T}^{\prime}$ are trivial, indeed, if we define a q-form ω on \mathbb{C}^{q+1} by

$$
\omega=z_{0} d z_{1} \wedge \cdots \wedge d z_{q}-z_{1} d z_{0} \wedge d z_{2} \wedge \cdots \wedge d z_{q}+\cdots+(-1)^{q} z_{q} d z_{0} \wedge \cdots \wedge d z_{q-1}
$$

then $\omega(T)=0$. The differential form $f^{*} \omega$ on \widetilde{M}^{*} induces trivializations of canonical bundles. Since $f^{*} \omega$ is invariant under the left $\operatorname{SL}(q+1 ; \mathbb{C})$-action, the canonical bundles of $\mathcal{F}_{T}, \mathcal{F}_{T}^{\prime}, \mathcal{G}_{T}$ and \mathcal{G}_{T}^{\prime} are also trivial. Therefore, the Bott class is welldefined for these foliations and the Godbillon-Vey class of these foliations are trivial. The vector field T gives rise to an S^{1}-action which preserves $\mathcal{F}_{T}, \mathcal{F}_{T}^{\prime}, \mathcal{G}_{T}$ and \mathcal{G}_{T}^{\prime}. Indeed, the action is essentially the Hopf fibration on $\mathbb{C}^{q+1} \backslash\{0\}$.

Let $\widetilde{M}^{\prime \prime}=\mathrm{SL}(q+1 ; \mathbb{C}) \times \mathbb{C} P^{q}$. Then $\operatorname{SL}(q+1 ; \mathbb{C})$ acts on $\widetilde{M}^{\prime \prime}$ by $(g,[v]) h=$ $\left(g h, h^{-1}[v]\right)$. Let $\widetilde{\mathcal{F}}^{\prime \prime}$ be the foliation of $\widetilde{M}^{\prime \prime}$ induced by the right $\operatorname{SL}(q+1 ; \mathbb{C})$ action. Let $\widetilde{N}^{\prime \prime}$ and $\widetilde{\mathcal{G}}^{\prime \prime}$ be the quotient by the induced action of $\mathrm{SU}(q+1)$, and we denote by π the quotient map by abuse of notation. We set $M^{\prime \prime}=\Gamma \backslash \widetilde{M}^{\prime \prime}$ and $N^{\prime \prime}=\Gamma \backslash \widetilde{N}^{\prime \prime}$. They are naturally equipped with foliations induced by $\widetilde{\mathcal{F}}^{\prime \prime}$ and $\widetilde{\mathcal{G}}^{\prime \prime}$. We denote them by $\mathcal{F}^{\prime \prime}$ and $\mathcal{G}^{\prime \prime}$. It is well-known that $\left(N^{\prime \prime}, \mathcal{G}^{\prime \prime}\right)$ is isomorphic to the foliation of $\Gamma \backslash \mathrm{SL}(q+1 ; \mathbb{C}) /\left(T^{1} \times S U_{q}\right)$ given in Example 3.3.6. We have the following commutative diagram:

where $p: N^{\prime} \rightarrow N^{\prime \prime}$ is the natural projection which is a fiberwise Hopf fibration. Note that $p^{*}\left(\mathrm{GV}_{2 q}\left(\mathcal{G}^{\prime \prime}\right)\right)=\operatorname{GV}_{2 q}\left(\mathcal{G}_{T}^{\prime}\right)=0$. The Gysin sequence associated with p is as follows:

$$
\cdots \longrightarrow H^{*}\left(N^{\prime}\right) \xrightarrow{p_{!}} H^{*-1}\left(N^{\prime \prime}\right) \xrightarrow{\cup e} H^{*+1}\left(N^{\prime \prime}\right) \xrightarrow{p^{*}} H^{*+1}\left(N^{\prime}\right) \longrightarrow \cdots,
$$

where $e=\frac{1}{(q+1)} \operatorname{ch}_{1}\left(\mathcal{G}^{\prime \prime}\right)=\frac{v_{1}\left(\mathcal{G}^{\prime \prime}\right)+\bar{v}_{1}\left(\mathcal{G}^{\prime \prime}\right)}{2(q+1)}$, and $p_{\text {! }}$ denotes the integration along the fiber. Therefore $\xi_{q}\left(\mathcal{G}^{\prime \prime}\right) \mathrm{ch}_{1}\left(\mathcal{G}^{\prime \prime}\right)^{k}$ is mapped to a non-zero multiple of
$\xi_{q}\left(\mathcal{G}^{\prime \prime}\right) \operatorname{ch}_{1}\left(\mathcal{G}^{\prime \prime}\right)^{k+1}$ under $\cup e$. If $k=q$, then $\xi_{q}\left(\mathcal{G}^{\prime \prime}\right) \operatorname{ch}_{1}\left(\mathcal{G}^{\prime \prime}\right)^{q}$ is a non-zero multiple of $\mathrm{GV}_{2 q}\left(\mathcal{G}^{\prime \prime}\right)$, and the image under $\cup e$ is trivial because $\operatorname{ch}_{1}\left(\mathcal{G}^{\prime \prime}\right)^{q+1}=0$. Hence there is an element of $H^{4 q+2}\left(N^{\prime}\right)$ which is mapped to $\mathrm{GV}_{2 q}\left(\mathcal{G}^{\prime \prime}\right)$. Indeed, $p_{!}\left(u_{1} v_{1}\left(\mathcal{F}_{T}\right)^{q} \bar{u}_{1} \bar{v}_{1}\left(\mathcal{F}_{T}\right)^{q}\right)$ is equal to a non-zero multiple of $\mathrm{GV}_{2 q}\left(\mathcal{G}^{\prime \prime}\right)$ by Theorem 3.3.10.

The Gysin sequence associated with $S^{2 q+1} \rightarrow N^{\prime} \rightarrow B=\Gamma \backslash \mathrm{SL}(q+1 ; \mathbb{C}) / \mathrm{SU}(q+$ $1)$ is now decomposed as follows:

$$
\begin{aligned}
H^{4 q+2}(B) \longrightarrow & H^{4 q+2}\left(N^{\prime}\right) \xrightarrow{p!} H^{4 q+1}\left(N^{\prime \prime}\right) \xrightarrow{f} H^{2 q+1}(B) \\
& H^{4 q+2}\left(N^{\prime}\right) \xrightarrow{\partial} H^{4 q+3}\left(N^{*}, N^{\prime}\right) \xrightarrow{t^{-1}} H^{2 q+1}(B),
\end{aligned}
$$

where $t: H^{*}(B) \rightarrow H^{*+2 q+2}\left(N^{*}, N^{\prime}\right)$ is the Thom isomorphism, and f is the integration along the fiber. We have

$$
f p_{!}\left(u_{1} v_{1}^{q}\left(\mathcal{F}_{T}\right) \bar{u}_{1} \bar{v}_{1}^{q}\left(\mathcal{F}_{T}\right)\right)=f \mathrm{GV}_{2 q}\left(\mathcal{G}^{\prime \prime}\right)
$$

up to multiplications of non-zero constants, and

$$
\begin{aligned}
t^{-1} \circ \partial\left(u_{1} v_{1}^{q}\left(\mathcal{F}_{T}^{\prime}\right) \bar{u}_{1} \bar{v}_{1}^{q}\left(\mathcal{F}_{T}^{\prime}\right)\right) & =t^{-1}\left(v_{1}\left(\mathcal{F}_{T}^{\prime}\right)^{q+1} \bar{u}_{1} \bar{v}_{1}^{q}\left(\mathcal{F}_{T}^{\prime}\right)-u_{1} v_{1}^{q}\left(\mathcal{F}_{T}^{\prime}\right) \bar{v}_{1}^{q+1}\left(\mathcal{F}_{T}^{\prime}\right)\right) \\
& =\operatorname{res}\left(\left(v_{1}^{q+1} \bar{u}_{1} \bar{v}_{1}^{q}-u_{1} v_{1}^{q} \bar{v}_{1}^{q+1}\right), \mathcal{F}^{\prime}, T\right)
\end{aligned}
$$

Thus Example 3.3.6 is related to the residue. It is possible to apply this construction to other examples involving $\mathrm{SO}(2 n+1 ; \mathbb{C}), \mathrm{Sp}(n ; \mathbb{C})$ and G_{2} by using the Iwasawa decomposition and naturally associated S^{1}-bundles.

The fibration $N^{\prime} \rightarrow N^{\prime \prime}$ is also relevant for studying derivatives of the Bott class with respect to deformations of foliations. By Theorem B2, $\xi_{q}\left(\mathcal{G}^{\prime \prime}\right) \operatorname{ch}_{1}^{k}\left(\mathcal{G}^{\prime \prime}\right)$ is rigid under deformations if $k>0$. Indeed, $D_{\mu} B_{q}\left(\mathcal{G}^{\prime \prime}\right) \operatorname{ch}_{1}^{k}\left(\mathcal{G}^{\prime \prime}\right)$ is trivial if $k>0$ by Corollary 4.3.30. On the other hand, if $k=0$, then $D_{\mu} B_{q}\left(\mathcal{G}^{\prime \prime}\right)$ belongs to the kernel of $\cup e$. Hence there is an element of $H^{2 q+2}\left(N^{\prime}\right)$ which is mapped to $D_{\mu} B_{q}\left(\mathcal{G}^{\prime \prime}\right)$. Such an element is obtained as follows.

Assume that $K_{\mathcal{F}}$ is trivial and let ω be a trivialization. We may assume that there is a family of local trivializations $\left\{\rho_{i}={ }^{t}\left(\rho_{i}^{1}, \ldots, \rho_{i}^{q}\right)\right\}$ of $Q^{*}(\mathcal{F})$ such that
$\omega=\rho_{i}^{1} \wedge \cdots \wedge \rho_{i}^{q}$ locally holds. Let $\mu \in H^{1}\left(M ; \Theta_{\mathcal{F}}\right)$ be an infinitesimal derivative and let σ be a representative. Let $\left\{\theta_{i}\right\}$ be the connection form of a Bott connection on $Q(\mathcal{F})$ with respect to the dual of $\left\{\rho_{i}\right\}$. If we set $\tau_{i}=\operatorname{tr} \theta_{i}$, then τ_{i} determines a globally well-defined 1-form τ thanks to the choice of $\left\{\rho_{i}\right\}$, and $d \omega=-\tau \wedge \omega$. Let θ^{\prime} be the infinitesimal derivative of θ with respect to σ and set $\tau^{\prime}=\operatorname{tr} \theta^{\prime}$. If we set

$$
\begin{equation*}
\widetilde{\sigma}=\sum_{k=1}^{q} \rho_{i}^{1} \wedge \cdots \wedge \rho_{i}^{k-1} \wedge \rho_{i}^{k}(\sigma) \wedge \rho_{i}^{k+1} \wedge \cdots \wedge \rho_{i}^{q} \tag{5.7}
\end{equation*}
$$

then $\widetilde{\sigma}$ is an infinitesimal deformation of $K_{\mathcal{F}}$ induced from σ ([10, Lemma 2.12]) and we have

$$
\begin{equation*}
d \widetilde{\sigma}+\tau \wedge \widetilde{\sigma}=\tau^{\prime} \wedge \omega \tag{5.8}
\end{equation*}
$$

Lemma 5.9. The $(2 q+2)$-form $\tau^{\prime} \wedge \tau \wedge(d \tau)^{q}$ is closed.
Proof. We have $d\left(\tau^{\prime} \wedge(d \tau)^{q}\right)=0$ by Lemma 4.3.17. It follows that $d\left(\tau^{\prime} \wedge \tau \wedge\right.$ $\left.(d \tau)^{q}\right)=\tau \wedge d\left(\tau^{\prime} \wedge(d \tau)^{q}\right)-\tau^{\prime} \wedge d\left(\tau \wedge(d \tau)^{q}\right)=0$.

Once the trivialization ω is fixed, by applying the results in Section 4.3, one can verify that the differential form $\tau^{\prime} \wedge \tau \wedge(d \tau)^{q}$ determines a cohomology class which is independent of the choice of τ and τ^{\prime} (see also [55]).

Definition 5.10 ([28, p. 248], [56], [55]). We denote by $T_{\mu} B_{q}(\mathcal{F}, \omega)$ the cohomology class in $H^{2 q+2}(M ; \mathbb{C})$ represented by $\left(\frac{-1}{2 \pi \sqrt{-1}}\right)^{q+2}(q+1) \tau^{\prime} \wedge \tau \wedge(d \tau)^{q}$. We call $T_{\mu} B_{q}(\mathcal{F}, \omega)$ the Fuks-Lodder-Kotschick class of \mathcal{F} with respect to ω.

The class $T_{\mu} B_{q}(\mathcal{F}, \omega)$ is mentioned by Fuks [28] for families of codimension-one foliations. Lodder proved the well-definedness of the class in [56]. Then, Kotschick [55] pointed out and filled a gap in the proof, and extended the definition for arbitrary codimension case. To be precise, they defined a classes, which are denoted by $c(\zeta)$ in [56] and $\operatorname{TGV}\left(\mathcal{F}_{t}\right)$ in [55]. We have $c(\zeta)=T G V\left(\mathcal{F}_{t}\right)(0)$, and if μ is the infinitesimal deformation associated with $\left\{\mathcal{F}_{t}\right\}$, then this is the class $T_{\mu} B_{q}(\mathcal{F}, \omega)$. It is easy to see that the construction is also valid for infinitesimal deformations, and also for transversely holomorphic foliations. The original construction was for
real foliations so that we may assume $K_{\mathcal{F}}$ is trivial, and $T_{\mu} B_{q}(\mathcal{F}, \omega)$ is independent of the choice of ω. This is the most difference, namely, if the construction is applied for transversely holomorphic foliations, then $T_{\mu} B_{q}(\mathcal{F}, \omega)$ depends on the homotopy class of ω. Before giving a proof, we present an example.

Example 5.11. Let \mathcal{F}_{λ} be the foliation of S^{3} given in Example 1.1.6 (with $n=1$). Let $M=S^{3} \times S^{1}$ and $\pi: M \rightarrow S^{3}$ be the natural projection. We set $\mathcal{G}_{\lambda}=\pi^{*} \mathcal{F}_{\lambda}$. Let

$$
\omega_{m}=t^{m}\left(\lambda_{2} z_{2} d z_{1}-\lambda_{1} z_{1} d z_{2}\right)
$$

be a trivialization of $K_{\mathcal{G}_{\lambda}}=Q^{*}\left(\mathcal{G}_{\lambda}\right)$, where t denotes the standard coordinates of S^{1} considered as the unit circle in \mathbb{C}. Then, $d \omega_{m}=-\tau_{m} \wedge \omega_{m}$, where

$$
\tau_{m}=-\frac{\lambda_{1}+\lambda_{2}}{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}}\left(\frac{\bar{z}_{1}}{\lambda_{1}} d z_{1}+\frac{\bar{z}_{2}}{\lambda_{2}} d z_{2}\right)-m \frac{d t}{t}
$$

Since we are working on S^{3}, we have

$$
\begin{aligned}
\tau_{m} & =-\left(\lambda_{1}+\lambda_{2}\right)\left(\frac{\bar{z}_{1}}{\lambda_{1}} d z_{1}+\frac{\bar{z}_{2}}{\lambda_{2}} d z_{2}\right)-m \frac{d t}{t} \\
& =-\left(1+\frac{1}{\lambda}\right) \bar{z}_{1} d z_{1}-(\lambda+1) \bar{z}_{2} d z_{2}-m \frac{d t}{t}
\end{aligned}
$$

and

$$
d \tau_{m}=-\left(1+\frac{1}{\lambda}\right) d \bar{z}_{1} \wedge d z_{1}-(\lambda+1) d \bar{z}_{2} \wedge d z_{2}
$$

where $\lambda=\frac{\lambda_{1}}{\lambda_{2}}$. It follows that

$$
\tau_{m}^{\prime}=\lambda^{-2} \bar{z}_{1} d z_{1}-\bar{z}_{2} d z_{2}
$$

and that

$$
\begin{aligned}
& \tau_{m}^{\prime} \wedge \tau_{m} \wedge d \tau_{m} \\
= & \left(\lambda^{-2}(\lambda+1) \bar{z}_{1} d z_{1} \wedge d \bar{z}_{2} \wedge d z_{2}-\left(1+\frac{1}{\lambda}\right) \bar{z}_{2} d z_{2} \wedge d \bar{z}_{1} \wedge d z_{1}\right) \wedge m \frac{d t}{t}
\end{aligned}
$$

Consequently,

$$
T_{\mu} B_{1}\left(\mathcal{G}_{\lambda}, \omega_{m}\right)=-m\left(1-\frac{1}{\lambda^{2}}\right)\left[S^{3} \times S^{1}\right]
$$

where $\left[S^{3} \times S^{1}\right.$] denotes the fundamental class and μ is an element of $H^{1}\left(M ; \Theta_{\mathcal{G}}\right)$ induced from $\left\{\mathcal{G}_{\lambda}\right\}$.

Lemma 5.12. $T_{\mu} B_{q}(\mathcal{F}, \omega)$ depends on the homotopy class of ω.
Proof. Let ω_{0} and ω_{1} be trivializations of $K_{\mathcal{F}}$ and let $\omega_{s}, s \in[0,1]$, be a homotopy between ω_{0} and ω_{1}. Then, we can choose a continuous family $\left\{f_{s}\right\}$ of smooth functions such that $\omega_{s}=e^{f_{s}} \omega_{0}$. It follows that we may assume that $\tau_{s}=\tau_{0}-d f_{s}$. If σ is an infinitesimal deformation of ω_{0}, then $d \sigma+\tau_{0} \wedge \sigma=\tau_{0}^{\prime} \wedge \omega_{0}$. We have

$$
\begin{aligned}
d\left(e^{f_{s}} \sigma\right) & =d f_{s} \wedge\left(e^{f_{s}} \sigma\right)+e^{f_{s}} d \sigma \\
& =d f_{s} \wedge\left(e^{f_{s}} \sigma\right)+e^{f_{s}}\left(-\tau_{0} \wedge \sigma+\tau_{0}^{\prime} \wedge \omega_{0}\right) \\
& =-\tau_{s} \wedge\left(e^{f_{s}} \sigma\right)+\tau_{0}^{\prime} \wedge \omega_{s}
\end{aligned}
$$

Hence we may assume that $\tau_{s}^{\prime}=\tau_{0}^{\prime}$ for any s. It follows that

$$
\tau_{s}^{\prime} \wedge \tau_{s} \wedge\left(d \tau_{s}\right)^{q}=\tau_{0}^{\prime} \wedge\left(\tau_{0}-d f_{s}\right) \wedge\left(d \tau_{0}\right)^{q}=\tau_{0}^{\prime} \wedge \tau_{0} \wedge\left(d \tau_{0}\right)^{q}+d\left(f_{s} \tau_{0}^{\prime} \wedge\left(d \tau_{0}\right)^{q}\right)
$$

because $d\left(\tau_{0}^{\prime} \wedge\left(d \tau_{0}\right)^{q}\right)=0$.
REmARK 5.13. Actually, it suffices to begin with a Bott connection on $K_{\mathcal{F}}$ in order to define the class $T_{\mu} B_{q}(\mathcal{F})$. Indeed, the notions of infinitesimal deformation of $K_{\mathcal{F}}$ and infinitesimal derivative of Bott connections can be introduced by the formulae (5.7) and (5.8) [10]. Note that (5.8) follows from (4.3.8) if connections on $Q(\mathcal{F})\left(\right.$ or $\left.Q^{*}(\mathcal{F})\right)$ are considered.

We will retain the notations in Theorem 3.3.10. We have then
Theorem 5.14 (cf. [8, Theorem 2.3]). If $\mu \in H^{1}\left(M ; \Theta_{\mathcal{F}}\right)$, then

$$
\pi_{m!} T_{\pi_{m}^{*} \mu} B_{q}\left(\mathcal{G}_{m}, \omega_{m}\right)=-m D_{\mu} B_{q}(\mathcal{F})
$$

Proof. We denote π_{m} and ω_{m} by π and ω for simplicity. Let $\underline{\sigma}$ be a representative of μ. If we set

$$
\underline{\sigma}_{i}=\sum_{k=1}^{q} d z_{i}^{1} \wedge \cdots \wedge d z_{i}^{k-1} \wedge d z_{i}^{k}(\underline{\sigma}) \wedge d z_{i}^{k+1} \wedge \cdots \wedge d z_{i}^{q}
$$

then we have $d \underline{\sigma}_{i}+\alpha_{i} \wedge \underline{\sigma}_{i}=\alpha_{i}^{\prime} \wedge \nu_{i}$, where $\left\{\alpha_{i}^{\prime}\right\}$ is the infinitesimal derivative of $\left\{\alpha_{i}\right\}$ with respect to $\underline{\sigma}$. As $K_{\mathcal{G}_{m}}$ is trivialized by $\left\{\omega_{i}\right\}, \pi^{*} \mu$ is represented by $\left\{\sigma_{i}\right\}$, where $\sigma_{i}=t^{-m} \pi^{*} \underline{\sigma}_{i}$. It follows that

$$
d \pi^{*} \underline{\sigma}_{i}+\tau \wedge \pi^{*} \underline{\sigma}_{i}-m \frac{d t}{t} \wedge \pi^{*} \underline{\sigma}_{i}=t^{m} \pi^{*} \alpha_{i}^{\prime} \wedge \omega_{i}
$$

Hence we have

$$
d \sigma_{i}+\tau \wedge \sigma_{i}=\pi^{*} \alpha_{i}^{\prime} \wedge \omega_{i}
$$

Therefore, $T_{\pi_{m}^{*} \mu} B_{q}\left(\mathcal{G}_{m}, \omega\right)$ is locally represented by

$$
\left(\frac{-1}{2 \pi \sqrt{-1}}\right)^{2 q+2}(q+1)\left(\pi^{*} \alpha_{i}^{\prime}\right) \wedge \tau \wedge(d \tau)^{q}
$$

On the other hand, $D_{\mu} B_{q}(\mathcal{F})$ is locally represented by

$$
\left(\frac{-1}{2 \pi \sqrt{-1}}\right)^{2 q+1}(q+1) \alpha_{i}^{\prime} \wedge\left(d \alpha_{i}\right)^{q}
$$

It is easy to see that

$$
\begin{aligned}
\int_{S^{1}}\left(\pi^{*} \alpha_{i}^{\prime}\right) \wedge \tau \wedge(d \tau)^{q} & =\int_{S^{1}} \pi^{*}\left(\alpha_{i}^{\prime} \wedge\left(d \alpha_{i}\right)^{q}\right) \wedge m \frac{d t}{t} \\
& =2 m \pi \sqrt{-1} \alpha_{i}^{\prime} \wedge\left(d \alpha_{i}\right)^{q}
\end{aligned}
$$

By applying Theorem 5.14 to $\left(N^{\prime}, \mathcal{F}_{T}\right)$ and $\left(N^{\prime \prime}, \mathcal{G}^{\prime \prime}\right)$, one sees that $D_{\mu} B_{q}\left(\mathcal{G}^{\prime \prime}\right)$ belongs to the image of the integration along the fiber.

