
CHAPTER 1

Definitions of Transversely Holomorphic Foliations
and Complex Secondary Classes

1.1. Basic Notions

In this monograph, foliations are assumed to be regular (without singularities)

unless otherwise mentioned.

Definition 1.1.1. LetM be a manifold without boundary. A decomposition of

M into immersed submanifolds {Lα}α∈A, called leaves, is a foliation of M if there

is an integer q and an atlas {Uλ}λ∈Λ of M which satisfy the following conditions:

1) For each λ, there is a submersion fλ : Uλ → Rq such that each connected

component of Lα ∩ Uλ is a connected component of a fiber of fλ.

2) Let ϕμλ be the transition function from Uλ to Uμ. Then, there exists a

diffeomorphism γμλ : pλ(Uλ ∩ Uμ) → pμ(Uλ ∩ Uμ) such that γμλ ◦ fλ =

fμ ◦ ϕμλ.

Such an atlas is called a foliation atlas. The integer q is called the (real) codimension

of the foliation.

Remark 1.1.2.

1) We may assume that fibers of fλ are homeomorphic, and Uλ is homeo-

morphic to Vλ × Bλ in a way such that fλ is the projection to the second

factor, where Bλ = fλ(Uλ) and Vλ is the fiber of fλ.

2) If we assume that each fλ is only continuous and that γνμγμλ = γνλ for

any λ, μ, ν ∈ Λ, then structures as above is called Γq-structures, where Γq

denotes the pseudogroup of local diffeomorphisms of Rq.
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A foliation is said to be transversely of class Cr, r = 0, 1, . . . ,∞, ω, if every γμλ

as in 2) of Definition 1.1.1 is of class Cr. Transversely holomorphic foliations can

be also considered in a similar manner. A precise definition is as follows.

Definition 1.1.3. Let M be a manifold without boundary and let F be a

foliation of real codimension 2q of M . F is transversely holomorphic if there is a

foliation atlas {Uλ} such that

1) the image of fλ is contained in Cq for any λ,

2) each γμλ is a biholomorphic local diffeomorphism, where a biholomorphic

local diffeomorphism is by definition a biholomorphic diffeomorphism from

an open subset of Cq to an open subset of Cq.

The integer q is called the complex codimension of F and denoted by codimCF .

If each fλ is supposed only to be a continuous function, then structures as above

is called ΓC

q -structures, where Γ
C

q denotes the pseudogroup of biholomorphic local

diffeomorphisms of Cq (cf. [36]).

There are some relevant vector bundles associated with transversely holomorphic

foliations.

Definition 1.1.4. Let TF be the subbundle of TM spanned by vectors tangent

to the leaves of F . Let TCM = TM ⊗C and let E be the subbundle of TCM locally

spanned over C by vectors tangent to the leaves and transversal antiholomorphic

vectors
∂

∂z̄1
, . . . ,

∂

∂z̄q
. The integrability condition for F ensures that E is well-

defined. The quotient bundle Q(F) = TCM/E is called the complex normal bundle

of F , and the complex line bundle KF =
∧q
Q(F)∗ is called the canonical line

bundle of F . The quotient bundle QR(F) = TM/TF is called the (real) normal

bundle of F . We have Q(F)⊕Q(F) ∼= QR(F)⊗ C.

If KF is trivial, then the Bott class is defined as follows [19]. We fix a trivial-

ization ω of KF . Then ω is naturally a C-valued q-form. It follows from the

integrability of F and its transversal complex structure that there is a C-valued
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1-form η such that dω = 2π
√−1η ∧ ω (cf. [26]). The differential form η ∧ (dη)q

is closed by the Bott vanishing theorem (Theorem 1.1.12), and it represents a co-

homology class which is independent of the choices we made [19].

Definition 1.1.5. The cohomology class represented by η ∧ (dη)q is called the

Bott class and denoted by Bottq(F).

The Bott class is often referred as the complex Godbillon–Vey class. How-

ever, we will adopt Definition 1.1.5 because the Godbillon–Vey class and the Bott

class will appear together in the following sections so that it is necessary to distin-

guish them. In addition, Bott introduced the Bott class already in [17] while the

Godbillon–Vey class appeared in [34]. See also a comment of Bott in [18, p. 49].

The following is a fundamental example given by Bott [19] (see also [17] and [13]).

Example 1.1.6. Let Xλ =
n∑

i=0

λizi
∂

∂zi
be a holomorphic vector field on Cn+1,

where (z0, . . . , zn) are the standard coordinates and each λi is a non-zero complex

number. Assume that the origin is of Poincaré type, equivalently, assume that the

convex hull of λ0, . . . , λn does not contain the origin. Let F̃λ be the foliation of

Cn+1 by the orbits of Xλ. Then, F̃λ induces a foliation Fλ of the unit sphere

S2n+1 because S2n+1 is transversal to F̃λ. Indeed, let U = {Uλ} be a foliation

atlas for F̃λ and let U ′ = {U ′
λ} be a subfamily of U such that U ′

λ ∩ S2n+1 �= ∅

for any λ and that
⋃
λ

U ′
λ ⊃ S2n+1. By taking a refinement, we may assume that

U ′
λ ∩ S2n+1 is homeomorphic to V ′

λ × B′
λ, where V

′ is an open set in R and B′
λ

is an open ball in Cn. Then, the transition functions are restriction of original

transition functions so that we can make use of coordinates for F̃λ in the transverse

direction in order to introduce a transverse holomorphic structure to Fλ. Thus Fλ is

a transversely holomorphic foliation (flow) of complex codimension n. It is known

that Bottn(Fλ) =
(λ0 + · · ·+ λn)

n+1

λ0 · · ·λn [S2n+1], where [S2n+1] is the fundamental

class of S2n+1.
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Example 1.1.6 shows that the Bott class is non-trivial and admits continuous

variations. See Example 5.6 for another example of the same kind.

Definition 1.1.7. A connection ∇ on Q(F) is said to be a complex Bott con-

nection if ∇ satisfies

∇XY = LXY

for any sections X of E and Y of Q(F), where LX denotes the Lie derivative with

respect to X. It is equivalent to the condition ∇XY = π[X, Ỹ ], where π : TCM →
Q(F) is the natural projection and Ỹ is any lift of Y to TCM . A connection onKF is

also called a complex Bott connection if it is induced from a complex Bott connection

on Q(F). Real Bott connections are defined on QR(F) in a similar way. Namely,

a connection ∇ on QR(F) is said to be a real Bott connection if ∇XY = π′[X, Ỹ ]

holds for sections X of TF and Y of QR(F), where π′ : TM → QR(F) is the natural

projection and Ỹ is any lift of Y to TM .

Real Bott connections are usually called Bott connections or basic connections.

In this monograph, Bott connections always mean complex Bott connections unless

otherwise mentioned.

Remark 1.1.8. The differential form η in Definition 1.1.5 is the connection

form of a Bott connection on KF with respect to ω.

The complex secondary classes are constructed as follows. We first remark that

the Chern forms and classes will be denoted by vi because the letter ci usually

represents a Pontrjagin form or class (cf. Definitions 1.1.18 and 1.1.19). It is also

the case in this monograph.

We recall the definition of the Chern–Simons forms [22].

Definition 1.1.9. Let ∇0 and ∇1 be connections on Q(F) and let θ0 and θ1

be respective connection forms. Let f be an invariant polynomial on GL(q;C) of
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degree k. We set θt = (1− t)θ0 + tθ1 and

Δf (θ1, θ0) =

∫ 1

0

kf(θ1 − θ0,Ωt, . . . ,Ωt) dt,

where Ωt = dθt + θt ∧ θt is the curvature form of θt.

It is well-known that Δf (θ1, θ0) is well-defined. It is also well-known that

dΔf (θ1, θ0) = f(Ω1) − f(Ω0) and Δf (θ0, θ1) = −Δf (θ1, θ0). See Chapter 4 for

additional properties of Δf (θ1, θ0).

Definition 1.1.10. Let F be a transversely holomorphic foliation of M , of

complex codimension q. Let ∇ be a complex Bott connection on Q(F) and let ∇u

be a unitary connection on Q(F) with respect to some Hermitian metric on Q(F).

We denote by θ and θu the connection forms of ∇ and ∇u, respectively. Let ci be

the Chern polynomial of degree i, and

vi(Ω) = ci(Ω),

vi(Ω) = ci(Ω),

ũi(θ, θ
u) = Δci(θ, θ

u)−Δci(θ, θ
u),

where Ω is the curvature form of θ and ω denotes the complex conjugate of a

differential form ω.

By definition, we have

det

(
tIq − 1

2π
√−1

Ω

)
= tq + v1(Ω)t

q−1 + · · ·+ vq(Ω),

where Iq is the identity matrix.

Notation 1.1.11. We denote by C[v1, . . . , vq] the polynomial ring generated

by v1, . . . , vq with coefficients in C. Let J = (j1, j2, . . . , jq), where each jr is a non-

negative integer. We set vJ = vj11 v
j2
2 · · · vjqq and |J | = j1+2j2+ · · ·+ qjq. If Ω is the

curvature form of a connection, then set vJ(Ω) = v1(Ω)
j1 · · · vq(Ω)jq . Similarly, vJ

and vJ(Ω) are defined for an index set J as above. Index sets for vi’s are usually

denoted by K.
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The following theorem is crucial in the construction.

Theorem 1.1.12 (Bott vanishing theorem [19]). Let vJ ∈ C[v1, . . . , vq] be a

monomial and assume that |J | > q. If Ω is the curvature form of a Bott connection,

then vJ(Ω) = 0 as differential forms.

If we calculate Chern forms using Bott connections, we have Chern forms and

their complex conjugates. They do not coincide in general, however, they are co-

homologous. We can find natural primitives by using foliations and Chern–Simons

forms. On the other hand, we have the Bott vanishing theorem. These facts lead

the following definition.

Definition 1.1.13. Let WUq be the differential graded algebra (DGA for

short) defined as follows. First set the degree of vi to be 2i, and let Iq be the

ideal in C[v1, . . . , vq] generated by the monomials of degree greater than 2q. Let

Cq[v1, . . . , vq] = C[v1, . . . , vq]/Iq and define Cq[v1, . . . , vq] by replacing vi by vi.

We set

WUq = Cq[v1, . . . , vq]⊗ Cq[v1, . . . , vq]⊗
∧
[ũ1, . . . , ũq].

The exterior derivative on WUq is defined by requiring dũi = vi − vi and dvi =

dvi = 0. The degree of ũi is set to be 2i− 1.

If Q(F) is trivial, then all the Chern classes are trivial. By fixing a trivialization

of Q(F), one can find a primitive ui of vi. Indeed, the following DGA is useful for

foliations with trivialized normal bundles.

Definition 1.1.14. We set

WC

q = (Cq[v1, . . . , vq]⊗
∧
[u1, u2, . . . , uq]) ∧ (Cq[v1, . . . , vq]⊗

∧
[u1, u2, . . . , uq]) ,

where the degree of ui and ui are 2i− 1, and the differential is defined by requiring

that dui = vi, dui = vi and dvi = dvi = 0.
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Definition 1.1.15. The cohomology classes in H∗(WUq) which involve ũi’s are

called complex secondary classes. The cohomology classes in H∗(WC

q ) which involve

ui’s or ui’s are also called complex secondary classes.

Let F be a transversely holomorphic foliation. We fix a Hermitian metric on

the complex normal bundle Q(F) and let θu be a unitary connection. Let θ be a

Bott connection on Q(F) and Ω the connection form. Let f be the mapping from

WUq to the set of C-valued differential forms such that

f(vi) = vi(Ω),

f(vi) = vi(Ω),

f(ũi) = ũi(θ, θ
u).

If Q(F) is trivial, then we choose a trivialization, say s, and let θs be the

flat connection determined by s. We define a mapping f̂s from WC

q to C-valued

differential forms by setting

f̂s(vi) = vi(Ω),

f̂s(vi) = vi(Ω),

f̂s(ui) = ui(θ, θ
s),

f̂s(ui) = ui(θ, θ
s).

Then, we have the following.

Theorem 1.1.16 (Bott [19]). f induces a homomorphism χC

F from H∗(WUq) to

H∗(M ;C) which is independent of the choice of connections and metrics. If Q(F)

is trivial, then f̂s induces a homomorphism χ̂C

F,s from H∗(WC

q ) to H
∗(M ;C) which

is independent of the choice of connections and depends on the homotopy classes of

the trivializations.

Definition 1.1.17. The homomorphisms χC

F and χ̂C

F,s in Theorem 1.1.16 are

called the characteristic mappings. The image of ω ∈ H∗(WUq) under χ
C

F is denoted
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by χC

F (ω) or by ω(F), and the image of ω ∈ H∗(WC

q ) under χ̂C

F,s is denoted by

χ̂C

F,s(ω) or by ω(F , s), respectively.

Given a transversely holomorphic foliation, one can consider also real secondary

classes by forgetting the transverse holomorphic structure. A DGA which plays the

role of WUq for real foliations is defined as follows. First, Pontrjagin forms instead

of Chern forms appear. If we denote by ci the i-th Pontrjagin form, then ci is exact

if i is odd. If we replace complex Bott connections by real Bott connections, then

Theorem 1.1.12 holds in the same form. Hence we are led to the following definition.

Definition 1.1.18. Let Rq[c1, . . . , cq] = R[c1, . . . , cq]/I ′
q, where the degree of

ci is set to be 2i and I ′
q is the ideal generated by monomials of degree greater than

2q. Let q′ be the largest odd integer less than q + 1. We set

WOq = Rq[c1, . . . , cq]⊗
∧
[h1, h3, . . . , hq′ ],

where the degree of hi is 2i− 1 and the differential is defined by requiring dhi = ci

and dci = 0.

If the real normal bundle QR(F) is trivial, then Pontrjagin forms are exact.

Hence the following DGA is suitable.

Definition 1.1.19. We set

Wq = Rq[c1, . . . , cq]⊗
∧
[h1, h2, . . . , hq],

where the degree of hi is 2i− 1 and the differential is defined by requiring dhi = ci

and dci = 0.

Definition 1.1.20. The elements of H∗(WOq) and H
∗(Wq) which involve hi’s

are called real secondary classes.

Theorem 1.1.16 holds for real foliations as well, and characteristic mappings

are also defined. Let θ and θm be a Bott connection and a metric connection with

respect to a Riemannian metric on QR(F). We denote by Ω the curvature form of θ.
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Then, we can consider a mapping g from WOq to the set of differential forms

such that

g(cj) = cj(Ω),

g(hi) = Δci(θ, θ
m) if i is odd.

If QR(F) is trivial, then we choose a trivialization s. Let θs be the flat connection

determined by s, and set ĝs(hi) = Δci(θ, θ
s) for any i. The mappings g and ĝs induce

homomorphisms on the cohomology, which we denote by χF and χ̂F,s, respectively.

The homomorphism χF is independent of the choice of connections and metrics, and

χ̂F,s is independent of the choice of Bott connections and depends on the homotopy

type of s.

Definition 1.1.21. The homomorphisms χF : H∗(WOq) → H∗(M ;R) and

χ̂F,s : H
∗(Wq) → H∗(M ;R) are called the characteristic mappings. The image

of ω ∈ H∗(WOq) under χF is denoted by χF (ω) or by ω(F), and the image of

ω ∈ H∗(Wq) under χ̂F,s is denoted by χ̂F,s(ω) or by ω(F , s), respectively.

For studying transversely holomorphic foliations, WO2q and W2q are relevant,

where (2q)′ = 2q−1. It is convenient to consider WO2q ⊗C and W2q ⊗C instead of

WO2q and W2q. In what follows, we denote WO2q⊗C and W2q⊗C again by WO2q

and W2q, respectively, and the coefficients of cohomology groups are always chosen

in C unless otherwise stated. We also consider Wq⊗C instead of Wq. If we identify

Wq with Cq[v1, . . . , vq]⊗
∧
[u1, . . . , uq], then Wq is naturally a sub-DGA of WC

q . It

is often enough to study H∗(Wq) instead of H∗(WC

q ) when we study transversely

holomorphic foliations with trivialized normal bundles.

Remark 1.1.22. The DGA’s WUq, W
C

q , WOq and Wq also arise when studying

the Gel’fand–Fuks cohomology (cf. [28]).

Notation 1.1.23. If I = {i1, i2, . . . , ir}, where i1 < i2 < · · · < ir, then we set

ũI = ũi1 ũi2 · · · ũir by omitting the symbol ‘∧’. If I is empty, then we set ũI = 1.
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We define uI , uI and hI in a similar way. Classes in H∗(WUq), H
∗(WC

q ), H
∗(WOq)

and H∗(Wq) are usually denoted by their representatives by abuse of notation.

Remark 1.1.24 (See [36] for details). Let ΓC

q be the pseudogroup of bi-

holomorphic local diffeomorphisms of Cq. Transversely holomorphic foliations are

ΓC

q -structures, and there is a classifying space, denoted by BΓC

q . It is naturally

equipped with a ΓC

q -structure, which is universal in the following sense. If F is

a transversely holomorphic foliation of a manifold M , then there is a mapping

f : M → BΓC

q such that F is the pull-back of the ΓC-structure by f . The mapping

f is unique up to homotopy and called the classifying mapping for F . It is known

that classifying spaces and secondary characteristic classes are related as follows.

There is a mapping χC : H∗(WUq) → H∗(BΓC

q ) which makes the following diagram

commutative for any complex codimension-q transversely holomorphic foliation F
of a manifold M :

H∗(BΓC
q )

f∗H∗(WUq)

χC

χC

F H∗(M),

where f : M → BΓC

q is the classifying mapping for F . The mapping χC is called

the universal characteristic mapping. Let BΓq be the classifying space for real

codimension-q smooth foliations and let BΓq be the homotopy fiber of the natural

mapping BΓq → BGL(q;R) given by taking the normal bundle. Similarly let BΓC
q

be the homotopy fiber of BΓC

q → BGL(q;C). The space BΓq is the classifying

space for real codimension-q foliations with trivialized normal bundle, and BΓC
q is

the classifying space for complex codimension-q foliations with trivialized complex

normal bundle.

There are universal characteristic mappings as follows:

χ : H∗(WOq) −→ H∗(BΓq),

χ̂ : H∗(Wq) −→ H∗(BΓq),

χ̂C : H∗(WC

q ) −→ H∗(BΓC
q ).
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These mappings are related as follows. There is an obvious mapping from H∗(WOq)

to H∗(Wq). It corresponds to the natural mapping from BΓq to BΓq. The counter-

parts for transversely holomorphic foliations are the natural mapping from BΓC
q to

BΓC

q and the mapping from H∗(WUq) to H
∗(WC

q ) given by sending ũi to ui − ui,

vj to vj and vk to vk. The following diagrams are known to be commutative:

H∗(WO2q) −−−−→ H∗(Wq)

χ

⏐⏐� ⏐⏐�χ̂

H∗(BΓ2q) −−−−→ H∗(BΓ2q),

H∗(WUq) −−−−→ H∗(WC

q )

χC

⏐⏐� ⏐⏐�χ̂C

H∗(BΓC

q ) −−−−→ H∗(BΓC
q ).

Relations between these diagrams obtained by forgetting transverse holomorphic

structures will be discussed in Chapter 2.

1.2. Godbillon–Vey Class and Bott Class

The following secondary classes are relevant [17], [19] (see also [62], [3]).

Definition 1.2.1.

1) The class h1c
2q
1 in H4q+1(WO2q) is called the Godbillon–Vey class and

denoted by GV2q. The image of GV2q in H4q+1(W2q) is also called the

Godbillon–Vey class.

2) The class u1v
q
1 in H2q+1(Wq) and its image in H2q+1(WC

q ) are called the

Bott class and denoted by Bottq.

3) The class
√−1ũ1(v

q
1 + vq−1

1 v1 + · · · + vq1) in H2q+1(WUq) and its image

in H2q+1(WC

q ) are called the imaginary part of the Bott class and de-

noted by ξq.

Remark 1.2.2. If Q(F) is trivial, the definition of the Bott class in Defin-

ition 1.1.5 coincides with the above one. The Bott class is independent of the choice

of the trivializations, however, some of other secondary classes defined in terms of

H∗(WC

q ) depend on the choice of trivializations of Q(F).

The reason for which ξq is called the imaginary part of the Bott class is as

follows.
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Lemma 1.2.3. The image of ξq in H∗(WC

q ) coincides with
√−1(Bottq −Bottq).

Proof. The following equality holds in WC

q , namely,

ξq =
√−1ũ1(v

q
1 + vq−1

1 v1 + · · ·+ vq1)

=
√−1(u1v

q
1 − u1v

q
1)

+
√−1u1(v

q−1
1 v1 + · · ·+ vq1)−

√−1u1(v
q
1 + · · ·+ v1v

q−1
1 ).

On the other hand,

d(u1u1(v
q−1
1 + · · ·+ v1v

q−1
1 ))

=u1(v
q
1 + · · ·+ v1v

q−1
1 )− u1(v

q−1
1 v1 + · · ·+ vq1).

Hence the image of ξq is cohomologous to
√−1(u1v

q
1 − u1v

q
1) in WC

q . �

In order to define the Bott class, it is enough to assume the triviality of the

canonical bundleKF . Indeed, the Bott classes in Definitions 1.1.5 and 1.2.1 coincide

for such foliations. If KF is non-trivial, then the Bott class is known to be defined

as an element of H2q+1(M ;C/Z) as follows.

Theorem 1.2.4. There is a well-defined element Bq(F) ∈ H2q+1(M ;C/Z) with

the following properties.

1) Bq(F) has naturality with respect to F .

2) If KF is trivial, then Bq(F) is the image of Bottq(F) under the mapping

H2q+1(M ;C) → H2q+1(M ;C/Z).

3) Let c1(Q(F)) be the integral first Chern class of Q(F). Then Bq(F) is

mapped to c1(Q(F))q+1 under the natural mapping H2q+1(M ;C/Z) →
H2q+2(M ;Z).

4) ξq(F) =
√−1(Bq(F)−Bq(F)).

The class Bq(F) is also called the Bott class. The study of the real part of the

Bott class is more difficult than that of the imaginary part. We refer to [7] for an

explicit construction of Bq(F) and some properties of it.
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Remark 1.2.5. Example 1.1.6 shows that several secondary classes admit con-

tinuous variations. As already remarked, the Bott class, and hence Bq and ξq

admit continuous variations. It is known that classes such as u1vJ(Fλ), |J | = q,

are well-defined and can also vary continuously. Indeed, it is shown in [13] that

u1vJ(Fλ) =
c1cJ(λ0, . . . , λn)

λ0 · · ·λn [S2n+1] if |J | = n by using residues, where c1cJ de-

notes the Chern monomial. See also Example 5.6.

1.3. Some Known Results

It is quite important to decide if the universal characteristic mappings χC, χ̂C,

χ and χ̂ are injective or not. It is an old open problem. There are several works on

the cohomology of classifying spaces. First, Bott’s examples (Example 1.1.6) imply

the following

Theorem 1.3.1. H2q+1(BΓC
q ;R) ⊃ Rq.

The following result is significant.

Theorem 1.3.2 (Adachi [1]). BΓC
q is q-connected.

It is unknown if it is sharp for q > 1. If q = 1, then there is a following

Theorem 1.3.3 (Haefliger–Sithanantham [38]). BΓC
1 is 2-connected.

Note that BΓC
1 is not 3-connected. Indeed, there is a foliation of S3 of which

the Bott class is non-trivial.

The following is known about H∗(WU1) and H
∗(WC

1 ):

Hk(WU1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

C, k = 0,〈
v1 + v1

2

〉
, k = 2,

〈ξ1〉 , k = 3,

〈GV2〉 , k = 5,

{0}, otherwise,

Hk(WC

1 ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C, k = 0,〈

Bott1,Bott1
〉
, k = 3,〈

Bott1 Bott1
〉
, k = 6,

{0}, otherwise,

where 〈 · 〉 denotes the vector space spanned over C. It follows that χC and χ̂C are

injective if q = 1.
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It is also important to determine which classes can vary independently.

Definition 1.3.4. Let hicJ ∈ Wq and suppose that i + |J | = 2q + 1. If

J = (j1, . . . , jq), then we set J ′ = {
j1︷ ︸︸ ︷

1, . . . , 1,

j2︷ ︸︸ ︷
2, . . . , 2, . . . ,

jq︷ ︸︸ ︷
q, . . . , q}. Suppose that the

smallest entry of J ′ is not less than i. Let κ(hicJ ) ∈ WUq be a cocycle defined by

κ(hicJ) = ũivj′1vj′2 · · · vj′r + viũj′1vj′2 · · · vj′r + · · ·+ vivj′1 · · · vj′r−1
ũj′r ,

where J ′ = {j′1, . . . , j′r} and j′1 ≤ j′2 ≤ · · · ≤ j′r.

The mapping κ induces a linear isomorphism from H2q+1(Wq) to H
2q+1(WUq).

See Theorem 1.3.11.

From Example 5.6, we see that some secondary classes vary independently.

Theorem 1.3.5 ([13], [62]). Suppose that i + |J | = 2q + 1 and the smallest

entry of J ′ is not less than i. Let χC : H2q+1(WUq) → H2q+1(BΓC

q ;C) be the uni-

versal characteristic mapping. The elements χC(κ(hicJ)) all vary and vary as lin-

early independently as the functions Im
cicJ(A)

detA
, where A ∈ M(q + 1;C) and Im

denotes the imaginary part. Let χ̂C : H2q+1(WC

q ) → H2q+1(BΓC
q ;C) be the universal

characteristic mapping. The elements χ̂C(uivJ) and χ̂C(uivJ) all vary and vary as

linearly independently as the functions
cicJ (A)

detA
and

cicJ(A)

detA
.

See [41] for the case of real foliations, where the constructions are more involved.

Secondary classes as in Theorem 1.3.5 are important particularly in relation

with the residue (cf. Chapter 5).

Definition 1.3.6. Secondary classes in H∗(WOq) or H
∗(Wq) of the form hicJ

with i+ |J | = 2q + 1 are called residual classes.

Related results are obtained by Hurder [46]. Let ν : BΓC

q → BUq (� BGL(q;C))

be the mapping defined by the differential.
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Proposition 1.3.7 ([46]).

1) ν∗ : Hn(BUq;Q) → Hn(BΓC

q ;Q) is injective if n ≤ 2q.

2) ν∗ : πn(BΓC

q ) → πn(BUq) is an isomorphism for n ≤ q, onto for n = q + 1

and has finite cokernel for n = q + 2.

Recall that Wq is naturally a subalgebra of WC

q .

Theorem 1.3.8 ([46]). Let q = 2k−2 with k > 1. Define a set of rigid secondary

classes R ⊂ H∗(Wq) ⊂ H∗(WC

q ) to be

R =
{
u1ui2 · · ·uisvk−1

2 2 < i2 < · · · < is ≤ q
}

∪ {ukui2 · · ·uisvk k < i2 < · · · < is ≤ q}.

Then the universal characteristic mapping χ̂C maps R to a linearly independent

subset of H∗(BΓC
q ).

We refer to [46] for further results.

In order to study secondary classes, it is relevant to determine the structure

of H∗(WUq), etc. The structure of H∗(WOq), H
∗(Wq) and H∗(WC

q ) are well-

understood. Indeed, sets of bases are given by Vey as follows.

Definition 1.3.9 (Vey basis [33]).

1) {cJ |J | ≤ q, jr = 0 if r is odd} ∪ {hIcJ i1 ≤ j0, i1 + |J | > q} is a basis for

H∗(WOq), where j0 denotes the smallest odd integer with jj0 �= 0.

2) {hIcJ i1 ≤ j′0, i1 + |J | > q} is a basis for H∗(Wq), where j
′
0 denotes the

smallest integer with jj′0 �= 0.

On the other hand, a set of basis for H∗(WUq) is known for q ≤ 3 ([5], see

also Tables 1.3.1 and 1.3.2 at the end of this section, where the numbers in the left

column stand for the degree of the classes in the same row), but it seems unknown if

q ≥ 4. This is one of problems which makes the study of complex secondary classes

difficult. For example, the construction of infinitesimal derivatives in Chapter 4

is much more complicated than the original one [42]. Indeed, it is necessary to
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construct derivatives on WUq and to show that they induce derivatives of elements

of H∗(WUq). Although any explicit basis seems unknown for H∗(WUq) for q ≥ 4,

there are algorithms for computing them by using spectral sequences [5], [6]. In

particular, we have the following

Theorem 1.3.10 ([6]). WUq is a fibration over BGL(q;C) with fiber WC

q in the

sense that there is a kind of the Serre spectral sequence

Ep,s
2

∼= Hs(WC

q )⊗Hp(BGL(q;C)) =⇒ Hp+s(WUq).

In fact, dr = 0 for r > 2q2 + 4q + 1.

For real codimension-q foliations, elements of H2q+1(WOq) such as the

Godbillon–Vey class are significant. Elements of H2q+1(WUq) such as the Bott

class are significant for complex codimension-q foliations. In this particular degree,

the following is known.

Theorem 1.3.11 ([6]). There is a natural isomorphism between H2q+1(WUq)

and H2q+1(Wq). Indeed, κ in Definition 1.3.4 induces an isomorphism κ∗ from

H2q+1(Wq) to H2q+1(WUq). The imaginary part of the Bott class is mapped to a

non-zero multiple of the Godbillon–Vey class under κ∗.

Remark 1.3.12. The isomorphism is related with complexifications of foli-

ations. Although the formula for κ∗ is simple, the formula for the inverse mapping

is quite complicated.

Remark 1.3.13. We will end this chapter with a remark related to a work

of Fuks [28]. By using the Gel’fand–Fuks cohomology, one can show that Wq is

geometrically realized as follows [28]. Let Sq be the Schubert variety of dimension

2q in BGL(q;C) and let Xq be the restriction of the universal U(q)-bundle to Xq.

Then H∗(Wq) is naturally isomorphic to H∗(Xq) [28, Theorem 2.2.4]. There are

also the following isomorphisms:

H∗(WC

q )
∼= H∗(Xq ×Xq),

H∗(WUq) ∼= H∗(X̃q),
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where X̃q is an U(q)-bundle over Sq × Sq obtained as follows. Since Xq ×Xq is a

principal (U(q) × U(q))-bundle over Sq × Sq, there is an U(q)-action on Xq × Xq

induced from the diagonal action on the fibers on the right. The space X̃q is the

quotient. We have H∗(Sq ×Sq) ∼= Cq[v1, . . . , vq]⊗Cq[v1, . . . , vq]. It follows that the

E2-terms of the Serre spectral sequence for X̃q are WUq.

In this line, the proof of Theorem 1.3.11 in [6] can be read as follows. The

original proof consists of two steps. First, an isomorphism between H∗(WUq) with

a certain cohomology of a DGA WUq is established, where WUq is defined by en-

larging WUq. This step corresponds to the fact that there is an isomorphism of co-

homology between X̃q and the total space Yq of a principal (U(q)×U(q))-bundle over

Sq×BGL(q;C)×Sq, where Yq is defined as follows. First consider the natural princi-

pal (U(q)×U(q)×U(q))-bundle over Sq×BGL(q;C)×Sq. There is again a diagonal

U(q)-action on fibers on the right. The quotient is Yq. There is a mapping from Yq

to X̃q. Indeed, points of X̃q are locally represented as z = ((u1, u2, u3), (x1, y, x2)),

where ui ∈ U(q), x1, x2 ∈ Sq and y ∈ BGL(q;C). The mapping which assigns to z

the point ((u1u2
−1, u3u2

−1), x1, x2) ∈ (U(q) × U(q)) × Sq × Sq induces the desired

mapping. The fiber of this mapping is the universal U(q)-bundle over BGL(q;C),

which is contractible. Hence we have H∗(Yq) ∼= H∗(X̃q). The second step is to

construct a spectral sequence with E2-terms Hs(WC

q )⊗Hp(BGL(q;C)) which con-

verges to H∗(WUq). It can be seen as the Serre spectral sequence of the natural

fibration Xq ×Xq → Yq → BGL(q;C).

We remark that there is another fibration structure and a spectral sequence.

Let X̃q → Sq be a mapping locally defined by ((u1, u2), x1, x2) �→ x1. The fiber

is Xq so that there is a spectral sequence with E2-terms H∗(Wq) ⊗ Cq[v1, . . . , vq]

which converges to H∗(WUq). This spectral sequence is used in [2] for calculating

H∗(WU2) and H
∗(WU3).
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2 (v1 + v1)

4 (v21 + v1v1 + v21), (v2 + v2)

5 ũ1(v
2
1 + v1v1 + v21), ũ2(v1 + v1) + ũ1(v2 + v2)

7 ũ1v1v1(v1 + v1), ũ2(v
2
1 + v1v1 + v21) + ũ1(v1v2 + v2v1), ũ2(v2 + v2)

9 ũ1v
2
1v

2
1, ũ1(v

2
1v2 + v2v

2
1), ũ1v2v2

10 ũ1ũ2v1v1(v1 + v1)

11 ũ2v2v2

12 ũ1ũ2v
2
1v

2
1, ũ1ũ2v

2
1v2, ũ1ũ2v2v

2
1, ũ1ũ2v2v2

Table 1.3.1. A basis for H∗(WU2).
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v1, v
2
1, v2, v

3
1, v1v2, v3

7
ũ1(v

3
1 + v21v1 + v1v

2
1 + v31), ũ2v

2
1 + ũ1v1v2 + ũ1v1v2, ũ2(v2 + v2),

ũ3v1 + ũ1v3

9
ũ1(v

3
1v1 + v21v

2
1 + v1v

3
1), ũ2v

3
1 + ũ1v

2
1v2 + ũ1v1v1v2,

ũ2(v1v2 + v1v2), ũ3v
2
1 + ũ1v1v3, ũ3v2 + ũ2v3

11
ũ1(v

3
1v

2
1 + v21v

3
1), ũ1(v1v2v

2
1 + v2v

3
1), ũ1(v1 + v1)v2v2,

ũ2v2v2, ũ3v
3
1 + ũ1v

2
1v3, ũ3v1v2 + ũ1v2v3, ũ3(v3 + v3)

13
ũ1v

3
1v

3
1, ũ1v1v2v

3
1, ũ1v1v2v1v2, ũ1v1v2v3, ũ1v3v

3
1, ũ1v3v3,

ũ2v1v2v2, ũ2v2v3

14

ũ1ũ2(v
3
1v

2
1 + v21v

3
1), ũ1ũ2(v1v2v

2
1 + v2v

3
1), ũ1ũ2(v

3
1v2 + v21v1v2),

ũ1ũ2(v1 + v1)v2v2, ũ1ũ3(v
3
1v1 + v21v

2
1 + v1v

3
1),

ũ2ũ3v
3
1 + ũ1ũ3v

2
1v2 + ũ1ũ3v1v1v2 − ũ1ũ2v

2
1v3,

ũ2ũ3(v1v2 + v1v2)− ũ1ũ2v2v3

15 ũ2v3v3

16

ũ1ũ2v
3
1v

3
1, ũ1ũ2v

3
1v1v2, ũ1ũ2v

3
1v3, ũ1ũ2v1v2v

3
1, ũ1ũ2v1v2v1v2,

ũ1ũ2v1v2v3, ũ1ũ2v3v
3
1, ũ1ũ2v3v1v2, ũ1ũ2v3v3,

ũ1ũ3(v
3
1v

2
1 + v21v

3
1), ũ1ũ3(v1v2v

2
1 + v2v

3
1), ũ1ũ3(v1 + v1)v2v2,

ũ2ũ3v2v2

17 ũ3v3v3

18
ũ1ũ3v

3
1v

3
1, ũ1ũ3v

3
1v3, ũ1ũ3v1v2v

3
1, ũ1ũ3v1v2v1v2, ũ1ũ3v1v2v3,

ũ1ũ3v3v
3
1, ũ1ũ3v3v1v2, ũ1ũ3v3v3, ũ2ũ3v1v2v2, ũ2ũ3v3v2, ũ2ũ3v2v3

19
ũ1ũ2ũ3(v

3
1v

2
1 + v21v

3
1), ũ1ũ2ũ3(v1v2v

2
1 + v2v

3
1),

ũ1ũ2ũ3(v
3
1v2 + v21v1v2), ũ1ũ2ũ3(v1 + v1)v2v2

20 ũ2ũ3v3v3

21
ũ1ũ2ũ3v

3
1v

3
1, ũ1ũ2ũ3v

3
1v1v2, ũ1ũ2ũ3v

3
1v3, ũ1ũ2ũ3v1v2v

3
1,

ũ1ũ2ũ3v1v2v1v2, ũ1ũ2ũ3v1v2v3, ũ1ũ2ũ3v3v
3
1, ũ1ũ2ũ3v3v1v2,

ũ1ũ2ũ3v3v3

Table 1.3.2. A basis for H∗(WU3).




