CHAPTER 5

Relations with the Residue Theory

It is pointed out by Hurder [46] that every known example of transversely holomorphic foliation with non-vanishing secondary classes is related to the residue theory by Heitsch [41]. The examples considered in Chapter 3 can be also related to the residue.

We begin by recalling the notion of the residue for transversely holomorphic foliations by Heitsch [41]. The original paper deals with real foliations. Here we formulate the residue theory for transversely holomorphic foliations after straightforward modifications.

Let \mathcal{F} be a transversely holomorphic foliation on M and let $T_{\mathbb{C}}M$, E and $Q(\mathcal{F})$ be as in Definition 1.1.4. Sections of $T_{\mathbb{C}}M$ are nothing but \mathbb{C} -valued vector fields on M.

DEFINITION 5.1. A C-valued vector field X is called a Γ -vector field for \mathcal{F} if $[E, X] \subset E$, namely, if [s, X] is a local section of E for any local section s of E.

DEFINITION 5.2. Let X be a Γ -vector field. The singular set of X is the union of points x of M where $X(x) \in E_x$ and denoted by Sing X.

A Γ -vector field is locally of the form $X = \sum_{i=1}^{q} f_i \frac{\partial}{\partial z_i}$ modulo sections of E, where f_i 's are locally constant along the leaves and holomorphic in the transversal direction. The singular set Sing X is saturated, namely, it is a union of leaves of \mathcal{F} .

Let E and X be as above. Then they span an integrable subbundle of $T_{\mathbb{C}}M$ on $M \setminus \text{Sing } X$. The induced foliation \mathcal{F}_X is transversely holomorphic and of complex codimension q - 1, where q is the complex codimension of \mathcal{F} .

DEFINITION 5.3. Let X be a Γ -vector field for \mathcal{F} and let U be an open neighborhood of Sing X. A Bott connection ∇ for \mathcal{F} is called a *basic X-connection supported* off U if $\nabla_X Y = \mathcal{L}_X Y$ for any section Y of $Q(\mathcal{F})$ on a neighborhood of $M \setminus U$, where $\mathcal{L}_X Y$ denotes the Lie derivative of Y with respect to X.

REMARK 5.4. Basic X-connections are Bott connections for \mathcal{F}_X on the neighborhood of $M \setminus U$ in Definition 5.3.

When residues are considered, the complex normal bundle $Q(\mathcal{F})$ is often assumed to be trivial. But it suffices to assume the triviality of the canonical bundle $\bigwedge^q Q(\mathcal{F})^*$ for our purpose. The residue of the Bott class is constructed as follows. If $\bigwedge^q Q(\mathcal{F})^*$ is trivial, then the Bott class $\operatorname{Bott}_q(\mathcal{F}) = u_1 v_1^q(\mathcal{F})$ is well-defined as an element of $H^{2q+1}(M;\mathbb{C})$. More precisely, the Bott class is calculated by choosing a Bott connection ∇^b and a flat connection ∇^s of $\bigwedge^q Q(\mathcal{F})$ (see Chapter 1). By using these connections, a well-defined 1-form $u_1(\nabla^b, \nabla^s)$ and a 2-form $v_1(\nabla^b)$ such that $du_1(\nabla^b, \nabla^s) = v_1(\nabla^b)$ are obtained. Let X be a Γ -vector field for \mathcal{F} and choose a basic X-connection supported off U as a Bott connection ∇^b . Then the support of the differential form $u_1(\nabla^b, \nabla^s)v_1(\nabla^b)^q$ is contained in U because $v_1(\nabla^b)^q = 0$ by the Bott vanishing theorem for \mathcal{F}_X . Thus an element of $H_c^{2q+1}(U;\mathbb{C})$ is obtained, where $H_c^*(U;\mathbb{C})$ denotes the compactly supported cohomology.

The residue theorem due to Heitsch is formulated as follows. For simplicity we state the theorem assuming that $Q(\mathcal{F})$ is trivial on a neighborhood of Sing X. In such a case, secondary classes are obtained from $H^*(W_q)$ and $H^*(W_q^{\mathbb{C}})$ (see Definitions 1.1.19 and 1.1.14). Recall that there is a natural inclusion of $H^*(W_q)$ into $H^*(W_q^{\mathbb{C}})$.

THEOREM 5.5 (Heitsch [43]). Let X and U be as above and let s be a trivialization of $Q(\mathcal{F})$ on U. Then there is a well-defined element res $\omega(\mathcal{F}, X, s) \in$ $H_c^{2q+1}(U; \mathbb{C})$ for each $\omega \in H^{2q+1}(W_q)$. This element depends on \mathcal{F}_X and the homotopy type of s, and is called the residue of $\omega(\mathcal{F})$ with respect to X and s. Under the natural mapping from $H_c^*(U; \mathbb{C})$ to $H^*(M; \mathbb{C})$, the residue is mapped to $\omega(\mathcal{F})$. The original situation considered by Heitsch in [41], [43] is as follows. In what follows, coefficients of the cohomologies are chosen in \mathbb{C} . Let $M \cong W \times \mathbb{C}^{q+1}$ and assume that $W = W \times \{0\}$ is a compact leaf of \mathcal{F} . We also assume that $\operatorname{Sing} X = W$ and \mathcal{F}_X is transversal to $M' = W \times S^{2q+1}$ so that \mathcal{F}_X induces a foliation \mathcal{F} of M', where S^{2q+1} is the unit sphere in \mathbb{C}^{q+1} . The Gysin exact sequence associated with M, M' and W is as follows:

$$\cdots \longrightarrow H^{r}(M) \longrightarrow H^{r}(M') \xrightarrow{f} H^{r-2q-1}(W) \longrightarrow H^{r+1}(M) \longrightarrow \cdots,$$

where \oint denotes the integration along the fiber. Recall that \oint is the composition $H^r(M') \xrightarrow{\partial} H^{r+1}(W \times D^{2(q+1)}, M') \cong H^{r+1}_c(M) \xrightarrow{\int_D} H^{r-2q-1}(W)$, where ∂ is the connecting homomorphism and \int_D is the integration along the fiber of $W \times D^{q+1} \to W$. Let $\iota \colon M' \to M \setminus W$ be the inclusion. Then ι^* induces an isomorphism of cohomology and $\iota^*(\operatorname{Bott}_q(\mathcal{F}_X)) = \operatorname{Bott}_q(\mathcal{F})$ by the naturality. Hence $\operatorname{Bott}_q(\mathcal{F})$ is mapped to $\int_D v_1^{q+1}(\nabla^b)$ under \oint . Thus obtained class is the residue in the original sense.

EXAMPLE 5.6. Example 1.1.6 can be slightly modified. Let X_A be a holomorphic vector field determined by $A \in GL(q+1; \mathbb{C})$, namely, let

$$X_A = \sum_{\substack{0 \le i \le q \\ 0 \le j \le q}} a_{ij} z_j \frac{\partial}{\partial z_i},$$

where a_{ij} denotes the (i, j)-entry of A. The vector field X_A has the origin as an isolated singularity. If X_A is transversal to S^{2q+1} , then the same construction as in Example 1.1.6 can be done. It is not always the case, however, X_A induces a foliation of a Hopf manifold as follows. Let $\tilde{\mathcal{F}}_A$ be the foliation of $\mathbb{C}^{q+1} \setminus \{0\}$ by the orbits of X_A . Then $\tilde{\mathcal{F}}_A$ is invariant under the \mathbb{Z} -action on $\mathbb{C}^{q+1} \setminus \{0\}$ defined by $v \cdot n = \lambda^n v$, where λ is a complex number such that $|\lambda| > 1$. If we set $H_{\lambda} = (\mathbb{C}^{q+1} \setminus \{0\})/\mathbb{Z}$, then $H_{\lambda} \cong S^{2q+1} \times S^1$ and $\tilde{\mathcal{F}}_A$ induces a foliation \mathcal{F}_A of H_{λ} .

The canonical bundle of \mathcal{F}_A is trivial so that the classes $u_1v_J(\mathcal{F}_A)$, |J| = q, are well-defined. To see the triviality, we fix the logarithm $\log \lambda$ of λ and define a function $\Psi: (0, +\infty) \to \mathbb{C}$ by $\Psi(r) = \exp\left(\frac{\log r}{\log |\lambda|} \log \lambda\right)$. Let $\|\cdot\|$ be the standard norm on \mathbb{C}^{q+1} and set

$$\widetilde{\sigma}_A = \frac{1}{\Psi(\|z\|)^{q+1}} \sum_{i=0}^q \zeta_i dz_0 \wedge \dots \wedge \widehat{dz_i} \wedge \dots \wedge dz_q$$

where $\zeta = Az$ and $\zeta = {}^{t}(\zeta_0, \ldots, \zeta_q)$, then $\widetilde{\sigma}_A$ induces a trivialization of $K_{\mathcal{F}_A}$.

Let S^{2q+1} be the unit sphere in \mathbb{C}^{q+1} and let S be the natural image of S^{2q+1} in H_{λ} . Then, we have

$$u_1 v_J(\mathcal{F}_A) = \frac{v_1 v_J(A)}{\det A} [S].$$

The formula is shown as follows. If we set

$$\omega = \frac{1}{\|z\|^2} z^* A^{-1} dz,$$

then $\omega(X_A) = 1$. We set $e_i = \Psi(||z||) \frac{\partial}{\partial z_i}$ for $i = 0, \dots, q$. Then e_0, \dots, e_q are invariant under the multiplication by λ so that they induce vector fields on H_{λ} . Let ∇ be the unique connection on $\mathbb{C}^{q+1} \setminus \{0\}$ which satisfies $\nabla_Y e_i = \omega(Y)[X_A, e_i]$. The connection ∇ is a Bott connection for $\widetilde{\mathcal{F}}_A$ and induces a Bott connection for \mathcal{F}_A on H_{λ} . In order to evaluate $u_1 v_J(\mathcal{F}_A)$, it suffices to compute $\int_S u_1 v_J(\mathcal{F}_A)$. Let $\rho \colon \mathbb{R} \to \mathbb{R}$ be a non-decreasing smooth function such that $\rho(r) = 0$ if $r \leq 0$ and that $\rho(r) = 1$ if $r \geq \frac{1}{2}$. If we set $\nabla' = \rho(||z||)\nabla$, then ∇' is a basic X_A -connection supported off U, where U is the open round ball of radius $\frac{2}{3}$ centered at the origin.

We denote by $u_1v_J(\nabla)$ and $u_1v_J(\nabla')$ the representatives of $u_1v_J(\widetilde{\mathcal{F}}_A)$ calculated by ∇ and ∇' , respectively. Then,

$$\int_{S} u_1 v_J(\mathcal{F}_A) = \int_{S^{2q+1}} u_1 v_J(\nabla) = \int_{S^{2q+1}} u_1 v_J(\nabla') = \int_{D^{2q+2}} v_1 v_J(\Omega'_A),$$

where Ω'_A is the curvature of ∇' . The right-most term is by definition the residue of the trivial foliation of \mathbb{C}^{q+1} at $\{0\}$ with respect to X_A . Therefore the formula follows from a more general formula of Baum–Bott [13, Proposition 8.67]. Under our setting, the proof is as follows. Let $\widetilde{\nabla}$ be the connection on $\mathbb{C}^{q+1} \setminus \{0\}$ such that $\widetilde{\nabla} \frac{\partial}{\partial z_i} = \omega \left[X_A, \frac{\partial}{\partial z_i} \right]$. Then $\widetilde{\nabla}$ is also a basic X_A -connection. If we denote by $\widetilde{\eta}$ the

106

connection form of $\widetilde{\nabla}$ with respect to $\left\{\frac{\partial}{\partial z_0}, \ldots, \frac{\partial}{\partial z_q}\right\}$, then $\widetilde{\eta} = -A\omega$. Note that $(d\omega)^{q+1} = 0$ by the Bott vanishing for $\widetilde{\mathcal{F}}_A$. We set $\widetilde{\nabla}' = \rho(||z||)\widetilde{\nabla}$. Then $\widetilde{\nabla}'$ is a basic X_A -connection supported off U. Hence $\int_{D^{2q+2}} v_1 v_J(\Omega'_A) = \int_{D^{2q+2}} v_1 v_J(\widetilde{\Omega}'_A)$, where $\widetilde{\Omega}'_A$ is the connection form of $\widetilde{\nabla}'$. We have

$$\widetilde{\Omega}'_A = -\frac{d\rho}{dr}(\|z\|)\frac{z^*\,dz + z\,dz^*}{2\,\|z\|}A \wedge \omega - \rho(\|z\|)A\,d\omega$$
$$= -A\left(\frac{d\rho}{dr}(\|z\|)\frac{z^*\,dz + z\,dz^*}{2\,\|z\|} \wedge \omega + \rho(\|z\|)\,d\omega\right)$$

It follows that

$$v_1 v_J(\widetilde{\Omega}'_A) = \left(\frac{-1}{2\pi\sqrt{-1}}\right)^{q+1} v_1 v_J(-A) \left(\frac{d\rho}{dr}(\|z\|) \frac{z^* \, dz + z \, dz^*}{2 \, \|z\|} \wedge \omega + \rho(\|z\|) \, d\omega\right)^{q+1} \\ = \left(\frac{-1}{2\pi\sqrt{-1}}\right)^{q+1} v_1 v_J(-A) (q+1) \frac{d\rho}{dr} \rho^q(\|z\|) \frac{z^* \, dz + z \, dz^*}{2 \, \|z\|} \wedge \omega \wedge (d\omega)^q.$$

We set $\omega' = z^* A^{-1} dz$. Then

$$d\omega = d\left(\frac{1}{\|z\|^{2}}\omega'\right) = -\frac{z^{*}dz + zdz^{*}}{\|z\|^{4}}\omega' + \frac{1}{\|z\|^{2}}d\omega'.$$

Hence, if we set $C = \left(\frac{-1}{2\pi\sqrt{-1}}\right)^{q+1}$, then we have $v_1 v_I(\widetilde{\Omega}'_A)$

$$= C v_1 v_J (-A)(q+1) \frac{d\rho}{dr} (||z||) \rho(||z||)^q \frac{z^* dz + z dz^*}{2 ||z||^{2q+3}} \wedge \omega' \wedge (d\omega')^q$$

$$= C v_1 v_J (-A)(q+1) \frac{d\rho}{dr} (||z||) \rho(||z||)^q \frac{z dz^*}{2 ||z||^{2q+3}} \wedge \omega' \wedge (d\omega')^q$$

$$= C v_1 v_J (-A)(q+1)! \frac{d\rho}{dr} (||z||) \rho(||z||)^q \frac{1}{2 ||z||^{2q+1}} \wedge \det(A^{-1}) \left(\bigwedge_{i=0}^q d\overline{z_i} \wedge dz_i \right)$$

$$= \frac{1}{\pi^{q+1}} v_1 v_J (A)(q+1) \rho(r)^q \frac{d\rho}{dr} (||z||) \frac{1}{2 ||z||^{2q+1}} \wedge \det(A^{-1}) \operatorname{vol}_{\mathbb{R}^{2q+2}}$$

$$= v_1 v_J (A)(q+1) \rho(r)^q \frac{d\rho}{dr} (r) dr \wedge \det(A^{-1}) \operatorname{vol}_{S^{2q+1}},$$

where $\operatorname{vol}_{\mathbb{R}^{2q+2}}$ denotes the standard volume form of \mathbb{R}^{2q+2} , and $\operatorname{vol}_{S^{2q+1}}$ is the volume form of S^{2q+1} normalized so that $\operatorname{vol}(S^{2q+1}) = 1$. Therefore

$$\int_{D^{2q+2}} v_1 v_J(\widetilde{\Omega}'_A) = \frac{v_1 v_J(A)}{\det A}.$$

Note that if A is diagonal and X_A is transversal to S^{2q+1} , then \mathcal{F}_A induces the foliation \mathcal{F}_{λ} of S^{2q+1} in Example 1.1.6.

Example 3.3.6 is also related to residues as follows. Let $\widetilde{M} = \mathrm{SL}(q+1;\mathbb{C}) \times \mathbb{C}^{q+1}$. Then $\mathrm{SL}(q+1;\mathbb{C})$ acts on \widetilde{M} by $(g,v)h = (gh, h^{-1}v)$. In particular, $\mathrm{SU}(q+1)$ also acts on \widetilde{M} . We denote by π the quotient map and denote by \widetilde{N} the image of π . Let $\widetilde{M}^* = \mathrm{SL}(q+1;\mathbb{C}) \times (\mathbb{C}^{q+1} \setminus \{0\})$ and $\widetilde{M}' = \mathrm{SL}(q+1;\mathbb{C}) \times S^{2q+1}$. Then \widetilde{M}^* is invariant under the $\mathrm{SL}(q+1;\mathbb{C})$ -action and \widetilde{M}' is invariant under the $\mathrm{SU}(q+1)$ -action. We set $\widetilde{N}^* = \pi(\widetilde{M}^*)$ and $\widetilde{N}' = \pi(\widetilde{M}')$. Let Γ be a cocompact lattice of $\mathrm{SL}(q+1;\mathbb{C})$ such that $B = \Gamma \setminus \mathrm{SL}(q+1;\mathbb{C})/\mathrm{SU}(q+1)$ is a closed manifold. Set then $M = \Gamma \setminus \widetilde{M}, M^* = \Gamma \setminus \widetilde{M}^*, M' = \Gamma \setminus \widetilde{M}', N = \Gamma \setminus \widetilde{N}, N^* = \Gamma \setminus \widetilde{N}^*$ and $N' = \Gamma \setminus \widetilde{N}'$, where $\mathrm{SL}(q+1;\mathbb{C})$ acts on these manifolds on the left by h(g,v) = (hg,v).

Let $\widetilde{\mathcal{F}}$ be the foliation of \widetilde{M} induced by the right $\operatorname{SL}(q+1;\mathbb{C})$ -action. If T is the holomorphic vector field on \mathbb{C}^{q+1} defined by $T = \sum_{i=0}^{q} z_i \frac{\partial}{\partial z_i}$, where (z_0, \ldots, z_q) is the standard coordinates of \mathbb{C}^{q+1} , then T is a Γ -vector field for $\widetilde{\mathcal{F}}$. Note that Tinduces the Hopf fibration on S^{2q+1} . We also call the foliation of $\mathbb{C}^{2q+1} \setminus \{0\}$ by the orbits of T the Hopf fibration.

Let $\widetilde{\mathcal{F}}_T$ be the singular foliation $\widetilde{\mathcal{F}}_T$ of \widetilde{M} . Then $\widetilde{\mathcal{F}}_T$ is regular on \widetilde{M}^* . Indeed, if we define $f: \mathrm{SL}(q+1;\mathbb{C}) \times (\mathbb{C}^{q+1} \setminus \{0\}) \to \mathbb{C}^{q+1} \setminus \{0\}$ by f(g,z) = gz, then $\widetilde{\mathcal{F}}_T$ is the pull-back of the Hopf fibration of $\mathbb{C}^{q+1} \setminus \{0\}$ by f. Moreover, $\widetilde{\mathcal{F}}$ and $\widetilde{\mathcal{F}}_T$ naturally induce foliations \mathcal{F} of M and \mathcal{F}_T of M^* because they are invariant under the natural left action of $\mathrm{SL}(q+1;\mathbb{C})$ on \widetilde{M} and \widetilde{M}^* . Finally, $\widetilde{\mathcal{F}}_T$ is transversal to \widetilde{M}' so that it induces a foliation $\widetilde{\mathcal{F}}'_T$ of \widetilde{M}' . The foliation $\widetilde{\mathcal{F}}'_T$ is also invariant under the left $\mathrm{SL}(q+1;\mathbb{C})$ -action so that it induces a foliation \mathcal{F}'_T of M'. The foliations $\widetilde{\mathcal{F}}, \widetilde{\mathcal{F}}_T$ and $\widetilde{\mathcal{F}}'_T$ are invariant under the right $\mathrm{SU}(q+1)$ -action. Hence they naturally induce foliations of $\widetilde{N}, \widetilde{N}^*$ and \widetilde{N}' . We denote them by $\widetilde{\mathcal{G}}, \widetilde{\mathcal{G}}_T$ and $\widetilde{\mathcal{G}}'_T$, respectively. Foliations of N, N^* and N' can be constructed in a similar way. We denote them by $\mathcal{G}, \mathcal{G}_T$ and \mathcal{G}'_T , respectively. The canonical bundles of $\widetilde{\mathcal{F}}_T$, $\widetilde{\mathcal{F}}'_T$, $\widetilde{\mathcal{G}}_T$ and $\widetilde{\mathcal{G}}'_T$ are trivial, indeed, if we define a q-form ω on \mathbb{C}^{q+1} by

$$\omega = z_0 \, dz_1 \wedge \dots \wedge dz_q - z_1 dz_0 \wedge dz_2 \wedge \dots \wedge dz_q + \dots + (-1)^q z_q \, dz_0 \wedge \dots \wedge dz_{q-1},$$

then $\omega(T) = 0$. The differential form $f^*\omega$ on \widetilde{M}^* induces trivializations of canonical bundles. Since $f^*\omega$ is invariant under the left $\mathrm{SL}(q+1;\mathbb{C})$ -action, the canonical bundles of \mathcal{F}_T , \mathcal{F}'_T , \mathcal{G}_T and \mathcal{G}'_T are also trivial. Therefore, the Bott class is welldefined for these foliations and the Godbillon–Vey class of these foliations are trivial. The vector field T gives rise to an S^1 -action which preserves \mathcal{F}_T , \mathcal{F}'_T , \mathcal{G}_T and \mathcal{G}'_T . Indeed, the action is essentially the Hopf fibration on $\mathbb{C}^{q+1} \setminus \{0\}$.

Let $\widetilde{M}'' = \operatorname{SL}(q+1;\mathbb{C}) \times \mathbb{C}P^q$. Then $\operatorname{SL}(q+1;\mathbb{C})$ acts on \widetilde{M}'' by $(g,[v])h = (gh, h^{-1}[v])$. Let $\widetilde{\mathcal{F}}''$ be the foliation of \widetilde{M}'' induced by the right $\operatorname{SL}(q+1;\mathbb{C})$ -action. Let \widetilde{N}'' and $\widetilde{\mathcal{G}}''$ be the quotient by the induced action of $\operatorname{SU}(q+1)$, and we denote by π the quotient map by abuse of notation. We set $M'' = \Gamma \setminus \widetilde{M}''$ and $N'' = \Gamma \setminus \widetilde{N}''$. They are naturally equipped with foliations induced by $\widetilde{\mathcal{F}}''$ and $\widetilde{\mathcal{G}}''$. We denote them by \mathcal{F}'' and \mathcal{G}'' . It is well-known that (N'', \mathcal{G}'') is isomorphic to the foliation of $\Gamma \setminus \operatorname{SL}(q+1;\mathbb{C})/(T^1 \times SU_q)$ given in Example 3.3.6. We have the following commutative diagram:

where $p: N' \to N''$ is the natural projection which is a fiberwise Hopf fibration. Note that $p^*(\operatorname{GV}_{2q}(\mathcal{G}'')) = \operatorname{GV}_{2q}(\mathcal{G}'_T) = 0$. The Gysin sequence associated with p is as follows:

$$\cdots \longrightarrow H^*(N') \xrightarrow{p_!} H^{*-1}(N'') \xrightarrow{\cup e} H^{*+1}(N'') \xrightarrow{p^*} H^{*+1}(N') \longrightarrow \cdots$$

where $e = \frac{1}{(q+1)} \operatorname{ch}_1(\mathcal{G}'') = \frac{v_1(\mathcal{G}'') + \overline{v}_1(\mathcal{G}'')}{2(q+1)}$, and $p_!$ denotes the integration along the fiber. Therefore $\xi_q(\mathcal{G}'') \operatorname{ch}_1(\mathcal{G}'')^k$ is mapped to a non-zero multiple of

 $\xi_q(\mathcal{G}'') \operatorname{ch}_1(\mathcal{G}'')^{k+1}$ under $\cup e$. If k = q, then $\xi_q(\mathcal{G}'') \operatorname{ch}_1(\mathcal{G}'')^q$ is a non-zero multiple of $\operatorname{GV}_{2q}(\mathcal{G}'')$, and the image under $\cup e$ is trivial because $\operatorname{ch}_1(\mathcal{G}'')^{q+1} = 0$. Hence there is an element of $H^{4q+2}(N')$ which is mapped to $\operatorname{GV}_{2q}(\mathcal{G}'')$. Indeed, $p_!(u_1v_1(\mathcal{F}_T)^q\overline{u}_1\overline{v}_1(\mathcal{F}_T)^q)$ is equal to a non-zero multiple of $\operatorname{GV}_{2q}(\mathcal{G}'')$ by Theorem 3.3.10.

The Gysin sequence associated with $S^{2q+1} \to N' \to B = \Gamma \backslash SL(q+1; \mathbb{C}) / SU(q+1)$ is now decomposed as follows:

where $t: H^*(B) \to H^{*+2q+2}(N^*, N')$ is the Thom isomorphism, and \oint is the integration along the fiber. We have

$$\oint p_!(u_1v_1^q(\mathcal{F}_T)\overline{u}_1\overline{v}_1^q(\mathcal{F}_T)) = \oint \mathrm{GV}_{2q}(\mathcal{G}'')$$

up to multiplications of non-zero constants, and

$$t^{-1} \circ \partial(u_1 v_1^q(\mathcal{F}'_T)\overline{u}_1\overline{v}_1^q(\mathcal{F}'_T)) = t^{-1}(v_1(\mathcal{F}'_T)^{q+1}\overline{u}_1\overline{v}_1^q(\mathcal{F}'_T) - u_1v_1^q(\mathcal{F}'_T)\overline{v}_1^{q+1}(\mathcal{F}'_T))$$
$$= \operatorname{res}((v_1^{q+1}\overline{u}_1\overline{v}_1^q - u_1v_1^q\overline{v}_1^{q+1}), \mathcal{F}', T).$$

Thus Example 3.3.6 is related to the residue. It is possible to apply this construction to other examples involving $SO(2n + 1; \mathbb{C})$, $Sp(n; \mathbb{C})$ and G_2 by using the Iwasawa decomposition and naturally associated S^1 -bundles.

The fibration $N' \to N''$ is also relevant for studying derivatives of the Bott class with respect to deformations of foliations. By Theorem B2, $\xi_q(\mathcal{G}'') \operatorname{ch}_1^k(\mathcal{G}'')$ is rigid under deformations if k > 0. Indeed, $D_\mu B_q(\mathcal{G}'') \operatorname{ch}_1^k(\mathcal{G}'')$ is trivial if k > 0 by Corollary 4.3.30. On the other hand, if k = 0, then $D_\mu B_q(\mathcal{G}'')$ belongs to the kernel of $\cup e$. Hence there is an element of $H^{2q+2}(N')$ which is mapped to $D_\mu B_q(\mathcal{G}'')$. Such an element is obtained as follows.

Assume that $K_{\mathcal{F}}$ is trivial and let ω be a trivialization. We may assume that there is a family of local trivializations $\{\rho_i = {}^t(\rho_i^1, \ldots, \rho_i^q)\}$ of $Q^*(\mathcal{F})$ such that

110

 $\omega = \rho_i^1 \wedge \cdots \wedge \rho_i^q$ locally holds. Let $\mu \in H^1(M; \Theta_{\mathcal{F}})$ be an infinitesimal derivative and let σ be a representative. Let $\{\theta_i\}$ be the connection form of a Bott connection on $Q(\mathcal{F})$ with respect to the dual of $\{\rho_i\}$. If we set $\tau_i = \operatorname{tr} \theta_i$, then τ_i determines a globally well-defined 1-form τ thanks to the choice of $\{\rho_i\}$, and $d\omega = -\tau \wedge \omega$. Let θ' be the infinitesimal derivative of θ with respect to σ and set $\tau' = \operatorname{tr} \theta'$. If we set

(5.7)
$$\widetilde{\sigma} = \sum_{k=1}^{q} \rho_i^1 \wedge \dots \wedge \rho_i^{k-1} \wedge \rho_i^k(\sigma) \wedge \rho_i^{k+1} \wedge \dots \wedge \rho_i^q,$$

then $\tilde{\sigma}$ is an infinitesimal deformation of $K_{\mathcal{F}}$ induced from σ ([10, Lemma 2.12]) and we have

(5.8)
$$d\widetilde{\sigma} + \tau \wedge \widetilde{\sigma} = \tau' \wedge \omega.$$

LEMMA 5.9. The (2q+2)-form $\tau' \wedge \tau \wedge (d\tau)^q$ is closed.

PROOF. We have $d(\tau' \wedge (d\tau)^q) = 0$ by Lemma 4.3.17. It follows that $d(\tau' \wedge \tau \wedge (d\tau)^q) = \tau \wedge d(\tau' \wedge (d\tau)^q) - \tau' \wedge d(\tau \wedge (d\tau)^q) = 0.$

Once the trivialization ω is fixed, by applying the results in Section 4.3, one can verify that the differential form $\tau' \wedge \tau \wedge (d\tau)^q$ determines a cohomology class which is independent of the choice of τ and τ' (see also [55]).

DEFINITION 5.10 ([28, p. 248], [56], [55]). We denote by $T_{\mu}B_q(\mathcal{F},\omega)$ the cohomology class in $H^{2q+2}(M;\mathbb{C})$ represented by $\left(\frac{-1}{2\pi\sqrt{-1}}\right)^{q+2}(q+1)\tau'\wedge\tau\wedge(d\tau)^q$. We call $T_{\mu}B_q(\mathcal{F},\omega)$ the Fuks-Lodder-Kotschick class of \mathcal{F} with respect to ω .

The class $T_{\mu}B_q(\mathcal{F},\omega)$ is mentioned by Fuks [28] for families of codimension-one foliations. Lodder proved the well-definedness of the class in [56]. Then, Kotschick [55] pointed out and filled a gap in the proof, and extended the definition for arbitrary codimension case. To be precise, they defined a classes, which are denoted by $c(\zeta)$ in [56] and $TGV(\mathcal{F}_t)$ in [55]. We have $c(\zeta) = TGV(\mathcal{F}_t)(0)$, and if μ is the infinitesimal deformation associated with $\{\mathcal{F}_t\}$, then this is the class $T_{\mu}B_q(\mathcal{F},\omega)$. It is easy to see that the construction is also valid for infinitesimal deformations, and also for transversely holomorphic foliations. The original construction was for real foliations so that we may assume $K_{\mathcal{F}}$ is trivial, and $T_{\mu}B_q(\mathcal{F},\omega)$ is independent of the choice of ω . This is the most difference, namely, if the construction is applied for transversely holomorphic foliations, then $T_{\mu}B_q(\mathcal{F},\omega)$ depends on the homotopy class of ω . Before giving a proof, we present an example.

EXAMPLE 5.11. Let \mathcal{F}_{λ} be the foliation of S^3 given in Example 1.1.6 (with n = 1). Let $M = S^3 \times S^1$ and $\pi \colon M \to S^3$ be the natural projection. We set $\mathcal{G}_{\lambda} = \pi^* \mathcal{F}_{\lambda}$. Let

$$\omega_m = t^m (\lambda_2 z_2 \, dz_1 - \lambda_1 z_1 \, dz_2)$$

be a trivialization of $K_{\mathcal{G}_{\lambda}} = Q^*(\mathcal{G}_{\lambda})$, where t denotes the standard coordinates of S^1 considered as the unit circle in \mathbb{C} . Then, $d\omega_m = -\tau_m \wedge \omega_m$, where

$$\tau_m = -\frac{\lambda_1 + \lambda_2}{|z_1|^2 + |z_2|^2} \left(\frac{\bar{z}_1}{\lambda_1} \, dz_1 + \frac{\bar{z}_2}{\lambda_2} \, dz_2\right) - m \frac{dt}{t}.$$

Since we are working on S^3 , we have

$$\tau_m = -(\lambda_1 + \lambda_2) \left(\frac{\bar{z}_1}{\lambda_1} dz_1 + \frac{\bar{z}_2}{\lambda_2} dz_2\right) - m \frac{dt}{t}$$
$$= -\left(1 + \frac{1}{\lambda}\right) \bar{z}_1 dz_1 - (\lambda + 1)\bar{z}_2 dz_2 - m \frac{dt}{t}$$

and

$$d\tau_m = -\left(1 + \frac{1}{\lambda}\right) d\bar{z}_1 \wedge dz_1 - (\lambda + 1) d\bar{z}_2 \wedge dz_2,$$

where $\lambda = \frac{\lambda_1}{\lambda_2}$. It follows that

$$\tau'_m = \lambda^{-2} \bar{z}_1 \, dz_1 - \bar{z}_2 \, dz_2$$

and that

$$\tau'_m \wedge \tau_m \wedge d\tau_m = \left(\lambda^{-2}(\lambda+1)\bar{z}_1 \, dz_1 \wedge d\bar{z}_2 \wedge dz_2 - \left(1 + \frac{1}{\lambda}\right)\bar{z}_2 \, dz_2 \wedge d\bar{z}_1 \wedge dz_1\right) \wedge m\frac{dt}{t}.$$

Consequently,

$$T_{\mu}B_1(\mathcal{G}_{\lambda},\omega_m) = -m\left(1 - \frac{1}{\lambda^2}\right)\left[S^3 \times S^1\right]$$

where $[S^3 \times S^1]$ denotes the fundamental class and μ is an element of $H^1(M; \Theta_{\mathcal{G}})$ induced from $\{\mathcal{G}_{\lambda}\}$. LEMMA 5.12. $T_{\mu}B_q(\mathcal{F},\omega)$ depends on the homotopy class of ω .

PROOF. Let ω_0 and ω_1 be trivializations of $K_{\mathcal{F}}$ and let ω_s , $s \in [0,1]$, be a homotopy between ω_0 and ω_1 . Then, we can choose a continuous family $\{f_s\}$ of smooth functions such that $\omega_s = e^{f_s}\omega_0$. It follows that we may assume that $\tau_s = \tau_0 - df_s$. If σ is an infinitesimal deformation of ω_0 , then $d\sigma + \tau_0 \wedge \sigma = \tau'_0 \wedge \omega_0$. We have

$$d(e^{f_s}\sigma) = df_s \wedge (e^{f_s}\sigma) + e^{f_s}d\sigma$$

= $df_s \wedge (e^{f_s}\sigma) + e^{f_s}(-\tau_0 \wedge \sigma + \tau'_0 \wedge \omega_0)$
= $-\tau_s \wedge (e^{f_s}\sigma) + \tau'_0 \wedge \omega_s.$

Hence we may assume that $\tau'_s = \tau'_0$ for any s. It follows that

$$\tau'_s \wedge \tau_s \wedge (d\tau_s)^q = \tau'_0 \wedge (\tau_0 - df_s) \wedge (d\tau_0)^q = \tau'_0 \wedge \tau_0 \wedge (d\tau_0)^q + d(f_s \tau'_0 \wedge (d\tau_0)^q)$$

because $d(\tau'_0 \wedge (d\tau_0)^q) = 0.$

REMARK 5.13. Actually, it suffices to begin with a Bott connection on $K_{\mathcal{F}}$ in order to define the class $T_{\mu}B_q(\mathcal{F})$. Indeed, the notions of infinitesimal deformation of $K_{\mathcal{F}}$ and infinitesimal derivative of Bott connections can be introduced by the formulae (5.7) and (5.8) [10]. Note that (5.8) follows from (4.3.8) if connections on $Q(\mathcal{F})$ (or $Q^*(\mathcal{F})$) are considered.

We will retain the notations in Theorem 3.3.10. We have then

THEOREM 5.14 (cf. [8, Theorem 2.3]). If $\mu \in H^1(M; \Theta_{\mathcal{F}})$, then

$$\pi_{m!}T_{\pi_m^*\mu}B_q(\mathcal{G}_m,\omega_m) = -mD_\mu B_q(\mathcal{F}).$$

PROOF. We denote π_m and ω_m by π and ω for simplicity. Let $\underline{\sigma}$ be a representative of μ . If we set

$$\underline{\sigma}_i = \sum_{k=1}^q dz_i^1 \wedge \dots \wedge dz_i^{k-1} \wedge dz_i^k(\underline{\sigma}) \wedge dz_i^{k+1} \wedge \dots \wedge dz_i^q,$$

then we have $d\underline{\sigma}_i + \alpha_i \wedge \underline{\sigma}_i = \alpha'_i \wedge \nu_i$, where $\{\alpha'_i\}$ is the infinitesimal derivative of $\{\alpha_i\}$ with respect to $\underline{\sigma}$. As $K_{\mathcal{G}_m}$ is trivialized by $\{\omega_i\}$, $\pi^*\mu$ is represented by $\{\sigma_i\}$, where $\sigma_i = t^{-m}\pi^*\underline{\sigma}_i$. It follows that

$$d\pi^*\underline{\sigma}_i + \tau \wedge \pi^*\underline{\sigma}_i - m\frac{dt}{t} \wedge \pi^*\underline{\sigma}_i = t^m\pi^*\alpha'_i \wedge \omega_i.$$

Hence we have

$$d\sigma_i + \tau \wedge \sigma_i = \pi^* \alpha'_i \wedge \omega_i.$$

Therefore, $T_{\pi_m^* \mu} B_q(\mathcal{G}_m, \omega)$ is locally represented by

$$\left(\frac{-1}{2\pi\sqrt{-1}}\right)^{2q+2}(q+1)(\pi^*\alpha_i')\wedge\tau\wedge(d\tau)^q.$$

On the other hand, $D_{\mu}B_q(\mathcal{F})$ is locally represented by

$$\left(\frac{-1}{2\pi\sqrt{-1}}\right)^{2q+1} (q+1) \,\alpha'_i \wedge (d\alpha_i)^q.$$

It is easy to see that

$$\int_{S^1} (\pi^* \alpha'_i) \wedge \tau \wedge (d\tau)^q = \int_{S^1} \pi^* (\alpha'_i \wedge (d\alpha_i)^q) \wedge m \frac{dt}{t}$$
$$= 2m\pi \sqrt{-1} \alpha'_i \wedge (d\alpha_i)^q.$$

By applying Theorem 5.14 to (N', \mathcal{F}_T) and (N'', \mathcal{G}'') , one sees that $D_{\mu}B_q(\mathcal{G}'')$ belongs to the image of the integration along the fiber.