CHAPTER 4

The Rigidity Theorem
and Infinitesimal Derivatives

In this chapter, we will introduce infinitesimal derivatives of secondary classes
after Heitsch [42]. Deformations of foliations (and pseudogroup structures) are dis-
cussed by Kodaira [53], Kodaira—Spencer, [54], Heitsch [40], Duchamp-Kalka [26],
Girbau-Haefliger-Sundararaman [31], Girbau-Nicolau [32], et al. It will be shown
that complex secondary classes determined by the image of H*(WU,1) under the
natural mapping to H*(WU,) are rigid under actual and infinitesimal deformations.
In particular, the Godbillon—Vey class is shown to be rigid in the category of trans-
versely holomorphic foliations. On the other hand, classes in H*(WU,) which admit
continuous deformations are called variable classes. The imaginary part of the Bott
class is one of the variable classes. Heitsch introduced in [42] the infinitesimal
derivatives for cocycles in WU, which represent variable classes of lowest degree.
In the same paper, the infinitesimal derivatives for any classes in H*(WO,) were
also introduced. The most of this section will be devoted to completing Heitsch’s
construction by defining the infinitesimal derivatives for any classes in H*(WUy,).
The construction seems known for specialists, indeed, the most of the definitions
and the proofs are only small modifications of Heitsch’s in [42] using notions in [26].
However, we give the details for completeness and for their importance.

Throughout the construction, corresponding steps or statements in [42] are

referred so far as possible.
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72 4. THE RIGIDITY THEOREM AND INFINITESIMAL DERIVATIVES
4.1. Definitions and Statements of Results

In what follows, .S will denote parameter spaces of deformations. Usually S is
assumed to be an analytic space, which is not necessarily reduced, with a distin-
guished point 0. If smooth deformations are considered, then S is assumed to be

an open neighborhood of the origin of a finite dimensional Euclidean space.

DEFINITION 4.1.1. A family of transversely holomorphic foliations {Fs} on M
parametrized by s € S is given by the following data.
1) An open covering {U;} of M.
2) A family of submersions {¢; ;: U; — C?} such that F; is locally given by
the fibers of ¢; .
3) A family {v;i s} of local biholomorphic diffeomorphisms of C? such that

<pj75 = fyjivs © QD’L‘,S‘

The family {F} is smooth (resp. holomorphic) if ¢; s and ~j; s are of class C™

(resp. holomorphic) in s.

DEFINITION 4.1.2. If F is a transversely holomorphic foliation, then an actual
deformation of F is a family {F,} as in Definition 4.1.1 such that Fy = F. If
the family is smooth (resp. holomorphic), the deformation is said to be smooth

(resp. holomorphic).
An actual deformation induces an infinitesimal deformation. See Section 4.3.

REMARK 4.1.3. If {F,} is a smooth actual deformation of F, then {Fs} is a
smooth family of foliations so that we may assume that Q(Fs) are isomorphic on a

neighborhood of 0 € S.
Certain type of deformations will be of interest.

DEFINITION 4.1.4. Let {F,} be an actual deformation of a transversely holo-

morphic foliation.
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1) If there exists a smooth family of diffeomorphisms which conjugate each F; to
Fo, then {F;} is said to be a deformation preserving the diffeomorphism type.
2) If Fy are identical to F as real foliations, then the family {F,} is said to

be a deformation of transverse holomorphic structures.

There is a natural mapping from H*(WUg41) to H*(WU,) induced by the

standard inclusion of C? into C9t!,

DEFINITION 4.1.5 (cf. [39]). Let p be the DGA-homomorphism from WU 44 to
WU, defined by the following formulae:

0 ifi=q+1’
p(v;) = e . p(U) = e .
0 ifi=qg+1 0 ifi=qg+1

We denote by p. the induced homomorphism from H*(WU,y1) to H*(WU,).
The following theorem has been well-known for specialists.

THEOREM B1. The secondary classes defined by H*(WU,) are rigid under
smooth deformations if they belong to the image of p.. More precisely, if {Fs} is a
smooth family of transversely holomorphic foliations of complex codimension q and

if wis an element of p.(H*(WUyy1)), then w(Fs) € H*(M) is independent of s.

Infinitesimal deformations of a transversely holomorphic foliation F are elem-
ents of H'(M;Ox) (see Definition 4.3.5 for details). Infinitesimal derivatives of
elements of H*(WU,) are given by the mapping

D.(-): HY(M;07) x H*(WU,) — H*(M;C)
in Definition 4.3.13. It will be shown that a smooth family {Fs} as above nat-
urally determines an infinitesimal derivative 3 € H'(M;©Ox) such that Dg(w) =
gw(]:s) for w € H*(WU,) (Theorem 4.3.28). The infinitesimal version of
s

s=0
Theorem B1 is as follows.
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THEOREM B2. The image of H'(M;05) x (p.H*(WU,11)) under the above
mapping D.(-) is trivial.

Theorems B1 and B2 are shown in Section 4.3. The most important consequence

of these theorems is the following

THEOREM B. The Godbillon—Vey class is rigid under both smooth and infini-

tesimal deformations in the category of transversely holomorphic foliations.

PrRoOOF OF THEOREM B. Let ¢ be the codimension of the foliations. Then

2q)! SN
GVyy = %\/ —1uyvivd

in H**1(WU,) by Theorem 2.1. On the other hand,
€ - ™ = VT (010 4 ofod ol )
in H*%" (WU,41), where &1 is defined in Definition 1.2.1. Therefore
GVay = p« <%€q+1 'Ch§1>
in H4Y(WU,). O

The following corollary is a consequence of Theorem B and Theorem 2.1.

COROLLARY 4.1.6. If {Fs} is a smooth family of transversely holomorphic
foliations of codimension q, then the product of chy(Fp)? and %5(]—;) is iden-
tically equal to zero. Similarly, if B is an infinitesimal deformation of F, then
Dg&y(F) chy(F)? = 0 holds, where Dg&,(F) denotes the infinitesimal derivative of
§q with respect to 3.

PROOF. Since ch;(Fs)? is independent of s, we have

(%5(]—;)) chy (Fo)? = %% Vg (Fs) = 0.

The second claim holds for the same reason. O
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There are alternative proofs of Theorem B and Corollary 4.1.6. See Corol-
lary 4.3.30 and Theorem 5.14.

Let {Fs} be a smooth family of transversely holomorphic foliations of co-
dimension ¢, and assume that GV, (F5) is non-trivial. Then chy(Fy)? is non-trivial
by Theorem 2.1. If the mapping U chy(Fy)?: H*(M;C) — H*T24(M;C) is inject-
B0 e, (F) (o) =

q'q! ds
by Theorem B1. This implies that the class &, is in fact rigid in such a case. In fact,

ive, then digq(]:s) is trivial because di GVoy(Fs) =
s s

so far as we know, if { ¥} is a continuous family such that &,(Fs) vary continuously,

then ch; (Fy) are always trivial. In this line, we have the following

QUESTION 4.1.7. Is there a smooth family of transversely holomorphic foliations
for which the imaginary part of the Bott class varies continuously and the first
Chern class of the complex normal bundle is non-trivial? How about infinitesimal

deformations?

4.2. Rigidity under Smooth Deformations

The calculations in this section are used to prove Theorem B1 and also to con-

struct infinitesimal derivative in the next section. We begin with some definitions.

DEFINITION 4.2.1 ([39]). Let {F,} be a smooth deformation of transversely
holomorphic foliations. We define differential forms A; and V as follows. As the
complex normal bundles of the foliations remain isomorphic, denote them by @) and
consider the same unitary connection 6y for some Hermitian metric on Q. Let {67}
be a smooth family of complex Bott connections on ), namely, assume that each 67
is a Bott connection for Fg and {67} is smooth as a family of connections. Let 1, be
the derivative of 0] with respect to s, namely, ¢s = a@f Let f be a homogeneous
polynomial of degree 2k in v; and 7;. We set 6; = t67] + (1 —t)6, and denote by Q7

its curvature, and set

1
As(07,60) = k/ f(07 — 00,9, ...,9Q7)dt,
0

1
Vfwi,eo):/ EF (0,05 — 00,2, ..., Q) dt.
0
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The following formulae are shown in [39, Theorem 1]:

(220) L (AS05,00)) = Bk~ 1) AV, 00) + RF(, O, 0,
0 0
(@22) L a(an0700) = LA 0 = kd (6 2, 9)),

where €] denotes the curvature form of the connection 67 and the the exterior
derivative is considered only on M, namely, along the fibers of M x R — R.

The following auxiliary definition will be convenient.

DEFINITION 4.2.3. Set \7V\[/Jq = A1, ..., uq] ® Clvy, ..., v, @ C[U1,...,7T4) and
equip WTJq with a differential d by requiring givﬂz =v; — U; and givvi = EZVEZ = 0. Let
fq be the ideal of Wﬁq generated by cochains of the form w;v;Tx with |J| > g or
|K| > q. Note that WU, = ﬁ}q/fq. If ¢ is a cochain in WU,, then its lift ¢ in
W\qu is said to be a natural lift if ¢ is a linear combination of cochains of the form

urv g with |J| < ¢ and |K| <gq.

It is easy to verify the relation dod=0. The DGA (W\qu, CT) is obtained from
WU, by forgetting the Bott vanishing. Note that Jg@ is exactly equal to O for any
pE Wﬁq. This simple property is frequently used in what follows.

The following differential form is significant.

DEFINITION 4.2.4. Let 6* be a unitary connection and 6 a Bott connection
on Q(F), respectively. Let 6 be a derivative of a family of Bott connections or
an infinitesimal derivative of a Bott connection which will be introduced in Defin-
ition 4.3.9, or a certain matrix valued function which will appear in proving The-
orem 4.3.18. For $ € WU,, we define a differential form A@G(0%,0,6') as follows.

First, if ¢ = ujv Uk, then we set
3($)(0,0,0") = (|J]| + |K|)vsok (0, Q)ur(6,0"),
where (2 is the curvature form of 6. We set

AZ(0%,0,0") = 6(dp)(6*,6,6").
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We extend § and A to the whole \/N\I/Jq by linearity.

If =t 0k € WU, and T = {iy,. .., i} with iy < iy < --- < iy, then
Ap(6*,0,0")
=Y (DTN K]+ i) (vt (0, —0i,)) (0, Q) (0,60%),
!
where I(l) =1\ {i;}.
The following is easy (see Lemma A.6 for the first formula).

LEMMA 4.2.5. We have the following formulae:

(4.258) (] + |K|)(wsvg)(0, Q) = |J|vs(0', Qv (Q) + | K| v (Quk (¢, Q),

(4.2.5b)

vy(0',Q) =0 as differential forms if |J| > q+ 1,
Ui (0,Q) =0 as differential forms if |K| > q+ 1.

0
PROPOSITION 4.2.6. If ¢ € WU, is a cocycle, then %xs(go) is represented by
Ap(0y,07,1s), where o is any lift of ¢ to WTJ,].

ProOOF. In the proof, we will make use of the following notations, namely,
u;(67,600), v;(Q7) and TL(Q]) are simply denoted by u;(s), v;(s) and vg(s), re-
spectively. The differential form v; (15, Q7) is denoted by w;(s), and g (¢s, Q27) is
denoted by wy(s). We denote Vi, (05,6) and V,, (605,6,) simply by V; and V;, re-
spectively. Finally, we set ‘N/, = V; — V; and w;(s) = w;(s) — w;(s). Under these
%ﬂi(s) = i(i — 1) dV; + i(wi(s) — wi(s)) = i(i — 1) dV; + itw;.

0
Let ¢ be a cocycle in WU,. We will compute a—Xs((p). For each ¢, where
s

1 <@ < g, there are elements «; and 3; of WU, which do not involve u; and such

notations,

that ¢ = w;«; + B;. Note that «; is closed because ¢ is closed. Let be the

Si
0 ~
differential operator obtained by applying 75 only to u;(05,00), v;(07) and T;(67).
0

0 0
Then 55 is decomposed as 95 = 051 +-- 4+ 8_sq' In order to compute a—SiXs(SO),
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we write a; = Z vf Ufa§-7 e and 3; = Z vj o b’ s So that neither a] j; LoT b] i, involves
gk
v; and v;. Then,
0 0 -
a—sixs(@) = a_SiXs(uiai + Bi)
=Y (i(i — 1) dV; + iwi(s))v] (s)0F (s)a . (s)
3.k
+ Z ii(s)o] " (s) dwi(s)07 (s)aj 4 (s)
—l—sz‘uZ s)r 1 (s) dw;(s)a’ 4 (s)
+ Z o] (s) dwi(s) ()b 1, (s)
3.k
+ ikl (s)F T (s) dwi ()b 1. (s).
3.k
The first term is equal to

i(i — 1) dVioy(s) + Y ithi(s)v] ()05 (s)as 1 (s).

4.k
Note that dV;a;(s) = d(Vioy(s)) because a; is closed. The second term is co-

homologous to
ZU vils) = Bi(s))o] " (s)wi(s)F (s)af 1 (s)
+ Z i (s)o] " (s)wi(s)0} () daf i (s),

which is equal to
D ijvl ()05 (s)wi(s)af . (s) = > vl (s)0Fwi(s)af 1 (s)
j7k j’k
= > iju] T (s)wi(s)ol (s)ii(s) daj . (s),
j K
where a’ _, is understood to be zero. Similarly, the third term is cohomologous to

—szv +sz¢v fl_()]lk()
—szv (s)w ()Ui(s)daj,k(8)7
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where ai_L i = 0. The fourth and fifth terms are respectively cohomologous to
> ijv] T (s)ui (s)wils) dbS i (s),
j K
and
> ikv] ()05 ()i (s) db 4 ().
j K

Hence we have the following equalities modulo exact terms, namely,

a%xs(sO)
= i(j + Dl (s)0F (s)wi(s)al 4 (s) = Y ik + 1)v] (s)F (s)Wi(s)al 4 (s)
ik gk

- Zijvffl(S)waz( aj -1 +Zlkv Jor wi(s)a5 1 1 (5)
_ Z il 1 (s)w; (s)T% ()T (s) dajk(s) - Z ikv! (s)TF 1 (s)wi(s) s (s) daé’k(s)

gk
+ Z ijvl 1 (s)TF (s)w; dbl )+ Z ikl ( (s)w;(s) db;k(s)
j ko
= Y ijv] (s)TFwi(s) (af_y,(s) - aj,lc—l(s) +dbj 1, (s) — Wi(s) daj i (s))
gk
S ikl ()7 (5) (a1 (5) + @y (5) + b () — () dad o (5)).
gk

On the other hand, if ¢ is the natural lift of ¢, then one has
C?(E = ((Uz — UZ')OZi — ﬂidai + dﬁl)
:Z(vi - ,k+ZvJvk db Zﬂwﬁf da;'-,k
gk g,k
= Z,U’Ljﬂ?(ajfl,k - aj7k71 + db],k - az da;’k)
From (4.2.5a), we see that Proposition 4.2.6 holds if ¢ a natural lift. In order
to show the proposition for general choices of ¢, it suffices to show that A(CT& +

B)(Go,ﬁf,@bs) is exact if a € Wﬁq and if 8 € fq. One has A(c]&)(«%, L) =
§(d(d@))(0o,05,105) = 0. Let B = @jvs Uk, where |J| > ¢q. If I = &, then
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A(vjUk) (6o, 07, 1s) = 0 because d(v;Uk) = 0. If I # &, then the following equality
holds, namely,
A(urvvg) (0o, 07,9s)

= (=D NT| + | K| + i) v (vi, = Bi,) (tbs, )1 (6, 60)
l

= (DT (e, )T, (%) (65, 60)
l
= d( |‘]| UJ(%, QS)EK(QS)aI(eiv 90))7

where the second equality holds because v;(2%) = 0 and v (15, 2°)v;, (2°) = 0 by

the Bott vanishing. The last equality follows from (4.2.2b) and dv;(¢s, Q%) = 0.
0

Finally, 55 Xs(p) is closed as xs(¢) is closed independent of s. O
s

Proor oF THEOREM B1. Let ¢ be a cocycle in WU, and let ¢ be any lift of
©p to VVTLHL Then gi:ﬁ is a linear combination of the monomials of the form wyv ;U
with |J| > g+ 1 or |K| > ¢+ 1. Hence A(pp)(0y,07,ps) identically vanishes by
(4.2.5D). O

Compared with the real case, the space H*(WU,) and the cokernel of p, are

rather complicated. For example, we have the following.

PROPOSITION 4.2.7 (cf. [5, Theorem 1.8]). In the lower codimensional cases,
the cokernel of p. is described as follows:
q=1: A basis for coker p, is {uy(vy +71)}.
q = 2: A basis for coker p, consists of v1 + v, vf + vy + 201771 + E% + Uy and
the classes in H*(WUsy) of degree 5, 10 or 12, namely, the classes in
Table 4.2.1, where the numbers in the left column stand for the degree

of the classes in the same row.

Example 1.1.6 of Bott shows that the secondary classes of the lowest degree can

vary. We do not know if the classes of higher degree can vary.
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5 171(’0% + v1Uq +ﬁ%), ﬂl(UQ —l—ﬂg) + ﬂQ(’Ul —i—ﬁl)

10 171@2’[}151 (Ul +@1)

~~ 2.2 ~ ~ 9 ~ ~ 95 ~ ~
12 | uugviv], U1U2V{ V2, UIULV2TVT, UIU2V2V2

TABLE 4.2.1. A part of basis for coker p,, where ¢ = 2.

4.3. Infinitesimal Deformations, Infinitesimal Derivatives and Rigidity

under Infinitesimal Deformations

We first recall that TcM = TM ® C and E is the complex vector bundle
0 Then
0z; ' ’
Q(F) = TcM/E (Definition 1.1.4). The space of C™ sections of \"E* @ Q(F) is
denoted by I'°(A\*E* @ Q(F)).

locally spanned by T'F and the transverse antiholomorphic vectors

DEFINITION 4.3.1 ([42, 1.4], [26]). Let V be a Bott connection on Q(F). We
define a derivation dy: I'*(APE* @ Q(F)) = I'*(A\"T E* @ Q(F)) by

dvU(Xo, ce ,Xp)

=3 (-1)Vx,0(Xo,. ., Xiv oo, X))

0<i<p

+ > (~D)Mo(X5, X)), Xo, o, X XL X,
0<i<j<p

where 0 € '°(APE* ® Q(F)), X; € I'™°(E) and the symbol ‘=’ means omission.

A section o of Q(F) is said to be foliated and transversely holomorphic if Lxo =
0 for X € E, where Lx denotes the Lie derivative with respect to X. In other words,
o is foliated and transversely holomorphic if ¢ is locally constant along the leaves

and transversely holomorphic.

DEFINITION 4.3.2. Let ©x be the sheaf of germs of foliated transversely holo-

morphic vector fields.

The following fact, which is relevant in studying infinitesimal deformations, can

be found in the proof of Theorem 1.27 of [26].
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LEMMA 4.3.3. Let © x be the sheaf of germs of foliated transversely holomorphic
vector fields. Then dy ody =0, and

dy

0 — 0r — I(A’E* © Q(F)) —= I(\'E* © Q(F)) —= -

is a resolution of © .
We have the following.

THEOREM 4.3.4 ([26, Theorem 1.27]). H*(M;Ox) is isomorphic to the co-
homology of (I'°(N*E*®Q(F)),dy). Moreover, H*(M;© ) is of finite dimension.

DEFINITION 4.3.5. An infinitesimal deformation of F is by definition an element

of H'(M;O7).

See also Definitions 4.3.21 and 4.3.26.

In what follows, we follow the conventions in [42] but we will work on Q(F)
instead of Q(F)*.

Let P be the principal bundle associated with Q(F), and let m: P — M the

projection. If a € P, then « is a linear isomorphism from C? to Q(F)(q)-

DEFINITION 4.3.6. If X € T,, P, then we set w(X) = o~ (7, X). The differential
form w is called the canonical form. The i-th component of w(X) is denoted by

w'(X), and each w" is regarded as a 1-form.

Let 6 be the connection form of a connection on P induced from any Bott
connection on Q(F). Then dw = —6 Aw, where the sign is opposite when compared
with [42]. This is because we work on Q(F). Let Q = df + 6 A 6 be the curvature
form. Then 2 Aw = 0.

Let o be a section of A*E* @ Q(F). We can regard o as a section of \"T¢ M ®
Q(F) by arbitrarily extend it. Then, by pulling back to P and considering the
horizontal lifts, we can regard o as a section, say o, of /\*P*®Q(]?), where F = n* F

is the lift of F to P. Finally, we can regard ¢ as a C%valued differential form on
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P by composing it with the canonical form w. A section of A" P* ® Q(]? ) is always
considered as a C%-valued differential form in this way, and represented in columns.
Conversely, a section & projects down to a section o of A*T¢ M @ Q(F) if and only if

1) o is horizontal, that is, o(X1,..., X;) = 0 if 7. (X;) = 0 for some 4,

2) Ryo = g~ 15 for g € GL(g; C), where R, is the right action of GL(g; C) on P.
In what follows, & is also denoted by ¢ by abuse of notation.

Let 3 € H'(M;©7) and let o be a representative of 3. Such a o is a section of

E* ® Q(F) such that dyo’ = 0. We denote again by o the C?-valued 1-form on P
obtained in the above manner. Then, o satisfies the above conditions 1) and 2), and

3) do + 6 A o = 0 when restricted to 7" E.
Let Z(w) be the ideal generated by w',... ,w? in the space of differential forms on
P. The condition 3) is equivalent to do + 6 A o € Z(w).

DEFINITION 4.3.7 ([42, Definition 3.8]). Let 3 be an element of H'(M;0x)
and let o be a representative of 5 as a C%valued 1-form on P. The infinitesimal

derivative of the canonical form w with respect to o, denoted by w’, is defined by

W = —0.

It follows from the condition 3) above that dw’ + 6 A w’ € Z(w). Let 6" be a
gl,C-valued 1-form on P such that
(4.3.8) dw' + 0N = —0" A w.

The infinitesimal derivative of a Bott connection is defined as follows.

DEFINITION 4.3.9 ([42, Definition 3.10]). Any gl ,C-valued 1-form 6’ on P sat-

isfying (4.3.8) is called an infinitesimal derivative of 6 with respect to o.

If 6, and 0] are two infinitesimal derivatives of 6 with respect to o, then (0] —

0y) A w = 0. Hence
(4.3.10) (0 —0p)! Z AL

for some C-valued functions )\]  on P satlsfylng )\ kit
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LEMMA 4.3.11 ([42, Lemma 2.12]). If ¢ is an infinitesimal derivative of 0, then

1) ' is horizontal,

2) 0 is tensorial of type ad modulo w, namely, R;G' —g g e T(w).

PROOF. Let u € P. If X € T, P satisfies 7, X = 0, then w(X) = 0, where w is
the canonical form. As w’ is horizontal, one has also w'(X) = 0. We extend X to
an equivariant vector field on P and denote the extension again by X. Note that
X is vertical because 7, X, = 0. Let Y;, 7 =1,...,q, be vector fields on P which
are equivariant under the right action of GL(q;C), and such that w*((Y3),) = 1
and w*((Yj),) = 0 if j # k. We set o = ' — Aw, where A is a matrix valued
function defined by setting A = (w'(Y1) -+ w'(Yy)). Then « is horizontal. Note
that X, A = 0 because the both Y} and w’ are equivariant and X is vertical. Then
a(Y,) =0 and w(Y,,) is the identity matrix. One has by (4.3.8)

da=—-0ANw —0 ANw—dANw+ A0 A w
=—O0Na—0ANw—dANw+ A0 Nw— 0N Aw.
On the other hand, since 7.[X, Y], = 0, we have da(X,,Y,) = Xa(Y),—Ya(X),—
a([X,Y],) = 0. It follows that
0'(X,) =0 (Xy,)w(Yy)

= (0’ Nw)(Xy,Yy)

=(-0Na—dANw+AONw— 0 N Aw)(X,,Y,)

= —dA(X,) + A0(X,) — 0(X.)A.
Since dA(X,) = X, A = 0, it suffices to show that §(X,) = 0. This follows from the
equalities 0(X,,) = 0(X,)w(Yy) = (0 AW)( Xy, Ye) = —dw(X,,,Y,) and dw(X,,,Y,) =
Xw(Y)y = Yw(X)y —w([X,Y],) = 0. In order to show 2), note that R 6 = g '0g,

Ryw = ¢ tw and Ryw' = g %', Applying R} to (4.3.8), we see that
—R30" A g lw=g 7 dw' + g7 g N g = —g 0 g A g w,

from which 2) follows. 0
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DEFINITION 4.3.12. Let ¢ € \/N\IJJQ be a lift of a cocycle ¢ in WU,, S €
H 1(M ;O7) and o a representative of 5. Let §“ be a unitary connection for some
Hermitian metric on Q(F) and 6 a Bott connection. Let © be the curvature form
of 0, and let @' be an infinitesimal derivative of § with respect to o. Under these
assumptions, we define a differential form on P by
Do ($) = Ap(0",0,0),

where the right hand side is as in Definition 4.2.4.

We will show in Lemma 4.3.15 and Theorem 4.3.18 that D, (¢) projects down to
a closed form on M, and that its cohomology class depends only on [p] € H*(WU,)
and 8 € H'(M;©x). Then the following definition is justified.

DEFINITION 4.3.13. For f € H*(WU,) and 8 € H'(M;©7x), the infinitesimal
derivative of f with respect to 3 is defined as follows. Let ¢ and o be representatives

of f and f3, respectively. Set then Dg(f) = [Ds(®)], where ¢ is any lift of ¢ to \7\7\6(1.

REMARK 4.3.14. If
= (Ui, Viy * Vi) + (Vi Uin Vi =+ 03y ) + oo+ (Vi Vi Uiy ),
then ¢ is denoted by hcr in [42, Definition 3.14], and Dg(¢) coincides with the
original definition. Moreover, if we begin with cocycles of the form h;c; € WO,
and repeat the same construction, then the same differential forms appeared in [42]

are obtained by following Definition 4.3.13. In this sense, the formula in Defin-

ition 4.3.13 is a complex version of (2.15) in [42].

Proor or THEOREM B2. Once infinitesimal derivatives are seen to be well-

defined, the theorem follows from Definition 4.3.12 by using (4.2.5b). O

We come back to verify that infinitesimal derivatives are well-defined.
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LEMMA 4.3.15 ([42, Theorem 3.17]). The differential form D,(@) in Defin-
ition 4.3.12 projects down to a well-defined closed form on M which depends on o,
0, 0% and the choice of the lift ¢.

PROOF.

Claim 1. D,(®) is independent of the choice of 0'.

Let 6, and 0] be infinitesimal derivatives of § with respect to o and let g be a
monomial in v1,...,v, and vy,...,7,. Since 8] — 6 = \w by (4.3.10), g(01,Q) —
9(05,9Q) = g(Dw, Q). As @ is alift of a cocycle, d is a linear combination of cochains
in 7,. It follows that AZ(0Y,0,0)) — AF(6%,0,0)) € T(w)™ U T(@)" " = {0}.

Claim 2. D, (p) projects down to M.

It suffices to show that vk (v, — Ty, ) (0, Q) projects down to M. We have

Ry (vyUk (vi, — v;,)(0",9Q)) — v 0K (v, — U;,)(0,Q)
=00k (vi, — Ty, ) (R0, g~ Qg) — vs0k (vi, — Ts,) (g~ 0'g, 9 Qg)
= v Uk (vi, — U5, ) (R0 — g '0g,971Qg).
It follows that Ry A@(6%,6,6') = Ap(6“,6,6") from Lemma 4.3.11 ii) and an argu-
ment as in the proof of Claim 1.
Claim 3. D, () is closed.
Note that glvtﬁ is a linear combination of cochains of the form uyv;vx with |J| > ¢
or |K| > q. Since Dy(3) = AZ(6*,6,60") = §(dp)(6*,0,0') and since d(d@) = 0,
D, (9) is closed by the Lemma 4.3.17 below. O

The following differential forms are convenient.

DEFINITION 4.3.16. Let 6y and 67 be unitary connections, not necessarily with
respect to the same Hermitian metric, and let wjv ;v € Wﬁq. We decompose
I = I, Ul so that I consists only of indices less than or equal to i, and I5 consists
only of indices greater than i. We set then Egi) (0,05,6) =ur, (0,605)ur,(0,607), and

(o o) (05, 01,0,0) = (|7] + | K Josux (6, ) (6,65, 61).

We extend §; to the whole WTJq by linearity.
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The proof of Lemma 4.3.15 is completed by the following lemma.

LEMMA 4.3.17. Let 3 € WU,. If dg = 0 and if ¢ € I, then 5;(@)(0%,0%,0,6")
is closed. In particular, v Uk (60',9Q) is closed if |J| > q or |K\ > q.

PROOF. We first assume that |J| > ¢ and show that v;(0',Q) is closed. We
eriteQZ Z k/\w andsetQ’Z Z k/\w’k Then QA w' = —Q Aw. On

the other hand by using (4.3.8) and the equahties Q=di0+0N0, dv=—60ANw and
(4.3.8), we obtain
QAW = (d0 +[6,0]) Aw
where [0,0'] =0 A0 + 6" A 0. Hence v;(d0' + [0,0'],Q) = v (2, Q).
Let Z,(w) be the ideal of differential forms on P generated by w'+sw’, ..., w4+
sw'?. Then, for any s, we have Z,(w)?™ = {0}. If we set Q(s) = Q + s/, then
Q(s) € Zs(w) because ( Z A (w4 sw'™®). Since v;((s)) is identically

zero, we have the following equahty

d(v.(0',92))

(%N} d9’ ) (\J\—le(ﬁ’ dQ) Q)

(

vy (dd’, Q) + (|7] = vy (6,10, 2], Q)
(
(@

= 0s(d0’ +[0,0),9)
=0y )

- ﬁ%w(%)) B
- 0. )

On the other hand, by (4.2.5b),
(] + K Dvsok (6, Q) = [T vs (0", )Tk (Q) + | K[ v (Qvk (¢, Q).

Hence v, 0k (0',Q) is closed. Similarly, v 0k (6,Q) is also closed if |K| > q.
Assume now that ¢ = ngtﬂ]tv J,Vk,, where z; € C. We may furthermore

t
assume that the numbers of elements of I; are constant, which is denoted by #I. If
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#I = 0, then 6;(9) (05,07, 0,60) is already shown to be closed. If #1 > 0, then we have
d(5:(@)(65, 01, 6,6))

—Z V(|| + K)o, T, (0, 2) (v, =55, ) Q)T (6, 05, 07).

Since |J¢| > q or |K;| > ¢, we have
v, (‘9/7 Q)Uil (Q)T)Kt (Q) =y, (Q)WKt (9/’ Q)Elz (Q) =0.
Hence

d(6:(Z)(08.04,0,0') =S —(=1) 'y || vs, (0, Q)xc, ()T, ()5, (6, 0)

£l

+ 3 (1) g [ K| v, (s, ()T, (0, Q)i (6%,6).
t,l

Now by (4.2.5a) and (4.2.5b), |

(1 Tel + [ Kol + i), 0,00, (6, 0) = | e v, (6, Q)0 Vi, (),
and

(|Je] + | K| + i1)vg,vi, 0k, (0", Q) = | K| vy, (Q)vk, (07, Q).
Therefore,

d(6: ()08, 0%.0,0") = > —(=Dlary (|Te] + K| + i2)os, T, 73, (0, Q)Y L)(eu,e)

t,l
+ Z Vao(|Jy| + | K| 4 i) v, v, 0k, (0, Q) ((9“ 0)
= 6i(da)(937 1.0, 9/)
=0
because givcﬁ = 0. This completes the proof of Lemma 4.3.17. (|

If f € H*(WU,) and 3 € H'(M;07), then we have the following

THEOREM 4.3.18 (cf. [42, Theorem 3.17]). Let ¢ and o be representatives of f
and 3, respectively, and let @ be any lift of ¢ to Wqu. Then the cohomology class
[Dy ()] is independent of the choice of representatives and lifts.
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PROOF. Let 6%, 0, 6, Q be as in Definition 4.3.12.

Claim 1. [D,(p)] is independent of the choice of the Bott connection .

Let 6y and 6, be Bott connections and choose their infinitesimal derivatives
0 and 0] with respect to o. Note that D,(@) is independent of the choice of
infinitesimal derivatives by Lemma 4.3.15. We set 6, = 0y + t(01 — 6y). Then 6
is also a Bott connection and 6, = ) + t(6] — () is an an infinitesimal derivative
of 0;. Let Q; be the connection form of 6;. We will show that %A&(Q“, 0;,0;) is
exact. First we consider the case where the dp does not involve any ;. Note that

AP(0*,0,,0,) is calculated by evaluating dp € I One has
d(vyvK (05,01 — 00, Q)) =vvk(db;, 01 — 00, ) — v (0}, dO1 — dby, Q)
— ([J]+ K| = 2)vs05 (0;, 01 — Oo, [0, ), )
= v, 0k (dO; + [0¢,0;], 61 — 6o, Q)
—vyvk (0;,d01 — dOo + [0, 01 — 0], ).

Note that each of the differential forms in the above equality projects down to M.

On the other hand,

0 /
a’UﬁK (0, %)

=00k (0] — 0, ) + (|T] + |K| — D)ook (0], d(01 — 00) + [0, 61 — 0], ).

Hence

0
EUJ@[((@Q,Qt) + (‘J’ + |K| — 1) d(vJEK(QQ,Ql — eo,Qt))

:’UJﬂK(all — 067915) + (|J| + |K‘ - 1)’L)J5K(d9£ + [9,5,02],91 - 00, Qt)

As in the proof of Lemma 4.3.17, we write (Qt ZFZ,C A w® and set (Q) ) =
k

ZF;,kAw/k. Then Q) Aw = (db; + [0;,0;]) Aw. Since Oy Aw = 61 Aw = —dw,

(01 —6p) ANw = 0. Hence (6; — Z N kw for some )\] w- Now by (4.3.8), we

have (0] —0)) ANw = —(Aw) Aw' = ()\w') Aw. If we set Q(s,t) = Q; + sQ;, 0(s) =
(01 — ) + s\’ and Z,(w) = Z(w' + 5w, ..., w? +sw'?), then Q(s, t),0(s) € Z(w).
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Therefore, v Uk (0(s), (s, t)) = 0if |J| > g or |[K| > ¢q. Differentiating with respect

to s and setting s = 0, we obtain
UJUK(AU),, Qt) + (|J| + |K’ — 1)1}]5[((91 — 6o, Q;,Qt) =0.

As the left hand side is equal to v Uk ((0] — 64,2%) + (|J| + | K| — D)ook (61 —
0o, d0; + [0, 0;], ),

0
avJUK(HQ,Qt) = —(’J| + ’K| — 1) d(vJUK(GQ,Gl — eo,Qt))

if |J| > q or |K| > gq.
Suppose now that c?(ﬁ involves some of u;’s. We write (;7(5 = sz-v J, 0K, UL,
where |J;| > q or |K;| > ¢, and x; € C. Then by definition,
AGO",00,0) = 3 wal|Jil + 1K), Tic, (0 Q1) (00, 0°).

Hence

O\ o 4
55 05(6",6,,6))

== > @il + K (1] + K| = 1) d(v5,7k, (8}, 61 — 00, )iz, (6:,6*)

+ 3 @i i)+ K)o, B, (07, Q) (1) i (i — 1) dVi, (04, 0" )i, 1y (0, 0")
il
+ ) @i 4 K)o T, (07, Q) (= 1)1 iy, (61 — B0, Q)iir, 1y (61, 6",
il
where I;(1) = I; \ {i;}. If we fix an integer k and rewrite dp as dp = Uy + By so
that ay and 8 do not involve g, then J(J@) = 0 implies that Elvak = 0. Hence
> @il il + Koo, (07, Q) (= 1) Vi — 1) dVi, (61, 6" Vi, 1y (01, 6*)
ot
=k(k — 1) d(Vi (01, 0") (o) (6", 6, 6,))
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because d(ay) (0%, 04, 0;) is closed by Lemma 4.3.17. Hence %A@(G“,Gt,ﬁg) is co-

homologous to R, where

R== (|7 + |K:)(|Ji| + | K| = 1) d(vs, 05, (6}, 61 — 0o, )iz, (6,6

) @ (1] + K)o, Tk, (07, ) (= 1) i, (01 — 6o, Qe )i, 1) (61, 6").
,l

It suffices to show that R is exact. This is indeed done as follows, namely, by (A.6Db)

we have the following equality:

— ([T + K ) (| i 4| K| =1) d(v., Tk, (0,01 —00,2¢) )iz, (0:,0")
=(| i+ KD (| T+ K| = 1)v g, 0k, (0,01 — 00,0 ) diiz, (60,0")
= (T K (T3] + K| = 1) 05,5k, (07,01 —00,2) (— 1) " (03, =03, ) ()i, 1) (6,0")

l
==Y [ Ll(1i] = 1)vs,(6;,01 00,20k, () (— 1) 03, ()i, 1) (62,6")
l

= VTillE v, (61,9200, (61 —00,2) (= 1)~ 05, () iz, 1 (6,6
l

=Y Tl Kifvg, (61 =00, )vi, (), (67,920 (1) Vg, 1y (6,6")
!

Y IKGI (K =1, ()vi, ()T, (07,01 —00,02) (—1)" g, 1) (6:,6"),
!

where the symbol ‘=’ means that the equality holds modulo exact forms. On the
other hand, we have
(T3] + [ K D) v T, (6, Q) (1) Vg3, (61 — 00, Q)i 1y (6, 6*)
= — |Jil vy, (0;, )0k, () (— 1) iy, (01 — 0o, Q) r, 1 (0r, )
— [ K| v, (Qe)vi, (01 — 00, ) Tx, (0, Q) (1) gy, 1) (6, 6“).
Therefore, we have

R==ai|Ji| (|Jil = Vv, (0,01 — 00, )Tk, ()05, () (— 1) i, 1) (62, 6™)

.l

=i [T (|KG] + )0, (07, Q) 0k, 03, (01 — 0o, Q) (—1)' g, 1) (0, 0")
i,l

- Z%’(Ui\ +40) | K| vg,05, (01 — 00, )0k, (67, Q) (= 1) aig, 1) (61, 6%)
il

+ )i K| (|Ka| = D, (Q)vi, ()0, (67, 61 — 00, ) (= 1) iy, (61, 6%).

il



92 4. THE RIGIDITY THEOREM AND INFINITESIMAL DERIVATIVES

Let R’ be the right hand side of the above equality. Then by (A.6b),
(1J5] + | K| 4 i) vs,03, Uk, (07, 01 — 0o, Q)
= _(|JZ| + il) |KZ| UVJ; Vi (91 — 6o, Qt)ﬁKi (61/57 Qt)

+ | K| (| K| = Dy, (Q0)Tk, (03,01 — 0o, Q)
and

(|Ji| + | K| + i0)vs, U, Ts, (07, 01 — 6o, )
= | il (1i] = 1)vg, (05, 01 — 0o, )Tk, 0z, (2¢)
+ [T (| K| + i) vy, (05, Q)UK i, (01 — 0o, ).
It follows that

R =" ai(|Ji] + K| + i1)vs,0:,0x, (67, 01 — 00, Q) (—1)" g, 1) (61, 6")

il

= @i\ Tl + K| + i), 0,03, (0,01 — 00, Q) (—1)' Vg, 1) (6, 6")

il
=0(dd@) (6", 0:, )
=0.
Claim 2. [D,(p)] is independent of the choice of the unitary connection 0.

We first show that u;(0,607) — u;(0,6y) = dV/ for some differential form V' if

7

0y and 67 are unitary connections. Suppose that 6y and 6} are unitary connections
for a fixed Hermitian metric on Q(F). Let f =v; = v; —7;, 0] = 0+ s(0} —0) and
0o = 0. Then we substitute them into (4.2.2a) and integrate it with respect to s.

We obtain
AE‘ (0%7 08) - Aﬁi(ev ‘93) = k(k - 1) dWE(eqltv 98) =+ ATM (0%7 9)7
1
where W5, (67,05) = / V5, (07,08) ds. Hence
0
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We set 0 = 0§ + (0} — 6¢). Then by (4.2.2a),

a o~
57 85 (01,05) = k(k — 1) Vi, (0, 00) + k0:(0F — 0, Q... ).
Since 6§ and 67 are unitary and since V5, = 17;,
0

57 8. (07,05) = k(k — 1) dV; (0}, 60).

Hence u;(0,07) —u;(0,60y) is exact if 6§ and 67 are unitary connections for a fixed
Hermitian metric.

Let now hy and hy be Hermitian metrics on Q(F) and let 65 and 6} be unitary
connections for hy and hq, respectively. The equality (4.3.19) is still valid so that
it suffices to show that Af(0Y,6y) is exact if f = v; = v; — ;. We denote by ¢,
the natural isomorphism from M to M x {t} and by 7 the projection from M x R
to R. We consider then the foliation F x R of M x R whose leaves are given by
L x R, where L is a leaf of F. Let 6% be a unitary connection on Q(F x R) for
some Hermitian metric such that 6" = 6y for t < 0 and ;' = 6" for ¢t > 1, where
0y = LI@Z We write Ay, (6%, 7°0%) = A+ p A dt so that A and p do not involve dt.
Then we define a differential form V; (6%, 65) on M by setting

1
vier.o0 =~ [ i
0
We have dV; (6%, 05) = Az, (01, 65), which can be shown as follows. First,
Az, (04, 7°00) = (0i(0") — 7°0;(03)) — (T:(6%) — 7 T:(03)) = 0.

O\
Hence n + dpp = 0, where dps denotes the exterior derivative along the fiber of

m: M x R — R. On the other hand,
= ! Lax
avy (v, 0y) = —/ dypdt = / —Zdt = \(1) — \(0)
0 o Ot

and A(t) = tiA = F A (0%, 7°00) = Ay, (0%,600). Finally, A(1) = Ay (6%, 6%) and
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Let ¢ € \/N\[/Iq be the natural lift of ¢. Let a; and ; be such that j@ = U+ B
and that «; and B; do not involve u;. Then
AG(6:,6.6') = 50(dP) (0. 61,6.6')
and
A&(@%, 0, 0/) - 5(1 (J&)(va 0%7 0, 0/)
Hence it suffices to show that 5;{,1(&5)(05‘,9%,9,0’) and 6“5@)(98,9}‘,0,9/) are
cohomologous for each k. Since 8; does not involve uy,
01 (di2) (05, 01,0.6')
=~y (0,07) o1 (ax) (05, 07,0,0") + k-1 (Br) (05, 67,0,0")
= _ak(ea 0%) 5k—1(a/€)(987 %7 0) 9/) + 57?(6/6)(987 %7 9) 9/)
On the other hand, da; = 0 because JJ@ = 0. It follows that
dak—l(ak)(ega 1117 07 9/) =0
by Lemma 4.3.17. Hence
Or—1(d@) (85,07, 0,0") + d(V{0—1 (i) (65, 61,0,0"))
= _ﬂk(ev GE)L) 519—1(0%)(93’ 'fa 97 9/) + 51@(5’6)(93’ 'fa 97 9/)
=~ (0, 05) o (ox) (05, 07, 0,0") + 1.(Br) (05, 07, 0,6")
= 61(d2) (65, 61,6,6")
because «ay, does not involve .

Claim 3. [D,(p)] is independent of the choice of representative of 3.

We recall that representatives of 3 are by definition sections of E*®@Q(F). They
are considered as C?-valued 1-forms on P after arbitrarily extended to sections of
TEM @ Q(F) and then lifted to P.

We first show that [D,(®)] is independent of such extensions as above. Suppose

that og and oy are representatives of § and assume that oy = o1 when restricted to

7" E, where m: P — M is the projection. Then o1 —0g = pw for some gl(q; C)-valued
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function p. Let 6 and 6] be infinitesimal derivatives of § with respect to oo and
o1, respectively. Then by (4.3.8),

(07 —00) Aw =d(o1 —00) + O A (01 — 00) = (dp+ [0, 1)) Aw
Hence
Tk (01,9Q) — v (05, Q) = vV (du + [0, u], Q)
— vy (da, Q) + (1] + K| = D)oo (1, ~ 16, 2)
= vk (dp, Q) + (] + [K| = D)ok (1, d2)
= d(vjug (i, 2)).
Let @i;0;Tx be an element of WU, such that |.J| > ¢. Then
(1] + K v vk (01, Q)ur (6, 6") — vvk (6, Q)i (6, 6%)
=d(([J] + [K])vsvk (1, )
= d([J]vs(n, Q)oK (2))ur(6,6)
=—|J|vs(p, Q)TJK(Q)dﬂ](@, 0")
=[] Z Lo (i, QUK (Q) (i, — T3, ) ()2 (0,6")

Jur(6,0")

=[] Z vk (Q)vs, (D)) (0,6")
= (|1 + [ K| +i0) D (= 1) ook, (1, Qianey (6, 6")

=0(d(TvuK)) (0", 0, ).
Similarly, if |K| > ¢ then we have
(|1 + Koo (687, Q) (8, 6") — v (0, Q)i (6,6%) = 6(d(@rvsvx))(6", 6, ).
Hence
5(d3)(6",6,61) — 6(d2) (6", 6, 60) = 6(dd2)(6", 0, 1) = 0.
Since Dgyyt0,(9) = Dsy(9) + Do, (), the proof of Claim 3 is completed if

we show that D, (@) is exact for any section o which corresponds to dy+y, where

v is a section of E* ® Q(F) and dy is as in Definition 4.3.1. By the definition,
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such a o can be obtained as follows. We choose an extension Y of v to Tc M and
let Y be its horizontal lift. Let g be a function on P defined by g(u) = w(?u)
Then dg + 0g can be chosen as o, and we have by definition w’' = —dg — 0g.
An infinitesimal derivative @ with respect to o is by definition a gl(g; C)-valued
1-form satisfying 8/ A w = —dw’ — 0 A w'. The right hand side is now equal to
dog—OANdg+0ONdg+6AN6Og=Qg. If {I}} is a family of gl(q; C)-valued 1-forms

such that ) = Z I Aw”, then Qg = Z I.gAw”. Note that if we write I, = (F;k),
k k

then I k—]'}CJ Hence (kaw )/\w— (Zf’kg >/\w:ZFjQ/\W‘j = Qg
J

and <Z Fk(?)wk> Aw = 0. Hence by setting 6’ = —ip€Q, we see that

k

H’Aw:Z(Fk w)w +<kaw >/\w:Qg.

Therefore, for this choice of ¢,
1
J] + | K|

if [J| > q or |K| > q. Hence 8(d@)(6*,6,6') = 0 if ¢ is closed in WwU,.
Claim 4. [D,(p)] is independent of the choice of ¢ and its lift ©.

UJ@K(QI, Q) = — 1?UJ5K(Q) =0

It suffices to show that Dy (d@+ ) is exact, where € WU, and a € Z,,. First,
D, (d@) = 0 because d(d@) = 0. In order to show that D,(a) is exact for o € fq,
we first show the claim for o = ujv ok with |J| > ¢g. If I is empty, then da = 0
so that D,(a) = Aa(6%,0,0") = 0. If I is non-empty, then by using the equalities
vy () =0 and v (6, Q)v;, () = 0, we have
Dy(a) = Aa(0,0,0")

—Z DT+ K]+ ) (vt (vi, —T5,)) (07, Q)i (6, 0)

= Z VI T| v (0, Q)T (Q)T;, (D)auray(0“,0)

:d(uyw(e)’, Q)or (Q)ur(6,9)),
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where the last equality holds because v;(6’, ) is closed by Lemma 4.3.17. Similarly,
D, («) is exact if |K| > gq.
This completes the proof of Theorem 4.3.18. O

Finally we show that the infinitesimal derivative of secondary classes coincide
with the actual derivative when there is an actual deformation realizing the infini-
tesimal derivative.

An actual deformation induces an infinitesimal derivative as follows. We express
by ¢’ the derivative with respect to s at 0 € S, where 0 € S is a distinguished point.
We have

) ) Mji0 .
(4.3.20) Pj,s = Vji,s © Pi,0 T g; Pi,s

where 7;; ¢ is regarded as a holomorphic vector field on an open set of C?.

DEFINITION 4.3.21 ([53], [31]). The infinitesimal deformation associated with
{F,} is an element of H'(M;©Oz), where F = Fy, represented by the 1-cocycle of
which the value on U; N Uj is the vector field

(®5.0) Yji,s € OF|v.nu;-

Note that @;]UmUj is the pull-back of O, ; by ¢, 0, where T} ; is an open subset
of @ 0(Uj)-

DEFINITION 4.3.22 ([40, Definition 2.7]). Let {F,} be a smooth deformation of
transversely holomorphic foliations of M, and let w4 be the projection from TeM to
Q(Fs). We fix a Hermitian metric on TcM. Assuming that s is small if necessary,
we can find, by using the metric, a smooth family of splittings TecM = E,; ® vs,
where vy & Q(Fs). Let 7., be the projection from TcM to vs. The infinitesimal
deformation o associated with {F;} is the smooth section o of Ef®@Q(Fy) defined by

o))
s:()'

X) = —mo [ Zr'(X
o(0) = =0 (5L 7i(X)
LEMMA 4.3.23 ([40, Lemma 2.8)). o is independent of the choice of the splitting.
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ProOOF. We will give an essentially the same as the one in [40] but slightly
different proof. It suffices to work on a foliation chart. Let {e;,...,e,} be a local

frame of Q(Fo), Fix a splitting as above and let {e}, ..., e} be the lift of {e1,...,eq}

to Tc M. We may assume that there is a smooth family of frames {€/(s),..., e (s)}

q

of vy such that €;(0) =€}, i=1,...,q. If X € Ey, then 7(X) = Zfi(X, s)es(s)
. i=1

holds for some functions f;. Since 0 = 7{(X) = Z fi(X,0)e;, we have f;(X,0) =0
i=1

for any 7. Hence

0 - 0f; ! oe;
G| = L5 (K| a0+ 3 AX0F0)
z afz /
= Z B (X,s) _Oei(O).
=1 s=
Therefore .
0 _ Ofi '

Let TcM = E, @ v, be another splitting and let {e7(s),...,e;(s)} be the family of
frames of v/ such that wsel (s) = msel(s) € Q(Fs). If we denote by 7/ the projection

q
to v}, then /(X)) = Z fi(X,s)e(s). In other words, f;’s are independent of the
i=1
choice of splitting. Hence so is o. O
LEMMA 4.3.24 ([40, Corollary 2.11]). dyo = 0.
PROOF. Let X,Y € Ey. Then, VxZ = mo[X, Z] for Z € Q(F), where Z is any
lift of Z to T M. Hence
dvo(X,Y)=Vxo(Y)—Vyo(X)—0o([X,Y])

—~— —_~—

=mo([X, o (Y)]) = mo([Y, o (X)]) — o([X, Y]),

0
+ o <£7T;[X, Y]
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0
If v € E, then 7, —(v) = —7,(v). Indeed, 7, o 7, = 7, implies that

50s Os °

DN (DD
9s' ) Te T\ 95T ) T 9s e

Hence —’,(v) € vs. Therefore

Os
0 ({X, —ﬂé%ﬂ;(Y) ) = —m, ( X QTF/ (Y)

Similarly,

w ([r-mgm| ) == ([rpme
s=04 L
On the other hand,

0s <=0
8 / / /
=57 [X_WO(X)aY_TrO(Y)]
0s 0
+ 7 —QW/(X) Y —m,(Y)| + 7 | X — mp(X) —QW,(Y)
0 85 N s:O’ 0 0 0 ’ 88 ° s=0
a / / 8 / / 8 /
. X, Y] - | Zax) L y| - | x, Zay
Gom| XY= [ gomin)| L ¥] - X
because X,Y € E. Therefore dyo(X,Y) = %ﬂ'; (X —7l(X),Y — 7. (V)]
s=0
Since X — 7, (X),Y — 7.(Y) € Es and E; is integrable, dyo(X,Y) = 0. O

REMARK 4.3.25. If E are not necessarily integrable, dyo is called the integra-
bility tensor in [40].

DEFINITION 4.3.26. Let {Fs} be a smooth family of transversely holomorphic
foliations of M and let o be as above. The element [o] in H'(M;©£) is also called

the infinitesimal deformation associated with {Fs}.

Given a smooth deformation of F, two infinitesimal deformations are defined.

By [40, Theorem 2.5] and [26, Theorem 1.27] (cf. Lemma 4.3.3), we have the following.

THEOREM 4.3.27. The infinitesimal deformations defined in Definitions 4.5.21
and 4.3.26 coincide each other.
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ProoFr. We regard {¢; s} as a family of sections of Q(F). From (4.3.20), we
have ¢; s — i s = ¢} o¥ji,s- If we define a section s of Ej ® Q(Fo) by s = —dy i s
on U;, then s is well-defined again by (4.3.20). It is easy to see that s coincides with
o in Definition 4.3.22. U

THEOREM 4.3.28 ([42, Theorem 3.23]). Let {Fs}scr be a differentiable family
of transversely holomorphic foliations of M, of complex codimension q. If 8 €

HY(M;0O7%) is the infinitesimal deformation of Fy associated with {F,}, then

Ds(f) = S 1(F)

s=0
for f e H*(WU,).

PROOF. Let P; be the principal bundle associated with Q(Fs). We may assume
that s is small so that P; is canonically isomorphic to Fy. Hence there are families
of canonical forms ws and complex Bott connections 65 on Q(Fs) such that dws =

—ws df,=—=—6,] ,th
asw » an D5 - en

dis = —04 Aws — 0, A ws.

—0, Nwg. If we set wg =

On the other hand, if ¢ is the infinitesimal deformation associated with {Fs}, then

a 1-form ¢ on P representing o is given as follows. Let .7-"\3 be the pull-back of F by

the projection to M. Let w, = *(w!,...,w?) be the canonical form on Q(j-'\s) Then
PPN 0 ~ -
5(8) =~ (5 @HCOR) +- + A8 ).
s=0
where €;(s), i = 1,...,q, are defined as in the proof of Lemma 4.3.23. Since
0 -
a—ei(s) belongs to the kernel of 7y, one has
s s=0
8()?):—770 2wl(X) 51(O)+---+£wq(X) €4(0)
ds ° -0 ds ° o |
0 ;4 0
88("'}8( ) 32061 8Sw8( ) Szoeq
= —w(X).

It follows that 93 can be chosen as an infinitesimal derivative of 8y with respect to

0. Therefore Theorem 4.3.28 follows from Proposition 4.2.6. O



4.3. INFINITESIMAL DEFORMATIONS AND RIGIDITY 101

The Bott class is known to vary continuously. Hence its infinitesimal deriva-
tive is of interest. The above construction gives the infinitesimal derivative of the
imaginary part of the Bott class. If Kr is trivial, then the infinitesimal derivative
of the Bott class including the real part is constructed by Heitsch [42]. It is still
possible to define the derivative without the triviality of K, and the derivative is

an element of H*?™(M;C). Indeed, we have the following

THEOREM 4.3.29 ([10, Theorems 2.14 and 2.19]). Let u € H'(M;0x) and o
be a representative of u. Let 6 be a Bott connection and 0’ be an infinitesimal

derivative of 6 with respect to o. Then, the infinitesimal derivative of the Bott class

is represented by (—2mv/—1)1T1 (g 4+ 1)0" A (dO)4.

We denote by D, By(F) the infinitesimal derivative of the Bott class. We have
D, &y(F) = —2Im D, By(F). It is known that D,B,(F) can be represented in
terms of the projective Schwarzian derivatives in the Cech-de Rham complex ([57]
for ¢ = 1, [10, Theorem 4.10] for arbitrary q).

Let I,(F) be the space of differential forms on open sets of M which are locally
of the form w A dz' A --- A dz9. It follows from Theorem 4.3.29 that D, B,(F) can

be represented by an element of I,(F). Hence we have the following

COROLLARY 4.3.30 (cf. [10, Corollary 4.16]). Let J be an index set as in No-
tation 1.1.11. Let chy(F) = x%(vs), where x% is the characteristic mapping
(Definition 1.1.17). If J # @, then D,By(F)ch;(F) is trivial. In particular,
D, By(F)chy(F)* and D,&,(F) chy(F)* are trivial if k > 0.

PRrROOF. The class ch;(F) is represented by an element of I;(F). Hence the
first part follows from the Bott vanishing theorem. By setting J = (£,0,...,0), we
see that D, B,(F)chy(F)" is trivial if £ > 0. Since ch;(F) € H?*(M;R), we have
D, B,(F)chy(F)* = D, B,(F) chy (F)k. The last part follows from this equality. O

Note that Corollary 4.3.30 gives an alternative proof of Theorem B2.





