CHAPTER 4

The Rigidity Theorem and Infinitesimal Derivatives

In this chapter, we will introduce infinitesimal derivatives of secondary classes after Heitsch [42]. Deformations of foliations (and pseudogroup structures) are discussed by Kodaira [53], Kodaira-Spencer, [54], Heitsch [40], Duchamp-Kalka [26], Girbau-Haefliger-Sundararaman [31], Girbau-Nicolau [32], et al. It will be shown that complex secondary classes determined by the image of $H^{*}\left(\mathrm{WU}_{q+1}\right)$ under the natural mapping to $H^{*}\left(\mathrm{WU}_{q}\right)$ are rigid under actual and infinitesimal deformations. In particular, the Godbillon-Vey class is shown to be rigid in the category of transversely holomorphic foliations. On the other hand, classes in $H^{*}\left(\mathrm{WU}_{q}\right)$ which admit continuous deformations are called variable classes. The imaginary part of the Bott class is one of the variable classes. Heitsch introduced in [42] the infinitesimal derivatives for cocycles in WU_{q} which represent variable classes of lowest degree. In the same paper, the infinitesimal derivatives for any classes in $H^{*}\left(\mathrm{WO}_{q}\right)$ were also introduced. The most of this section will be devoted to completing Heitsch's construction by defining the infinitesimal derivatives for any classes in $H^{*}\left(\mathrm{WU}_{q}\right)$. The construction seems known for specialists, indeed, the most of the definitions and the proofs are only small modifications of Heitsch's in [42] using notions in [26]. However, we give the details for completeness and for their importance.

Throughout the construction, corresponding steps or statements in [42] are referred so far as possible.

4.1. Definitions and Statements of Results

In what follows, S will denote parameter spaces of deformations. Usually S is assumed to be an analytic space, which is not necessarily reduced, with a distinguished point 0 . If smooth deformations are considered, then S is assumed to be an open neighborhood of the origin of a finite dimensional Euclidean space.

Definition 4.1.1. A family of transversely holomorphic foliations $\left\{\mathcal{F}_{s}\right\}$ on M parametrized by $s \in S$ is given by the following data.

1) An open covering $\left\{U_{i}\right\}$ of M.
2) A family of submersions $\left\{\varphi_{i, s}: U_{i} \rightarrow \mathbb{C}^{q}\right\}$ such that \mathcal{F}_{s} is locally given by the fibers of $\varphi_{i, s}$.
3) A family $\left\{\gamma_{j i, s}\right\}$ of local biholomorphic diffeomorphisms of \mathbb{C}^{q} such that

$$
\varphi_{j, s}=\gamma_{j i, s} \circ \varphi_{i, s}
$$

The family $\left\{\mathcal{F}_{s}\right\}$ is smooth (resp. holomorphic) if $\varphi_{i, s}$ and $\gamma_{j i, s}$ are of class C^{∞} (resp. holomorphic) in s.

Definition 4.1.2. If \mathcal{F} is a transversely holomorphic foliation, then an actual deformation of \mathcal{F} is a family $\left\{\mathcal{F}_{s}\right\}$ as in Definition 4.1.1 such that $\mathcal{F}_{0}=\mathcal{F}$. If the family is smooth (resp. holomorphic), the deformation is said to be smooth (resp. holomorphic).

An actual deformation induces an infinitesimal deformation. See Section 4.3.

REMARK 4.1.3. If $\left\{\mathcal{F}_{s}\right\}$ is a smooth actual deformation of \mathcal{F}, then $\left\{\mathcal{F}_{s}\right\}$ is a smooth family of foliations so that we may assume that $Q\left(\mathcal{F}_{s}\right)$ are isomorphic on a neighborhood of $0 \in S$.

Certain type of deformations will be of interest.

Definition 4.1.4. Let $\left\{\mathcal{F}_{s}\right\}$ be an actual deformation of a transversely holomorphic foliation.

1) If there exists a smooth family of diffeomorphisms which conjugate each \mathcal{F}_{s} to \mathcal{F}_{0}, then $\left\{\mathcal{F}_{s}\right\}$ is said to be a deformation preserving the diffeomorphism type.
2) If \mathcal{F}_{s} are identical to \mathcal{F} as real foliations, then the family $\left\{\mathcal{F}_{s}\right\}$ is said to be a deformation of transverse holomorphic structures.

There is a natural mapping from $H^{*}\left(\mathrm{WU}_{q+1}\right)$ to $H^{*}\left(\mathrm{WU}_{q}\right)$ induced by the standard inclusion of \mathbb{C}^{q} into \mathbb{C}^{q+1} 。

Definition 4.1.5 (cf. [39]). Let ρ be the DGA-homomorphism from WU_{q+1} to WU_{q} defined by the following formulae:

$$
\begin{aligned}
& \rho\left(\widetilde{u}_{i}\right)=\left\{\begin{array}{ll}
\widetilde{u}_{i} & \text { if } i \neq q+1 \\
0 & \text { if } i=q+1
\end{array},\right. \\
& \rho\left(v_{i}\right)=\left\{\begin{array}{ll}
v_{i} & \text { if } i \neq q+1 \\
0 & \text { if } i=q+1
\end{array}, \quad \rho\left(\bar{v}_{i}\right)= \begin{cases}\bar{v}_{i} & \text { if } i \neq q+1 \\
0 & \text { if } i=q+1\end{cases} \right.
\end{aligned}
$$

We denote by ρ_{*} the induced homomorphism from $H^{*}\left(\mathrm{WU}_{q+1}\right)$ to $H^{*}\left(\mathrm{WU}_{q}\right)$.

The following theorem has been well-known for specialists.

Theorem B1. The secondary classes defined by $H^{*}\left(\mathrm{WU}_{q}\right)$ are rigid under smooth deformations if they belong to the image of ρ_{*}. More precisely, if $\left\{\mathcal{F}_{s}\right\}$ is a smooth family of transversely holomorphic foliations of complex codimension q and if ω is an element of $\rho_{*}\left(H^{*}\left(\mathrm{WU}_{q+1}\right)\right)$, then $\omega\left(\mathcal{F}_{s}\right) \in H^{*}(M)$ is independent of s.

Infinitesimal deformations of a transversely holomorphic foliation \mathcal{F} are elements of $H^{1}\left(M ; \Theta_{\mathcal{F}}\right)$ (see Definition 4.3.5 for details). Infinitesimal derivatives of elements of $H^{*}\left(\mathrm{WU}_{q}\right)$ are given by the mapping

$$
D .(\cdot): H^{1}\left(M ; \Theta_{\mathcal{F}}\right) \times H^{*}\left(\mathrm{WU}_{q}\right) \rightarrow H^{*}(M ; \mathbb{C})
$$

in Definition 4.3.13. It will be shown that a smooth family $\left\{\mathcal{F}_{s}\right\}$ as above naturally determines an infinitesimal derivative $\beta \in H^{1}\left(M ; \Theta_{\mathcal{F}}\right)$ such that $D_{\beta}(\omega)=$ $\left.\frac{\partial}{\partial s} \omega\left(\mathcal{F}_{s}\right)\right|_{s=0}$ for $\omega \in H^{*}\left(\mathrm{WU}_{q}\right)$ (Theorem 4.3.28). The infinitesimal version of Theorem B1 is as follows.

THEOREM B2. The image of $H^{1}\left(M ; \Theta_{\mathcal{F}}\right) \times\left(\rho_{*} H^{*}\left(\mathrm{WU}_{q+1}\right)\right)$ under the above mapping D.(.) is trivial.

Theorems B1 and B2 are shown in Section 4.3. The most important consequence of these theorems is the following

Theorem B. The Godbillon-Vey class is rigid under both smooth and infinitesimal deformations in the category of transversely holomorphic foliations.

Proof of Theorem B. Let q be the codimension of the foliations. Then

$$
\mathrm{GV}_{2 q}=\frac{(2 q)!}{q!q!} \sqrt{-1} \widetilde{u}_{1} v_{1}^{q} \bar{v}_{1}^{q}
$$

in $H^{4 q+1}\left(\mathrm{WU}_{q}\right)$ by Theorem 2.1. On the other hand,

$$
\xi_{q+1} \cdot \operatorname{ch}_{1}^{q-1}=\sqrt{-1} \widetilde{u}_{1}\left(v_{1}^{q+1} \bar{v}_{1}^{q-1}+v_{1}^{q} \bar{v}_{1}^{q}+v_{1}^{q-1} \bar{v}_{1}^{q+1}\right)
$$

in $H^{4 q+1}\left(\mathrm{WU}_{q+1}\right)$, where ξ_{q+1} is defined in Definition 1.2.1. Therefore

$$
\mathrm{GV}_{2 q}=\rho_{*}\left(\frac{(2 q)!}{q!q!} \xi_{q+1} \cdot \operatorname{ch}_{1}^{q-1}\right)
$$

in $H^{4 q+1}\left(\mathrm{WU}_{q}\right)$.
The following corollary is a consequence of Theorem B and Theorem 2.1.
COROLLARY 4.1.6. If $\left\{\mathcal{F}_{s}\right\}$ is a smooth family of transversely holomorphic foliations of codimension q, then the product of $\operatorname{ch}_{1}\left(\mathcal{F}_{0}\right)^{q}$ and $\frac{d}{d s} \xi\left(\mathcal{F}_{s}\right)$ is identically equal to zero. Similarly, if β is an infinitesimal deformation of \mathcal{F}, then $D_{\beta} \xi_{q}(\mathcal{F}) \operatorname{ch}_{1}(\mathcal{F})^{q}=0$ holds, where $D_{\beta} \xi_{q}(\mathcal{F})$ denotes the infinitesimal derivative of ξ_{q} with respect to β.

Proof. Since $\operatorname{ch}_{1}\left(\mathcal{F}_{s}\right)^{q}$ is independent of s, we have

$$
\left(\frac{d}{d s} \xi\left(\mathcal{F}_{s}\right)\right) \operatorname{ch}_{1}\left(\mathcal{F}_{0}\right)^{q}=\frac{q!q!}{(2 q)!} \frac{d}{d s} \operatorname{GV}_{2 q}\left(\mathcal{F}_{s}\right)=0
$$

The second claim holds for the same reason.

There are alternative proofs of Theorem B and Corollary 4.1.6. See Corollary 4.3.30 and Theorem 5.14.

Let $\left\{\mathcal{F}_{s}\right\}$ be a smooth family of transversely holomorphic foliations of codimension q, and assume that $\operatorname{GV}_{2 q}\left(\mathcal{F}_{s}\right)$ is non-trivial. Then $\operatorname{ch}_{1}\left(\mathcal{F}_{0}\right)^{q}$ is non-trivial by Theorem 2.1. If the mapping $\cup \operatorname{ch}_{1}\left(\mathcal{F}_{0}\right)^{q}: H^{*}(M ; \mathbb{C}) \rightarrow H^{*+2 q}(M ; \mathbb{C})$ is injective, then $\frac{d}{d s} \xi_{q}\left(\mathcal{F}_{s}\right)$ is trivial because $\frac{d}{d s} \mathrm{GV}_{2 q}\left(\mathcal{F}_{s}\right)=\frac{(2 q)!}{q!q!} \frac{d}{d s} \xi_{q}\left(\mathcal{F}_{s}\right) \operatorname{ch}_{1}\left(\mathcal{F}_{0}\right)^{q}=0$ by Theorem B1. This implies that the class ξ_{q} is in fact rigid in such a case. In fact, so far as we know, if $\left\{\mathcal{F}_{s}\right\}$ is a continuous family such that $\xi_{q}\left(\mathcal{F}_{s}\right)$ vary continuously, then $\operatorname{ch}_{1}\left(\mathcal{F}_{s}\right)$ are always trivial. In this line, we have the following

Question 4.1.7. Is there a smooth family of transversely holomorphic foliations for which the imaginary part of the Bott class varies continuously and the first Chern class of the complex normal bundle is non-trivial? How about infinitesimal deformations?

4.2. Rigidity under Smooth Deformations

The calculations in this section are used to prove Theorem B1 and also to construct infinitesimal derivative in the next section. We begin with some definitions.

Definition 4.2.1 ([39]). Let $\left\{\mathcal{F}_{s}\right\}$ be a smooth deformation of transversely holomorphic foliations. We define differential forms Δ_{f} and V as follows. As the complex normal bundles of the foliations remain isomorphic, denote them by Q and consider the same unitary connection θ_{0} for some Hermitian metric on Q. Let $\left\{\theta_{1}^{s}\right\}$ be a smooth family of complex Bott connections on Q, namely, assume that each θ_{1}^{s} is a Bott connection for \mathcal{F}_{s} and $\left\{\theta_{1}^{s}\right\}$ is smooth as a family of connections. Let ψ_{s} be the derivative of θ_{1}^{s} with respect to s, namely, $\psi_{s}=\frac{\partial}{\partial s} \theta_{1}^{s}$. Let f be a homogeneous polynomial of degree $2 k$ in v_{i} and \bar{v}_{j}. We set $\theta_{t}^{s}=t \theta_{1}^{s}+(1-t) \theta_{0}$ and denote by Ω_{t}^{s} its curvature, and set

$$
\begin{aligned}
\Delta_{f}\left(\theta_{1}^{s}, \theta_{0}\right) & =k \int_{0}^{1} f\left(\theta_{1}^{s}-\theta_{0}, \Omega_{t}^{s}, \ldots, \Omega_{t}^{s}\right) d t \\
V_{f}\left(\theta_{1}^{s}, \theta_{0}\right) & =\int_{0}^{1} t f\left(\psi_{s}, \theta_{1}^{s}-\theta_{0}, \Omega_{t}^{s}, \ldots, \Omega_{t}^{s}\right) d t
\end{aligned}
$$

The following formulae are shown in [39, Theorem 1]:

$$
\begin{align*}
\frac{\partial}{\partial s}\left(\Delta_{f}\left(\theta_{1}^{s}, \theta_{0}\right)\right) & =k(k-1) d V_{f}\left(\theta_{1}^{s}, \theta_{0}\right)+k f\left(\psi_{s}, \Omega_{1}^{s}, \ldots, \Omega_{1}^{s}\right) \tag{4.2.2a}\\
\frac{\partial}{\partial s} d\left(\Delta_{f}\left(\theta_{1}^{s}, \theta_{0}\right)\right) & =\frac{\partial}{\partial s} f\left(\Omega_{1}^{s}, \ldots, \Omega_{1}^{s}\right)=k d f\left(\psi_{s}, \Omega_{1}^{s}, \ldots, \Omega_{1}^{s}\right) \tag{4.2.2~b}
\end{align*}
$$

where Ω_{1}^{s} denotes the curvature form of the connection θ_{1}^{s} and the the exterior derivative is considered only on M, namely, along the fibers of $M \times \mathbb{R} \rightarrow \mathbb{R}$.

The following auxiliary definition will be convenient.
DEFINITION 4.2.3. Set $\widetilde{\mathrm{WU}}_{q}=\bigwedge\left[\widetilde{u}_{1}, \ldots, \widetilde{u}_{q}\right] \otimes \mathbb{C}\left[v_{1}, \ldots, v_{q}\right] \otimes \mathbb{C}\left[\bar{v}_{1}, \ldots, \bar{v}_{q}\right]$ and equip $\widetilde{\mathrm{WU}}_{q}$ with a differential \widetilde{d} by requiring $\widetilde{d}^{4}=v_{i}-\bar{v}_{i}$ and $\widetilde{d} v_{i}=\widetilde{d}_{i}=0$. Let $\widetilde{\mathcal{I}}_{q}$ be the ideal of $\widetilde{\mathrm{WU}}_{q}$ generated by cochains of the form $\widetilde{u}_{I} v_{J} \bar{v}_{K}$ with $|J|>q$ or $|K|>q$. Note that $\mathrm{WU}_{q}=\widetilde{\mathrm{WU}}_{q} / \widetilde{\mathcal{I}}_{q}$. If φ is a cochain in WU_{q}, then its lift $\widetilde{\varphi}$ in $\widetilde{\mathrm{WU}}_{q}$ is said to be a natural lift if $\widetilde{\varphi}$ is a linear combination of cochains of the form $\widetilde{u}_{I} v_{J} \bar{v}_{K}$ with $|J| \leq q$ and $|K| \leq q$.

It is easy to verify the relation $\widetilde{d} \circ \widetilde{d}=0$. The $\operatorname{DGA}\left(\widetilde{W U}_{q}, \widetilde{d}\right)$ is obtained from WU_{q} by forgetting the Bott vanishing. Note that $\tilde{d} \widetilde{d} \widetilde{\varphi}$ is exactly equal to 0 for any $\widetilde{\varphi} \in \widetilde{W U}_{q}$. This simple property is frequently used in what follows.

The following differential form is significant.
Definition 4.2.4. Let θ^{u} be a unitary connection and θ a Bott connection on $Q(\mathcal{F})$, respectively. Let θ^{\prime} be a derivative of a family of Bott connections or an infinitesimal derivative of a Bott connection which will be introduced in Definition 4.3.9, or a certain matrix valued function which will appear in proving Theorem 4.3.18. For $\widetilde{\varphi} \in \widetilde{\mathrm{WU}}_{q}$, we define a differential form $\Delta \widetilde{\varphi}\left(\theta^{u}, \theta, \theta^{\prime}\right)$ as follows. First, if $\widetilde{\varphi}=\widetilde{u}_{I} v_{J} \bar{v}_{K}$, then we set

$$
\delta(\widetilde{\varphi})\left(\theta^{u}, \theta, \theta^{\prime}\right)=(|J|+|K|) v_{J} \bar{v}_{K}\left(\theta^{\prime}, \Omega\right) \widetilde{u}_{I}\left(\theta, \theta^{u}\right)
$$

where Ω is the curvature form of θ. We set

$$
\Delta \widetilde{\varphi}\left(\theta^{u}, \theta, \theta^{\prime}\right)=\delta(\tilde{d} \widetilde{\varphi})\left(\theta^{u}, \theta, \theta^{\prime}\right)
$$

We extend δ and Δ to the whole $\widetilde{\mathrm{WU}}_{q}$ by linearity.
If $\widetilde{\varphi}=\widetilde{u}_{I} v_{J} \bar{v}_{K} \in \widetilde{\mathrm{WU}}_{q}$ and $I=\left\{i_{1}, \ldots, i_{t}\right\}$ with $i_{1}<i_{2}<\cdots<i_{t}$, then

$$
\begin{aligned}
& \Delta \widetilde{\varphi}\left(\theta^{u}, \theta, \theta^{\prime}\right) \\
= & \sum_{l}(-1)^{l-1}\left(|J|+|K|+i_{l}\right)\left(v_{J} \bar{v}_{K}\left(v_{i_{l}}-\bar{v}_{i_{l}}\right)\right)\left(\theta^{\prime}, \Omega\right) \widetilde{u}_{I(l)}\left(\theta, \theta^{u}\right),
\end{aligned}
$$

where $I(l)=I \backslash\left\{i_{l}\right\}$.
The following is easy (see Lemma A. 6 for the first formula).
Lemma 4.2.5. We have the following formulae:

$$
\begin{gather*}
(|J|+|K|)\left(v_{J} v_{K}\right)\left(\theta^{\prime}, \Omega\right)=|J| v_{J}\left(\theta^{\prime}, \Omega\right) v_{K}(\Omega)+|K| v_{J}(\Omega) v_{K}\left(\theta^{\prime}, \Omega\right) \tag{4.2.5a}\\
\left\{\begin{array}{l}
v_{J}\left(\theta^{\prime}, \Omega\right)=0 \text { as differential forms if }|J|>q+1 \\
\bar{v}_{K}\left(\theta^{\prime}, \Omega\right)=0 \quad \text { as differential forms if }|K|>q+1
\end{array}\right. \tag{4.2.5b}
\end{gather*}
$$

Proposition 4.2.6. If $\varphi \in \mathrm{WU}_{q}$ is a cocycle, then $\frac{\partial}{\partial s} \chi_{s}(\varphi)$ is represented by $\Delta \widetilde{\varphi}\left(\theta_{0}, \theta_{1}^{s}, \psi_{s}\right)$, where $\widetilde{\varphi}$ is any lift of φ to $\widetilde{\mathrm{WU}}_{q}$.

Proof. In the proof, we will make use of the following notations, namely, $\widetilde{u}_{i}\left(\theta_{1}^{s}, \theta_{0}\right), v_{j}\left(\Omega_{1}^{s}\right)$ and $\bar{v}_{k}\left(\Omega_{1}^{s}\right)$ are simply denoted by $\widetilde{u}_{i}(s), v_{j}(s)$ and $\bar{v}_{k}(s)$, respectively. The differential form $v_{j}\left(\psi_{s}, \Omega_{1}^{s}\right)$ is denoted by $w_{j}(s)$, and $\bar{v}_{k}\left(\psi_{s}, \Omega_{1}^{s}\right)$ is denoted by $\bar{w}_{k}(s)$. We denote $V_{v_{i}}\left(\theta_{1}^{s}, \theta_{0}\right)$ and $\bar{V}_{v_{i}}\left(\theta_{1}^{s}, \theta_{0}\right)$ simply by V_{i} and \bar{V}_{i}, respectively. Finally, we set $\widetilde{V}_{i}=V_{i}-\bar{V}_{i}$ and $\widetilde{w}_{i}(s)=w_{i}(s)-\bar{w}_{i}(s)$. Under these notations, $\frac{\partial}{\partial s} \widetilde{u}_{i}(s)=i(i-1) d \widetilde{V}_{i}+i\left(w_{i}(s)-\bar{w}_{i}(s)\right)=i(i-1) d \widetilde{V}_{i}+i \widetilde{w}_{i}$.

Let φ be a cocycle in WU_{q}. We will compute $\frac{\partial}{\partial s} \chi_{s}(\varphi)$. For each i, where $1 \leq i \leq q$, there are elements α_{i} and β_{i} of WU_{q} which do not involve \widetilde{u}_{i} and such that $\varphi=\widetilde{u}_{i} \alpha_{i}+\beta_{i}$. Note that α_{i} is closed because φ is closed. Let $\frac{\partial}{\partial s_{i}}$ be the differential operator obtained by applying $\frac{\partial}{\partial s}$ only to $\widetilde{u}_{i}\left(\theta_{1}^{s}, \theta_{0}\right), v_{i}\left(\theta_{1}^{s}\right)$ and $\bar{v}_{i}\left(\theta_{1}^{s}\right)$. Then $\frac{\partial}{\partial s}$ is decomposed as $\frac{\partial}{\partial s}=\frac{\partial}{\partial s_{1}}+\cdots+\frac{\partial}{\partial s_{q}}$. In order to compute $\frac{\partial}{\partial s_{i}} \chi_{s}(\varphi)$,
we write $\alpha_{i}=\sum_{j, k} v_{i}^{j} \bar{v}_{i}^{k} a_{j, k}^{i}$ and $\beta_{i}=\sum_{j, k} v_{i}^{j} \bar{v}_{i}^{k} b_{j, k}^{i}$ so that neither $a_{j, k}^{i}$ nor $b_{j, k}^{i}$ involves v_{i} and \bar{v}_{i}. Then,

$$
\begin{aligned}
\frac{\partial}{\partial s_{i}} \chi_{s}(\varphi)= & \frac{\partial}{\partial s_{i}} \chi_{s}\left(\widetilde{u}_{i} \alpha_{i}+\beta_{i}\right) \\
= & \sum_{j, k}\left(i(i-1) d \widetilde{V}_{i}+i \widetilde{w}_{i}(s)\right) v_{i}^{j}(s) \bar{v}_{i}^{k}(s) a_{j, k}^{i}(s) \\
& +\sum_{j, k} i j \widetilde{u}_{i}(s) v_{i}^{j-1}(s) d w_{i}(s) \bar{v}_{i}^{k}(s) a_{j, k}^{i}(s) \\
& +\sum_{j, k} i k \widetilde{u}_{i}(s) v_{i}^{j}(s) \bar{v}_{i}^{k-1}(s) d \bar{w}_{i}(s) a_{j, k}^{i}(s) \\
& +\sum_{j, k} i j v_{i}^{j-1}(s) d w_{i}(s) \bar{v}_{i}^{k}(s) b_{j, k}^{i}(s) \\
& +\sum_{j, k} i k v_{i}^{j}(s) \bar{v}_{i}^{k-1}(s) d \bar{w}_{i}(s) b_{j, k}^{i}(s) .
\end{aligned}
$$

The first term is equal to

$$
i(i-1) d \widetilde{V}_{i} \alpha_{i}(s)+\sum_{j, k} i \widetilde{w}_{i}(s) v_{i}^{j}(s) \bar{v}_{i}^{k}(s) a_{j, k}^{i}(s) .
$$

Note that $d \widetilde{V}_{i} \alpha_{i}(s)=d\left(\widetilde{V}_{i} \alpha_{i}(s)\right)$ because α_{i} is closed. The second term is cohomologous to

$$
\begin{aligned}
& \sum_{j, k} i j\left(v_{i}(s)-\bar{v}_{i}(s)\right) v_{i}^{j-1}(s) w_{i}(s) \bar{v}_{i}^{k}(s) a_{j, k}^{i}(s) \\
& +\sum_{j, k} i j \widetilde{u}_{i}(s) v_{i}^{j-1}(s) w_{i}(s) \bar{v}_{i}^{k}(s) d a_{j, k}^{i}(s)
\end{aligned}
$$

which is equal to

$$
\begin{aligned}
& \sum_{j, k} i j v_{i}^{j}(s) \bar{v}_{i}^{k}(s) w_{i}(s) a_{j, k}^{i}(s)-\sum_{j, k} i j v_{i}^{j-1}(s) \bar{v}_{i}^{k} w_{i}(s) a_{j, k-1}^{i}(s) \\
& -\sum_{j, k} i j v_{i}^{j-1}(s) w_{i}(s) \bar{v}_{i}^{k}(s) \widetilde{u}_{i}(s) d a_{j, k}^{i}(s)
\end{aligned}
$$

where $a_{j,-1}^{i}$ is understood to be zero. Similarly, the third term is cohomologous to

$$
\begin{aligned}
& -\sum_{j, k} i k v_{i}^{j}(s) \bar{v}_{i}^{k}(s) \bar{w}_{i}(s) a_{j, k}^{i}(s)+\sum_{j, k} i k v_{i}^{j}(s) \bar{v}_{i}^{k-1} \bar{w}_{i}(s) a_{j-1, k}^{i}(s) \\
& -\sum_{j, k} i k v_{i}^{j}(s) \bar{v}_{i}^{k-1}(s) w_{i}(s) \widetilde{u}_{i}(s) d a_{j, k}^{i}(s)
\end{aligned}
$$

where $a_{-1, k}^{i}=0$. The fourth and fifth terms are respectively cohomologous to

$$
\sum_{j, k} i j v_{i}^{j-1}(s) \bar{v}_{i}^{k}(s) w_{i}(s) d b_{j, k}^{i}(s)
$$

and

$$
\sum_{j, k} i k v_{i}^{j}(s) \bar{v}_{i}^{k-1}(s) \bar{w}_{i}(s) d b_{j, k}^{i}(s)
$$

Hence we have the following equalities modulo exact terms, namely,

$$
\begin{aligned}
& \frac{\partial}{\partial s_{i}} \chi_{s}(\varphi) \\
= & \sum_{j, k} i(j+1) v_{i}^{j}(s) \bar{v}_{i}^{k}(s) w_{i}(s) a_{j, k}^{i}(s)-\sum_{j, k} i(k+1) v_{i}^{j}(s) \bar{v}_{i}^{k}(s) \bar{w}_{i}(s) a_{j, k}^{i}(s) \\
& -\sum_{j, k} i j v_{i}^{j-1}(s) \bar{v}_{i}^{k} w_{i}(s) a_{j, k-1}^{i}(s)+\sum_{j, k} i k v_{i}^{j}(s) \bar{v}_{i}^{k-1} \bar{w}_{i}(s) a_{j-1, k}^{i}(s) \\
& -\sum_{j, k} i j v_{i}^{j-1}(s) w_{i}(s) \bar{v}_{i}^{k}(s) \widetilde{u}_{i}(s) d a_{j, k}^{i}(s)-\sum_{j, k} i k v_{i}^{j}(s) \bar{v}_{i}^{k-1}(s) w_{i}(s) \widetilde{u}_{i}(s) d a_{j, k}^{i}(s) \\
& +\sum_{j, k} i j v_{i}^{j-1}(s) \bar{v}_{i}^{k}(s) w_{i}(s) d b_{j, k}^{i}(s)+\sum_{j, k} i k v_{i}^{j}(s) \bar{v}_{i}^{k-1}(s) \bar{w}_{i}(s) d b_{j, k}^{i}(s) \\
= & \sum_{j, k} i j v_{i}^{j-1}(s) \bar{v}_{i}^{k} w_{i}(s)\left(a_{j-1, k}^{i}(s)-a_{j, k-1}^{i}(s)+d b_{j, k}^{i}(s)-\widetilde{u}_{i}(s) d a_{j, k}^{i}(s)\right) \\
& +\sum_{j, k} i k v_{i}^{j}(s) \bar{v}_{i}^{k-1} \bar{w}_{i}(s)\left(-a_{j, k-1}^{i}(s)+a_{j-1, k}^{i}(s)+d b_{j, k}^{i}(s)-\widetilde{u}_{i}(s) d a_{j, k}^{i}(s)\right) .
\end{aligned}
$$

On the other hand, if $\widetilde{\varphi}$ is the natural lift of φ, then one has

$$
\begin{aligned}
\widetilde{d} \widetilde{\varphi} & =\left(\left(v_{i}-\bar{v}_{i}\right) \alpha_{i}-\widetilde{u}_{i} d \alpha_{i}+d \beta_{i}\right) \\
& =\sum_{j, k}\left(v_{i}-\bar{v}_{i}\right) v_{i}^{j} \bar{v}_{i}^{k} a_{j, k}^{i}+\sum_{j, k} v_{i}^{j} \bar{v}_{i}^{k} d b_{j, k}^{i}-\sum_{j, k} \widetilde{u}_{i} v_{i}^{j} \bar{v}_{i}^{k} d a_{j, k}^{i} \\
& =\sum_{j, k} v_{i}^{j} \bar{v}_{i}^{k}\left(a_{j-1, k}^{i}-a_{j, k-1}^{i}+d b_{j, k}^{i}-\widetilde{u}_{i} d a_{j, k}^{i}\right) .
\end{aligned}
$$

From (4.2.5a), we see that Proposition 4.2 .6 holds if $\widetilde{\varphi}$ a natural lift. In order to show the proposition for general choices of $\widetilde{\varphi}$, it suffices to show that $\Delta(\widetilde{d} \widetilde{\alpha}+$ $\widetilde{\beta})\left(\theta_{0}, \theta_{1}^{s}, \psi_{s}\right)$ is exact if $\widetilde{\alpha} \in \widetilde{\mathrm{WU}}_{q}$ and if $\widetilde{\beta} \in \widetilde{\mathcal{I}}_{q}$. One has $\Delta(\widetilde{d} \widetilde{\alpha})\left(\theta_{0}, \theta_{1}^{s}, \psi_{s}\right)=$ $\delta(\widetilde{d}(\widetilde{d} \widetilde{\alpha}))\left(\theta_{0}, \theta_{1}^{s}, \psi_{s}\right)=0$. Let $\widetilde{\beta}=\widetilde{u}_{I} v_{J} \bar{v}_{K}$, where $|J|>q$. If $I=\varnothing$, then
$\Delta\left(v_{J} \bar{v}_{K}\right)\left(\theta_{0}, \theta_{1}^{s}, \psi_{s}\right)=0$ because $\widetilde{d}\left(v_{J} \bar{v}_{K}\right)=0$. If $I \neq \varnothing$, then the following equality holds, namely,

$$
\begin{aligned}
& \Delta\left(\widetilde{u}_{I} v_{J} \bar{v}_{K}\right)\left(\theta_{0}, \theta_{1}^{s}, \psi_{s}\right) \\
= & \sum_{l}(-1)^{l-1}\left(|J|+|K|+i_{l}\right) v_{J} \bar{v}_{K}\left(v_{i_{l}}-\bar{v}_{i_{l}}\right)\left(\psi_{s}, \Omega^{s}\right) \widetilde{u}_{I(l)}\left(\theta_{1}^{s}, \theta_{0}\right) \\
= & -\sum_{l}(-1)^{l-1}|J| v_{J}\left(\psi_{s}, \Omega^{s}\right) \bar{v}_{K} \bar{v}_{i_{l}}\left(\Omega^{s}\right) \widetilde{u}_{I(l)}\left(\theta_{1}^{s}, \theta_{0}\right) \\
= & d\left(|J| v_{J}\left(\psi_{s}, \Omega^{s}\right) \bar{v}_{K}\left(\Omega^{s}\right) \widetilde{u}_{I}\left(\theta_{1}^{s}, \theta_{0}\right)\right),
\end{aligned}
$$

where the second equality holds because $v_{J}\left(\Omega^{s}\right)=0$ and $v_{J}\left(\psi_{s}, \Omega^{s}\right) v_{i_{l}}\left(\Omega^{s}\right)=0$ by the Bott vanishing. The last equality follows from (4.2.2b) and $d v_{J}\left(\psi_{s}, \Omega^{s}\right)=0$. Finally, $\frac{\partial}{\partial s} \chi_{s}(\varphi)$ is closed as $\chi_{s}(\varphi)$ is closed independent of s.

Proof of Theorem B1. Let φ be a cocycle in WU_{q+1} and let $\widetilde{\varphi}$ be any lift of φ to $\widetilde{\mathrm{WU}}_{q+1}$. Then $\widetilde{d} \widetilde{\varphi}$ is a linear combination of the monomials of the form $\widetilde{u}_{I} v_{J} \bar{v}_{K}$ with $|J|>q+1$ or $|K|>q+1$. Hence $\Delta(\rho \widetilde{\varphi})\left(\theta_{0}, \theta_{1}^{s}, \varphi_{s}\right)$ identically vanishes by (4.2.5b).

Compared with the real case, the space $H^{*}\left(\mathrm{WU}_{q}\right)$ and the cokernel of ρ_{*} are rather complicated. For example, we have the following.

Proposition 4.2.7 (cf. [5, Theorem 1.8]). In the lower codimensional cases, the cokernel of ρ_{*} is described as follows:
$q=1:$ A basis for coker ρ_{*} is $\left\{\widetilde{u}_{1}\left(v_{1}+\bar{v}_{1}\right)\right\}$.
$q=2:$ A basis for coker ρ_{*} consists of $v_{1}+\bar{v}_{1}, v_{1}^{2}+v_{2}+2 v_{1} \bar{v}_{1}+\bar{v}_{1}^{2}+\bar{v}_{2}$ and the classes in $H^{*}\left(\mathrm{WU}_{2}\right)$ of degree 5,10 or 12 , namely, the classes in Table 4.2.1, where the numbers in the left column stand for the degree of the classes in the same row.

Example 1.1.6 of Bott shows that the secondary classes of the lowest degree can vary. We do not know if the classes of higher degree can vary.

5	$\widetilde{u}_{1}\left(v_{1}^{2}+v_{1} \bar{v}_{1}+\bar{v}_{1}^{2}\right), \widetilde{u}_{1}\left(v_{2}+\bar{v}_{2}\right)+\widetilde{u}_{2}\left(v_{1}+\bar{v}_{1}\right)$
10	$\widetilde{u}_{1} \widetilde{u}_{2} v_{1} \bar{v}_{1}\left(v_{1}+\bar{v}_{1}\right)$
12	$\widetilde{u}_{1} \widetilde{u}_{2} v_{1}^{2} \bar{v}_{1}^{2}, \widetilde{u}_{1} \widetilde{u}_{2} v_{1}^{2} \bar{v}_{2}, \widetilde{u}_{1} \widetilde{u}_{2} v_{2} \bar{v}_{1}^{2}, \widetilde{u}_{1} \widetilde{u}_{2} v_{2} \bar{v}_{2}$

Table 4.2.1. A part of basis for coker ρ_{*}, where $q=2$.

4.3. Infinitesimal Deformations, Infinitesimal Derivatives and Rigidity under Infinitesimal Deformations

We first recall that $T_{\mathbb{C}} M=T M \otimes \mathbb{C}$ and E is the complex vector bundle locally spanned by $T \mathcal{F}$ and the transverse antiholomorphic vectors $\frac{\partial}{\partial \bar{z}_{i}}$. Then, $Q(\mathcal{F})=T_{\mathbb{C}} M / E$ (Definition 1.1.4). The space of C^{∞} sections of $\bigwedge^{*} E^{*} \otimes Q(\mathcal{F})$ is denoted by $\Gamma^{\infty}\left(\bigwedge^{*} E^{*} \otimes Q(\mathcal{F})\right)$.

Definition 4.3.1 ([42, 1.4], [26]). Let ∇ be a Bott connection on $Q(\mathcal{F})$. We define a derivation $d_{\nabla}: \Gamma^{\infty}\left(\bigwedge^{p} E^{*} \otimes Q(\mathcal{F})\right) \rightarrow \Gamma^{\infty}\left(\bigwedge^{p+1} E^{*} \otimes Q(\mathcal{F})\right)$ by

$$
\begin{aligned}
& d_{\nabla} \sigma\left(X_{0}, \ldots, X_{p}\right) \\
= & \sum_{0 \leq i \leq p}(-1)^{i} \nabla_{X_{i}} \sigma\left(X_{0}, \ldots, \widehat{X}_{i}, \ldots, X_{p}\right) \\
& +\sum_{0 \leq i<j \leq p}(-1)^{i+j} \sigma\left(\left[X_{i}, X_{j}\right], X_{0}, \ldots, \widehat{X}_{i}, \ldots, \widehat{X}_{j}, \ldots, X_{p}\right),
\end{aligned}
$$

where $\sigma \in \Gamma^{\infty}\left(\bigwedge^{p} E^{*} \otimes Q(\mathcal{F})\right), X_{i} \in \Gamma^{\infty}(E)$ and the symbol ‘^, means omission.
A section σ of $Q(\mathcal{F})$ is said to be foliated and transversely holomorphic if $\mathcal{L}_{X} \sigma=$ 0 for $X \in E$, where \mathcal{L}_{X} denotes the Lie derivative with respect to X. In other words, σ is foliated and transversely holomorphic if σ is locally constant along the leaves and transversely holomorphic.

Definition 4.3.2. Let $\Theta_{\mathcal{F}}$ be the sheaf of germs of foliated transversely holomorphic vector fields.

The following fact, which is relevant in studying infinitesimal deformations, can be found in the proof of Theorem 1.27 of [26].

LEMMA 4.3.3. Let $\Theta_{\mathcal{F}}$ be the sheaf of germs of foliated transversely holomorphic vector fields. Then $d_{\nabla} \circ d_{\nabla}=0$, and

$$
0 \longrightarrow \Theta_{\mathcal{F}} \longrightarrow \Gamma^{\infty}\left(\bigwedge^{0} E^{*} \otimes Q(\mathcal{F})\right) \xrightarrow{d_{\nabla}} \Gamma^{\infty}\left(\bigwedge^{1} E^{*} \otimes Q(\mathcal{F})\right) \xrightarrow{d_{\nabla}} \cdots
$$ is a resolution of $\Theta_{\mathcal{F}}$.

We have the following.

Theorem 4.3.4 ([26, Theorem 1.27]). $H^{*}\left(M ; \Theta_{\mathcal{F}}\right)$ is isomorphic to the cohomology of $\left(\Gamma^{\infty}\left(\bigwedge^{*} E^{*} \otimes Q(\mathcal{F})\right), d_{\nabla}\right)$. Moreover, $H^{*}\left(M ; \Theta_{\mathcal{F}}\right)$ is of finite dimension.

Definition 4.3.5. An infinitesimal deformation of \mathcal{F} is by definition an element of $H^{1}\left(M ; \Theta_{\mathcal{F}}\right)$.

See also Definitions 4.3.21 and 4.3.26.
In what follows, we follow the conventions in [42] but we will work on $Q(\mathcal{F})$ instead of $Q(\mathcal{F})^{*}$.

Let P be the principal bundle associated with $Q(\mathcal{F})$, and let $\pi: P \rightarrow M$ the projection. If $\alpha \in P$, then α is a linear isomorphism from \mathbb{C}^{q} to $Q(\mathcal{F})_{\pi(\alpha)}$.

Definition 4.3.6. If $X \in T_{\alpha} P$, then we set $\omega(X)=\alpha^{-1}\left(\pi_{*} X\right)$. The differential form ω is called the canonical form. The i-th component of $\omega(X)$ is denoted by $\omega^{i}(X)$, and each ω^{i} is regarded as a 1-form.

Let θ be the connection form of a connection on P induced from any Bott connection on $Q(\mathcal{F})$. Then $d \omega=-\theta \wedge \omega$, where the sign is opposite when compared with [42]. This is because we work on $Q(\mathcal{F})$. Let $\Omega=d \theta+\theta \wedge \theta$ be the curvature form. Then $\Omega \wedge \omega=0$.

Let σ be a section of $\bigwedge^{*} E^{*} \otimes Q(\mathcal{F})$. We can regard σ as a section of $\bigwedge^{*} T_{\mathbb{C}}^{*} M \otimes$ $Q(\mathcal{F})$ by arbitrarily extend it. Then, by pulling back to P and considering the horizontal lifts, we can regard σ as a section, say $\widetilde{\sigma}$, of $\bigwedge^{*} P^{*} \otimes Q(\widehat{\mathcal{F}})$, where $\widehat{\mathcal{F}}=\pi^{*} \mathcal{F}$ is the lift of \mathcal{F} to P. Finally, we can regard $\widetilde{\sigma}$ as a \mathbb{C}^{q}-valued differential form on
P by composing it with the canonical form ω. A section of $\bigwedge^{*} P^{*} \otimes Q(\widehat{\mathcal{F}})$ is always considered as a \mathbb{C}^{q}-valued differential form in this way, and represented in columns. Conversely, a section $\widetilde{\sigma}$ projects down to a section σ of $\bigwedge^{*} T_{\mathbb{C}}^{*} M \otimes Q(\mathcal{F})$ if and only if

1) $\tilde{\sigma}$ is horizontal, that is, $\widetilde{\sigma}\left(X_{1}, \ldots, X_{k}\right)=0$ if $\pi_{*}\left(X_{i}\right)=0$ for some i,
2) $R_{g}^{*} \widetilde{\sigma}=g^{-1} \widetilde{\sigma}$ for $g \in \operatorname{GL}(q ; \mathbb{C})$, where R_{g} is the right action of $\operatorname{GL}(q ; \mathbb{C})$ on P. In what follows, $\widetilde{\sigma}$ is also denoted by σ by abuse of notation.

Let $\beta \in H^{1}\left(M ; \Theta_{\mathcal{F}}\right)$ and let σ be a representative of β. Such a σ is a section of $E^{*} \otimes Q(\mathcal{F})$ such that $d_{\nabla} \sigma^{\prime}=0$. We denote again by σ the \mathbb{C}^{q}-valued 1-form on P obtained in the above manner. Then, σ satisfies the above conditions 1) and 2), and
3) $d \sigma+\theta \wedge \sigma=0$ when restricted to $\pi^{*} E$.

Let $\mathcal{I}(\omega)$ be the ideal generated by $\omega^{1}, \ldots, \omega^{q}$ in the space of differential forms on P. The condition 3) is equivalent to $d \sigma+\theta \wedge \sigma \in \mathcal{I}(\omega)$.

Definition 4.3.7 ([42, Definition 3.8]). Let β be an element of $H^{1}\left(M ; \Theta_{\mathcal{F}}\right)$ and let σ be a representative of β as a \mathbb{C}^{q}-valued 1 -form on P. The infinitesimal derivative of the canonical form ω with respect to σ, denoted by ω^{\prime}, is defined by

$$
\omega^{\prime}=-\sigma .
$$

It follows from the condition 3) above that $d \omega^{\prime}+\theta \wedge \omega^{\prime} \in \mathcal{I}(\omega)$. Let θ^{\prime} be a $\mathfrak{g l}_{q} \mathbb{C}$-valued 1-form on P such that

$$
\begin{equation*}
d \omega^{\prime}+\theta \wedge \omega^{\prime}=-\theta^{\prime} \wedge \omega \tag{4.3.8}
\end{equation*}
$$

The infinitesimal derivative of a Bott connection is defined as follows.
Definition 4.3.9 ([42, Definition 3.10]). Any $\mathfrak{g l}_{q} \mathbb{C}$-valued 1 -form θ^{\prime} on P satisfying (4.3.8) is called an infinitesimal derivative of θ with respect to σ.

If θ_{0}^{\prime} and θ_{1}^{\prime} are two infinitesimal derivatives of θ with respect to σ, then $\left(\theta_{1}^{\prime}-\right.$ $\left.\theta_{0}^{\prime}\right) \wedge \omega=0$. Hence

$$
\begin{equation*}
\left(\theta_{1}^{\prime}-\theta_{0}^{\prime}\right)_{j}^{i}=\sum_{k} \lambda_{j, k}^{i} \omega^{k} \tag{4.3.10}
\end{equation*}
$$

for some \mathbb{C}-valued functions $\lambda_{j, k}^{i}$ on P satisfying $\lambda_{j, k}^{i}=\lambda_{k, j}^{i}$.

Lemma 4.3.11 ([42, Lemma 2.12]). If θ^{\prime} is an infinitesimal derivative of θ, then 1) θ^{\prime} is horizontal,
2) θ^{\prime} is tensorial of type ad modulo ω, namely, $R_{g}^{*} \theta^{\prime}-g^{-1} \theta^{\prime} g \in \mathcal{I}(\omega)$.

Proof. Let $u \in P$. If $X \in T_{u} P$ satisfies $\pi_{*} X=0$, then $\omega(X)=0$, where ω is the canonical form. As ω^{\prime} is horizontal, one has also $\omega^{\prime}(X)=0$. We extend X to an equivariant vector field on P and denote the extension again by X. Note that X is vertical because $\pi_{*} X_{u}=0$. Let $Y_{j}, j=1, \ldots, q$, be vector fields on P which are equivariant under the right action of $\mathrm{GL}(q ; \mathbb{C})$, and such that $\omega^{k}\left(\left(Y_{k}\right)_{u}\right)=1$ and $\omega^{k}\left(\left(Y_{j}\right)_{u}\right)=0$ if $j \neq k$. We set $\alpha=\omega^{\prime}-A \omega$, where A is a matrix valued function defined by setting $A=\left(\omega^{\prime}\left(Y_{1}\right) \cdots \omega^{\prime}\left(Y_{q}\right)\right)$. Then α is horizontal. Note that $X_{u} A=0$ because the both Y_{j} and ω^{\prime} are equivariant and X is vertical. Then $\alpha\left(Y_{u}\right)=0$ and $\omega\left(Y_{u}\right)$ is the identity matrix. One has by (4.3.8)

$$
\begin{aligned}
d \alpha & =-\theta \wedge \omega^{\prime}-\theta^{\prime} \wedge \omega-d A \wedge \omega+A \theta \wedge \omega \\
& =-\theta \wedge \alpha-\theta^{\prime} \wedge \omega-d A \wedge \omega+A \theta \wedge \omega-\theta \wedge A \omega
\end{aligned}
$$

On the other hand, since $\pi_{*}[X, Y]_{u}=0$, we have $d \alpha\left(X_{u}, Y_{u}\right)=X \alpha(Y)_{u}-Y \alpha(X)_{u}-$ $\alpha\left([X, Y]_{u}\right)=0$. It follows that

$$
\begin{aligned}
\theta^{\prime}\left(X_{u}\right) & =\theta^{\prime}\left(X_{u}\right) \omega\left(Y_{u}\right) \\
& =\left(\theta^{\prime} \wedge \omega\right)\left(X_{u}, Y_{u}\right) \\
& =(-\theta \wedge \alpha-d A \wedge \omega+A \theta \wedge \omega-\theta \wedge A \omega)\left(X_{u}, Y_{u}\right) \\
& =-d A\left(X_{u}\right)+A \theta\left(X_{u}\right)-\theta\left(X_{u}\right) A .
\end{aligned}
$$

Since $d A\left(X_{u}\right)=X_{u} A=0$, it suffices to show that $\theta\left(X_{u}\right)=0$. This follows from the equalities $\theta\left(X_{u}\right)=\theta\left(X_{u}\right) \omega\left(Y_{u}\right)=(\theta \wedge \omega)\left(X_{u}, Y_{u}\right)=-d \omega\left(X_{u}, Y_{u}\right)$ and $d \omega\left(X_{u}, Y_{u}\right)=$ $X \omega(Y)_{u}-Y \omega(X)_{u}-\omega\left([X, Y]_{u}\right)=0$. In order to show 2$)$, note that $R_{g}^{*} \theta=g^{-1} \theta g$, $R_{g}^{*} \omega=g^{-1} \omega$ and $R_{g}^{*} \omega^{\prime}=g^{-1} \omega^{\prime}$. Applying R_{g}^{*} to (4.3.8), we see that

$$
-R_{g}^{*} \theta^{\prime} \wedge g^{-1} \omega=g^{-1} d \omega^{\prime}+g^{-1} \theta g \wedge g^{-1} \omega^{\prime}=-g^{-1} \theta^{\prime} g \wedge g^{-1} \omega
$$

from which 2) follows.

Definition 4.3.12. Let $\widetilde{\varphi} \in \widetilde{\mathrm{WU}}_{q}$ be a lift of a cocycle φ in $\mathrm{WU}_{q}, \beta \in$ $H^{1}\left(M ; \Theta_{\mathcal{F}}\right)$ and σ a representative of β. Let θ^{u} be a unitary connection for some Hermitian metric on $Q(\mathcal{F})$ and θ a Bott connection. Let Ω be the curvature form of θ, and let θ^{\prime} be an infinitesimal derivative of θ with respect to σ. Under these assumptions, we define a differential form on P by

$$
D_{\sigma}(\widetilde{\varphi})=\Delta \widetilde{\varphi}\left(\theta^{u}, \theta, \theta^{\prime}\right)
$$

where the right hand side is as in Definition 4.2.4.

We will show in Lemma 4.3.15 and Theorem 4.3.18 that $D_{\sigma}(\widetilde{\varphi})$ projects down to a closed form on M, and that its cohomology class depends only on $[\varphi] \in H^{*}\left(\mathrm{WU}_{q}\right)$ and $\beta \in H^{1}\left(M ; \Theta_{\mathcal{F}}\right)$. Then the following definition is justified.

Definition 4.3.13. For $f \in H^{*}\left(\mathrm{WU}_{q}\right)$ and $\beta \in H^{1}\left(M ; \Theta_{\mathcal{F}}\right)$, the infinitesimal derivative of f with respect to β is defined as follows. Let φ and σ be representatives of f and β, respectively. Set then $D_{\beta}(f)=\left[D_{\sigma}(\widetilde{\varphi})\right]$, where $\widetilde{\varphi}$ is any lift of φ to $\widetilde{\mathrm{WU}}_{q}$.

REmark 4.3.14. If

$$
\varphi=\left(\widetilde{u}_{i_{1}} v_{i_{2}} \cdots v_{i_{k}}\right)+\left(\bar{v}_{i_{1}} \widetilde{u}_{i_{2}} v_{i_{3}} \cdots v_{i_{k}}\right)+\cdots+\left(\bar{v}_{i_{1}} \cdots \bar{v}_{i_{k-1}}{\widetilde{u} i_{k}}\right),
$$

then φ is denoted by $h c_{I}$ in [42, Definition 3.14], and $D_{\beta}(\widetilde{\varphi})$ coincides with the original definition. Moreover, if we begin with cocycles of the form $h_{I} c_{J} \in \mathrm{WO}_{q}$ and repeat the same construction, then the same differential forms appeared in [42] are obtained by following Definition 4.3.13. In this sense, the formula in Definition 4.3.13 is a complex version of (2.15) in [42].

Proof of Theorem B2. Once infinitesimal derivatives are seen to be welldefined, the theorem follows from Definition 4.3 .12 by using ($4.2 .5 b$).

We come back to verify that infinitesimal derivatives are well-defined.

Lemma 4.3.15 ([42, Theorem 3.17]). The differential form $D_{\sigma}(\widetilde{\varphi})$ in Definition 4.3.12 projects down to a well-defined closed form on M which depends on σ, θ, θ^{u} and the choice of the lift $\widetilde{\varphi}$.

Proof.

Claim 1. $D_{\sigma}(\widetilde{\varphi})$ is independent of the choice of θ^{\prime}.
Let θ_{0}^{\prime} and θ_{1}^{\prime} be infinitesimal derivatives of θ with respect to σ and let g be a monomial in v_{1}, \ldots, v_{q} and $\bar{v}_{1}, \ldots, \bar{v}_{q}$. Since $\theta_{1}^{\prime}-\theta_{0}^{\prime}=\lambda \omega$ by (4.3.10), $g\left(\theta_{1}^{\prime}, \Omega\right)-$ $g\left(\theta_{0}^{\prime}, \Omega\right)=g(\lambda \omega, \Omega)$. As $\widetilde{\varphi}$ is a lift of a cocycle, $\tilde{d} \widetilde{\varphi}$ is a linear combination of cochains in $\widetilde{\mathcal{I}}_{q}$. It follows that $\Delta \widetilde{\varphi}\left(\theta^{u}, \theta, \theta_{1}^{\prime}\right)-\Delta \widetilde{\varphi}\left(\theta^{u}, \theta, \theta_{0}^{\prime}\right) \in \mathcal{I}(\omega)^{q+1} \cup \overline{\mathcal{I}}(\omega)^{q+1}=\{0\}$.

Claim 2. $D_{\sigma}(\widetilde{\varphi})$ projects down to M.
It suffices to show that $v_{J} \bar{v}_{K}\left(v_{i_{l}}-\bar{v}_{i_{l}}\right)\left(\theta^{\prime}, \Omega\right)$ projects down to M. We have

$$
\begin{aligned}
& R_{g}^{*}\left(v_{J} \bar{v}_{K}\left(v_{i_{l}}-\bar{v}_{i_{l}}\right)\left(\theta^{\prime}, \Omega\right)\right)-v_{J} \bar{v}_{K}\left(v_{i_{l}}-\bar{v}_{i_{l}}\right)\left(\theta^{\prime}, \Omega\right) \\
= & v_{J} \bar{v}_{K}\left(v_{i_{l}}-\bar{v}_{i_{l}}\right)\left(R_{g}^{*} \theta^{\prime}, g^{-1} \Omega g\right)-v_{J} \bar{v}_{K}\left(v_{i_{l}}-\bar{v}_{i_{l}}\right)\left(g^{-1} \theta^{\prime} g, g^{-1} \Omega g\right) \\
= & v_{J} \bar{v}_{K}\left(v_{i_{l}}-\bar{v}_{i_{l}}\right)\left(R_{g}^{*} \theta^{\prime}-g^{-1} \theta^{\prime} g, g^{-1} \Omega g\right)
\end{aligned}
$$

It follows that $R_{g}^{*} \Delta \widetilde{\varphi}\left(\theta^{u}, \theta, \theta^{\prime}\right)=\Delta \widetilde{\varphi}\left(\theta^{u}, \theta, \theta^{\prime}\right)$ from Lemma 4.3.11 ii) and an argument as in the proof of Claim 1.

Claim 3. $D_{\sigma}(\widetilde{\varphi})$ is closed.
Note that $\widetilde{d} \widetilde{\varphi}$ is a linear combination of cochains of the form $\widetilde{u}_{I} v_{J} \bar{v}_{K}$ with $|J|>q$ or $|K|>q$. Since $D_{\sigma}(\widetilde{\varphi})=\Delta \widetilde{\varphi}\left(\theta^{u}, \theta, \theta^{\prime}\right)=\delta(\widetilde{d} \widetilde{\varphi})\left(\theta^{u}, \theta, \theta^{\prime}\right)$ and since $\widetilde{d}(\widetilde{d} \widetilde{\varphi})=0$, $D_{\sigma}(\widetilde{\varphi})$ is closed by the Lemma 4.3 .17 below.

The following differential forms are convenient.
DEFINITION 4.3.16. Let θ_{0}^{u} and θ_{1}^{u} be unitary connections, not necessarily with respect to the same Hermitian metric, and let $\widetilde{u}_{I} v_{J} \bar{v}_{K} \in \widetilde{W U}_{q}$. We decompose $I=I_{1} \cup I_{2}$ so that I_{1} consists only of indices less than or equal to i, and I_{2} consists only of indices greater than i. We set then $\widetilde{u}_{I}^{(i)}\left(\theta, \theta_{0}^{u}, \theta_{1}^{u}\right)=\widetilde{u}_{I_{1}}\left(\theta, \theta_{0}^{u}\right) \widetilde{u}_{I_{2}}\left(\theta, \theta_{1}^{u}\right)$, and

$$
\delta_{i}\left(\widetilde{u}_{I} v_{J} \bar{v}_{K}\right)\left(\theta_{0}^{u}, \theta_{1}^{u}, \theta, \theta^{\prime}\right)=(|J|+|K|) v_{J} \bar{v}_{K}\left(\theta^{\prime}, \Omega\right) \widetilde{u}_{I}^{(i)}\left(\theta, \theta_{0}^{u}, \theta_{1}^{u}\right)
$$

We extend δ_{i} to the whole $\widetilde{\mathrm{WU}}_{q}$ by linearity.

The proof of Lemma 4.3 .15 is completed by the following lemma.
Lemma 4.3.17. Let $\widetilde{\varphi} \in \widetilde{\mathrm{WU}}_{q}$. If $\widetilde{d} \widetilde{\varphi}=0$ and if $\widetilde{\varphi} \in \widetilde{\mathcal{I}}_{q}$, then $\delta_{i}(\widetilde{\varphi})\left(\theta_{0}^{u}, \theta_{1}^{u}, \theta, \theta^{\prime}\right)$ is closed. In particular, $v_{J} \bar{v}_{K}\left(\theta^{\prime}, \Omega\right)$ is closed if $|J|>q$ or $|K|>q$.

Proof. We first assume that $|J|>q$ and show that $v_{J}\left(\theta^{\prime}, \Omega\right)$ is closed. We write $\Omega_{j}^{i}=\sum_{k} \Gamma_{j, k}^{i} \wedge \omega^{k}$ and set $\Omega_{j}^{\prime i}=\sum_{k} \Gamma_{j, k}^{i} \wedge \omega^{\prime k}$. Then $\Omega \wedge \omega^{\prime}=-\Omega^{\prime} \wedge \omega$. On the other hand, by using (4.3.8) and the equalities $\Omega=d \theta+\theta \wedge \theta, d \omega=-\theta \wedge \omega$ and (4.3.8), we obtain

$$
-\Omega \wedge \omega^{\prime}=\left(d \theta^{\prime}+\left[\theta, \theta^{\prime}\right]\right) \wedge \omega
$$

where $\left[\theta, \theta^{\prime}\right]=\theta \wedge \theta^{\prime}+\theta^{\prime} \wedge \theta$. Hence $v_{J}\left(d \theta^{\prime}+\left[\theta, \theta^{\prime}\right], \Omega\right)=v_{J}\left(\Omega^{\prime}, \Omega\right)$.
Let $\mathcal{I}_{s}(\omega)$ be the ideal of differential forms on P generated by $\omega^{1}+s \omega^{1}, \ldots, \omega^{q}+$ $s \omega^{\prime q}$. Then, for any s, we have $\mathcal{I}_{s}(\omega)^{q+1}=\{0\}$. If we set $\Omega(s)=\Omega+s \Omega^{\prime}$, then $\Omega(s) \in \mathcal{I}_{s}(\omega)$ because $(\Omega(s))_{j}^{i}=\sum_{k} \Gamma_{j, k}^{i} \wedge\left(\omega^{k}+s \omega^{\prime k}\right)$. Since $v_{J}(\Omega(s))$ is identically zero, we have the following equality:

$$
\begin{aligned}
d\left(v_{J}\left(\theta^{\prime}, \Omega\right)\right) & =v_{J}\left(d \theta^{\prime}, \Omega\right)-(|J|-1) v_{J}\left(\theta^{\prime}, d \Omega, \Omega\right) \\
& =v_{J}\left(d \theta^{\prime}, \Omega\right)+(|J|-1) v_{J}\left(\theta^{\prime},[\theta, \Omega], \Omega\right) \\
& =v_{J}\left(d \theta^{\prime}+\left[\theta, \theta^{\prime}\right], \Omega\right) \\
& =v_{J}\left(\Omega^{\prime}, \Omega\right) \\
& =\left.\frac{1}{|J|} \frac{\partial}{\partial s} v_{J}(\Omega(s))\right|_{s=0} \\
& =0
\end{aligned}
$$

On the other hand, by (4.2.5b),

$$
(|J|+|K|) v_{J} \bar{v}_{K}\left(\theta^{\prime}, \Omega\right)=|J| v_{J}\left(\theta^{\prime}, \Omega\right) \bar{v}_{K}(\Omega)+|K| v_{J}(\Omega) \bar{v}_{K}\left(\theta^{\prime}, \Omega\right)
$$

Hence $v_{J} \bar{v}_{K}\left(\theta^{\prime}, \Omega\right)$ is closed. Similarly, $v_{J} \bar{v}_{K}\left(\theta^{\prime}, \Omega\right)$ is also closed if $|K|>q$.
Assume now that $\widetilde{\varphi}=\sum_{t} x_{t} \widetilde{u}_{I_{t}} v_{J_{t}} \bar{v}_{K_{t}}$, where $x_{t} \in \mathbb{C}$. We may furthermore assume that the numbers of elements of I_{t} are constant, which is denoted by $\# I$. If
$\# I=0$, then $\delta_{i}(\widetilde{\varphi})\left(\theta_{0}^{u}, \theta_{1}^{u}, \theta, \theta^{\prime}\right)$ is already shown to be closed. If $\# I>0$, then we have

$$
\begin{aligned}
& d\left(\delta_{i}(\widetilde{\varphi})\left(\theta_{0}^{u}, \theta_{1}^{u}, \theta, \theta^{\prime}\right)\right) \\
= & \sum_{t, l}(-1)^{l} x_{t}\left(\left|J_{t}\right|+\left|K_{t}\right|\right) v_{J_{t}} \bar{v}_{K_{t}}\left(\theta^{\prime}, \Omega\right)\left(v_{i_{l}}-\bar{v}_{i_{l}}\right)(\Omega) \widetilde{u}_{I_{t}(l)}^{(i)}\left(\theta, \theta_{0}^{u}, \theta_{1}^{u}\right) .
\end{aligned}
$$

Since $\left|J_{t}\right|>q$ or $\left|K_{t}\right|>q$, we have

$$
v_{J_{t}}\left(\theta^{\prime}, \Omega\right) v_{i_{l}}(\Omega) \bar{v}_{K_{t}}(\Omega)=v_{J_{t}}(\Omega) \bar{v}_{K_{t}}\left(\theta^{\prime}, \Omega\right) \bar{v}_{i_{l}}(\Omega)=0
$$

Hence

$$
\begin{aligned}
d\left(\delta_{i}(\widetilde{\varphi})\left(\theta_{0}^{u}, \theta_{1}^{u}, \theta, \theta^{\prime}\right)\right)= & \sum_{t, l}-(-1)^{l} x_{t}\left|J_{t}\right| v_{J_{t}}\left(\theta^{\prime}, \Omega\right) \bar{v}_{K_{t}}(\Omega) \bar{v}_{i_{l}}(\Omega) \widetilde{u}_{I_{t}(l)}^{(i)}\left(\theta^{u}, \theta\right) \\
& +\sum_{t, l}(-1)^{l} x_{t}\left|K_{t}\right| v_{J_{t}}(\Omega) v_{i_{l}}(\Omega) \bar{v}_{K_{t}}\left(\theta^{\prime}, \Omega\right) \widetilde{u}_{I_{t}(l)}^{(i)}\left(\theta^{u}, \theta\right) .
\end{aligned}
$$

Now by (4.2.5a) and (4.2.5b),

$$
\left(\left|J_{t}\right|+\left|K_{t}\right|+i_{l}\right) v_{J_{t}} \bar{v}_{K_{t}} \bar{v}_{i_{l}}\left(\theta^{\prime}, \Omega\right)=\left|J_{t}\right| v_{J_{t}}\left(\theta^{\prime}, \Omega\right) \bar{v}_{K_{t}} \bar{v}_{i_{l}}(\Omega)
$$

and

$$
\left(\left|J_{t}\right|+\left|K_{t}\right|+i_{l}\right) v_{J_{t}} v_{i_{l}} \bar{v}_{K_{t}}\left(\theta^{\prime}, \Omega\right)=\left|K_{t}\right| v_{J_{t}} v_{i_{l}}(\Omega) \bar{v}_{K_{t}}\left(\theta^{\prime}, \Omega\right)
$$

Therefore,

$$
\begin{aligned}
d\left(\delta_{i}(\widetilde{\varphi})\left(\theta_{0}^{u}, \theta_{1}^{u}, \theta, \theta^{\prime}\right)\right)= & \sum_{t, l}-(-1)^{l} x_{t}\left(\left|J_{t}\right|+\left|K_{t}\right|+i_{l}\right) v_{J_{t}} \bar{v}_{K_{t}} \bar{v}_{i_{l}}\left(\theta^{\prime}, \Omega\right) \widetilde{u}_{I_{t}(l)}^{(i)}\left(\theta^{u}, \theta\right) \\
& +\sum_{t, l}(-1)^{l} x_{t}\left(\left|J_{t}\right|+\left|K_{t}\right|+i_{l}\right) v_{J_{t}} v_{i_{l}} \bar{v}_{K_{t}}\left(\theta^{\prime}, \Omega\right) \widetilde{u}_{I_{t}(l)}^{(i)}\left(\theta^{u}, \theta\right) \\
= & \delta_{i}(\widetilde{d} \widetilde{\varphi})\left(\theta_{0}^{u}, \theta_{1}^{u}, \theta, \theta^{\prime}\right) \\
= & 0
\end{aligned}
$$

because $\widetilde{d} \widetilde{\varphi}=0$. This completes the proof of Lemma 4.3.17.
If $f \in H^{*}\left(\mathrm{WU}_{q}\right)$ and $\beta \in H^{1}\left(M ; \Theta_{\mathcal{F}}\right)$, then we have the following
ThEOREM 4.3.18 (cf. [42, Theorem 3.17]). Let φ and σ be representatives of f and β, respectively, and let $\widetilde{\varphi}$ be any lift of φ to $\widetilde{\mathrm{WU}}_{q}$. Then the cohomology class $\left[D_{\sigma}(\widetilde{\varphi})\right]$ is independent of the choice of representatives and lifts.

Proof. Let $\theta^{u}, \theta, \theta^{\prime}, \Omega$ be as in Definition 4.3.12.
Claim 1. $\left[D_{\sigma}(\widetilde{\varphi})\right]$ is independent of the choice of the Bott connection θ.
Let θ_{0} and θ_{1} be Bott connections and choose their infinitesimal derivatives θ_{0}^{\prime} and θ_{1}^{\prime} with respect to σ. Note that $D_{\sigma}(\widetilde{\varphi})$ is independent of the choice of infinitesimal derivatives by Lemma 4.3.15. We set $\theta_{t}=\theta_{0}+t\left(\theta_{1}-\theta_{0}\right)$. Then θ_{t} is also a Bott connection and $\theta_{t}^{\prime}=\theta_{0}^{\prime}+t\left(\theta_{1}^{\prime}-\theta_{0}^{\prime}\right)$ is an an infinitesimal derivative of θ_{t}. Let Ω_{t} be the connection form of θ_{t}. We will show that $\frac{\partial}{\partial t} \Delta \widetilde{\varphi}\left(\theta^{u}, \theta_{t}, \theta_{t}^{\prime}\right)$ is exact. First we consider the case where the $\widetilde{d} \widetilde{\varphi}$ does not involve any \widetilde{u}_{i}. Note that $\Delta \widetilde{\varphi}\left(\theta^{u}, \theta_{t}, \theta_{t}^{\prime}\right)$ is calculated by evaluating $\widetilde{d} \widetilde{\varphi} \in \widetilde{\mathcal{I}}_{q}$. One has

$$
\begin{aligned}
d\left(v_{J} \bar{v}_{K}\left(\theta_{t}^{\prime}, \theta_{1}-\theta_{0}, \Omega_{t}\right)\right)= & v_{J} \bar{v}_{K}\left(d \theta_{t}^{\prime}, \theta_{1}-\theta_{0}, \Omega_{t}\right)-v_{J} \bar{v}_{K}\left(\theta_{t}^{\prime}, d \theta_{1}-d \theta_{0}, \Omega_{t}\right) \\
& -(|J|+|K|-2) v_{J} \bar{v}_{K}\left(\theta_{t}^{\prime}, \theta_{1}-\theta_{0},\left[\theta_{t}, \Omega_{t}\right], \Omega_{t}\right) \\
= & v_{J} \bar{v}_{K}\left(d \theta_{t}^{\prime}+\left[\theta_{t}, \theta_{t}^{\prime}\right], \theta_{1}-\theta_{0}, \Omega_{t}\right) \\
& -v_{J} \bar{v}_{K}\left(\theta_{t}^{\prime}, d \theta_{1}-d \theta_{0}+\left[\theta_{t}, \theta_{1}-\theta_{0}\right], \Omega_{t}\right) .
\end{aligned}
$$

Note that each of the differential forms in the above equality projects down to M. On the other hand,

$$
\begin{aligned}
& \frac{\partial}{\partial t} v_{J} \bar{v}_{K}\left(\theta_{t}^{\prime}, \Omega_{t}\right) \\
= & v_{J} \bar{v}_{K}\left(\theta_{1}^{\prime}-\theta_{0}^{\prime}, \Omega_{t}\right)+(|J|+|K|-1) v_{J} \bar{v}_{K}\left(\theta_{t}^{\prime}, d\left(\theta_{1}-\theta_{0}\right)+\left[\theta_{t}, \theta_{1}-\theta_{0}\right], \Omega_{t}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \frac{\partial}{\partial t} v_{J} \bar{v}_{K}\left(\theta_{t}^{\prime}, \Omega_{t}\right)+(|J|+|K|-1) d\left(v_{J} \bar{v}_{K}\left(\theta_{t}^{\prime}, \theta_{1}-\theta_{0}, \Omega_{t}\right)\right) \\
= & v_{J} \bar{v}_{K}\left(\theta_{1}^{\prime}-\theta_{0}^{\prime}, \Omega_{t}\right)+(|J|+|K|-1) v_{J} \bar{v}_{K}\left(d \theta_{t}^{\prime}+\left[\theta_{t}, \theta_{t}^{\prime}\right], \theta_{1}-\theta_{0}, \Omega_{t}\right) .
\end{aligned}
$$

As in the proof of Lemma 4.3.17, we write $\left(\Omega_{t}\right)_{j}^{i}=\sum_{k} \Gamma_{j, k}^{i} \wedge \omega^{k}$ and set $\left(\Omega_{t}^{\prime}\right)_{j}^{i}=$ $\sum_{k} \Gamma_{j, k}^{i} \wedge \omega^{\prime k}$. Then $\Omega_{t}^{\prime} \wedge \omega=\left(d \theta_{t}^{\prime}+\left[\theta_{t}, \theta_{t}^{\prime}\right]\right) \wedge \omega$. Since $\theta_{0} \wedge \omega=\theta_{1} \wedge \omega=-d \omega$, $\left(\theta_{1}-\theta_{0}\right) \wedge \omega=0$. Hence $\left(\theta_{1}-\theta_{0}\right)_{j}^{i}=\sum_{k} \lambda_{j, k}^{i} \omega^{k}$ for some $\lambda_{j, k}^{i}$. Now by (4.3.8), we have $\left(\theta_{1}^{\prime}-\theta_{0}^{\prime}\right) \wedge \omega=-(\lambda \omega) \wedge \omega^{\prime}=\left(\lambda \omega^{\prime}\right) \wedge \omega$. If we set $\Omega(s, t)=\Omega_{t}+s \Omega_{t}^{\prime}, \theta(s)=$ $\left(\theta_{1}-\theta_{0}\right)+s \lambda \omega^{\prime}$ and $\mathcal{I}_{s}(\omega)=\mathcal{I}\left(\omega^{1}+s \omega^{\prime 1}, \ldots, \omega^{q}+s \omega^{\prime q}\right)$, then $\Omega(s, t), \theta(s) \in \mathcal{I}_{s}(\omega)$.

Therefore, $v_{J} \bar{v}_{K}(\theta(s), \Omega(s, t))=0$ if $|J|>q$ or $|K|>q$. Differentiating with respect to s and setting $s=0$, we obtain

$$
v_{J} \bar{v}_{K}\left(\lambda \omega^{\prime}, \Omega_{t}\right)+(|J|+|K|-1) v_{J} \bar{v}_{K}\left(\theta_{1}-\theta_{0}, \Omega_{t}^{\prime}, \Omega_{t}\right)=0
$$

As the left hand side is equal to $v_{J} \bar{v}_{K}\left(\left(\theta_{1}^{\prime}-\theta_{0}^{\prime}, \Omega_{t}\right)+(|J|+|K|-1) v_{J} \bar{v}_{K}\left(\theta_{1}-\right.\right.$ $\left.\theta_{0}, d \theta_{t}^{\prime}+\left[\theta_{t}, \theta_{t}^{\prime}\right], \Omega_{t}\right)$,

$$
\frac{\partial}{\partial t} v_{J} \bar{v}_{K}\left(\theta_{t}^{\prime}, \Omega_{t}\right)=-(|J|+|K|-1) d\left(v_{J} \bar{v}_{K}\left(\theta_{t}^{\prime}, \theta_{1}-\theta_{0}, \Omega_{t}\right)\right)
$$

if $|J|>q$ or $|K|>q$.
Suppose now that $\widetilde{d} \widetilde{\varphi}$ involves some of \widetilde{u}_{i} 's. We write $\widetilde{d} \widetilde{\varphi}=\sum_{i} x_{i} v_{J_{i}} \bar{v}_{K_{i}} \widetilde{u}_{I_{i}}$, where $\left|J_{i}\right|>q$ or $\left|K_{i}\right|>q$, and $x_{i} \in \mathbb{C}$. Then by definition,

$$
\Delta \widetilde{\varphi}\left(\theta^{u}, \theta_{t}, \theta_{t}^{\prime}\right)=\sum_{i} x_{i}\left(\left|J_{i}\right|+\left|K_{i}\right|\right) v_{J_{i}} \bar{v}_{K_{i}}\left(\theta_{t}^{\prime}, \Omega_{t}\right) \widetilde{u}_{I_{i}}\left(\theta_{t}, \theta^{u}\right)
$$

Hence

$$
\begin{aligned}
& \frac{\partial}{\partial t} \Delta \widetilde{\varphi}\left(\theta^{u}, \theta_{t}, \theta_{t}^{\prime}\right) \\
= & -\sum_{i} x_{i}\left(\left|J_{i}\right|+\left|K_{i}\right|\right)\left(\left|J_{i}\right|+\left|K_{i}\right|-1\right) d\left(v_{J_{i}} \bar{v}_{K_{i}}\left(\theta_{t}^{\prime}, \theta_{1}-\theta_{0}, \Omega_{t}\right)\right) \widetilde{u}_{I_{i}}\left(\theta_{t}, \theta^{u}\right) \\
& +\sum_{i, l} x_{i}\left(\left|J_{i}\right|+\left|K_{i}\right|\right) v_{J_{i}} \bar{v}_{K_{i}}\left(\theta_{t}^{\prime}, \Omega_{t}\right)(-1)^{l-1} i_{l}\left(i_{l}-1\right) d \widetilde{V}_{i_{l}}\left(\theta_{t}, \theta^{u}\right) \widetilde{u}_{I_{i}(l)}\left(\theta_{t}, \theta^{u}\right) \\
& +\sum_{i, l} x_{i}\left(\left|J_{i}\right|+\left|K_{i}\right|\right) v_{J_{i}} \bar{v}_{K_{i}}\left(\theta_{t}^{\prime}, \Omega_{t}\right)(-1)^{l-1} i_{l} \widetilde{v}_{i_{l}}\left(\theta_{1}-\theta_{0}, \Omega_{t}\right) \widetilde{u}_{I_{i}(l)}\left(\theta_{t}, \theta^{u}\right),
\end{aligned}
$$

where $I_{i}(l)=I_{i} \backslash\left\{i_{l}\right\}$. If we fix an integer k and rewrite $\widetilde{d} \widetilde{\varphi}$ as $\widetilde{d} \widetilde{\varphi}=\widetilde{u}_{k} \alpha_{k}+\beta_{k}$ so that α_{k} and β_{k} do not involve \widetilde{u}_{k}, then $\widetilde{d}(\widetilde{d} \widetilde{\varphi})=0$ implies that $\widetilde{d} \alpha_{k}=0$. Hence

$$
\begin{aligned}
& \sum_{\substack{i, l \\
i_{l}=k}} x_{i}\left(\left|J_{i}\right|+\left|K_{i}\right|\right) v_{J_{i}} \bar{v}_{K_{i}}\left(\theta_{t}^{\prime}, \Omega_{t}\right)(-1)^{l-1} i_{l}\left(i_{l}-1\right) d \widetilde{V}_{i_{l}}\left(\theta_{t}, \theta^{u}\right) \widetilde{u}_{I_{i}(l)}\left(\theta_{t}, \theta^{u}\right) \\
= & k(k-1) d\left(\widetilde{V}_{k}\left(\theta_{t}, \theta^{u}\right) \delta\left(\alpha_{k}\right)\left(\theta^{u}, \theta_{t}, \theta_{t}^{\prime}\right)\right)
\end{aligned}
$$

because $\delta\left(\alpha_{k}\right)\left(\theta^{u}, \theta_{t}, \theta_{t}^{\prime}\right)$ is closed by Lemma 4.3.17. Hence $\frac{\partial}{\partial t} \Delta \widetilde{\varphi}\left(\theta^{u}, \theta_{t}, \theta_{t}^{\prime}\right)$ is cohomologous to R, where

$$
\begin{aligned}
R= & -\sum_{i} x_{i}\left(\left|J_{i}\right|+\left|K_{i}\right|\right)\left(\left|J_{i}\right|+\left|K_{i}\right|-1\right) d\left(v_{J_{i}} \bar{v}_{K_{i}}\left(\theta_{t}^{\prime}, \theta_{1}-\theta_{0}, \Omega_{t}\right)\right) \widetilde{u}_{I_{i}}\left(\theta_{t}, \theta^{u}\right) \\
& +\sum_{i, l} x_{i}\left(\left|J_{i}\right|+\left|K_{i}\right|\right) v_{J_{i}} \bar{v}_{K_{i}}\left(\theta_{t}^{\prime}, \Omega_{t}\right)(-1)^{l-1} i_{l} \widetilde{v}_{i_{l}}\left(\theta_{1}-\theta_{0}, \Omega_{t}\right) \widetilde{u}_{I_{i}(l)}\left(\theta_{t}, \theta^{u}\right)
\end{aligned}
$$

It suffices to show that R is exact. This is indeed done as follows, namely, by (A.6b) we have the following equality:

$$
\begin{aligned}
& -\left(\left|J_{i}\right|+\left|K_{i}\right|\right)\left(\left|J_{i}\right|+\left|K_{i}\right|-1\right) d\left(v_{J_{i}} \bar{v}_{K_{i}}\left(\theta_{t}^{\prime}, \theta_{1}-\theta_{0}, \Omega_{t}\right)\right) \widetilde{u}_{I_{i}}\left(\theta_{t}, \theta^{u}\right) \\
\equiv & \left(\left|J_{i}\right|+\left|K_{i}\right|\right)\left(\left|J_{i}\right|+\left|K_{i}\right|-1\right) v_{J_{i}} \bar{v}_{K_{i}}\left(\theta_{t}^{\prime}, \theta_{1}-\theta_{0}, \Omega_{t}\right) d \widetilde{u}_{I_{i}}\left(\theta_{t}, \theta^{u}\right) \\
= & \sum_{l}\left(\left|J_{i}\right|+\left|K_{i}\right|\right)\left(\left|J_{i}\right|+\left|K_{i}\right|-1\right) v_{J_{i}} \bar{v}_{K_{i}}\left(\theta_{t}^{\prime}, \theta_{1}-\theta_{0}, \Omega_{t}\right)(-1)^{l-1}\left(v_{i_{l}}-\bar{v}_{i_{l}}\right)\left(\Omega_{t}\right) \widetilde{u}_{I_{i}(l)}\left(\theta_{t}, \theta^{u}\right) \\
= & -\sum_{l}\left|J_{i}\right|\left(\left|J_{i}\right|-1\right) v_{J_{i}}\left(\theta_{t}^{\prime}, \theta_{1}-\theta_{0}, \Omega_{t}\right) \bar{v}_{K_{i}}\left(\Omega_{t}\right)(-1)^{l-1} \bar{v}_{i_{l}}\left(\Omega_{t}\right) \widetilde{u}_{I_{i}(l)}\left(\theta_{t}, \theta^{u}\right) \\
& -\sum_{l}\left|J_{i}\right|\left|K_{i}\right| v_{J_{i}}\left(\theta_{t}^{\prime}, \Omega_{t}\right) \bar{v}_{K_{i}}\left(\theta_{1}-\theta_{0}, \Omega_{t}\right)(-1)^{l-1} \bar{v}_{i_{l}}\left(\Omega_{t}\right) \widetilde{u}_{I_{i}(l)}\left(\theta_{t}, \theta^{u}\right) \\
& -\sum_{l}^{l}\left|J_{i}\right|\left|K_{i}\right| v_{J_{i}}\left(\theta_{1}-\theta_{0}, \Omega_{t}\right) v_{i_{l}}\left(\Omega_{t}\right) \bar{v}_{K_{i}}\left(\theta_{t}^{\prime}, \Omega_{t}\right)(-1)^{l-1} \widetilde{u}_{I_{i}(l)}\left(\theta_{t}, \theta^{u}\right) \\
& +\sum_{l}^{l}\left|K_{i}\right|\left(\left|K_{i}\right|-1\right) v_{J_{i}}\left(\Omega_{t}\right) v_{i_{l}}\left(\Omega_{t}\right) \bar{v}_{K_{i}}\left(\theta_{t}^{\prime}, \theta_{1}-\theta_{0}, \Omega_{t}\right)(-1)^{l-1} \widetilde{u}_{I_{i}(l)}\left(\theta_{t}, \theta^{u}\right)
\end{aligned}
$$

where the symbol ' \equiv ' means that the equality holds modulo exact forms. On the other hand, we have

$$
\begin{aligned}
& \left(\left|J_{i}\right|+\left|K_{i}\right|\right) v_{J_{i}} \bar{v}_{K_{i}}\left(\theta_{t}^{\prime}, \Omega_{t}\right)(-1)^{l-1} i_{l} \widetilde{v}_{i_{l}}\left(\theta_{1}-\theta_{0}, \Omega_{t}\right) \widetilde{u}_{I_{i}(l)}\left(\theta_{t}, \theta^{u}\right) \\
=- & \left|J_{i}\right| v_{J_{i}}\left(\theta_{t}^{\prime}, \Omega_{t}\right) \bar{v}_{K_{i}}\left(\Omega_{t}\right)(-1)^{l-1} i_{l} \bar{v}_{i_{l}}\left(\theta_{1}-\theta_{0}, \Omega_{t}\right) \widetilde{u}_{i_{i}(l)}\left(\theta_{t}, \theta^{u}\right) \\
& -\left|K_{i}\right| v_{J_{i}}\left(\Omega_{t}\right) v_{i_{l}}\left(\theta_{1}-\theta_{0}, \Omega_{t}\right) \bar{v}_{K_{i}}\left(\theta_{t}^{\prime}, \Omega_{t}\right)(-1)^{l-1} i_{l} \widetilde{u}_{I_{i}(l)}\left(\theta_{t}, \theta^{u}\right) .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
R \equiv & -\sum_{i, l} x_{i}\left|J_{i}\right|\left(\left|J_{i}\right|-1\right) v_{J_{i}}\left(\theta_{t}^{\prime}, \theta_{1}-\theta_{0}, \Omega_{t}\right) \bar{v}_{K_{i}}\left(\Omega_{t}\right) \bar{v}_{i_{l}}\left(\Omega_{t}\right)(-1)^{l-1} \widetilde{u}_{I_{i}(l)}\left(\theta_{t}, \theta^{u}\right) \\
& -\sum_{i, l} x_{i}\left|J_{i}\right|\left(\left|K_{i}\right|+i_{l}\right) v_{J_{i}}\left(\theta_{t}^{\prime}, \Omega_{t}\right) \bar{v}_{K_{i}} \bar{v}_{i_{l}}\left(\theta_{1}-\theta_{0}, \Omega_{t}\right)(-1)^{l-1} \widetilde{u}_{I_{i}(l)}\left(\theta_{t}, \theta^{u}\right) \\
& -\sum_{i, l} x_{i}\left(\left|J_{i}\right|+i_{l}\right)\left|K_{i}\right| v_{J_{i}} v_{i_{l}}\left(\theta_{1}-\theta_{0}, \Omega_{t}\right) \bar{v}_{K_{i}}\left(\theta_{t}^{\prime}, \Omega_{t}\right)(-1)^{l-1} \widetilde{u}_{I_{i}(l)}\left(\theta_{t}, \theta^{u}\right) \\
& +\sum_{i, l} x_{i}\left|K_{i}\right|\left(\left|K_{i}\right|-1\right) v_{J_{i}}\left(\Omega_{t}\right) v_{i_{l}}\left(\Omega_{t}\right) \bar{v}_{K_{i}}\left(\theta_{t}^{\prime}, \theta_{1}-\theta_{0}, \Omega_{t}\right)(-1)^{l-1} \widetilde{u}_{I_{i}(l)}\left(\theta_{t}, \theta^{u}\right)
\end{aligned}
$$

Let R^{\prime} be the right hand side of the above equality. Then by (A.6b),

$$
\begin{aligned}
& \left(\left|J_{i}\right|+\left|K_{i}\right|+i_{l}\right) v_{J_{i}} v_{i_{l}} \bar{v}_{K_{i}}\left(\theta_{t}^{\prime}, \theta_{1}-\theta_{0}, \Omega_{t}\right) \\
= & -\left(\left|J_{i}\right|+i_{l}\right)\left|K_{i}\right| v_{J_{i}} v_{i_{l}}\left(\theta_{1}-\theta_{0}, \Omega_{t}\right) \bar{v}_{K_{i}}\left(\theta_{t}^{\prime}, \Omega_{t}\right) \\
& +\left|K_{i}\right|\left(\left|K_{i}\right|-1\right) v_{J_{i}} v_{i_{l}}\left(\Omega_{t}\right) \bar{v}_{K_{i}}\left(\theta_{t}^{\prime}, \theta_{1}-\theta_{0}, \Omega_{t}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\left|J_{i}\right|+\left|K_{i}\right|+i_{l}\right) v_{J_{i}} \bar{v}_{K_{i}} \bar{v}_{i_{l}}\left(\theta_{t}^{\prime}, \theta_{1}-\theta_{0}, \Omega_{t}\right) \\
= & \left|J_{i}\right|\left(\left|J_{i}\right|-1\right) v_{J_{i}}\left(\theta_{t}^{\prime}, \theta_{1}-\theta_{0}, \Omega_{t}\right) \bar{v}_{K_{i}} \bar{v}_{i_{l}}\left(\Omega_{t}\right) \\
& +\left|J_{i}\right|\left(\left|K_{i}\right|+i_{l}\right) v_{J_{i}}\left(\theta_{t}^{\prime}, \Omega_{t}\right) \bar{v}_{K_{i}} \bar{v}_{i_{l}}\left(\theta_{1}-\theta_{0}, \Omega_{t}\right) .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
R^{\prime}= & \sum_{i, l} x_{i}\left(\left|J_{i}\right|+\left|K_{i}\right|+i_{l}\right) v_{J_{i}} v_{i_{l}} \bar{v}_{K_{i}}\left(\theta_{t}^{\prime}, \theta_{1}-\theta_{0}, \Omega_{t}\right)(-1)^{l-1} \widetilde{u}_{I_{i}(l)}\left(\theta_{t}, \theta^{u}\right) \\
& -\sum_{i, l} x_{i}\left(\left|J_{i}\right|+\left|K_{i}\right|+i_{l}\right) v_{J_{i}} \bar{v}_{K_{i}} \bar{v}_{i_{l}}\left(\theta_{t}^{\prime}, \theta_{1}-\theta_{0}, \Omega_{t}\right)(-1)^{l-1} \widetilde{u}_{I_{i}(l)}\left(\theta_{t}, \theta^{u}\right) \\
= & \delta(\widetilde{d} \widetilde{d} \widetilde{\varphi})\left(\theta^{u}, \theta_{t}, \theta_{t}^{\prime}\right) \\
= & 0
\end{aligned}
$$

Claim 2. $\left[D_{\sigma}(\widetilde{\varphi})\right]$ is independent of the choice of the unitary connection θ^{u}.
We first show that $\widetilde{u}_{i}\left(\theta, \theta_{1}^{u}\right)-\widetilde{u}_{i}\left(\theta, \theta_{0}^{u}\right)=d \widetilde{V}_{i}^{\prime}$ for some differential form $\widetilde{V}_{i}^{\prime}$ if θ_{0}^{u} and θ_{1}^{u} are unitary connections. Suppose that θ_{0}^{u} and θ_{1}^{u} are unitary connections for a fixed Hermitian metric on $Q(\mathcal{F})$. Let $f=\widetilde{v}_{i}=v_{i}-\bar{v}_{i}, \theta_{1}^{s}=\theta+s\left(\theta_{1}^{u}-\theta\right)$ and $\theta_{0}=\theta_{0}^{u}$. Then we substitute them into (4.2.2a) and integrate it with respect to s. We obtain

$$
\Delta_{\widetilde{v}_{i}}\left(\theta_{1}^{u}, \theta_{0}^{u}\right)-\Delta_{\widetilde{v}_{i}}\left(\theta, \theta_{0}^{u}\right)=k(k-1) d W_{\widetilde{v}_{i}}\left(\theta_{1}^{u}, \theta_{0}^{u}\right)+\Delta_{\widetilde{v}_{i}}\left(\theta_{1}^{u}, \theta\right),
$$

where $W_{\widetilde{v}_{i}}\left(\theta_{1}^{u}, \theta_{0}^{u}\right)=\int_{0}^{1} V_{\widetilde{v}_{i}}\left(\theta_{1}^{s}, \theta_{0}^{u}\right) d s$. Hence

$$
\begin{equation*}
\Delta_{\widetilde{v}_{i}}\left(\theta, \theta_{1}^{u}\right)-\Delta_{\widetilde{v}_{i}}\left(\theta, \theta_{0}^{u}\right)+\Delta_{\widetilde{v}_{i}}\left(\theta_{1}^{u}, \theta_{0}^{u}\right)=k(k-1) d W_{\widetilde{v}_{i}}\left(\theta_{1}^{u}, \theta_{0}^{u}\right) . \tag{4.3.19}
\end{equation*}
$$

We set $\theta_{t}^{u}=\theta_{0}^{u}+t\left(\theta_{1}^{u}-\theta_{0}^{u}\right)$. Then by (4.2.2a),

$$
\frac{\partial}{\partial t} \Delta_{\widetilde{v}_{i}}\left(\theta_{t}^{u}, \theta_{0}^{u}\right)=k(k-1) d V_{\widetilde{v}_{i}}\left(\theta_{t}^{u}, \theta_{0}\right)+k \widetilde{v}_{i}\left(\theta_{1}^{u}-\theta_{0}^{u}, \Omega_{t}^{u}, \ldots, \Omega_{t}^{u}\right)
$$

Since θ_{0}^{u} and θ_{1}^{u} are unitary and since $V_{\widetilde{v}_{i}}=\widetilde{V}_{i}$,

$$
\frac{\partial}{\partial t} \Delta_{\widetilde{v}_{i}}\left(\theta_{t}^{u}, \theta_{0}^{u}\right)=k(k-1) d \widetilde{V}_{i}\left(\theta_{t}^{u}, \theta_{0}\right)
$$

Hence $\widetilde{u}_{i}\left(\theta, \theta_{1}^{u}\right)-\widetilde{u}_{i}\left(\theta, \theta_{0}^{u}\right)$ is exact if θ_{0}^{u} and θ_{1}^{u} are unitary connections for a fixed Hermitian metric.

Let now h_{0} and h_{1} be Hermitian metrics on $Q(\mathcal{F})$ and let θ_{0}^{u} and θ_{1}^{u} be unitary connections for h_{0} and h_{1}, respectively. The equality (4.3.19) is still valid so that it suffices to show that $\Delta_{f}\left(\theta_{1}^{u}, \theta_{0}^{u}\right)$ is exact if $f=\widetilde{v}_{i}=v_{i}-\bar{v}_{i}$. We denote by ι_{t} the natural isomorphism from M to $M \times\{t\}$ and by π the projection from $M \times \mathbb{R}$ to \mathbb{R}. We consider then the foliation $\mathcal{F} \times \mathbb{R}$ of $M \times \mathbb{R}$ whose leaves are given by $L \times \mathbb{R}$, where L is a leaf of \mathcal{F}. Let $\widetilde{\theta^{u}}$ be a unitary connection on $Q(\mathcal{F} \times \mathbb{R})$ for some Hermitian metric such that $\theta_{t}^{u}=\theta_{0}^{u}$ for $t \leq 0$ and $\theta_{t}^{u}=\theta_{1}^{u}$ for $t \geq 1$, where $\theta_{t}^{u}=\iota_{t}^{*} \widetilde{\theta^{u}}$. We write $\Delta_{\widetilde{v}_{i}}\left(\widetilde{\theta}^{u}, \pi^{*} \theta_{0}^{u}\right)=\lambda+\mu \wedge d t$ so that λ and μ do not involve $d t$. Then we define a differential form $\widetilde{V}_{i}^{\prime}\left(\theta_{1}^{u}, \theta_{0}^{u}\right)$ on M by setting

$$
\tilde{V}_{i}^{\prime}\left(\theta_{1}^{u}, \theta_{0}^{u}\right)=-\int_{0}^{1} \mu d t
$$

We have $d \widetilde{V}_{i}^{\prime}\left(\theta_{1}^{u}, \theta_{0}^{u}\right)=\Delta_{\widetilde{v}_{i}}\left(\theta_{1}^{u}, \theta_{0}^{u}\right)$, which can be shown as follows. First,

$$
d_{M \times \mathbb{R}} \Delta_{\widetilde{v}_{i}}\left(\widetilde{\theta}^{u}, \pi^{*} \theta_{0}\right)=\left(v_{i}\left(\widetilde{\theta}^{u}\right)-\pi^{*} v_{i}\left(\theta_{0}^{u}\right)\right)-\left(\bar{v}_{i}\left(\widetilde{\theta^{u}}\right)-\pi^{*} \bar{v}_{i}\left(\theta_{0}^{u}\right)\right)=0
$$

Hence $\frac{\partial \lambda}{\partial t}+d_{M} \mu=0$, where d_{M} denotes the exterior derivative along the fiber of $\pi: M \times \mathbb{R} \rightarrow \mathbb{R}$. On the other hand,

$$
d \widetilde{V}_{i}^{\prime}\left(\theta_{1}^{u}, \theta_{0}^{u}\right)=-\int_{0}^{1} d_{M} \mu d t=\int_{0}^{1} \frac{\partial \lambda}{\partial t} d t=\lambda(1)-\lambda(0)
$$

and $\lambda(t)=\iota_{t}^{*} \lambda=\iota_{t}^{*} \Delta_{\widetilde{v}_{i}}\left(\widetilde{\theta}^{u}, \pi^{*} \theta_{0}\right)=\Delta_{\widetilde{v}_{i}}\left(\theta_{t}^{u}, \theta_{0}\right)$. Finally, $\lambda(1)=\Delta_{\widetilde{v}_{i}}\left(\theta_{1}^{u}, \theta_{0}^{u}\right)$ and $\lambda(0)=\Delta_{\widetilde{v}_{i}}\left(\theta_{0}^{u}, \theta_{0}^{u}\right)=0$.

Let $\widetilde{\varphi} \in \widetilde{\mathrm{WU}}_{q}$ be the natural lift of φ. Let α_{i} and β_{i} be such that $\widetilde{d} \widetilde{\varphi}=\widetilde{u}_{i} \alpha_{i}+\beta_{i}$ and that α_{i} and β_{i} do not involve \widetilde{u}_{i}. Then

$$
\Delta \widetilde{\varphi}\left(\theta_{1}^{u}, \theta, \theta^{\prime}\right)=\delta_{0}(\widetilde{d} \widetilde{\varphi})\left(\theta_{0}^{u}, \theta_{1}^{u}, \theta, \theta^{\prime}\right)
$$

and

$$
\Delta \widetilde{\varphi}\left(\theta_{1}^{u}, \theta, \theta^{\prime}\right)=\delta_{q}(\widetilde{d} \widetilde{\varphi})\left(\theta_{0}^{u}, \theta_{1}^{u}, \theta, \theta^{\prime}\right)
$$

Hence it suffices to show that $\delta_{k-1}(\widetilde{d} \widetilde{\varphi})\left(\theta_{0}^{u}, \theta_{1}^{u}, \theta, \theta^{\prime}\right)$ and $\delta_{k}(\widetilde{d} \widetilde{\varphi})\left(\theta_{0}^{u}, \theta_{1}^{u}, \theta, \theta^{\prime}\right)$ are cohomologous for each k. Since β_{k} does not involve \widetilde{u}_{k},

$$
\begin{aligned}
& \delta_{k-1}(\widetilde{d} \widetilde{\varphi})\left(\theta_{0}^{u}, \theta_{1}^{u}, \theta, \theta^{\prime}\right) \\
= & -\widetilde{u}_{k}\left(\theta, \theta_{1}^{u}\right) \delta_{k-1}\left(\alpha_{k}\right)\left(\theta_{0}^{u}, \theta_{1}^{u}, \theta, \theta^{\prime}\right)+\delta_{k-1}\left(\beta_{k}\right)\left(\theta_{0}^{u}, \theta_{1}^{u}, \theta, \theta^{\prime}\right) \\
= & -\widetilde{u}_{k}\left(\theta, \theta_{1}^{u}\right) \delta_{k-1}\left(\alpha_{k}\right)\left(\theta_{0}^{u}, \theta_{1}^{u}, \theta, \theta^{\prime}\right)+\delta_{k}\left(\beta_{k}\right)\left(\theta_{0}^{u}, \theta_{1}^{u}, \theta, \theta^{\prime}\right)
\end{aligned}
$$

On the other hand, $\widetilde{d} \widetilde{\alpha_{i}}=0$ because $\widetilde{d} \widetilde{d} \widetilde{\varphi}=0$. It follows that

$$
d \delta_{k-1}\left(\alpha_{k}\right)\left(\theta_{0}^{u}, \theta_{1}^{u}, \theta, \theta^{\prime}\right)=0
$$

by Lemma 4.3.17. Hence

$$
\begin{aligned}
& \delta_{k-1}(\widetilde{d} \widetilde{\varphi})\left(\theta_{0}^{u}, \theta_{1}^{u}, \theta, \theta^{\prime}\right)+d\left(\widetilde{V}_{k}^{\prime} \delta_{k-1}\left(\alpha_{k}\right)\left(\theta_{0}^{u}, \theta_{1}^{u}, \theta, \theta^{\prime}\right)\right) \\
= & -\widetilde{u}_{k}\left(\theta, \theta_{0}^{u}\right) \delta_{k-1}\left(\alpha_{k}\right)\left(\theta_{0}^{u}, \theta_{1}^{u}, \theta, \theta^{\prime}\right)+\delta_{k}\left(\beta_{k}\right)\left(\theta_{0}^{u}, \theta_{1}^{u}, \theta, \theta^{\prime}\right) \\
= & -\widetilde{u}_{k}\left(\theta, \theta_{0}^{u}\right) \delta_{k}\left(\alpha_{k}\right)\left(\theta_{0}^{u}, \theta_{1}^{u}, \theta, \theta^{\prime}\right)+\delta_{k}\left(\beta_{k}\right)\left(\theta_{0}^{u}, \theta_{1}^{u}, \theta, \theta^{\prime}\right) \\
= & \delta_{k}(\widetilde{d} \widetilde{\varphi})\left(\theta_{0}^{u}, \theta_{1}^{u}, \theta, \theta^{\prime}\right)
\end{aligned}
$$

because α_{k} does not involve \widetilde{u}_{k}.
Claim 3. $\left[D_{\sigma}(\widetilde{\varphi})\right]$ is independent of the choice of representative of β.
We recall that representatives of β are by definition sections of $E^{*} \otimes Q(\mathcal{F})$. They are considered as \mathbb{C}^{q}-valued 1-forms on P after arbitrarily extended to sections of $T_{\mathbb{C}}^{*} M \otimes Q(\mathcal{F})$ and then lifted to P.

We first show that $\left[D_{\sigma}(\widetilde{\varphi})\right]$ is independent of such extensions as above. Suppose that σ_{0} and σ_{1} are representatives of β and assume that $\sigma_{0}=\sigma_{1}$ when restricted to $\pi^{*} E$, where $\pi: P \rightarrow M$ is the projection. Then $\sigma_{1}-\sigma_{0}=\mu \omega$ for some $\mathfrak{g l}(q ; \mathbb{C})$-valued
function μ. Let θ_{0}^{\prime} and θ_{1}^{\prime} be infinitesimal derivatives of θ with respect to σ_{0} and σ_{1}, respectively. Then by (4.3.8),

$$
\left(\theta_{1}^{\prime}-\theta_{0}^{\prime}\right) \wedge \omega=d\left(\sigma_{1}-\sigma_{0}\right)+\theta \wedge\left(\sigma_{1}-\sigma_{0}\right)=(d \mu+[\theta, \mu]) \wedge \omega
$$

Hence

$$
\begin{aligned}
v_{J} \bar{v}_{K}\left(\theta_{1}^{\prime}, \Omega\right)-v_{J} \bar{v}_{K}\left(\theta_{0}^{\prime}, \Omega\right) & =v_{J} \bar{v}_{K}(d \mu+[\theta, \mu], \Omega) \\
& =v_{J} \bar{v}_{K}(d \mu, \Omega)+(|J|+|K|-1) v_{J} \bar{v}_{K}(\mu,-[\theta, \Omega]) \\
& =v_{J} \bar{v}_{K}(d \mu, \Omega)+(|J|+|K|-1) v_{J} \bar{v}_{K}(\mu, d \Omega) \\
& =d\left(v_{J} \bar{v}_{K}(\mu, \Omega)\right)
\end{aligned}
$$

Let $\widetilde{u}_{I} v_{J} \bar{v}_{K}$ be an element of $\widetilde{\mathrm{WU}}_{q}$ such that $|J|>q$. Then

$$
\begin{aligned}
& (|J|+|K|) v_{J} \bar{v}_{K}\left(\theta_{1}^{\prime}, \Omega\right) \widetilde{u}_{I}\left(\theta, \theta^{u}\right)-v_{J} \bar{v}_{K}\left(\theta_{0}^{\prime}, \Omega\right) \widetilde{u}_{I}\left(\theta, \theta^{u}\right) \\
= & d\left((|J|+|K|) v_{J} \bar{v}_{K}(\mu, \Omega)\right) \widetilde{u}_{I}\left(\theta, \theta^{u}\right) \\
= & d\left(|J| v_{J}(\mu, \Omega) \bar{v}_{K}(\Omega)\right) \widetilde{u}_{I}\left(\theta, \theta^{u}\right) \\
\equiv & -|J| v_{J}(\mu, \Omega) \bar{v}_{K}(\Omega) d \widetilde{u}_{I}\left(\theta, \theta^{u}\right) \\
= & -|J| \sum_{t}(-1)^{t-1} v_{J}(\mu, \Omega) \bar{v}_{K}(\Omega)\left(v_{i_{t}}-\bar{v}_{i_{t}}\right)(\Omega) \widetilde{u}_{I(t)}\left(\theta, \theta^{u}\right) \\
= & |J| \sum_{t}(-1)^{t-1} v_{J}(\mu, \Omega) \bar{v}_{K}(\Omega) \bar{v}_{i_{t}}(\Omega) \widetilde{u}_{I(t)}\left(\theta, \theta^{u}\right) \\
= & \left(|J|+|K|+i_{t}\right) \sum_{t}(-1)^{t-1} v_{J} \bar{v}_{K} \bar{v}_{i_{t}}(\mu, \Omega) \widetilde{u}_{I(t)}\left(\theta, \theta^{u}\right) \\
= & \delta\left(\widetilde{d}\left(\widetilde{u}_{I} v_{J} \bar{v}_{K}\right)\right)\left(\theta^{u}, \theta, \mu\right) .
\end{aligned}
$$

Similarly, if $|K|>q$ then we have

$$
(|J|+|K|) v_{J} \bar{v}_{K}\left(\theta_{1}^{\prime}, \Omega\right) \widetilde{u}_{I}\left(\theta, \theta^{u}\right)-v_{J} \bar{v}_{K}\left(\theta_{0}^{\prime}, \Omega\right) \widetilde{u}_{I}\left(\theta, \theta^{u}\right) \equiv \delta\left(\widetilde{d}\left(\widetilde{u}_{I} v_{J} \bar{v}_{K}\right)\right)\left(\theta^{u}, \theta, \mu\right)
$$

Hence

$$
\delta(\widetilde{d} \widetilde{\varphi})\left(\theta^{u}, \theta, \theta_{1}^{\prime}\right)-\delta(\widetilde{d} \widetilde{\varphi})\left(\theta^{u}, \theta, \theta_{0}^{\prime}\right) \equiv \delta(\widetilde{d} \widetilde{d} \widetilde{\varphi})\left(\theta^{u}, \theta, \mu\right)=0
$$

Since $D_{\sigma_{0}+\sigma_{1}}(\widetilde{\varphi})=D_{\sigma_{0}}(\widetilde{\varphi})+D_{\sigma_{1}}(\widetilde{\varphi})$, the proof of Claim 3 is completed if we show that $D_{\sigma}(\widetilde{\varphi})$ is exact for any section σ which corresponds to $d_{\nabla} \gamma$, where γ is a section of $E^{*} \otimes Q(\mathcal{F})$ and d_{∇} is as in Definition 4.3.1. By the definition,
such a σ can be obtained as follows. We choose an extension Y of γ to $T_{\mathbb{C}} M$ and let \widehat{Y} be its horizontal lift. Let g be a function on P defined by $g(u)=\omega\left(\widehat{Y}_{u}\right)$. Then $d g+\theta g$ can be chosen as σ, and we have by definition $\omega^{\prime}=-d g-\theta g$. An infinitesimal derivative θ^{\prime} with respect to σ is by definition a $\mathfrak{g l}(q ; \mathbb{C})$-valued 1-form satisfying $\theta^{\prime} \wedge \omega=-d \omega^{\prime}-\theta \wedge \omega^{\prime}$. The right hand side is now equal to $d \theta g-\theta \wedge d g+\theta \wedge d g+\theta \wedge \theta g=\Omega g$. If $\left\{\Gamma_{k}\right\}$ is a family of $\mathfrak{g l}(q ; \mathbb{C})$-valued 1-forms such that $\Omega=\sum_{k} \Gamma_{k} \wedge \omega^{k}$, then $\Omega g=\sum_{k} \Gamma_{k} g \wedge \omega^{k}$. Note that if we write $\Gamma_{k}=\left(\Gamma_{j, k}^{i}\right)$, then $\Gamma_{j, k}^{i}=\Gamma_{k, j}^{i}$. Hence $\left(\sum_{k} \Gamma_{k} \omega^{k}(\widehat{Y})\right) \wedge \omega=\left(\sum_{k} \Gamma_{k} g^{k}\right) \wedge \omega=\sum_{j} \Gamma_{j} g \wedge \omega^{j}=\Omega g$ and $\left(\sum_{k} \Gamma_{k}(\widehat{Y}) \omega^{k}\right) \wedge \omega=0$. Hence by setting $\theta^{\prime}=-i_{\widehat{Y}} \Omega$, we see that

$$
\theta^{\prime} \wedge \omega=\sum_{k}\left(\Gamma_{k}(\widehat{Y}) \omega\right) \omega^{k}+\left(\sum_{k} \Gamma_{k} \omega^{k}(\widehat{Y})\right) \wedge \omega=\Omega g
$$

Therefore, for this choice of θ^{\prime},

$$
v_{J} \bar{v}_{K}\left(\theta^{\prime}, \Omega\right)=-\frac{1}{|J|+|K|} i_{\widehat{Y}} v_{J} \bar{v}_{K}(\Omega)=0
$$

if $|J|>q$ or $|K|>q$. Hence $\delta(\widetilde{d} \widetilde{\varphi})\left(\theta^{u}, \theta, \theta^{\prime}\right)=0$ if φ is closed in WU_{q}.
Claim 4. $\left[D_{\sigma}(\widetilde{\varphi})\right]$ is independent of the choice of φ and its lift $\widetilde{\varphi}$.
It suffices to show that $D_{\sigma}(\widetilde{d} \widetilde{\varphi}+\alpha)$ is exact, where $\widetilde{\varphi} \in \widetilde{W U}_{q}$ and $\alpha \in \widetilde{\mathcal{I}}_{q}$. First, $D_{\sigma}(\widetilde{d} \widetilde{\varphi})=0$ because $\widetilde{d}(\widetilde{d} \widetilde{\varphi})=0$. In order to show that $D_{\sigma}(\alpha)$ is exact for $\alpha \in \widetilde{\mathcal{I}}_{q}$, we first show the claim for $\alpha=\widetilde{u}_{I} v_{J} \bar{v}_{K}$ with $|J|>q$. If I is empty, then $\widetilde{d} \alpha=0$ so that $D_{\sigma}(\alpha)=\Delta \alpha\left(\theta^{u}, \theta, \theta^{\prime}\right)=0$. If I is non-empty, then by using the equalities $v_{J}(\Omega)=0$ and $v_{J}\left(\theta^{\prime}, \Omega\right) v_{i_{l}}(\Omega)=0$, we have

$$
\begin{aligned}
D_{\sigma}(\alpha) & =\Delta \alpha\left(\theta^{u}, \theta, \theta^{\prime}\right) \\
& =\sum_{l}(-1)^{l-1}\left(|J|+|K|+i_{l}\right)\left(v_{J} \bar{v}_{K}\left(v_{i_{l}}-\bar{v}_{i_{l}}\right)\right)\left(\theta^{\prime}, \Omega\right) \widetilde{u}_{I(l)}\left(\theta^{u}, \theta\right) \\
& =\sum_{l}(-1)^{l}|J| v_{J}\left(\theta^{\prime}, \Omega\right) \bar{v}_{K}(\Omega) \bar{v}_{i_{l}}(\Omega) \widetilde{u}_{I(l)}\left(\theta^{u}, \theta\right) \\
& =d\left(|J| v_{J}\left(\theta^{\prime}, \Omega\right) \bar{v}_{K}(\Omega) \widetilde{u}_{I}\left(\theta^{u}, \theta\right)\right)
\end{aligned}
$$

where the last equality holds because $v_{J}\left(\theta^{\prime}, \Omega\right)$ is closed by Lemma 4.3.17. Similarly, $D_{\sigma}(\alpha)$ is exact if $|K|>q$.

This completes the proof of Theorem 4.3.18.
Finally we show that the infinitesimal derivative of secondary classes coincide with the actual derivative when there is an actual deformation realizing the infinitesimal derivative.

An actual deformation induces an infinitesimal derivative as follows. We express by '•' the derivative with respect to s at $0 \in S$, where $0 \in S$ is a distinguished point. We have

$$
\begin{equation*}
\dot{\varphi}_{j, s}=\dot{\gamma}_{j i, s} \circ \varphi_{i, 0}+\frac{\partial \gamma_{j i, 0}}{\partial z_{i}} \dot{\varphi}_{i, s}, \tag{4.3.20}
\end{equation*}
$$

where $\dot{\gamma}_{j i, s}$ is regarded as a holomorphic vector field on an open set of \mathbb{C}^{q}.
Definition 4.3.21 ([53], [31]). The infinitesimal deformation associated with $\left\{\mathcal{F}_{s}\right\}$ is an element of $H^{1}\left(M ; \Theta_{\mathcal{F}}\right)$, where $\mathcal{F}=\mathcal{F}_{0}$, represented by the 1-cocycle of which the value on $U_{i} \cap U_{j}$ is the vector field

$$
\left.\left(\varphi_{j, 0}\right)^{*} \dot{\gamma}_{j i, s} \in \Theta_{\mathcal{F}}\right|_{U_{i} \cap U_{j}}
$$

Note that $\left.\Theta_{\mathcal{F}}\right|_{U_{i} \cap U_{j}}$ is the pull-back of $\Theta_{T_{j, i}}$ by $\varphi_{j, 0}$, where $T_{j, i}$ is an open subset of $\varphi_{j, 0}\left(U_{j}\right)$.

Definition 4.3.22 ([40, Definition 2.7]). Let $\left\{\mathcal{F}_{s}\right\}$ be a smooth deformation of transversely holomorphic foliations of M, and let π_{s} be the projection from $T_{\mathbb{C}} M$ to $Q\left(\mathcal{F}_{s}\right)$. We fix a Hermitian metric on $T_{\mathbb{C}} M$. Assuming that s is small if necessary, we can find, by using the metric, a smooth family of splittings $T_{\mathbb{C}} M=E_{s} \oplus \nu_{s}$, where $\nu_{s} \cong Q\left(\mathcal{F}_{s}\right)$. Let π_{s}^{\prime} be the projection from $T_{\mathbb{C}} M$ to ν_{s}. The infinitesimal deformation σ associated with $\left\{\mathcal{F}_{s}\right\}$ is the smooth section σ of $E_{0}^{*} \otimes Q\left(\mathcal{F}_{0}\right)$ defined by

$$
\sigma(X)=-\pi_{0}\left(\left.\frac{\partial}{\partial s} \pi_{s}^{\prime}(X)\right|_{s=0}\right)
$$

Lemma 4.3.23 ([40, Lemma 2.8]). σ is independent of the choice of the splitting.

Proof. We will give an essentially the same as the one in [40] but slightly different proof. It suffices to work on a foliation chart. Let $\left\{e_{1}, \ldots, e_{q}\right\}$ be a local frame of $Q\left(\mathcal{F}_{0}\right)$, Fix a splitting as above and let $\left\{e_{1}^{\prime}, \ldots, e_{q}^{\prime}\right\}$ be the lift of $\left\{e_{1}, \ldots, e_{q}\right\}$ to $T_{\mathbb{C}} M$. We may assume that there is a smooth family of frames $\left\{e_{1}^{\prime}(s), \ldots, e_{q}^{\prime}(s)\right\}$ of ν_{s} such that $e_{i}^{\prime}(0)=e_{i}^{\prime}, i=1, \ldots, q$. If $X \in E_{0}$, then $\pi_{s}^{\prime}(X)=\sum_{i=1}^{q} f_{i}(X, s) e_{i}^{\prime}(s)$ holds for some functions f_{i}. Since $0=\pi_{0}^{\prime}(X)=\sum_{i=1}^{q} f_{i}(X, 0) e_{i}^{\prime}$, we have $f_{i}(X, 0)=0$ for any i. Hence

$$
\begin{aligned}
\left.\frac{\partial}{\partial s} \pi_{s}^{\prime}(X)\right|_{s=0} & =\left.\sum_{i=1}^{q} \frac{\partial f_{i}}{\partial s}(X, s)\right|_{s=0} e_{i}^{\prime}(0)+\sum_{i=1}^{q} f_{i}(X, 0) \frac{\partial e_{i}^{\prime}}{\partial s}(0) \\
& =\left.\sum_{i=1}^{q} \frac{\partial f_{i}}{\partial s}(X, s)\right|_{s=0} e_{i}^{\prime}(0)
\end{aligned}
$$

Therefore

$$
\pi_{0}\left(\left.\frac{\partial}{\partial s} \pi_{s}^{\prime}(X)\right|_{s=0}\right)=\left.\sum_{i=1}^{q} \frac{\partial f_{i}}{\partial s}(X, s)\right|_{s=0} e_{i}(0)
$$

Let $T_{\mathbb{C}} M=E_{s} \oplus \nu_{s}^{\prime}$ be another splitting and let $\left\{e_{1}^{\prime \prime}(s), \ldots, e_{q}^{\prime \prime}(s)\right\}$ be the family of frames of ν_{s}^{\prime} such that $\pi_{s} e_{i}^{\prime \prime}(s)=\pi_{s} e_{i}^{\prime}(s) \in Q\left(\mathcal{F}_{s}\right)$. If we denote by $\pi_{s}^{\prime \prime}$ the projection to ν_{s}^{\prime}, then $\pi_{s}^{\prime \prime}(X)=\sum_{i=1}^{q} f_{i}(X, s) e_{i}^{\prime \prime}(s)$. In other words, f_{i} 's are independent of the choice of splitting. Hence so is σ.

Lemma 4.3.24 ([40, Corollary 2.11]). $d_{\nabla} \sigma=0$.
Proof. Let $X, Y \in E_{0}$. Then, $\nabla_{X} Z=\pi_{0}[X, \widetilde{Z}]$ for $Z \in Q(\mathcal{F})$, where \widetilde{Z} is any lift of Z to $T_{\mathbb{C}} M$. Hence

$$
\begin{aligned}
d_{\nabla} \sigma(X, Y)= & \nabla_{X} \sigma(Y)-\nabla_{Y} \sigma(X)-\sigma([X, Y]) \\
= & \pi_{0}([X, \widetilde{\sigma(Y)}])-\pi_{0}([Y, \widetilde{\sigma(X)}])-\sigma([X, Y]), \\
= & \pi_{0}\left(\left[X,-\left.\pi_{0}^{\prime} \frac{\partial}{\partial s} \pi_{s}^{\prime}(Y)\right|_{s=0}\right]\right)-\pi_{0}\left(\left[Y,-\left.\pi_{0}^{\prime} \frac{\partial}{\partial s} \pi_{s}^{\prime}(X)\right|_{s=0}\right]\right) \\
& +\pi_{0}\left(\left.\frac{\partial}{\partial s} \pi_{s}^{\prime}[X, Y]\right|_{s=0}\right)
\end{aligned}
$$

If $v \in E_{s}$, then $\pi_{s}^{\prime} \frac{\partial}{\partial s} \pi_{s}^{\prime}(v)=\frac{\partial}{\partial s} \pi_{s}^{\prime}(v)$. Indeed, $\pi_{s}^{\prime} \circ \pi_{s}^{\prime}=\pi_{s}^{\prime}$ implies that

$$
\left(\frac{\partial}{\partial s} \pi_{s}^{\prime}\right) \pi_{s}^{\prime}+\pi_{s}^{\prime}\left(\frac{\partial}{\partial s} \pi_{s}^{\prime}\right)=\frac{\partial}{\partial s} \pi_{s}^{\prime}
$$

Hence $\frac{\partial}{\partial s} \pi_{s}^{\prime}(v) \in \nu_{s}$. Therefore

$$
\pi_{0}^{\prime}\left(\left[X,-\left.\pi_{0}^{\prime} \frac{\partial}{\partial s} \pi_{s}^{\prime}(Y)\right|_{s=0}\right]\right)=-\pi_{0}^{\prime}\left(\left[X,\left.\frac{\partial}{\partial s} \pi_{s}^{\prime}(Y)\right|_{s=0}\right]\right)
$$

Similarly,

$$
\pi_{0}^{\prime}\left(\left[Y,-\left.\pi_{0}^{\prime} \frac{\partial}{\partial s} \pi_{s}^{\prime}(X)\right|_{s=0}\right]\right)=-\pi_{0}^{\prime}\left(\left[Y,\left.\frac{\partial}{\partial s} \pi_{s}^{\prime}(X)\right|_{s=0}\right]\right)
$$

On the other hand,

$$
\begin{aligned}
& \left.\frac{\partial}{\partial s} \pi_{s}^{\prime}\left[X-\pi_{s}^{\prime}(X), Y-\pi_{s}^{\prime}(Y)\right]\right|_{s=0} \\
= & \left.\frac{\partial}{\partial s} \pi_{s}^{\prime}\right|_{s=0}\left[X-\pi_{0}^{\prime}(X), Y-\pi_{0}^{\prime}(Y)\right] \\
& +\pi_{0}^{\prime}\left[-\left.\frac{\partial}{\partial s} \pi_{s}^{\prime}(X)\right|_{s=0}, Y-\pi_{0}^{\prime}(Y)\right]+\pi_{0}^{\prime}\left[X-\pi_{0}^{\prime}(X),-\left.\frac{\partial}{\partial s} \pi_{s}^{\prime}(Y)\right|_{s=0}\right] \\
= & \left.\frac{\partial}{\partial s} \pi_{s}^{\prime}\right|_{s=0}[X, Y]-\pi_{0}^{\prime}\left[\left.\frac{\partial}{\partial s} \pi_{s}^{\prime}(X)\right|_{s=0}, Y\right]-\pi_{0}^{\prime}\left[X,\left.\frac{\partial}{\partial s} \pi_{s}^{\prime}(Y)\right|_{s=0}\right]
\end{aligned}
$$

because $X, Y \in E$. Therefore $d_{\nabla} \sigma(X, Y)=\left.\frac{\partial}{\partial s} \pi_{s}^{\prime}\left[X-\pi_{s}^{\prime}(X), Y-\pi_{s}^{\prime}(Y)\right]\right|_{s=0}$. Since $X-\pi_{s}^{\prime}(X), Y-\pi_{s}^{\prime}(Y) \in E_{s}$ and E_{s} is integrable, $d_{\nabla} \sigma(X, Y)=0$.

REMARK 4.3.25. If E_{s} are not necessarily integrable, $d_{\nabla} \sigma$ is called the integrability tensor in [40].

Definition 4.3.26. Let $\left\{\mathcal{F}_{s}\right\}$ be a smooth family of transversely holomorphic foliations of M and let σ be as above. The element $[\sigma]$ in $H^{1}\left(M ; \Theta_{\mathcal{F}}\right)$ is also called the infinitesimal deformation associated with $\left\{\mathcal{F}_{s}\right\}$.

Given a smooth deformation of \mathcal{F}, two infinitesimal deformations are defined. By [40, Theorem 2.5] and [26, Theorem 1.27] (cf. Lemma 4.3.3), we have the following.

THEOREM 4.3.27. The infinitesimal deformations defined in Definitions 4.3.21 and 4.3.26 coincide each other.

Proof. We regard $\left\{\dot{\varphi}_{i, s}\right\}$ as a family of sections of $Q(\mathcal{F})$. From (4.3.20), we have $\dot{\varphi}_{j, s}-\dot{\varphi}_{i, s}=\varphi_{j, 0}^{*} \dot{\gamma}_{j i, s}$. If we define a section s of $E_{0}^{*} \otimes Q\left(\mathcal{F}_{0}\right)$ by $s=-d_{\nabla} \dot{\varphi}_{i, s}$ on U_{i}, then s is well-defined again by (4.3.20). It is easy to see that s coincides with σ in Definition 4.3.22.

Theorem 4.3.28 ([42, Theorem 3.23]). Let $\left\{\mathcal{F}_{s}\right\}_{s \in \mathbb{R}}$ be a differentiable family of transversely holomorphic foliations of M, of complex codimension q. If $\beta \in$ $H^{1}\left(M ; \Theta_{\mathcal{F}}\right)$ is the infinitesimal deformation of \mathcal{F}_{0} associated with $\left\{\mathcal{F}_{s}\right\}$, then

$$
D_{\beta}(f)=\left.\frac{\partial}{\partial s} f\left(\mathcal{F}_{s}\right)\right|_{s=0}
$$

for $f \in H^{*}\left(\mathrm{WU}_{q}\right)$.
Proof. Let P_{s} be the principal bundle associated with $Q\left(\mathcal{F}_{s}\right)$. We may assume that s is small so that P_{s} is canonically isomorphic to P_{0}. Hence there are families of canonical forms ω_{s} and complex Bott connections θ_{s} on $Q\left(\mathcal{F}_{s}\right)$ such that $d \omega_{s}=$ $-\theta_{s} \wedge \omega_{s}$. If we set $\dot{\omega}_{s}=\left.\frac{\partial}{\partial s} \omega_{s}\right|_{s=0}$ and $\dot{\theta}_{s}=\left.\frac{\partial}{\partial s} \theta_{s}\right|_{s=0}$, then

$$
d \dot{\omega}_{s}=-\dot{\theta}_{s} \wedge \omega_{s}-\theta_{s} \wedge \dot{\omega}_{s} .
$$

On the other hand, if σ is the infinitesimal deformation associated with $\left\{\mathcal{F}_{s}\right\}$, then a 1-form $\widehat{\sigma}$ on P representing σ is given as follows. Let $\widehat{\mathcal{F}_{s}}$ be the pull-back of \mathcal{F}_{s} by the projection to M. Let $\omega_{s}={ }^{t}\left(\omega_{s}^{1}, \ldots, \omega_{s}^{q}\right)$ be the canonical form on $Q\left(\widehat{\mathcal{F}_{s}}\right)$. Then

$$
\widehat{\sigma}(\widehat{X})=-\pi_{0}\left(\left.\frac{\partial}{\partial s}\left(\omega_{s}^{1}(X) \widetilde{e}_{1}(s)+\cdots+\omega_{s}^{q}(X) \widetilde{e}_{q}(s)\right)\right|_{s=0}\right)
$$

where $\widetilde{e}_{i}(s), i=1, \ldots, q$, are defined as in the proof of Lemma 4.3.23. Since $\left.\frac{\partial}{\partial s} \widetilde{e}_{i}(s)\right|_{s=0}$ belongs to the kernel of π_{0}, one has

$$
\begin{aligned}
\widehat{\sigma}(\widehat{X}) & =-\pi_{0}\left(\left.\frac{\partial}{\partial s} \omega_{s}^{1}(X)\right|_{s=0} \widetilde{e}_{1}(0)+\cdots+\left.\frac{\partial}{\partial s} \omega_{s}^{q}(X)\right|_{s=0} \widetilde{e}_{q}(0)\right) \\
& =-\left.\frac{\partial}{\partial s} \omega_{s}^{1}(X)\right|_{s=0} e_{1}-\cdots-\left.\frac{\partial}{\partial s} \omega_{s}^{q}(X)\right|_{s=0} e_{q} \\
& =-\dot{\omega}(\widehat{X})
\end{aligned}
$$

It follows that $\dot{\theta}_{s}$ can be chosen as an infinitesimal derivative of θ_{0} with respect to σ. Therefore Theorem 4.3.28 follows from Proposition 4.2.6.

The Bott class is known to vary continuously. Hence its infinitesimal derivative is of interest. The above construction gives the infinitesimal derivative of the imaginary part of the Bott class. If $K_{\mathcal{F}}$ is trivial, then the infinitesimal derivative of the Bott class including the real part is constructed by Heitsch [42]. It is still possible to define the derivative without the triviality of $K_{\mathcal{F}}$, and the derivative is an element of $H^{2 q+1}(M ; \mathbb{C})$. Indeed, we have the following

Theorem 4.3.29 ([10, Theorems 2.14 and 2.19]). Let $\mu \in H^{1}\left(M ; \Theta_{\mathcal{F}}\right)$ and σ be a representative of μ. Let θ be a Bott connection and θ^{\prime} be an infinitesimal derivative of θ with respect to σ. Then, the infinitesimal derivative of the Bott class is represented by $(-2 \pi \sqrt{-1})^{q+1}(q+1) \theta^{\prime} \wedge(d \theta)^{q}$.

We denote by $D_{\mu} B_{q}(\mathcal{F})$ the infinitesimal derivative of the Bott class. We have $D_{\mu} \xi_{q}(\mathcal{F})=-2 \operatorname{Im} D_{\mu} B_{q}(\mathcal{F})$. It is known that $D_{\mu} B_{q}(\mathcal{F})$ can be represented in terms of the projective Schwarzian derivatives in the Čech-de Rham complex ([57] for $q=1$, [10, Theorem 4.10] for arbitrary q).

Let $I_{q}(\mathcal{F})$ be the space of differential forms on open sets of M which are locally of the form $\omega \wedge d z^{1} \wedge \cdots \wedge d z^{q}$. It follows from Theorem 4.3.29 that $D_{\mu} B_{q}(\mathcal{F})$ can be represented by an element of $I_{q}(\mathcal{F})$. Hence we have the following

Corollary 4.3.30 (cf. [10, Corollary 4.16]). Let J be an index set as in Notation 1.1.11. Let $\operatorname{ch}_{J}(\mathcal{F})=\chi_{\mathcal{F}}^{\mathbb{C}}\left(v_{J}\right)$, where $\chi_{\mathcal{F}}^{\mathbb{C}}$ is the characteristic mapping (Definition 1.1.17). If $J \neq \varnothing$, then $D_{\mu} B_{q}(\mathcal{F}) \operatorname{ch}_{J}(\mathcal{F})$ is trivial. In particular, $D_{\mu} B_{q}(\mathcal{F}) \operatorname{ch}_{1}(\mathcal{F})^{k}$ and $D_{\mu} \xi_{q}(\mathcal{F}) \operatorname{ch}_{1}(\mathcal{F})^{k}$ are trivial if $k>0$.

Proof. The class $\operatorname{ch}_{J}(\mathcal{F})$ is represented by an element of $I_{1}(\mathcal{F})$. Hence the first part follows from the Bott vanishing theorem. By setting $J=(k, 0, \ldots, 0)$, we see that $D_{\mu} B_{q}(\mathcal{F}) \operatorname{ch}_{1}(\mathcal{F})^{k}$ is trivial if $k>0$. Since $\operatorname{ch}_{1}(\mathcal{F}) \in H^{2}(M ; \mathbb{R})$, we have $\overline{D_{\mu} B_{q}(\mathcal{F})} \operatorname{ch}_{1}(\mathcal{F})^{k}=\overline{D_{\mu} B_{q}(\mathcal{F}) \operatorname{ch}_{1}(\mathcal{F})^{k}}$. The last part follows from this equality.

Note that Corollary 4.3.30 gives an alternative proof of Theorem B2.

