
CHAPTER 4

The Rigidity Theorem
and Infinitesimal Derivatives

In this chapter, we will introduce infinitesimal derivatives of secondary classes

after Heitsch [42]. Deformations of foliations (and pseudogroup structures) are dis-

cussed by Kodaira [53], Kodaira–Spencer, [54], Heitsch [40], Duchamp–Kalka [26],

Girbau–Haefliger–Sundararaman [31], Girbau–Nicolau [32], et al. It will be shown

that complex secondary classes determined by the image of H∗(WUq+1) under the

natural mapping to H∗(WUq) are rigid under actual and infinitesimal deformations.

In particular, the Godbillon–Vey class is shown to be rigid in the category of trans-

versely holomorphic foliations. On the other hand, classes in H∗(WUq) which admit

continuous deformations are called variable classes. The imaginary part of the Bott

class is one of the variable classes. Heitsch introduced in [42] the infinitesimal

derivatives for cocycles in WUq which represent variable classes of lowest degree.

In the same paper, the infinitesimal derivatives for any classes in H∗(WOq) were

also introduced. The most of this section will be devoted to completing Heitsch’s

construction by defining the infinitesimal derivatives for any classes in H∗(WUq).

The construction seems known for specialists, indeed, the most of the definitions

and the proofs are only small modifications of Heitsch’s in [42] using notions in [26].

However, we give the details for completeness and for their importance.

Throughout the construction, corresponding steps or statements in [42] are

referred so far as possible.
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72 4. THE RIGIDITY THEOREM AND INFINITESIMAL DERIVATIVES

4.1. Definitions and Statements of Results

In what follows, S will denote parameter spaces of deformations. Usually S is

assumed to be an analytic space, which is not necessarily reduced, with a distin-

guished point 0. If smooth deformations are considered, then S is assumed to be

an open neighborhood of the origin of a finite dimensional Euclidean space.

Definition 4.1.1. A family of transversely holomorphic foliations {Fs} on M

parametrized by s ∈ S is given by the following data.

1) An open covering {Ui} of M .

2) A family of submersions {ϕi,s : Ui → Cq} such that Fs is locally given by

the fibers of ϕi,s.

3) A family {γji,s} of local biholomorphic diffeomorphisms of Cq such that

ϕj,s = γji,s ◦ ϕi,s.

The family {Fs} is smooth (resp. holomorphic) if ϕi,s and γji,s are of class C∞

(resp. holomorphic) in s.

Definition 4.1.2. If F is a transversely holomorphic foliation, then an actual

deformation of F is a family {Fs} as in Definition 4.1.1 such that F0 = F . If

the family is smooth (resp. holomorphic), the deformation is said to be smooth

(resp. holomorphic).

An actual deformation induces an infinitesimal deformation. See Section 4.3.

Remark 4.1.3. If {Fs} is a smooth actual deformation of F , then {Fs} is a

smooth family of foliations so that we may assume that Q(Fs) are isomorphic on a

neighborhood of 0 ∈ S.

Certain type of deformations will be of interest.

Definition 4.1.4. Let {Fs} be an actual deformation of a transversely holo-

morphic foliation.
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1) If there exists a smooth family of diffeomorphisms which conjugate eachFs to

F0, then {Fs} is said to be a deformation preserving the diffeomorphism type.

2) If Fs are identical to F as real foliations, then the family {Fs} is said to

be a deformation of transverse holomorphic structures .

There is a natural mapping from H∗(WUq+1) to H∗(WUq) induced by the

standard inclusion of Cq into Cq+1.

Definition 4.1.5 (cf. [39]). Let ρ be the DGA-homomorphism from WUq+1 to

WUq defined by the following formulae:

ρ(ũi) =

{
ũi if i �= q + 1

0 if i = q + 1
,

ρ(vi) =

{
vi if i �= q + 1

0 if i = q + 1
, ρ(vi) =

{
vi if i �= q + 1

0 if i = q + 1
.

We denote by ρ∗ the induced homomorphism from H∗(WUq+1) to H
∗(WUq).

The following theorem has been well-known for specialists.

Theorem B1. The secondary classes defined by H∗(WUq) are rigid under

smooth deformations if they belong to the image of ρ∗. More precisely, if {Fs} is a

smooth family of transversely holomorphic foliations of complex codimension q and

if ω is an element of ρ∗(H∗(WUq+1)), then ω(Fs) ∈ H∗(M) is independent of s.

Infinitesimal deformations of a transversely holomorphic foliation F are elem-

ents of H1(M ; ΘF ) (see Definition 4.3.5 for details). Infinitesimal derivatives of

elements of H∗(WUq) are given by the mapping

D·( · ) : H1(M ; ΘF )×H∗(WUq) → H∗(M ;C)

in Definition 4.3.13. It will be shown that a smooth family {Fs} as above nat-

urally determines an infinitesimal derivative β ∈ H1(M ; ΘF ) such that Dβ(ω) =
∂

∂s
ω(Fs)

∣∣∣∣
s=0

for ω ∈ H∗(WUq) (Theorem 4.3.28). The infinitesimal version of

Theorem B1 is as follows.
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Theorem B2. The image of H1(M ; ΘF ) × (ρ∗H∗(WUq+1)) under the above

mapping D·( · ) is trivial.

Theorems B1 and B2 are shown in Section 4.3. The most important consequence

of these theorems is the following

Theorem B. The Godbillon–Vey class is rigid under both smooth and infini-

tesimal deformations in the category of transversely holomorphic foliations.

Proof of Theorem B. Let q be the codimension of the foliations. Then

GV2q =
(2q)!

q! q!

√−1 ũ1v
q
1v

q
1

in H4q+1(WUq) by Theorem 2.1. On the other hand,

ξq+1 · chq−1
1 =

√−1 ũ1(v
q+1
1 vq−1

1 + vq1v
q
1 + vq−1

1 vq+1
1 )

in H4q+1(WUq+1), where ξq+1 is defined in Definition 1.2.1. Therefore

GV2q = ρ∗

(
(2q)!

q! q!
ξq+1 · chq−1

1

)
in H4q+1(WUq). �

The following corollary is a consequence of Theorem B and Theorem 2.1.

Corollary 4.1.6. If {Fs} is a smooth family of transversely holomorphic

foliations of codimension q, then the product of ch1(F0)
q and

d

ds
ξ(Fs) is iden-

tically equal to zero. Similarly, if β is an infinitesimal deformation of F , then

Dβξq(F) ch1(F)q = 0 holds, where Dβξq(F) denotes the infinitesimal derivative of

ξq with respect to β.

Proof. Since ch1(Fs)
q is independent of s, we have(

d

ds
ξ(Fs)

)
ch1(F0)

q =
q! q!

(2q)!

d

ds
GV2q(Fs) = 0.

The second claim holds for the same reason. �
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There are alternative proofs of Theorem B and Corollary 4.1.6. See Corol-

lary 4.3.30 and Theorem 5.14.

Let {Fs} be a smooth family of transversely holomorphic foliations of co-

dimension q, and assume that GV2q(Fs) is non-trivial. Then ch1(F0)
q is non-trivial

by Theorem 2.1. If the mapping ∪ ch1(F0)
q : H∗(M ;C) → H∗+2q(M ;C) is inject-

ive, then
d

ds
ξq(Fs) is trivial because

d

ds
GV2q(Fs) =

(2q)!

q! q!

d

ds
ξq(Fs) ch1(F0)

q = 0

by Theorem B1. This implies that the class ξq is in fact rigid in such a case. In fact,

so far as we know, if {Fs} is a continuous family such that ξq(Fs) vary continuously,

then ch1(Fs) are always trivial. In this line, we have the following

Question 4.1.7. Is there a smooth family of transversely holomorphic foliations

for which the imaginary part of the Bott class varies continuously and the first

Chern class of the complex normal bundle is non-trivial? How about infinitesimal

deformations?

4.2. Rigidity under Smooth Deformations

The calculations in this section are used to prove Theorem B1 and also to con-

struct infinitesimal derivative in the next section. We begin with some definitions.

Definition 4.2.1 ([39]). Let {Fs} be a smooth deformation of transversely

holomorphic foliations. We define differential forms Δf and V as follows. As the

complex normal bundles of the foliations remain isomorphic, denote them by Q and

consider the same unitary connection θ0 for some Hermitian metric on Q. Let {θs1}
be a smooth family of complex Bott connections on Q, namely, assume that each θs1

is a Bott connection for Fs and {θs1} is smooth as a family of connections. Let ψs be

the derivative of θs1 with respect to s, namely, ψs =
∂

∂s
θs1. Let f be a homogeneous

polynomial of degree 2k in vi and vj . We set θst = tθs1 + (1− t)θ0 and denote by Ωs
t

its curvature, and set

Δf (θ
s
1, θ0) = k

∫ 1

0

f(θs1 − θ0,Ω
s
t , . . . ,Ω

s
t ) dt,

Vf (θ
s
1, θ0) =

∫ 1

0

tf(ψs, θ
s
1 − θ0,Ω

s
t , . . . ,Ω

s
t ) dt.
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The following formulae are shown in [39, Theorem 1]:

∂

∂s
(Δf (θ

s
1, θ0)) = k(k − 1) dVf (θ

s
1, θ0) + kf(ψs,Ω

s
1, . . . ,Ω

s
1),(4.2.2a)

∂

∂s
d(Δf (θ

s
1, θ0)) =

∂

∂s
f(Ωs

1, . . . ,Ω
s
1) = k df(ψs,Ω

s
1, . . . ,Ω

s
1),(4.2.2b)

where Ωs
1 denotes the curvature form of the connection θs1 and the the exterior

derivative is considered only on M , namely, along the fibers of M × R → R.

The following auxiliary definition will be convenient.

Definition 4.2.3. Set W̃Uq =
∧
[ũ1, . . . , ũq]⊗C[v1, . . . , vq]⊗C[v1, . . . , vq] and

equip W̃Uq with a differential d̃ by requiring d̃ũi = vi − vi and d̃vi = d̃vi = 0. Let

Ĩq be the ideal of W̃Uq generated by cochains of the form ũIvJvK with |J | > q or

|K| > q. Note that WUq = W̃Uq/Ĩq. If ϕ is a cochain in WUq, then its lift ϕ̃ in

W̃Uq is said to be a natural lift if ϕ̃ is a linear combination of cochains of the form

ũIvJvK with |J | ≤ q and |K| ≤ q.

It is easy to verify the relation d̃ ◦ d̃ = 0. The DGA (W̃Uq, d̃) is obtained from

WUq by forgetting the Bott vanishing. Note that d̃d̃ϕ̃ is exactly equal to 0 for any

ϕ̃ ∈ W̃Uq. This simple property is frequently used in what follows.

The following differential form is significant.

Definition 4.2.4. Let θu be a unitary connection and θ a Bott connection

on Q(F), respectively. Let θ′ be a derivative of a family of Bott connections or

an infinitesimal derivative of a Bott connection which will be introduced in Defin-

ition 4.3.9, or a certain matrix valued function which will appear in proving The-

orem 4.3.18. For ϕ̃ ∈ W̃Uq, we define a differential form Δϕ̃(θu, θ, θ′) as follows.

First, if ϕ̃ = ũIvJvK , then we set

δ(ϕ̃)(θu, θ, θ′) = (|J |+ |K|)vJvK(θ′,Ω)ũI(θ, θu),

where Ω is the curvature form of θ. We set

Δϕ̃(θu, θ, θ′) = δ(d̃ϕ̃)(θu, θ, θ′).
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We extend δ and Δ to the whole W̃Uq by linearity.

If ϕ̃ = ũIvJvK ∈ W̃Uq and I = {i1, . . . , it} with i1 < i2 < · · · < it, then

Δϕ̃(θu, θ, θ′)

=
∑
l

(−1)l−1(|J |+ |K|+ il) (vJvK(vil − vil)) (θ
′,Ω)ũI(l)(θ, θu),

where I(l) = I \ {il}.

The following is easy (see Lemma A.6 for the first formula).

Lemma 4.2.5. We have the following formulae:

(4.2.5a) (|J |+ |K|)(vJvK)(θ′,Ω) = |J | vJ(θ′,Ω)vK(Ω) + |K| vJ(Ω)vK(θ′,Ω),

(4.2.5b)

{
vJ(θ

′,Ω) = 0 as differential forms if |J | > q + 1,

vK(θ′,Ω) = 0 as differential forms if |K| > q + 1.

Proposition 4.2.6. If ϕ ∈ WUq is a cocycle, then
∂

∂s
χs(ϕ) is represented by

Δϕ̃(θ0, θ
s
1, ψs), where ϕ̃ is any lift of ϕ to W̃Uq.

Proof. In the proof, we will make use of the following notations, namely,

ũi(θ
s
1, θ0), vj(Ω

s
1) and vk(Ω

s
1) are simply denoted by ũi(s), vj(s) and vk(s), re-

spectively. The differential form vj(ψs,Ω
s
1) is denoted by wj(s), and vk(ψs,Ω

s
1) is

denoted by wk(s). We denote Vvi
(θs1, θ0) and Vvi

(θs1, θ0) simply by Vi and Vi, re-

spectively. Finally, we set Ṽi = Vi − Vi and w̃i(s) = wi(s) − wi(s). Under these

notations,
∂

∂s
ũi(s) = i(i− 1) dṼi + i(wi(s)− wi(s)) = i(i− 1) dṼi + iw̃i.

Let ϕ be a cocycle in WUq. We will compute
∂

∂s
χs(ϕ). For each i, where

1 ≤ i ≤ q, there are elements αi and βi of WUq which do not involve ũi and such

that ϕ = ũiαi + βi. Note that αi is closed because ϕ is closed. Let
∂

∂si
be the

differential operator obtained by applying
∂

∂s
only to ũi(θ

s
1, θ0), vi(θ

s
1) and vi(θ

s
1).

Then
∂

∂s
is decomposed as

∂

∂s
=

∂

∂s1
+ · · ·+ ∂

∂sq
. In order to compute

∂

∂si
χs(ϕ),
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we write αi =
∑
j,k

vji v
k
i a

i
j,k and βi =

∑
j,k

vji v
k
i b

i
j,k so that neither aij,k nor bij,k involves

vi and vi. Then,

∂

∂si
χs(ϕ) =

∂

∂si
χs(ũiαi + βi)

=
∑
j,k

(
i(i− 1) dṼi + iw̃i(s)

)
vji (s)v

k
i (s)a

i
j,k(s)

+
∑
j,k

ijũi(s)v
j−1
i (s) dwi(s)v

k
i (s)a

i
j,k(s)

+
∑
j,k

ikũi(s)v
j
i (s)v

k−1
i (s) dwi(s)a

i
j,k(s)

+
∑
j,k

ijvj−1
i (s) dwi(s)v

k
i (s)b

i
j,k(s)

+
∑
j,k

ikvji (s)v
k−1
i (s) dwi(s)b

i
j,k(s).

The first term is equal to

i(i− 1) dṼiαi(s) +
∑
j,k

iw̃i(s)v
j
i (s)v

k
i (s)a

i
j,k(s).

Note that dṼiαi(s) = d(Ṽiαi(s)) because αi is closed. The second term is co-

homologous to ∑
j,k

ij(vi(s)− vi(s))v
j−1
i (s)wi(s)v

k
i (s)a

i
j,k(s)

+
∑
j,k

ijũi(s)v
j−1
i (s)wi(s)v

k
i (s) da

i
j,k(s),

which is equal to∑
j,k

ijvji (s)v
k
i (s)wi(s)a

i
j,k(s)−

∑
j,k

ijvj−1
i (s)vkiwi(s)a

i
j,k−1(s)

−
∑
j,k

ijvj−1
i (s)wi(s)v

k
i (s)ũi(s) da

i
j,k(s),

where aij,−1 is understood to be zero. Similarly, the third term is cohomologous to

−
∑
j,k

ikvji (s)v
k
i (s)wi(s)a

i
j,k(s) +

∑
j,k

ikvji (s)v
k−1
i wi(s)a

i
j−1,k(s)

−
∑
j,k

ikvji (s)v
k−1
i (s)wi(s)ũi(s) da

i
j,k(s),
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where ai−1,k = 0. The fourth and fifth terms are respectively cohomologous to∑
j,k

ijvj−1
i (s)vki (s)wi(s) db

i
j,k(s),

and ∑
j,k

ikvji (s)v
k−1
i (s)wi(s) db

i
j,k(s).

Hence we have the following equalities modulo exact terms, namely,

∂

∂si
χs(ϕ)

=
∑
j,k

i(j + 1)vji (s)v
k
i (s)wi(s)a

i
j,k(s)−

∑
j,k

i(k + 1)vji (s)v
k
i (s)wi(s)a

i
j,k(s)

−
∑
j,k

ijvj−1
i (s)vkiwi(s)a

i
j,k−1(s) +

∑
j,k

ikvji (s)v
k−1
i wi(s)a

i
j−1,k(s)

−
∑
j,k

ijvj−1
i (s)wi(s)v

k
i (s)ũi(s) da

i
j,k(s)−

∑
j,k

ikvji (s)v
k−1
i (s)wi(s)ũi(s) da

i
j,k(s)

+
∑
j,k

ijvj−1
i (s)vki (s)wi(s) db

i
j,k(s) +

∑
j,k

ikvji (s)v
k−1
i (s)wi(s) db

i
j,k(s)

=
∑
j,k

ijvj−1
i (s)vkiwi(s)

(
aij−1,k(s)− aij,k−1(s) + dbij,k(s)− ũi(s) da

i
j,k(s)

)
+
∑
j,k

ikvji (s)v
k−1
i wi(s)

(−aij,k−1(s) + aij−1,k(s) + dbij,k(s)− ũi(s) da
i
j,k(s)

)
.

On the other hand, if ϕ̃ is the natural lift of ϕ, then one has

d̃ϕ̃ = ((vi − vi)αi − ũidαi + dβi)

=
∑
j,k

(vi − vi)v
j
i v

k
i a

i
j,k +

∑
j,k

vji v
k
i db

i
j,k −

∑
j,k

ũiv
j
i v

k
i da

i
j,k

=
∑
j,k

vji v
k
i (a

i
j−1,k − aij,k−1 + dbij,k − ũi da

i
j,k).

From (4.2.5a), we see that Proposition 4.2.6 holds if ϕ̃ a natural lift. In order

to show the proposition for general choices of ϕ̃, it suffices to show that Δ(d̃α̃ +

β̃)(θ0, θ
s
1, ψs) is exact if α̃ ∈ W̃Uq and if β̃ ∈ Ĩq. One has Δ(d̃α̃)(θ0, θ

s
1, ψs) =

δ(d̃(d̃α̃))(θ0, θ
s
1, ψs) = 0. Let β̃ = ũIvJvK , where |J | > q. If I = ∅, then
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Δ(vJvK)(θ0, θ
s
1, ψs) = 0 because d̃(vJvK) = 0. If I �= ∅, then the following equality

holds, namely,

Δ(ũIvJvK)(θ0, θ
s
1, ψs)

=
∑
l

(−1)l−1(|J |+ |K|+ il)vJvK(vil − vil)(ψs,Ω
s)ũI(l)(θ

s
1, θ0)

= −
∑
l

(−1)l−1 |J | vJ(ψs,Ω
s)vKvil(Ω

s)ũI(l)(θ
s
1, θ0)

= d
( |J | vJ(ψs,Ω

s)vK(Ωs)ũI(θ
s
1, θ0)

)
,

where the second equality holds because vJ(Ω
s) = 0 and vJ(ψs,Ω

s)vil(Ω
s) = 0 by

the Bott vanishing. The last equality follows from (4.2.2b) and dvJ(ψs,Ω
s) = 0.

Finally,
∂

∂s
χs(ϕ) is closed as χs(ϕ) is closed independent of s. �

Proof of Theorem B1. Let ϕ be a cocycle in WUq+1 and let ϕ̃ be any lift of

ϕ to W̃Uq+1. Then d̃ϕ̃ is a linear combination of the monomials of the form ũIvJvK

with |J | > q + 1 or |K| > q + 1. Hence Δ(ρϕ̃)(θ0, θ
s
1, ϕs) identically vanishes by

(4.2.5b). �

Compared with the real case, the space H∗(WUq) and the cokernel of ρ∗ are

rather complicated. For example, we have the following.

Proposition 4.2.7 (cf. [5, Theorem 1.8]). In the lower codimensional cases,

the cokernel of ρ∗ is described as follows:

q = 1 : A basis for coker ρ∗ is {ũ1(v1 + v1)}.
q = 2 : A basis for coker ρ∗ consists of v1 + v1, v

2
1 + v2 + 2v1v1 + v21 + v2 and

the classes in H∗(WU2) of degree 5, 10 or 12, namely, the classes in

Table 4.2.1, where the numbers in the left column stand for the degree

of the classes in the same row.

Example 1.1.6 of Bott shows that the secondary classes of the lowest degree can

vary. We do not know if the classes of higher degree can vary.
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5 ũ1(v
2
1 + v1v1 + v21), ũ1(v2 + v2) + ũ2(v1 + v1)

10 ũ1ũ2v1v1(v1 + v1)

12 ũ1ũ2v
2
1v

2
1, ũ1ũ2v

2
1v2, ũ1ũ2v2v

2
1, ũ1ũ2v2v2

Table 4.2.1. A part of basis for coker ρ∗, where q = 2.

4.3. Infinitesimal Deformations, Infinitesimal Derivatives and Rigidity

under Infinitesimal Deformations

We first recall that TCM = TM ⊗ C and E is the complex vector bundle

locally spanned by TF and the transverse antiholomorphic vectors
∂

∂z̄i
. Then,

Q(F) = TCM/E (Definition 1.1.4). The space of C∞ sections of
∧∗
E∗ ⊗ Q(F) is

denoted by Γ∞(
∧∗
E∗ ⊗Q(F)).

Definition 4.3.1 ([42, 1.4], [26]). Let ∇ be a Bott connection on Q(F). We

define a derivation d� : Γ∞(
∧p
E∗ ⊗Q(F)) → Γ∞(

∧p+1
E∗ ⊗Q(F)) by

d�σ(X0, . . . , Xp)

=
∑

0≤i≤p

(−1)i∇Xi
σ(X0, . . . , X̂i, . . . , Xp)

+
∑

0≤i<j≤p

(−1)i+jσ([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xp),

where σ ∈ Γ∞(
∧p
E∗ ⊗Q(F)), Xi ∈ Γ∞(E) and the symbol ‘̂’ means omission.

A section σ of Q(F) is said to be foliated and transversely holomorphic if LXσ =

0 for X ∈ E, where LX denotes the Lie derivative with respect to X. In other words,

σ is foliated and transversely holomorphic if σ is locally constant along the leaves

and transversely holomorphic.

Definition 4.3.2. Let ΘF be the sheaf of germs of foliated transversely holo-

morphic vector fields.

The following fact, which is relevant in studying infinitesimal deformations, can

be found in the proof of Theorem 1.27 of [26].
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Lemma 4.3.3. Let ΘF be the sheaf of germs of foliated transversely holomorphic

vector fields. Then d� ◦ d� = 0, and

0 �� ΘF �� Γ∞(
∧0
E∗ ⊗Q(F))

d�
�� Γ∞(

∧1
E∗ ⊗Q(F))

d�
�� · · ·

is a resolution of ΘF .

We have the following.

Theorem 4.3.4 ([26, Theorem 1.27]). H∗(M ; ΘF ) is isomorphic to the co-

homology of (Γ∞(
∧∗
E∗⊗Q(F)), d�). Moreover, H∗(M ; ΘF ) is of finite dimension.

Definition 4.3.5. An infinitesimal deformation of F is by definition an element

of H1(M ; ΘF ).

See also Definitions 4.3.21 and 4.3.26.

In what follows, we follow the conventions in [42] but we will work on Q(F)

instead of Q(F)∗.

Let P be the principal bundle associated with Q(F), and let π : P → M the

projection. If α ∈ P , then α is a linear isomorphism from Cq to Q(F)π(α).

Definition 4.3.6. If X ∈ TαP , then we set ω(X) = α−1(π∗X). The differential

form ω is called the canonical form. The i-th component of ω(X) is denoted by

ωi(X), and each ωi is regarded as a 1-form.

Let θ be the connection form of a connection on P induced from any Bott

connection on Q(F). Then dω = −θ∧ω, where the sign is opposite when compared

with [42]. This is because we work on Q(F). Let Ω = dθ + θ ∧ θ be the curvature

form. Then Ω ∧ ω = 0.

Let σ be a section of
∧∗
E∗ ⊗Q(F). We can regard σ as a section of

∧∗
T ∗
CM ⊗

Q(F) by arbitrarily extend it. Then, by pulling back to P and considering the

horizontal lifts, we can regard σ as a section, say σ̃, of
∧∗
P ∗⊗Q(F̂), where F̂ = π∗F

is the lift of F to P . Finally, we can regard σ̃ as a Cq-valued differential form on
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P by composing it with the canonical form ω. A section of
∧∗
P ∗ ⊗Q(F̂) is always

considered as a Cq-valued differential form in this way, and represented in columns.

Conversely, a section σ̃ projects down to a section σ of
∧∗
T ∗
CM⊗Q(F) if and only if

1) σ̃ is horizontal, that is, σ̃(X1, . . . , Xk) = 0 if π∗(Xi) = 0 for some i,

2) R∗
gσ̃ = g−1σ̃ for g ∈ GL(q;C), whereRg is the right action of GL(q;C) on P .

In what follows, σ̃ is also denoted by σ by abuse of notation.

Let β ∈ H1(M ; ΘF ) and let σ be a representative of β. Such a σ is a section of

E∗ ⊗Q(F) such that d�σ′ = 0. We denote again by σ the Cq-valued 1-form on P

obtained in the above manner. Then, σ satisfies the above conditions 1) and 2), and

3) dσ + θ ∧ σ = 0 when restricted to π∗E.

Let I(ω) be the ideal generated by ω1, . . . , ωq in the space of differential forms on

P . The condition 3) is equivalent to dσ + θ ∧ σ ∈ I(ω).

Definition 4.3.7 ([42, Definition 3.8]). Let β be an element of H1(M ; ΘF )

and let σ be a representative of β as a Cq-valued 1-form on P . The infinitesimal

derivative of the canonical form ω with respect to σ, denoted by ω′, is defined by

ω′ = −σ.

It follows from the condition 3) above that dω′ + θ ∧ ω′ ∈ I(ω). Let θ′ be a

glqC-valued 1-form on P such that

(4.3.8) dω′ + θ ∧ ω′ = −θ′ ∧ ω.
The infinitesimal derivative of a Bott connection is defined as follows.

Definition 4.3.9 ([42, Definition 3.10]). Any glqC-valued 1-form θ′ on P sat-

isfying (4.3.8) is called an infinitesimal derivative of θ with respect to σ.

If θ′0 and θ′1 are two infinitesimal derivatives of θ with respect to σ, then (θ′1 −
θ′0) ∧ ω = 0. Hence

(4.3.10) (θ′1 − θ′0)
i
j =

∑
k

λij,kω
k

for some C-valued functions λij,k on P satisfying λij,k = λik,j .
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Lemma 4.3.11 ([42, Lemma 2.12]). If θ′ is an infinitesimal derivative of θ, then

1) θ′ is horizontal,

2) θ′ is tensorial of type ad modulo ω, namely, R∗
gθ

′ − g−1θ′g ∈ I(ω).

Proof. Let u ∈ P . If X ∈ TuP satisfies π∗X = 0, then ω(X) = 0, where ω is

the canonical form. As ω′ is horizontal, one has also ω′(X) = 0. We extend X to

an equivariant vector field on P and denote the extension again by X. Note that

X is vertical because π∗Xu = 0. Let Yj , j = 1, . . . , q, be vector fields on P which

are equivariant under the right action of GL(q;C), and such that ωk((Yk)u) = 1

and ωk((Yj)u) = 0 if j �= k. We set α = ω′ − Aω, where A is a matrix valued

function defined by setting A = (ω′(Y1) · · · ω′(Yq)). Then α is horizontal. Note

that XuA = 0 because the both Yj and ω′ are equivariant and X is vertical. Then

α(Yu) = 0 and ω(Yu) is the identity matrix. One has by (4.3.8)

dα = −θ ∧ ω′ − θ′ ∧ ω − dA ∧ ω +Aθ ∧ ω
= −θ ∧ α− θ′ ∧ ω − dA ∧ ω +Aθ ∧ ω − θ ∧Aω.

On the other hand, since π∗[X,Y ]u = 0, we have dα(Xu, Yu) = Xα(Y )u−Y α(X)u−
α([X,Y ]u) = 0. It follows that

θ′(Xu) = θ′(Xu)ω(Yu)

= (θ′ ∧ ω)(Xu, Yu)

= (−θ ∧ α− dA ∧ ω +Aθ ∧ ω − θ ∧Aω)(Xu, Yu)

= −dA(Xu) +Aθ(Xu)− θ(Xu)A.

Since dA(Xu) = XuA = 0, it suffices to show that θ(Xu) = 0. This follows from the

equalities θ(Xu) = θ(Xu)ω(Yu) = (θ∧ω)(Xu, Yu) = −dω(Xu, Yu) and dω(Xu, Yu) =

Xω(Y )u − Y ω(X)u − ω([X,Y ]u) = 0. In order to show 2), note that R∗
gθ = g−1θg,

R∗
gω = g−1ω and R∗

gω
′ = g−1ω′. Applying R∗

g to (4.3.8), we see that

−R∗
gθ

′ ∧ g−1ω = g−1dω′ + g−1θg ∧ g−1ω′ = −g−1θ′g ∧ g−1ω,

from which 2) follows. �



4.3. INFINITESIMAL DEFORMATIONS AND RIGIDITY 85

Definition 4.3.12. Let ϕ̃ ∈ W̃Uq be a lift of a cocycle ϕ in WUq, β ∈
H1(M ; ΘF ) and σ a representative of β. Let θu be a unitary connection for some

Hermitian metric on Q(F) and θ a Bott connection. Let Ω be the curvature form

of θ, and let θ′ be an infinitesimal derivative of θ with respect to σ. Under these

assumptions, we define a differential form on P by

Dσ(ϕ̃) = Δϕ̃(θu, θ, θ′),

where the right hand side is as in Definition 4.2.4.

We will show in Lemma 4.3.15 and Theorem 4.3.18 that Dσ(ϕ̃) projects down to

a closed form onM , and that its cohomology class depends only on [ϕ] ∈ H∗(WUq)

and β ∈ H1(M ; ΘF ). Then the following definition is justified.

Definition 4.3.13. For f ∈ H∗(WUq) and β ∈ H1(M ; ΘF ), the infinitesimal

derivative of f with respect to β is defined as follows. Let ϕ and σ be representatives

of f and β, respectively. Set then Dβ(f) = [Dσ(ϕ̃)], where ϕ̃ is any lift of ϕ to W̃Uq.

Remark 4.3.14. If

ϕ = (ũi1vi2 · · · vik) + (vi1 ũi2vi3 · · · vik) + · · ·+ (vi1 · · · vik−1
ũik),

then ϕ is denoted by hcI in [42, Definition 3.14], and Dβ(ϕ̃) coincides with the

original definition. Moreover, if we begin with cocycles of the form hIcJ ∈ WOq

and repeat the same construction, then the same differential forms appeared in [42]

are obtained by following Definition 4.3.13. In this sense, the formula in Defin-

ition 4.3.13 is a complex version of (2.15) in [42].

Proof of Theorem B2. Once infinitesimal derivatives are seen to be well-

defined, the theorem follows from Definition 4.3.12 by using (4.2.5b). �

We come back to verify that infinitesimal derivatives are well-defined.
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Lemma 4.3.15 ([42, Theorem 3.17]). The differential form Dσ(ϕ̃) in Defin-

ition 4.3.12 projects down to a well-defined closed form on M which depends on σ,

θ, θu and the choice of the lift ϕ̃.

Proof.

Claim 1. Dσ(ϕ̃) is independent of the choice of θ′.

Let θ′0 and θ′1 be infinitesimal derivatives of θ with respect to σ and let g be a

monomial in v1, . . . , vq and v1, . . . , vq. Since θ′1 − θ′0 = λω by (4.3.10), g(θ′1,Ω) −
g(θ′0,Ω) = g(λω,Ω). As ϕ̃ is a lift of a cocycle, d̃ϕ̃ is a linear combination of cochains

in Ĩq. It follows that Δϕ̃(θu, θ, θ′1)−Δϕ̃(θu, θ, θ′0) ∈ I(ω)q+1 ∪ I(ω)q+1
= {0}.

Claim 2. Dσ(ϕ̃) projects down to M .

It suffices to show that vJvK(vil − vil)(θ
′,Ω) projects down to M . We have

R∗
g (vJvK(vil − vil)(θ

′,Ω))− vJvK(vil − vil)(θ
′,Ω)

= vJvK(vil − vil)(R
∗
gθ

′, g−1Ωg)− vJvK(vil − vil)(g
−1θ′g, g−1Ωg)

= vJvK(vil − vil)(R
∗
gθ

′ − g−1θ′g, g−1Ωg).

It follows that R∗
gΔϕ̃(θ

u, θ, θ′) = Δϕ̃(θu, θ, θ′) from Lemma 4.3.11 ii) and an argu-

ment as in the proof of Claim 1.

Claim 3. Dσ(ϕ̃) is closed.

Note that d̃ϕ̃ is a linear combination of cochains of the form ũIvJvK with |J | > q

or |K| > q. Since Dσ(ϕ̃) = Δϕ̃(θu, θ, θ′) = δ(d̃ϕ̃)(θu, θ, θ′) and since d̃(d̃ϕ̃) = 0,

Dσ(ϕ̃) is closed by the Lemma 4.3.17 below. �

The following differential forms are convenient.

Definition 4.3.16. Let θu0 and θu1 be unitary connections, not necessarily with

respect to the same Hermitian metric, and let ũIvJvK ∈ W̃Uq. We decompose

I = I1 ∪ I2 so that I1 consists only of indices less than or equal to i, and I2 consists

only of indices greater than i. We set then ũ
(i)
I (θ, θu0 , θ

u
1 ) = ũI1(θ, θ

u
0 )ũI2(θ, θ

u
1 ), and

δi(ũIvJvK)(θu0 , θ
u
1 , θ, θ

′) = (|J |+ |K|)vJvK(θ′,Ω)ũ(i)I (θ, θu0 , θ
u
1 ).

We extend δi to the whole W̃Uq by linearity.
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The proof of Lemma 4.3.15 is completed by the following lemma.

Lemma 4.3.17. Let ϕ̃ ∈ W̃Uq. If d̃ϕ̃ = 0 and if ϕ̃ ∈ Ĩq, then δi(ϕ̃)(θu0 , θu1 , θ, θ′)
is closed. In particular, vJvK(θ′,Ω) is closed if |J | > q or |K| > q.

Proof. We first assume that |J | > q and show that vJ(θ
′,Ω) is closed. We

write Ωi
j =

∑
k

Γ i
j,k ∧ ωk and set Ω′i

j =
∑
k

Γ i
j,k ∧ ω′k. Then Ω ∧ ω′ = −Ω′ ∧ ω. On

the other hand, by using (4.3.8) and the equalities Ω = dθ+ θ∧ θ, dω = −θ∧ω and

(4.3.8), we obtain

−Ω ∧ ω′ = (dθ′ + [θ, θ′]) ∧ ω,
where [θ, θ′] = θ ∧ θ′ + θ′ ∧ θ. Hence vJ(dθ′ + [θ, θ′],Ω) = vJ(Ω

′,Ω).

Let Is(ω) be the ideal of differential forms on P generated by ω1+sω′1, . . . , ωq+

sω′q. Then, for any s, we have Is(ω)q+1 = {0}. If we set Ω(s) = Ω + sΩ′, then

Ω(s) ∈ Is(ω) because (Ω(s))ij =
∑
k

Γ i
j,k ∧ (ωk + sω′k). Since vJ(Ω(s)) is identically

zero, we have the following equality:

d(vJ(θ
′,Ω)) = vJ(dθ

′,Ω)− (|J | − 1)vJ(θ
′, dΩ,Ω)

= vJ(dθ
′,Ω) + (|J | − 1)vJ(θ

′, [θ,Ω],Ω)

= vJ(dθ
′ + [θ, θ′],Ω)

= vJ(Ω
′,Ω)

=
1

|J |
∂

∂s
vJ(Ω(s))

∣∣∣∣
s=0

= 0.

On the other hand, by (4.2.5b),

(|J |+ |K|)vJvK(θ′,Ω) = |J | vJ(θ′,Ω)vK(Ω) + |K| vJ(Ω)vK(θ′,Ω).

Hence vJvK(θ′,Ω) is closed. Similarly, vJvK(θ′,Ω) is also closed if |K| > q.

Assume now that ϕ̃ =
∑
t

xtũItvJt
vKt

, where xt ∈ C. We may furthermore

assume that the numbers of elements of It are constant, which is denoted by #I. If
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#I = 0, then δi(ϕ̃)(θ
u
0 , θ

u
1 , θ, θ

′) is already shown to be closed. If #I > 0, then we have

d(δi(ϕ̃)(θ
u
0 , θ

u
1 , θ, θ

′))

=
∑
t,l

(−1)lxt(|Jt|+ |Kt|)vJt
vKt

(θ′,Ω)(vil − vil)(Ω)ũ
(i)
It(l)

(θ, θu0 , θ
u
1 ).

Since |Jt| > q or |Kt| > q, we have

vJt
(θ′,Ω)vil(Ω)vKt

(Ω) = vJt
(Ω)vKt

(θ′,Ω)vil(Ω) = 0.

Hence

d(δi(ϕ̃)(θ
u
0 , θ

u
1 , θ, θ

′)) =
∑
t,l

−(−1)lxt |Jt| vJt
(θ′,Ω)vKt

(Ω)vil(Ω)ũ
(i)
It(l)

(θu, θ)

+
∑
t,l

(−1)lxt |Kt| vJt
(Ω)vil(Ω)vKt

(θ′,Ω)ũ(i)It(l)
(θu, θ).

Now by (4.2.5a) and (4.2.5b),

(|Jt|+ |Kt|+ il)vJt
vKt

vil(θ
′,Ω) = |Jt| vJt

(θ′,Ω)vKt
vil(Ω),

and

(|Jt|+ |Kt|+ il)vJt
vilvKt

(θ′,Ω) = |Kt| vJt
vil(Ω)vKt

(θ′,Ω).

Therefore,

d(δi(ϕ̃)(θ
u
0 , θ

u
1 , θ, θ

′)) =
∑
t,l

−(−1)lxt(|Jt|+ |Kt|+ il)vJt
vKt

vil(θ
′,Ω)ũ(i)It(l)

(θu, θ)

+
∑
t,l

(−1)lxt(|Jt|+ |Kt|+ il)vJt
vilvKt

(θ′,Ω)ũ(i)It(l)
(θu, θ)

= δi(d̃ϕ̃)(θ
u
0 , θ

u
1 , θ, θ

′)

= 0

because d̃ϕ̃ = 0. This completes the proof of Lemma 4.3.17. �

If f ∈ H∗(WUq) and β ∈ H1(M ; ΘF ), then we have the following

Theorem 4.3.18 (cf. [42, Theorem 3.17]). Let ϕ and σ be representatives of f

and β, respectively, and let ϕ̃ be any lift of ϕ to W̃Uq. Then the cohomology class

[Dσ(ϕ̃)] is independent of the choice of representatives and lifts.
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Proof. Let θu, θ, θ′, Ω be as in Definition 4.3.12.

Claim 1. [Dσ(ϕ̃)] is independent of the choice of the Bott connection θ.

Let θ0 and θ1 be Bott connections and choose their infinitesimal derivatives

θ′0 and θ′1 with respect to σ. Note that Dσ(ϕ̃) is independent of the choice of

infinitesimal derivatives by Lemma 4.3.15. We set θt = θ0 + t(θ1 − θ0). Then θt

is also a Bott connection and θ′t = θ′0 + t(θ′1 − θ′0) is an an infinitesimal derivative

of θt. Let Ωt be the connection form of θt. We will show that
∂

∂t
Δϕ̃(θu, θt, θ

′
t) is

exact. First we consider the case where the d̃ϕ̃ does not involve any ũi. Note that

Δϕ̃(θu, θt, θ
′
t) is calculated by evaluating d̃ϕ̃ ∈ Ĩq. One has

d(vJvK(θ′t, θ1 − θ0,Ωt)) = vJvK(dθ′t, θ1 − θ0,Ωt)− vJvK(θ′t, dθ1 − dθ0,Ωt)

− (|J |+ |K| − 2)vJvK(θ′t, θ1 − θ0, [θt,Ωt],Ωt)

= vJvK(dθ′t + [θt, θ
′
t], θ1 − θ0,Ωt)

− vJvK(θ′t, dθ1 − dθ0 + [θt, θ1 − θ0],Ωt).

Note that each of the differential forms in the above equality projects down to M .

On the other hand,

∂

∂t
vJvK(θ′t,Ωt)

= vJvK(θ′1 − θ′0,Ωt) + (|J |+ |K| − 1)vJvK(θ′t, d(θ1 − θ0) + [θt, θ1 − θ0],Ωt).

Hence

∂

∂t
vJvK(θ′t,Ωt) + (|J |+ |K| − 1) d(vJvK(θ′t, θ1 − θ0,Ωt))

= vJvK(θ′1 − θ′0,Ωt) + (|J |+ |K| − 1)vJvK(dθ′t + [θt, θ
′
t], θ1 − θ0,Ωt).

As in the proof of Lemma 4.3.17, we write (Ωt)
i
j =

∑
k

Γ i
j,k ∧ ωk and set (Ω′

t)
i
j =∑

k

Γ i
j,k ∧ ω′k. Then Ω′

t ∧ ω = (dθ′t + [θt, θ
′
t]) ∧ ω. Since θ0 ∧ ω = θ1 ∧ ω = −dω,

(θ1 − θ0) ∧ ω = 0. Hence (θ1 − θ0)
i
j =

∑
k

λij,kω
k for some λij,k. Now by (4.3.8), we

have (θ′1 − θ′0) ∧ ω = −(λω) ∧ ω′ = (λω′) ∧ ω. If we set Ω(s, t) = Ωt + sΩ′
t, θ(s) =

(θ1 − θ0)+ sλω′ and Is(ω) = I(ω1 + sω′1, . . . , ωq + sω′q), then Ω(s, t), θ(s) ∈ Is(ω).
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Therefore, vJvK(θ(s),Ω(s, t)) = 0 if |J | > q or |K| > q. Differentiating with respect

to s and setting s = 0, we obtain

vJvK(λω′,Ωt) + (|J |+ |K| − 1)vJvK(θ1 − θ0,Ω
′
t,Ωt) = 0.

As the left hand side is equal to vJvK((θ′1 − θ′0,Ωt) + (|J | + |K| − 1)vJvK(θ1 −
θ0, dθ

′
t + [θt, θ

′
t],Ωt),

∂

∂t
vJvK(θ′t,Ωt) = −(|J |+ |K| − 1) d(vJvK(θ′t, θ1 − θ0,Ωt))

if |J | > q or |K| > q.

Suppose now that d̃ϕ̃ involves some of ũi’s. We write d̃ϕ̃ =
∑
i

xivJi
vKi

ũIi ,

where |Ji| > q or |Ki| > q, and xi ∈ C. Then by definition,

Δϕ̃(θu, θt, θ
′
t) =

∑
i

xi(|Ji|+ |Ki|)vJi
vKi

(θ′t,Ωt)ũIi(θt, θ
u).

Hence

∂

∂t
Δϕ̃(θu, θt, θ

′
t)

=−
∑
i

xi(|Ji|+ |Ki|)(|Ji|+ |Ki| − 1) d(vJi
vKi

(θ′t, θ1 − θ0,Ωt))ũIi(θt, θ
u)

+
∑
i,l

xi(|Ji|+ |Ki|)vJi
vKi

(θ′t,Ωt)(−1)l−1il(il − 1) dṼil(θt, θ
u)ũIi(l)(θt, θ

u)

+
∑
i,l

xi(|Ji|+ |Ki|)vJi
vKi

(θ′t,Ωt)(−1)l−1ilṽil(θ1 − θ0,Ωt)ũIi(l)(θt, θ
u),

where Ii(l) = Ii \ {il}. If we fix an integer k and rewrite d̃ϕ̃ as d̃ϕ̃ = ũkαk + βk so

that αk and βk do not involve ũk, then d̃(d̃ϕ̃) = 0 implies that d̃αk = 0. Hence∑
i,l

il=k

xi(|Ji|+ |Ki|)vJi
vKi

(θ′t,Ωt)(−1)l−1il(il − 1) dṼil(θt, θ
u)ũIi(l)(θt, θ

u)

= k(k − 1) d(Ṽk(θt, θ
u) δ(αk)(θ

u, θt, θ
′
t))
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because δ(αk)(θ
u, θt, θ

′
t) is closed by Lemma 4.3.17. Hence

∂

∂t
Δϕ̃(θu, θt, θ

′
t) is co-

homologous to R, where

R =−
∑
i

xi(|Ji|+ |Ki|)(|Ji|+ |Ki| − 1) d(vJi
vKi

(θ′t, θ1 − θ0,Ωt))ũIi(θt, θ
u)

+
∑
i,l

xi(|Ji|+ |Ki|)vJi
vKi

(θ′t,Ωt)(−1)l−1ilṽil(θ1 − θ0,Ωt)ũIi(l)(θt, θ
u).

It suffices to show that R is exact. This is indeed done as follows, namely, by (A.6b)

we have the following equality:

−(|Ji|+|Ki|)(|Ji|+|Ki|−1)d(vJi
vKi

(θ′t,θ1−θ0,Ωt))ũIi(θt,θ
u)

≡(|Ji|+|Ki|)(|Ji|+|Ki|−1)vJi
vKi

(θ′t,θ1−θ0,Ωt)dũIi(θt,θ
u)

=
∑
l

(|Ji|+|Ki|)(|Ji|+|Ki|−1)vJi
vKi

(θ′t,θ1−θ0,Ωt)(−1)l−1(vil−vil)(Ωt)ũIi(l)(θt,θ
u)

=−
∑
l

|Ji|(|Ji|−1)vJi
(θ′t,θ1−θ0,Ωt)vKi

(Ωt)(−1)l−1vil(Ωt)ũIi(l)(θt,θ
u)

−
∑
l

|Ji||Ki|vJi
(θ′t,Ωt)vKi

(θ1−θ0,Ωt)(−1)l−1vil(Ωt)ũIi(l)(θt,θ
u)

−
∑
l

|Ji||Ki|vJi
(θ1−θ0,Ωt)vil(Ωt)vKi

(θ′t,Ωt)(−1)l−1ũIi(l)(θt,θ
u)

+
∑
l

|Ki|(|Ki|−1)vJi
(Ωt)vil(Ωt)vKi

(θ′t,θ1−θ0,Ωt)(−1)l−1ũIi(l)(θt,θ
u),

where the symbol ‘≡’ means that the equality holds modulo exact forms. On the

other hand, we have

(|Ji|+ |Ki|)vJi
vKi

(θ′t,Ωt)(−1)l−1ilṽil(θ1 − θ0,Ωt)ũIi(l)(θt, θ
u)

=− |Ji| vJi
(θ′t,Ωt)vKi

(Ωt)(−1)l−1ilvil(θ1 − θ0,Ωt)ũIi(l)(θt, θ
u)

− |Ki| vJi
(Ωt)vil(θ1 − θ0,Ωt)vKi

(θ′t,Ωt)(−1)l−1ilũIi(l)(θt, θ
u).

Therefore, we have

R ≡−
∑
i,l

xi |Ji| (|Ji| − 1)vJi
(θ′t, θ1 − θ0,Ωt)vKi

(Ωt)vil(Ωt)(−1)l−1ũIi(l)(θt, θ
u)

−
∑
i,l

xi |Ji| (|Ki|+ il)vJi
(θ′t,Ωt)vKi

vil(θ1 − θ0,Ωt)(−1)l−1ũIi(l)(θt, θ
u)

−
∑
i,l

xi(|Ji|+ il) |Ki| vJi
vil(θ1 − θ0,Ωt)vKi

(θ′t,Ωt)(−1)l−1ũIi(l)(θt, θ
u)

+
∑
i,l

xi |Ki| (|Ki| − 1)vJi
(Ωt)vil(Ωt)vKi

(θ′t, θ1 − θ0,Ωt)(−1)l−1ũIi(l)(θt, θ
u).
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Let R′ be the right hand side of the above equality. Then by (A.6b),

(|Ji|+ |Ki|+ il)vJi
vilvKi

(θ′t, θ1 − θ0,Ωt)

= −(|Ji|+ il) |Ki| vJi
vil(θ1 − θ0,Ωt)vKi

(θ′t,Ωt)

+ |Ki| (|Ki| − 1)vJi
vil(Ωt)vKi

(θ′t, θ1 − θ0,Ωt),

and

(|Ji|+ |Ki|+ il)vJi
vKi

vil(θ
′
t, θ1 − θ0,Ωt)

= |Ji| (|Ji| − 1)vJi
(θ′t, θ1 − θ0,Ωt)vKi

vil(Ωt)

+ |Ji| (|Ki|+ il)vJi
(θ′t,Ωt)vKi

vil(θ1 − θ0,Ωt).

It follows that

R′ =
∑
i,l

xi(|Ji|+ |Ki|+ il)vJi
vilvKi

(θ′t, θ1 − θ0,Ωt)(−1)l−1ũIi(l)(θt, θ
u)

−
∑
i,l

xi(|Ji|+ |Ki|+ il)vJi
vKi

vil(θ
′
t, θ1 − θ0,Ωt)(−1)l−1ũIi(l)(θt, θ

u)

= δ(d̃d̃ϕ̃)(θu, θt, θ
′
t)

= 0.

Claim 2. [Dσ(ϕ̃)] is independent of the choice of the unitary connection θu.

We first show that ũi(θ, θ
u
1 ) − ũi(θ, θ

u
0 ) = dṼ ′

i for some differential form Ṽ ′
i if

θu0 and θu1 are unitary connections. Suppose that θu0 and θu1 are unitary connections

for a fixed Hermitian metric on Q(F). Let f = ṽi = vi − vi, θ
s
1 = θ+ s(θu1 − θ) and

θ0 = θu0 . Then we substitute them into (4.2.2a) and integrate it with respect to s.

We obtain

Δṽi
(θu1 , θ

u
0 )−Δṽi

(θ, θu0 ) = k(k − 1) dWṽi
(θu1 , θ

u
0 ) + Δṽi

(θu1 , θ),

where Wṽi
(θu1 , θ

u
0 ) =

∫ 1

0

Vṽi
(θs1, θ

u
0 ) ds. Hence

(4.3.19) Δṽi
(θ, θu1 )−Δṽi

(θ, θu0 ) + Δṽi
(θu1 , θ

u
0 ) = k(k − 1) dWṽi

(θu1 , θ
u
0 ).
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We set θut = θu0 + t(θu1 − θu0 ). Then by (4.2.2a),

∂

∂t
Δṽi

(θut , θ
u
0 ) = k(k − 1) dVṽi

(θut , θ0) + kṽi(θ
u
1 − θu0 ,Ω

u
t , . . . ,Ω

u
t ).

Since θu0 and θu1 are unitary and since Vṽi
= Ṽi,

∂

∂t
Δṽi

(θut , θ
u
0 ) = k(k − 1) dṼi(θ

u
t , θ0).

Hence ũi(θ, θ
u
1 )− ũi(θ, θ

u
0 ) is exact if θ

u
0 and θu1 are unitary connections for a fixed

Hermitian metric.

Let now h0 and h1 be Hermitian metrics on Q(F) and let θu0 and θu1 be unitary

connections for h0 and h1, respectively. The equality (4.3.19) is still valid so that

it suffices to show that Δf (θ
u
1 , θ

u
0 ) is exact if f = ṽi = vi − vi. We denote by ιt

the natural isomorphism from M to M × {t} and by π the projection from M × R

to R. We consider then the foliation F × R of M × R whose leaves are given by

L × R, where L is a leaf of F . Let θ̃u be a unitary connection on Q(F × R) for

some Hermitian metric such that θut = θu0 for t ≤ 0 and θut = θu1 for t ≥ 1, where

θut = ι∗t θ̃u. We write Δṽi
(θ̃u, π∗θu0 ) = λ+ μ ∧ dt so that λ and μ do not involve dt.

Then we define a differential form Ṽ ′
i (θ

u
1 , θ

u
0 ) on M by setting

Ṽ ′
i (θ

u
1 , θ

u
0 ) = −

∫ 1

0

μdt.

We have dṼ ′
i (θ

u
1 , θ

u
0 ) = Δṽi

(θu1 , θ
u
0 ), which can be shown as follows. First,

dM×RΔṽi
(θ̃u, π∗θ0) =

(
vi(θ̃

u)− π∗vi(θu0 )
)− (vi(θ̃u)− π∗vi(θu0 )

)
= 0.

Hence
∂λ

∂t
+ dMμ = 0, where dM denotes the exterior derivative along the fiber of

π : M × R → R. On the other hand,

dṼ ′
i (θ

u
1 , θ

u
0 ) = −

∫ 1

0

dMμdt =

∫ 1

0

∂λ

∂t
dt = λ(1)− λ(0)

and λ(t) = ι∗tλ = ι∗tΔṽi
(θ̃u, π∗θ0) = Δṽi

(θut , θ0). Finally, λ(1) = Δṽi
(θu1 , θ

u
0 ) and

λ(0) = Δṽi
(θu0 , θ

u
0 ) = 0.
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Let ϕ̃ ∈ W̃Uq be the natural lift of ϕ. Let αi and βi be such that d̃ϕ̃ = ũiαi+βi

and that αi and βi do not involve ũi. Then

Δϕ̃(θu1 , θ, θ
′) = δ0(d̃ϕ̃)(θ

u
0 , θ

u
1 , θ, θ

′)

and

Δϕ̃(θu1 , θ, θ
′) = δq(d̃ϕ̃)(θ

u
0 , θ

u
1 , θ, θ

′).

Hence it suffices to show that δk−1(d̃ϕ̃)(θ
u
0 , θ

u
1 , θ, θ

′) and δk(d̃ϕ̃)(θ
u
0 , θ

u
1 , θ, θ

′) are

cohomologous for each k. Since βk does not involve ũk,

δk−1(d̃ϕ̃)(θ
u
0 , θ

u
1 , θ, θ

′)

= −ũk(θ, θu1 ) δk−1(αk)(θ
u
0 , θ

u
1 , θ, θ

′) + δk−1(βk)(θ
u
0 , θ

u
1 , θ, θ

′)

= −ũk(θ, θu1 ) δk−1(αk)(θ
u
0 , θ

u
1 , θ, θ

′) + δk(βk)(θ
u
0 , θ

u
1 , θ, θ

′).

On the other hand, d̃α̃i = 0 because d̃d̃ϕ̃ = 0. It follows that

dδk−1(αk)(θ
u
0 , θ

u
1 , θ, θ

′) = 0

by Lemma 4.3.17. Hence

δk−1(d̃ϕ̃)(θ
u
0 , θ

u
1 , θ, θ

′) + d(Ṽ ′
kδk−1(αk)(θ

u
0 , θ

u
1 , θ, θ

′))

= −ũk(θ, θu0 ) δk−1(αk)(θ
u
0 , θ

u
1 , θ, θ

′) + δk(βk)(θ
u
0 , θ

u
1 , θ, θ

′)

= −ũk(θ, θu0 ) δk(αk)(θ
u
0 , θ

u
1 , θ, θ

′) + δk(βk)(θ
u
0 , θ

u
1 , θ, θ

′)

= δk(d̃ϕ̃)(θ
u
0 , θ

u
1 , θ, θ

′)

because αk does not involve ũk.

Claim 3. [Dσ(ϕ̃)] is independent of the choice of representative of β.

We recall that representatives of β are by definition sections of E∗⊗Q(F). They

are considered as Cq-valued 1-forms on P after arbitrarily extended to sections of

T ∗
CM ⊗Q(F) and then lifted to P .

We first show that [Dσ(ϕ̃)] is independent of such extensions as above. Suppose

that σ0 and σ1 are representatives of β and assume that σ0 = σ1 when restricted to

π∗E, where π : P →M is the projection. Then σ1−σ0 = μω for some gl(q;C)-valued
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function μ. Let θ′0 and θ′1 be infinitesimal derivatives of θ with respect to σ0 and

σ1, respectively. Then by (4.3.8),

(θ′1 − θ′0) ∧ ω = d(σ1 − σ0) + θ ∧ (σ1 − σ0) = (dμ+ [θ, μ]) ∧ ω.

Hence

vJvK(θ′1,Ω)− vJvK(θ′0,Ω) = vJvK(dμ+ [θ, μ],Ω)

= vJvK(dμ,Ω) + (|J |+ |K| − 1)vJvK(μ,−[θ,Ω])

= vJvK(dμ,Ω) + (|J |+ |K| − 1)vJvK(μ, dΩ)

= d(vJvK(μ,Ω)).

Let ũIvJvK be an element of W̃Uq such that |J | > q. Then

(|J |+ |K|)vJvK(θ′1,Ω)ũI(θ, θ
u)− vJvK(θ′0,Ω)ũI(θ, θ

u)

= d((|J |+ |K|)vJvK(μ,Ω))ũI(θ, θ
u)

= d(|J | vJ(μ,Ω)vK(Ω))ũI(θ, θ
u)

≡−|J | vJ(μ,Ω)vK(Ω)dũI(θ, θ
u)

=−|J |
∑
t

(−1)t−1vJ(μ,Ω)vK(Ω)(vit − vit)(Ω)ũI(t)(θ, θ
u)

= |J |
∑
t

(−1)t−1vJ(μ,Ω)vK(Ω)vit(Ω)ũI(t)(θ, θ
u)

= (|J |+ |K|+ it)
∑
t

(−1)t−1vJvKvit(μ,Ω)ũI(t)(θ, θ
u)

= δ(d̃(ũIvJvK))(θu, θ, μ).

Similarly, if |K| > q then we have

(|J |+ |K|)vJvK(θ′1,Ω)ũI(θ, θ
u)− vJvK(θ′0,Ω)ũI(θ, θ

u) ≡ δ(d̃(ũIvJvK))(θu, θ, μ).

Hence

δ(d̃ϕ̃)(θu, θ, θ′1)− δ(d̃ϕ̃)(θu, θ, θ′0) ≡ δ(d̃d̃ϕ̃)(θu, θ, μ) = 0.

Since Dσ0+σ1
(ϕ̃) = Dσ0

(ϕ̃) + Dσ1
(ϕ̃), the proof of Claim 3 is completed if

we show that Dσ(ϕ̃) is exact for any section σ which corresponds to d�γ, where

γ is a section of E∗ ⊗ Q(F) and d� is as in Definition 4.3.1. By the definition,
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such a σ can be obtained as follows. We choose an extension Y of γ to TCM and

let Ŷ be its horizontal lift. Let g be a function on P defined by g(u) = ω(Ŷu).

Then dg + θg can be chosen as σ, and we have by definition ω′ = −dg − θg.

An infinitesimal derivative θ′ with respect to σ is by definition a gl(q;C)-valued

1-form satisfying θ′ ∧ ω = −dω′ − θ ∧ ω′. The right hand side is now equal to

dθg − θ ∧ dg + θ ∧ dg + θ ∧ θg = Ωg. If {Γk} is a family of gl(q;C)-valued 1-forms

such that Ω =
∑
k

Γk∧ωk, then Ωg =
∑
k

Γkg∧ωk. Note that if we write Γk = (Γ i
j,k),

then Γ i
j,k = Γ i

k,j . Hence

(∑
k

Γkω
k(Ŷ )

)
∧ω =

(∑
k

Γkg
k

)
∧ω =

∑
j

Γjg∧ωj = Ωg

and

(∑
k

Γk(Ŷ )ωk

)
∧ ω = 0. Hence by setting θ′ = −iŶ Ω, we see that

θ′ ∧ ω =
∑
k

(Γk(Ŷ )ω)ωk +

(∑
k

Γkω
k(Ŷ )

)
∧ ω = Ωg.

Therefore, for this choice of θ′,

vJvK(θ′,Ω) = − 1

|J |+ |K| iŶ vJvK(Ω) = 0

if |J | > q or |K| > q. Hence δ(d̃ϕ̃)(θu, θ, θ′) = 0 if ϕ is closed in WUq.

Claim 4. [Dσ(ϕ̃)] is independent of the choice of ϕ and its lift ϕ̃.

It suffices to show that Dσ(d̃ϕ̃+α) is exact, where ϕ̃ ∈ W̃Uq and α ∈ Ĩq. First,
Dσ(d̃ϕ̃) = 0 because d̃(d̃ϕ̃) = 0. In order to show that Dσ(α) is exact for α ∈ Ĩq,
we first show the claim for α = ũIvJvK with |J | > q. If I is empty, then d̃α = 0

so that Dσ(α) = Δα(θu, θ, θ′) = 0. If I is non-empty, then by using the equalities

vJ(Ω) = 0 and vJ(θ
′,Ω)vil(Ω) = 0, we have

Dσ(α) = Δα(θu, θ, θ′)

=
∑
l

(−1)l−1(|J |+ |K|+ il) (vJvK(vil − vil)) (θ
′,Ω)ũI(l)(θu, θ)

=
∑
l

(−1)l |J | vJ(θ′,Ω)vK(Ω)vil(Ω)ũI(l)(θ
u, θ)

= d(|J | vJ(θ′,Ω)vK(Ω)ũI(θ
u, θ)),
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where the last equality holds because vJ(θ
′,Ω) is closed by Lemma 4.3.17. Similarly,

Dσ(α) is exact if |K| > q.

This completes the proof of Theorem 4.3.18. �

Finally we show that the infinitesimal derivative of secondary classes coincide

with the actual derivative when there is an actual deformation realizing the infini-

tesimal derivative.

An actual deformation induces an infinitesimal derivative as follows. We express

by ‘˙’ the derivative with respect to s at 0 ∈ S, where 0 ∈ S is a distinguished point.

We have

(4.3.20) ϕ̇j,s = γ̇ji,s ◦ ϕi,0 +
∂γji,0
∂zi

ϕ̇i,s,

where γ̇ji,s is regarded as a holomorphic vector field on an open set of Cq.

Definition 4.3.21 ([53], [31]). The infinitesimal deformation associated with

{Fs} is an element of H1(M ; ΘF ), where F = F0, represented by the 1-cocycle of

which the value on Ui ∩ Uj is the vector field

(ϕj,0)
∗γ̇ji,s ∈ ΘF |Ui∩Uj

.

Note that ΘF |Ui∩Uj
is the pull-back of ΘTj,i

by ϕj,0, where Tj,i is an open subset

of ϕj,0(Uj).

Definition 4.3.22 ([40, Definition 2.7]). Let {Fs} be a smooth deformation of

transversely holomorphic foliations of M , and let πs be the projection from TCM to

Q(Fs). We fix a Hermitian metric on TCM . Assuming that s is small if necessary,

we can find, by using the metric, a smooth family of splittings TCM = Es ⊕ νs,

where νs ∼= Q(Fs). Let π′
s be the projection from TCM to νs. The infinitesimal

deformation σ associated with {Fs} is the smooth section σ of E∗
0⊗Q(F0) defined by

σ(X) = −π0
(
∂

∂s
π′
s(X)

∣∣∣∣
s=0

)
.

Lemma 4.3.23 ([40, Lemma 2.8]). σ is independent of the choice of the splitting.
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Proof. We will give an essentially the same as the one in [40] but slightly

different proof. It suffices to work on a foliation chart. Let {e1, . . . , eq} be a local

frame of Q(F0), Fix a splitting as above and let {e′1, . . . , e′q} be the lift of {e1, . . . , eq}
to TCM . We may assume that there is a smooth family of frames {e′1(s), . . . , e′q(s)}

of νs such that e′i(0) = e′i, i = 1, . . . , q. If X ∈ E0, then π
′
s(X) =

q∑
i=1

fi(X, s)e
′
i(s)

holds for some functions fi. Since 0 = π′
0(X) =

q∑
i=1

fi(X, 0)e
′
i, we have fi(X, 0) = 0

for any i. Hence

∂

∂s
π′
s(X)

∣∣∣∣
s=0

=

q∑
i=1

∂fi
∂s

(X, s)

∣∣∣∣
s=0

e′i(0) +
q∑

i=1

fi(X, 0)
∂e′i
∂s

(0)

=

q∑
i=1

∂fi
∂s

(X, s)

∣∣∣∣
s=0

e′i(0).

Therefore

π0

(
∂

∂s
π′
s(X)

∣∣∣∣
s=0

)
=

q∑
i=1

∂fi
∂s

(X, s)

∣∣∣∣
s=0

ei(0).

Let TCM = Es ⊕ ν′s be another splitting and let {e′′1(s), . . . , e′′q (s)} be the family of

frames of ν′s such that πse
′′
i (s) = πse

′
i(s) ∈ Q(Fs). If we denote by π

′′
s the projection

to ν′s, then π
′′
s (X) =

q∑
i=1

fi(X, s)e
′′
i (s). In other words, fi’s are independent of the

choice of splitting. Hence so is σ. �

Lemma 4.3.24 ([40, Corollary 2.11]). d�σ = 0.

Proof. Let X,Y ∈ E0. Then, ∇XZ = π0[X, Z̃] for Z ∈ Q(F), where Z̃ is any

lift of Z to TCM . Hence

d�σ(X,Y ) =∇Xσ(Y )−∇Y σ(X)− σ([X,Y ])

=π0([X, σ̃(Y )])− π0([Y, σ̃(X)])− σ([X,Y ]),

=π0

([
X,−π′

0

∂

∂s
π′
s(Y )

∣∣∣∣
s=0

])
− π0

([
Y,−π′

0

∂

∂s
π′
s(X)

∣∣∣∣
s=0

])
+ π0

(
∂

∂s
π′
s[X,Y ]

∣∣∣∣
s=0

)
.
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If v ∈ Es, then π
′
s

∂

∂s
π′
s(v) =

∂

∂s
π′
s(v). Indeed, π

′
s ◦ π′

s = π′
s implies that(

∂

∂s
π′
s

)
π′
s + π′

s

(
∂

∂s
π′
s

)
=

∂

∂s
π′
s.

Hence
∂

∂s
π′
s(v) ∈ νs. Therefore

π′
0

([
X,−π′

0

∂

∂s
π′
s(Y )

∣∣∣∣
s=0

])
= −π′

0

([
X,

∂

∂s
π′
s(Y )

∣∣∣∣
s=0

])
.

Similarly,

π′
0

([
Y,−π′

0

∂

∂s
π′
s(X)

∣∣∣∣
s=0

])
= −π′

0

([
Y,

∂

∂s
π′
s(X)

∣∣∣∣
s=0

])
.

On the other hand,

∂

∂s
π′
s [X − π′

s(X), Y − π′
s(Y )]

∣∣∣∣
s=0

=
∂

∂s
π′
s

∣∣∣∣
s=0

[X − π′
0(X), Y − π′

0(Y )]

+ π′
0

[
− ∂

∂s
π′
s(X)

∣∣∣∣
s=0

, Y − π′
0(Y )

]
+ π′

0

[
X − π′

0(X),− ∂

∂s
π′
s(Y )

∣∣∣∣
s=0

]
=
∂

∂s
π′
s

∣∣∣∣
s=0

[X,Y ]− π′
0

[
∂

∂s
π′
s(X)

∣∣∣∣
s=0

, Y

]
− π′

0

[
X,

∂

∂s
π′
s(Y )

∣∣∣∣
s=0

]
because X,Y ∈ E. Therefore d�σ(X,Y ) =

∂

∂s
π′
s [X − π′

s(X), Y − π′
s(Y )]

∣∣∣∣
s=0

.

Since X − π′
s(X), Y − π′

s(Y ) ∈ Es and Es is integrable, d�σ(X,Y ) = 0. �

Remark 4.3.25. If Es are not necessarily integrable, d�σ is called the integra-

bility tensor in [40].

Definition 4.3.26. Let {Fs} be a smooth family of transversely holomorphic

foliations of M and let σ be as above. The element [σ] in H1(M ; ΘF ) is also called

the infinitesimal deformation associated with {Fs}.

Given a smooth deformation of F , two infinitesimal deformations are defined.

By [40, Theorem 2.5] and [26, Theorem 1.27] (cf. Lemma 4.3.3), we have the following.

Theorem 4.3.27. The infinitesimal deformations defined in Definitions 4.3.21

and 4.3.26 coincide each other.
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Proof. We regard {ϕ̇i,s} as a family of sections of Q(F). From (4.3.20), we

have ϕ̇j,s − ϕ̇i,s = ϕ∗
j,0γ̇ji,s. If we define a section s of E∗

0 ⊗Q(F0) by s = −d∇ϕ̇i,s

on Ui, then s is well-defined again by (4.3.20). It is easy to see that s coincides with

σ in Definition 4.3.22. �

Theorem 4.3.28 ([42, Theorem 3.23]). Let {Fs}s∈R be a differentiable family

of transversely holomorphic foliations of M , of complex codimension q. If β ∈
H1(M ; ΘF ) is the infinitesimal deformation of F0 associated with {Fs}, then

Dβ(f) =
∂

∂s
f(Fs)

∣∣∣∣
s=0

for f ∈ H∗(WUq).

Proof. Let Ps be the principal bundle associated with Q(Fs). We may assume

that s is small so that Ps is canonically isomorphic to P0. Hence there are families

of canonical forms ωs and complex Bott connections θs on Q(Fs) such that dωs =

−θs ∧ ωs. If we set ω̇s =
∂

∂s
ωs

∣∣∣∣
s=0

and θ̇s =
∂

∂s
θs

∣∣∣∣
s=0

, then

dω̇s = −θ̇s ∧ ωs − θs ∧ ω̇s.

On the other hand, if σ is the infinitesimal deformation associated with {Fs}, then
a 1-form σ̂ on P representing σ is given as follows. Let F̂s be the pull-back of Fs by

the projection to M . Let ωs =
t(ω1

s , . . . , ω
q
s) be the canonical form on Q(F̂s). Then

σ̂(X̂) = −π0
(
∂

∂s
(ω1

s(X)ẽ1(s) + · · ·+ ωq
s(X)ẽq(s))

∣∣∣∣
s=0

)
,

where ẽi(s), i = 1, . . . , q, are defined as in the proof of Lemma 4.3.23. Since
∂

∂s
ẽi(s)

∣∣∣∣
s=0

belongs to the kernel of π0, one has

σ̂(X̂) = −π0
(
∂

∂s
ω1
s(X)

∣∣∣∣
s=0

ẽ1(0) + · · ·+ ∂

∂s
ωq
s(X)

∣∣∣∣
s=0

ẽq(0)

)
= − ∂

∂s
ω1
s(X)

∣∣∣∣
s=0

e1 − · · · − ∂

∂s
ωq
s(X)

∣∣∣∣
s=0

eq

= −ω̇(X̂).

It follows that θ̇s can be chosen as an infinitesimal derivative of θ0 with respect to

σ. Therefore Theorem 4.3.28 follows from Proposition 4.2.6. �
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The Bott class is known to vary continuously. Hence its infinitesimal deriva-

tive is of interest. The above construction gives the infinitesimal derivative of the

imaginary part of the Bott class. If KF is trivial, then the infinitesimal derivative

of the Bott class including the real part is constructed by Heitsch [42]. It is still

possible to define the derivative without the triviality of KF , and the derivative is

an element of H2q+1(M ;C). Indeed, we have the following

Theorem 4.3.29 ([10, Theorems 2.14 and 2.19]). Let μ ∈ H1(M ; ΘF ) and σ

be a representative of μ. Let θ be a Bott connection and θ′ be an infinitesimal

derivative of θ with respect to σ. Then, the infinitesimal derivative of the Bott class

is represented by (−2π
√−1)q+1(q + 1)θ′ ∧ (dθ)q.

We denote by DμBq(F) the infinitesimal derivative of the Bott class. We have

Dμξq(F) = −2 ImDμBq(F). It is known that DμBq(F) can be represented in

terms of the projective Schwarzian derivatives in the Čech–de Rham complex ([57]

for q = 1, [10, Theorem 4.10] for arbitrary q).

Let Iq(F) be the space of differential forms on open sets of M which are locally

of the form ω ∧ dz1 ∧ · · · ∧ dzq. It follows from Theorem 4.3.29 that DμBq(F) can

be represented by an element of Iq(F). Hence we have the following

Corollary 4.3.30 (cf. [10, Corollary 4.16]). Let J be an index set as in No-

tation 1.1.11. Let chJ (F) = χC

F (vJ), where χC

F is the characteristic mapping

(Definition 1.1.17 ). If J �= ∅, then DμBq(F) chJ (F) is trivial. In particular,

DμBq(F) ch1(F)k and Dμξq(F) ch1(F)k are trivial if k > 0.

Proof. The class chJ(F) is represented by an element of I1(F). Hence the

first part follows from the Bott vanishing theorem. By setting J = (k, 0, . . . , 0), we

see that DμBq(F) ch1(F)k is trivial if k > 0. Since ch1(F) ∈ H2(M ;R), we have

DμBq(F) ch1(F)k = DμBq(F) ch1(F)k. The last part follows from this equality. �

Note that Corollary 4.3.30 gives an alternative proof of Theorem B2.




