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Chapter 15

Quantization of the loop space of a
vector space

In this Chapter we solve the geometric quantization problem for the classical system
(ΩRd,Ad), where the phase space ΩRd consists of smooth loops in the d-dimensional
vector space Rd, and the algebra of observables Ad is the Lie algebra of the Frechet

Lie group Gd, being the semi-direct product of the loop group L̃Rd and the diffeo-
morphism group Diff+(S1) of the circle.

We start from the quantization of the ”enlarged” system, obtained from (ΩRd,Ad)
by enlarging both the phase space and the algebra of observables. More precisely, we
enlarge the phase space ΩRd to the Sobolev space V d of half-differentiable vector-
functions (a vector analogue of the Sobolev space V , introduced in Sec. 9.1), and
the algebra of observables Ad to the Lie algebra A of the Hilbert Lie group G, be-
ing the semi-direct product of the Heisenberg group Heis(V d) and the symplectic
Hilbert–Schmidt group SpHS(V

d). The group G may be considered as a Hilbert-space
(symplectic) analogue of the standard group of motions of the d-dimensional vector
space Rd. The latter group is the semi-direct product of the group of translations
of Rd and the group of rotations of Rd. In the case of the Hilbert space V the role
of translation group is played by the Heisenberg group, and the group of rotations
is replaced by the symplectic group SpHS(V ).

To simplify the formulas, we set d = 1 in the most part of this Chapter, replacing
it with a general d only in Sec. 15.6, where the quantization of ΩRd is completed.
The last Sec. 15.7 is devoted to the quantization of the universal Teichmüller space.

15.1 Heisenberg representation

15.1.1 Fock space

Consider the Sobolev space

V := H
1/2
0 (S1,R)

of half-differentiable functions on the circle S1 (cf. Sec. 9.1) and its complexification

V C = H
1/2
0 (S1,C) .
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176 CHAPTER 15. QUANTIZATION OF ΩRD

A natural complex structure operator J0 on V C, introduced in Sec. 9.1, generates
a decomposition of V C into the direct sum of subspaces

V C = W+ ⊕W− =: W0 ⊕W0 , (15.1)

where W± is the (∓i)-eigenspace of the operator J0 ∈ EndV C. The subspaces W±
are isotropic with respect to the symplectic form ω on V C. Moreover, the splitting
(15.1) is an orthogonal direct sum with respect to the Hermitian inner product on
V C, defined by

< z,w >= iω(z+, w̄+)− iω(z−, w̄−) ,

where z± (resp. w±) denotes the projection of z ∈ V C (resp. w ∈ V C) onto the
subspace W±.

We introduce the Fock space F0 ≡ F (V C, J0) as the completion of the algebra of
symmetric polynomials on W0 with respect to a natural norm.

In more detail, denote by S(W0) the algebra of symmetric polynomials in vari-
ables z ∈ W0 ≡ W+ and introduce an inner product on S(W0), induced by the
Hermitian product < ·, · > on V C. This inner product on monomials is given by the
formula

< z1 · . . . · zn, z′1 · . . . · z′n >=
∑

{i1,...,in}

< z1, z
′
i1
> · . . . · < zn, z

′
in > ,

where the summation is taken over all permutations {i1, . . . , in} of the set {1, . . . , n}
(the inner product of monomials of different degrees is set to 0 by definition). This
inner product is extended by linearity to the whole algebra S(W0). The completion

Ŝ(W0) of S(W0) with respect to the introduced norm is called the Fock space F0 ≡
F (V C, J0) over V C with respect to the complex structure J0

F0 = F (V C, J0) := Ŝ(W ) .

If {wn}, n = 1, 2, . . . , is an orthonormal base of W0, then one can take for an
orthonormal base of F0 the family of polynomials of the form

PK(z) =
1√
K!

< z,w1 >
k1 · . . . · < z,wn >

kn , z ∈ W0 , (15.2)

where K = (k1, . . . , kn), ki ∈ N, and K! = k1! · . . . · kn!.
Recall that, according to Sec. 11.4, any complex structure J on V , compatible

with ω, determines a decomposition

V C = WJ ⊕W J =: W ⊕W (15.3)

into the direct sum of subspaces W and W , isotropic with respect to ω. The sub-
spaces W and W are identified, respectively, with the (−i)- and (+i)-eigenspaces of
the operator J on V C. The complex structure J and the symplectic form ω deter-
mine together a Kähler metric gJ and the associated inner product < · , · >J on V C.
The decomposition (15.3) is orthogonal with respect to the Kähler metric gJ on V C.

Using the decomposition (15.3), we can define the Fock space FJ ≡ F (V C, J) as
the completion of the algebra of symmetric polynomials on W with respect to the
norm, generated by < · , · >J :

FJ = F (V C, J) := completion of S(W ) with respect to < · , · >J .
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15.1.2 Heisenberg algebra and Heisenberg group

The Heisenberg algebra heis(V ) of the Hilbert space V is a central extension of the
Abelian Lie algebra V , generated by the coordinate functions. In other words, it
coincides, as a vector space, with

heis(V ) = V ⊕ R ,

and is provided with the Lie bracket

[(x, s), (y, t)] := (0, ω(x, y)) , x, y ∈ V, s, t,∈ R .

The Heisenberg algebra heis(V ) is the Lie algebra of the Heisenberg group Heis(V ),
which coincides with a central extension of the Abelian group V . In other words,
Heis(V ) is the direct product

Heis(V ) = V × S1 ,

provided with the group operation, given by

(x, λ) · (y, µ) :=
(
x+ y, λµeiω(x,y)

)
.

15.1.3 Heisenberg representation

Representation of the Heisenberg algebra. We are going to construct an
irreducible representation of the Heisenberg algebra heis(V ) in the Fock space FJ =
F (V C, J), where V C = W ⊕W and FJ is the completion of the symmetric algebra
S(W ) with respect to the norm, generated by < · , · >J . We can consider elements
of S(W ) as holomorphic functions on W by identifying z ∈ W with a holomorphic
function w̄ 7→< w, z > on W . Accordingly, FJ may be considered as a subspace
of the space O(W ) of functions, holomorphic on W (provided with the topology of
uniform convergence on compact subsets).

With this convention we can define the Heisenberg representation

rJ : heis(V ) −→ EndFJ

of the Heisenberg algebra heis(V ) in the Fock space FJ = F (V C, J) by the formula

v 7−→ rJ(v)f(w̄) := −∂vf(w̄)+ < w, v >J f(w̄) , (15.4)

where ∂v is the derivation operator in the direction of v ∈ V C. Extending rJ to the
complexified algebra heisC(V ) by the same formula (15.4), we’ll have for v = z̄ ∈ W

rJ(z̄)f(w̄) := −∂z̄f(w̄) ,

and for z ∈ W
rJ(z)f(w̄) :=< w, z >J f(w̄) .

For the central element c ∈ heis(V ) we set

c 7−→ rJ(c) := λ · I ,
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where λ is an arbitrary fixed non-zero constant.
Introduce creation and annihilation operators on FJ , defined for v ∈ V C by

a∗J(v) :=
rJ(v)− irJ(Jv)

2
, aJ(v) :=

rJ(v) + irJ(Jv)

2
. (15.5)

In particular, for z ∈ W

a∗J(z)f(w̄) =< w, z >J f(w̄) , (15.6)

and for z̄ ∈ W
aJ(z̄)f(w̄) = −∂z̄f(w̄) . (15.7)

Choosing an orthonormal basis {wn} of W , we can introduce the operators

a∗n := a∗(wn) , an := a(w̄n) , n = 1, 2, . . . ,

and a0 := λ · I.
A vector fJ ∈ FJ \ {0} is called the vacuum, if anfJ = 0 for n = 1, 2, . . . . In

other words, the vacuum is a non-zero vector, annihilated by all operators an. It is
uniquely defined by rJ (up to a multiplicative constant) and in the case of the initial
Fock space F0 = F (V, J0) we take f0 ≡ 1. By acting on the vacuum fJ by creation
operators a∗n, we can define the action of the representation rJ on any polynomial,
which implies the irreducubility of rJ .

Moreover, any irreducible representation r : heisC(V ) → EndF of the algebra
heisC(V ), having a vacuum f , is equivalent to the Heisenberg representation r0. In-
deed, vectors of the form (a∗1)

k1 ·· · ··(a∗n)knf , obtained from the vacuum by the action
of creation operators, are linearly independent and generate the whole representa-
tion space F . Assigning to a polynomial P (z) = P (z1, . . . , zn) in the Fock space F0

the vector of the form P (a∗1, . . . , a
∗
n)f in the space F , we obtain an intertwining map

from F0 into F . This map can be made unitary by introducing a Hermitian inner
product on F , for which the vectors (a∗1)

k1 · · · · · (a∗n)knf form an orthogonal base.
Representation of the Heisenberg group. The Heisenberg representation

rJ of the algebra heisC(V ) may be integrated to an irreducible unitary representa-
tion RJ of the Heisenberg group HeisC(V ) in the Fock space FJ . The integrated
representation is given by the formula

RJ(z̄)f(w̄) = f(w̄ − z̄)

for z̄ ∈W , and by

RJ(z)f(w̄) = e<w,z>Jf(w̄)

for z ∈ W . In particular, the creation operator a∗(z) generates the multiplication
operator f(w̄) 7→ e<w,z>Jf(w̄) and the annihilation operator a(z̄) generates the
translation operator f(w̄) 7→ f(w̄ − z̄).

The constructed representation of the group HeisC(V ) in FJ may be conveniently
described in terms of the so called coherent states , given by the functions in FJ of
the form

ϵz(w̄) := e<z,w>J ,
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parameterized by vectors z ∈ W . The action of the representation of HeisC(V ) on
coherent states is given by the formula

v ∈ V 7−→ RJ(v)ϵz = e−<w,z>J− 1
2
<w,w>J ϵz+w

for v = w + w̄. We have
< ϵz, ϵz′ >FJ

= e<z,z
′>J (15.8)

and
< RJ(v)ϵz, RJ(v)ϵz′ >FJ

=< ϵz, ϵz′ >FJ
.

The Fock space FJ may be defined in terms of coherent states as the completion of
the complex vector space, generated by vectors {ϵz}, z ∈ W , with respect to the
norm, given by the inner product (15.8).

Using these properties of coherent states, it may be proved (cf. [65], Sec. 9.5)
that the defined representation of the Heisenberg group in the Fock space FJ is
unitary and irreducible.

15.2 Action of Hilbert–Schmidt symplectic group

on Fock spaces

Recall the definition of the symplectic Hilbert–Schmidt group SpHS(V ) from Sec. 11.5.
In terms of the block representation, generated by the decomposition

V C = W+ ⊕W− = W0 ⊕W0 ,

the elements A of SpHS(V ) are written in the form

A =

(
a b
b̄ ā

)
,

where
āta− btb̄ = 1 , ātb = btā ,

and the operator b is Hilbert–Schmidt. The unitary group U(W+) is embedded into
SpHS(V ) as a subgroup of operators of the form

A =

(
a 0
0 ā

)
.

In Subsec. 15.1.3 we have constructed the Heisenberg representations rJ of the
Heisenberg algebra heisC(V ) in Fock spaces FJ . A general theorem of Shale (cf.
[69]) asserts that the representations r0 in F0 and rJ in FJ are unitary equivalent
if and only if J ∈ SpHS(V ). In other words, for J ∈ SpHS(V ) there exists a unitary
intertwining operator UJ : F0 → FJ such that

rJ = UJ ◦ r0 ◦ U−1
J .

The SpHS(V )-action, defined by

SpHS(V ) ∋ A 7−→ UJ : F0 → FJ with J = A · J0 ,
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defines a projective (unitary) action of the group SpHS(V ) on the Fock bundle

F :=
∪

J∈DHS

FJ −→ DHS =
SpHS(V )

U(W0)
,

covering the SpHS(V )-action on the Siegel disc DHS (cf. Sec. 11.5). An explicit
description of this projective action is given in [66].

15.3 Hilbert–Schmidt symplectic algebra repre-

sentation

The algebra spHS(V ) is the Lie algebra of symplectic Hilbert–Schmidt group SpHS(V ).
It follows from the definition of this group (cf. Sec. 15.2) that spHS(V ) consists of
linear operators A in V C, which have the following block representation (with respect
to the decomposition V C = W0 ⊕W0)

A =

(
α β
β̄ ᾱ

)
,

where α is a bounded skew-Hermitian operator and β is a symmetric Hilbert–
Schmidt operator. The complexified Lie algebra spHS(V )C consists of operators
of the form

A =

(
α β
γ̄ −αt

)
,

where α is a bounded operator, while β and γ̄ are symmetric Hilbert–Schmidt op-
erators.

The infinitesimalization of the projective SpHS(V )-action on the Fock bundle F ,
described in the previous Sec. 15.2, yields a projective representation of spHS(V ) in
the Fock space F0 ≡ FJ0 . Its complexified version is given by the formula (cf. [66])

spHS(V
C) ∋ A =

(
α β
γ̄ −αt

)
7−→ ρ(A) = Dα +

1

2
Mβ +

1

2
M∗

γ .

Here, Dα for α : W0 → W0 is the derivation of F0 in the α-direction, defined by

Dαf(w̄) =< αw, ∂w̄ > f(w̄) .

The operator Mβ for β : W0 → W0 is the multiplication operator on F0, defined by

Mβf(w̄) =< β̄w, w̄ > f(w̄) ,

and the operator M∗
γ is the adjoint of Mγ:

M∗
γf(w̄) =< γ∂w, ∂w̄ > f(w̄) .

This is a projective representation with the cocycle

[ρ(A1), ρ(A2)]− ρ([A1, A2]) =
1

2
tr(γ̄2β1 − γ̄1β2) . (15.9)

Note that the constructed Lie-algebra representation of spHS(V ) is intertwined with
the Heisenberg representation r0 of heis(V ) on F0 (cf. [66]).
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15.4 Twistor interpretation

15.4.1 Twistor bundle

Let us call a complex structure J on V admissible, if it can be obtained from a
reference complex structure J0 by the action of the SpHS(V ) group. Such structures
are parameterized by points of the Siegel disc

DHS = SpHS(V )/U(W0) .

The twistor bundle π : Z → V is, by definition, the vector bundle of admissible
complex structures on V . Its fibre Zx ∼= DHS at x ∈ V is formed by the restrictions
Jx of admissible complex structures J to the tangent space TxV ∼= V . The twistor
bundle is a trivial bundle on V , and the admissible complex structures on V may
be considered as its translation-invariant sections. In particular, we have a natural
projection p : Z → DHS, assigning to a point z = (x, Jx) the translation-invariant
complex structure J = Jx on V . The fibre p−1(J) of this projection is identified
with the space (V, J), i.e. with the space V , provided with the complex structure
J . The introduced maps may be united into the following twistor diagram

Z p−−−→ DHS .

π

y
V

The twistor space Z has a natural complex structure. To define it, consider a
decomposition of the tangent bundle TZ into the direct sum

TZ = V ⊕H (15.10)

of the vertical subbundle V , identified with the tangent bundle to the fibres of π,
and the horizontal subbundle H, identified with the tangent bundle to the fibres of
p. The complex structure J at z ∈ Z is the direct sum

Jz = J v
z ⊕ J h

z

of the natural complex structure J v
z on the vertical space Vz, identified (by p∗)

with the tangent space Tp(z)DHS to the Siegel disc DHS, and the complex structure
J h
z = Jπ(z) on the horizontal space Hz, identified (by π∗) with the tangent space

Tπ(z)V . Note that the map p is holomorphic with respect to the introduced complex
structure (while π is not!).

We note that with respect to the decomposition (15.10) the Heisenberg group
Heis(V ) acts on the twistor space Z horizontally, preserving the fibres of p, and the
symplectic group SpHS(V ) acts on Z vertically (this action is induced by the action
of SpHS(V ) on the Siegel disc DHS).

15.4.2 Fock bundle

The Fock space FJ = F (V, J) can be characterized in terms of the twistor diagram as
the Fock space F (p−1(J)) of holomorphic functions on the fibre p−1(J) (in variables
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w̄ ∈ W J) with respect to the complex structure on Z, introduced above. The Fock
bundle

F =
∪

J∈DHS

FJ −→ DHS

is a Hermitian holomorphic Hilbert-space bundle over DHS. Since DHS is contractible
(even convex), it is trivial on DHS. Moreover, the holomorphic map UJ : F0 → FJ ,
defined in Sec. 15.2, establishes an explicit holomorphic trivialization of F . Note
that the trivialization map UJ : F0 → FJ is equivariant with respect to the action
of the SpHS(V ) group.

In Sec. 15.3 a projective representation ρ of the Lie algebra spHS(V ) in the
Fock space F0 was constructed. Using this representation, we can define a linear
connection on the Fock bundle F , whose curvature coincides with the cocycle of the
representation ρ.

Using the description of the Lie algebra spHS(V ), given in Sec. 15.3, we can
decompose it into the direct sum

spHS(V ) = u(W0)⊕m . (15.11)

Here, u(W0) is the Lie algebra of the unitary group U(W0), identified with the set
of matrices (

α 0
0 −αt

)
,

where α is a bounded skew-Hermitian operator. The linear subspace m ∼= T0DHS is
identified with the set of matrices (

0 β
β̄ 0

)
,

where β is a symmetric Hilbert–Schmidt operator. Note that the adjoint action of
U(W0) on spHS(V ) preserves the subspace m.

According to the general theory of invariant connections (cf. [45], Ch. II.11), the
decomposition (15.11) together with the projective representation ρ determine an
SpHS(V )-invariant connection A on the Fock bundle F with the curvature, given by
the cocycle of ρ.

The original quantization problem from Sec. 12.2 can be reformulated in twistor
terms as follows: construct a quantization Hilbert-space bundle H → DHS together
with a flat unitary connection on it. The connection in this definition may be
considered as an infinitesimal analogue of the BKS-operator from Sec. 14.4. In
the next Sec. 15.5 we consider in more detail a relation between the twistor and
Dirac quantizations of the system (V,A), where A is the semi-direct product of the
Heisenberg algebra heis(V ) and the symplectic Hilbert–Schmidt algebra spHS(V ).

15.5 Quantization bundle

In this Section we construct a quantization bundle H → DHS over DHS. From finite-
dimensional considerations in Ch. 14, it is clear that a good candidate for H should
be the Fock bundle of half-forms, which we are going to define next.
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15.5.1 Bundle of half-forms

We define first a bundle of half-forms

K−1/2 −→ DHS

on the Siegel disc DHS.

Namely, consider on DHS the following analogue of the Poincaré metric:

gZ(ξ, η) = tr
{
(1− Z̄Z)−2ξη̄

}
for Z ∈ DHS, ξ, η ∈ T 1,0

Z DHS
∼= EHS. It is a correctly defined Kähler metric on DHS

with Kähler potential K(Z, Z̄) := −tr log(1− Z̄Z). Moreover, it is invariant under
the action of the group SpHS(V ) on the Siegel disc (cf. Sec. 11.4).

The canonical bundle K → DHS is the restriction of the determinant bundle
Det → GrHS(V ), defined in Sec. 5.3, to the Siegel disc DHS. The metric g on DHS

induces a Hermitian metric g̃ on K, given by the formula

∥(λ, Z)∥2 = |λ|2 det(1− Z̄Z)2 (15.12)

for λ ∈ C, Z ∈ DHS.

There is a natural action of a central extension ˜SpHS(V ) of symplectic group
SpHS(V ) on the canonical bundle K, covering the action of SpHS(V ) on the Siegel

disc DHS. If Ã ∈ ˜SpHS(V ) projects to

A =

(
a b
b̄ ā

)
∈ SpHS(V ) ,

then Ã acts on K by the formula

Ã · (λ, Z) =
(
λ det(1 + ā−1b̄Z)2, A · Z

)
,

where A · Z = (aZ + b)(b̄Z + ā)−1. The canonical connection on K, determined by

the metric (15.12), is invariant under this ˜SpHS(V )-action on K.

The anticanonical bundle K−1 → DHS of DHS coincides with the restriction of
the dual determinant bundle Det∗ → GrHS(V ), defined in Sec. 5.3, to DHS. Since
the Siegel disc DHS is contractible, the anticanonical bundle K−1 has a square root
K−1/2 → DHS. The metric g̃ on K induces a Hermitian metric on K−1/2, given by
the formula

∥(λ, Z)∥2 = |λ|2 det(1− Z̄Z)−1 . (15.13)

The group ˜SpHS(V ) acts on K−1/2 by the formula

Ã · (λ, Z) =
(
λ det(1 + ā−1b̄Z)−1, A · Z

)
.

The canonical connection B on K−1/2 → DHS, generated by Hermitian metric

(15.13), is invariant under the action of ˜SpHS(V ) on K−1/2.
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15.5.2 Quantization bundle

By definition, the quantization bundle H coincides with the Fock bundle of half-
forms on DHS, given by the tensor product of the Fock bundle F and the bundle of
half-forms K−1/2:

H := F ⊗K−1/2 −→ DHS .

We provide it with the tensor product connection

C := A⊗ 1 + 1⊗B .

15.6 Twistor quantization of the loop space ΩRd

In this Section we apply the construction of quantization bundle, described in
Sec. 15.5, to the original system (ΩRd,Ad). As in Sec. 9.2, we can embed the phase
space ΩRd into the Sobolev space V d of half-differentiable loops in Rd. The space
V d coincides with the Sobolev space of half-differentiable vector-functions S1 → Rd,
defined in the same way, as its scalar analogue V (cf. also [17], Sec. VI.5.1). The

embedding of ΩRd into V d realizes the loop algebra L̃Rd as a subalgebra of the
Heisenberg algebra heis(V d) and the Lie algebra Vect(S1) as a subalgebra of the
symplectic Lie algebra spHS(V

d). Moreover, under the above embedding the diffeo-
morphism group Diff+(S1) is realized as a subgroup of SpHS(V

d). We have also,
according to Sec. 11.5, a holomorphic embedding

S = Diff+(S1)/Möb(S1) ↪→ SpHS(V
d)/U(W d

+) = DHS

of the space S into the Siegel disc DHS.
Denote by

F −→ S

the Fock bundle over S, obtained from the Fock bundle F → DHS by restricting it
to S. We still have the Heisenberg representations

rJ : L̃Rd −→ End∗FJ

for J ∈ S, defined by the same formulas, as in Sec. 15.1. The projective SpHS(V
d)-

action on the Fock bundle yields a projective Diff+(S1)-action on F → S. This
action of Diff+(S1) on F → S was constructed in [27]. Its infinitesimal version is a
projective representation

ρ : Vect(S1) −→ End∗F0 .

It can be described explicitly in terms of the basis {en} of the complexified algebra
VectC(S1) (cf. Sec. 2.2).

Denote by

Ln := ρ(en)

the operators in F0, corresponding to the basis elements of VectC(S1). They are
called otherwise the Virasoro operators and can be computed explicitly, using the
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formulas, given in Sec. 15.3. The cocycle of representation ρ in the basis {en} is
equal to (cf. [14])

[ρ(em), ρ(en)]− ρ ([em, en]) =
d

12
(m3 −m)δm,−n . (15.14)

This cocycle coincides with the curvature of the connection A on the Fock bundle
F → S, defined in Sec. 15.4.2.

Consider the anticanonical bundle K−1/2 → S, obtained by the restriction of
the bundle K−1/2 → DHS (cf. Sec. 15.5.1) to S. The curvature of the canonical
connection B on K−1/2 → S in the basis {en} was computed in [13]. It is equal to

RB(em, en) = −26

12
(m3 −m)δm,−n . (15.15)

We define the quantization bundle, as in Sec. 15.5.2, to be the Fock bundle of
half-forms

H := F ⊗K−1/2 −→ S

and provide it with the tensor product connection

C := A⊗ 1 + 1⊗B .

The curvature of C is equal to the sum of the curvatures of connections A and B,
i.e.

RC(em, en) =
d− 26

12
(m3 −m)δm,−n . (15.16)

It vanishes precisely, when d = 26. For this dimension our system (ΩRd,Ad), where

the algebra of observables Ad is the semi-direct product of the loop algebra L̃Rd and
Vect(S1), admits the twistor quantization.

To derive from an obtained solution of the twistor quantization problem a so-
lution of the original quantization problem , i.e. a representation of the algebra of
observables Ad in the Fock space of half-forms H0 = F0 ⊗ K

−1/2
0 , identified with

the fibre of the quantization bundle at the origin o ∈ S, we should proceed along
the same lines, as in the BKS-quantization method in Sec. 14.5. Namely, the rep-
resentations of the Heisenberg algebra in the fibres of the Fock bundle F extend
to representations in the fibres of the quantization bundle H. The group Diff+(S1)
acts projectively on the bundle H and this action intertwines with representations
of the Heisenberg algebra in the fibres. The Kostant–Souriau operators Ln, corre-
sponding to the basis elements of the algebra Vect(S1), do not preserve, in general,
the spaces F0 and H0, since the symplectic diffeomorphisms φt, corresponding to
Ln, transform the spaces F0 and H0 into the spaces Ft and Ht, associated with the
complex structure J t = φt∗ ◦ J0 ◦ (φt∗)

−1. However, by integrating the flat Hermitian
connection on the quantization bundle H, one can construct a unitary operator Ut,
identifying Ht with H0. The composition Ut ◦ Ln acts now in H0, and, after the
differentiation, yields the required representation of the algebra Vect(S1) in H0.
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15.7 Quantization of the universal Teichmüller

space

In the previous Section we have defined the Fock bundle

F −→ S

over the smooth part S = Diff+(S1)/Möb(S1) of the universal Teichmüller space
T = QS(S1)/Möb(S1). This bundle is provided with a projective action of the dif-
feomorphism group Diff+(S1), covering the natural action of Diff+(S1) on the base
S. The infinitesimal version of this action yields a projective representation of the
Lie algebra Vect(S1) in the Fock space H0. We can consider this construction as a
geometric quantization of the phase space S with the algebra of observables, given
by the Virasoro algebra vir, the quantization being given by the projective repre-
sentation of Vect(S1) in H0. As we have pointed out in Sec. 15.6 it can be obtained
by restriction to S of the analogous construction over the Hilbert–Schmidt Siegel
disc DHS = SpHS(V )/U(W+). Recall that in Subsec. 15.4.2 we have constructed the
Fock bundle

F −→ DHS

over DHS, provided with the projective action of the symplectic group SpHS(V ),
covering the natural action of SpHS(V ) on DHS. The infinitesimal version of this
action yielded the projective representation of the symplectic algebra spHS(V ) in
the Fock space H0, described in Sec. 15.3. This construction may be considered
as a geometric quantization of the phase space DHS = SpHS(V )/U(W+) with the
algebra of observables, given by a central extension of the Lie algebra spHS(V ), the
quantization being given by the projective representation of spHS(V ) in H0.

Unfortunately, the described quantization procedure does not apply to the whole
universal Teichmüller space T = QS(S1)/Möb(S1). According to Prop. 25 from
Sec. 11.4, we can still embed this space into the infinite-dimensional Siegel disc
D = Sp(V )/U(W+), but we cannot construct a Fock bundle over D = Sp(V )/U(W+)
with a projective action of the whole symplectic group Sp(V ). The reason is that,
according to the theorem of Shale (cf. Sec. 15.2), it is possible only for the Hilbert–
Schmidt symplectic subgroup SpHS(V ) of Sp(V ). So one should look for another
approach to the quantization of universal Teichmüller space T = QS(S1)/Möb(S1).
It seems that a natural way to do that is to use the quantized calculus of A.Connes
and D.Sullivan. We now present briefly the idea of this approach in application to
our problem, borrowed from Ch.IV of the Connes’ book [16].

Recall that in Dirac’s approach (cf. Sec. 12.2), we quantize a classical system
(M,A), consisting of the phase space M , which is a symplectic manifold, and the
algebra of observables A, which is a Poisson Lie algebra, consisting of smooth func-
tions on M . The quantization of this system is given by a representation π of A in
a Hilbert space H, sending the Poisson bracket {f, g} of two functions f, g ∈ A into
the commutator [π(f), π(g)] (times 1/i) of the corresponding operators. In Connes’
approach the algebra of observables A is an associative involutive algebra, provided
with an exterior differential d. Its quantization is, by definition, a representation
of A in H, sending the differential df of a function f ∈ A into the commutator
[S, π(f)] of the operator π(f) with a symmetry operator S, which is self-adjoint and
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of square 1. We can reformulate the notion of Connes quantization also in terms of
Lie algebras. For that recall that a derivation of the algebra A is a linear map of A

into itself, satisfying the Leibnitz rule. Derivations of A form a Lie algebra Der(A)
and Connes quantization of the algebra of observables A is given in these terms by
a representation of the Lie algebra Der(A) in the Lie algebra EndH.

If the algebra of observablesA consists of smooth functions on the phase manifold
M , this new formulation is essentially equivalent to that of Dirac. Indeed, the
differential df of an observable f ∈ A is symplectically dual to the Hamiltonian
vector field Xf , so we can reproduce the Poisson Lie algebra from the associative
algebra with the exterior differential. On the other hand, a symmetry operator S
on the polarized quantization space H = H+ ⊕H− is given by the rule: S = ±I on
H±. (By this reason we do not make difference between the symmetry and complex
structure operators.) But in the case, when A contains non-smooth functions, the
Dirac definition does not work, while Connes quantization still makes sense, as we
shall demonstrate on examples below.

Consider an example, in which A coincides with the algebra L∞(S1) of bounded
functions on the circle S1. Any function f ∈ A defines a bounded multiplication
operator in the Hilbert space H = L2(S1):

Mf : v ∈ H 7−→ fv ∈ H .

The operator S in this case is given by the Hilbert transform S : L2(S1)→ L2(S1).
The differential of a general function f ∈ A is not defined in the classical sense, but
we can still consider its quantum analogue by setting

dqf := [S,Mf ] .

The correspondence between functions f ∈ A and operators Mf on H has the
following remarkable properties (cf. [64]):

1. The differential dqf is a finite rank operator if and only if f is a rational
function.

2. The differential dqf is a compact operator if and only if the function f has a
vanishing mean oscillation.

3. The differential dqf is a bounded operator if and only if the function f has a
bounded mean oscillation.

This list may be supplemented by further function-theoretic properties of functions
in A, which have nice operator-theoretic characterizations (cf. [16], Ch.IV).

How this idea can be applied to the quantization of the universal Teichmüller
space T = QS(S1)/Möb(S1)? Let us switch for convenience from S1 to the real line
R, so that T will be identified with the space QS(R)/Möb(R) of normalized qua-
sisymmetric homeomorphisms of R. Our main Sobolev space H1/2(R) := H1/2(R,R)
of half-differentiable functions on the real line R has a simple description in terms
of the quantum differential. Namely, the symmetry operator S is again given by the
Hilbert transform

(Sf)(s) =
1

πi
P.V.

∫
f(t)

s− t
dt , f ∈ L2(R) , (15.17)
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where the integral is taken in the principal value sense.
The quantum differential dqf = [S,Mf ] of a function f ∈ L∞(R) is an operator

on L2(R), given by

(dqf)v(s) =
1

πi

∫
k(s, t)v(t) dt (15.18)

with the kernel, equal to

k(s, t) =
f(s)− f(t)

s− t
, s, t ∈ R .

Note that the quasiclassical limit of this operator, defined by taking the value of
the kernel on the diagonal, i.e. for s→ t, coincides with the multiplication operator
v 7→ f ′v, and the quantization means in this case the replacement of the derivative
by its finite-difference analogue.

Then f ∈ H1/2(R) if and only if its quantum differential dqf is a Hilbert–Schmidt
operator on L2(R); moreover, the Hilbert–Schmidt norm of dqf coincides with the
H1/2(R)-norm of f (cf. [58], Prop. 6.1).

As in Sec. 11.4 we can define a natural action of the group QS(R) of quasisymmet-
ric homeomorphisms on the Sobolev space HR = H1/2(R) by change of a variable.
However, this action does admit the differentiation so there is no classical Lie al-
gebra, associated with the group QS(R), or, in other words, there is no classical
algebra of observables, associated with T . (The situation is similar to the one, con-
sidered in the example above.) We shall construct a quantum algebra of observables,
associated with T .

The quantum infinitesimal version of QS(R)-action on HR is given by the integral
operator dqf , defined by formula (15.18). We extend this operator dqf to the Fock
space F0 by defining it first on elements of the basis (15.2) of F0 with the help
of Leibnitz rule, and then extending to the whole symmetric algebra S(W0) by
linearity. The completion of the obtained operator yields an operator dqf on F0.
The operators dqf with f ∈ QS(R), constructed in this way, generate a quantum
Lie algebra Derq(QS), associated with T . We consider it as a quantum Lie algebra
of observables, associated with T . We can also consider the constructed Lie algebra
Derq(QS) as a replacement of the (non-existing) classical Lie algebra of the group
QS(R).,

Compare now the main steps of Connes quantization of T with the analogous
steps in Dirac quantization of DHS (returning again to the case of S1).

In the case of DHS:

1. we start with the SpHS(V )-action on DHS;

2. then, using Shale theorem, extend this action to a projective unitary action of
SpHS(V ) on Fock spaces F (V, J);

3. an infinitesimal version of this action yields a projective unitary representation
of symplectic Lie algebra spHS(V ) in the Fock space F0.

In the case of T :

1. we have an action of QS(S1) on the space V ; however, in contrast with Dirac
quantization of DHS, the step (2) in case of T is impossible, since by Shale
theorem we cannot extend the action of QS(S1) to Fock spaces F (V, S);
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2. we define instead a quantized infinitesimal action of QS(S1) on V , given by
quantum differentials dqf ;

3. extending operators dqf to the Fock space F0, we obtain a quantum Lie algebra
Derq(QS), generated by extended operators dqf on F0.

So, the Connes quantization of the universal Teichmüller space T consists of two
steps:

1. The first step (”the first quantization”) is the construction of quantized in-
finitesimal QS(S1)-action on V , given by quantum differentials dqf with f ∈
QS(S1).

2. The second step (”the second quantization”) is the extension of quantum differ-
entials dqf to the Fock space F0. The extended operators dqf with f ∈ QS(S1)
generate the quantum algebra of observables Derq(QS), associated with T .

Note that the correspondence principle for the constructed Connes quantiza-
tion of T means that this quantization, being restricted to S, coincides with Dirac
quantization of S.
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Berezin’s book [7]. In Sec. 15.2 we study the projective action of the Hilbert–Schmidt
symplectic group on Fock spaces. This study was initiated by Shale [69] (cf. also [66,
65, 75]). The projective representation of the Hilbert–Schmidt symplectic algebra in
the Fock space was computed by Segal [66]. The Section 15.4, devoted to the twistor
interpretation of our construction, is based on [63, 17]. The twistor quantization of
the loop space ΩRd was initiated by Bowick–Rajeev [14]. In particular, they have
found in [14] that the twistor quantization problem for ΩRd can be solved in the
critical dimension d = 26. The last Section 15.7 is based mainly on the paper [67].





Chapter 16

Quantization of the loop space
ΩTG

In this Chapter we solve the geometric quantization problem for the phase space, rep-
resented by the Kähler-Frechet manifold ΩTG. The role of the algebra of observables
A is played by the Lie algebra L̂govir, an extension of the Lie algebra LgoVect(S1).
The latter is the Lie algebra of the Frechet Lie group LGoDiff+(S1), the semi-direct
product of the loop group LG and the diffeomorphism group Diff+(S1) of the circle.

In the most part of this Chapter we assume that G is a simply connected and
simple Lie group.

16.1 Representations of loop algebras

In the loop space case the role of the Heisenberg algebra and its Heisenberg repre-
sentation from Ch. 15 is played by central extensions L̃g of the loop algebras Lg

and its lowest weight representations.

16.1.1 Affine algebras

The S1-action plays a central role in the representation theory of the loop algebras
and groups. To take care of this action, it is convenient to extend the loop algebra
Lg to the extended loop algebra C⊕Lg, the generator of U(1)-action being denoted
by e0 in accordance with Sec. 10.1. In the same way we extend the loop group LG
to the extended loop group U(1)nLG by taking the semi-direct product of LG with
the circle group S1 ≡ U(1).

Suppose that gC is a complex simple Lie algebra and fix a Cartan subalgebra hC
in gC. The corresponding root decomposition of the extended Lie algebra Ce0⊕LgC
with respect to the Cartan subalgebra Ce0 ⊕ hC has the form

Ce0 ⊕ LgC = Ce0 ⊕

[⊕
n∈Z

hCz
n

]
⊕

⊕
(n,α)

gαz
n

 , (16.1)

where gα are the root subspaces of the Lie algebra gC. The pairs a = (n, α), where
n ∈ Z and α is a root of gC with respect to hC, are called the roots of the algebra

191
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LgC. They can be considered as linear functionals on the Lie algebra Ce0 ⊕ hC. If,
in particular, we introduce a functional δ ∈ (Ce0 ⊕ hC)∗ by setting:

δ(e0) = 1 , δ(hC) = 0 ,

then the whole set of roots of Ce0 ⊕LgC with respect to Ce0 ⊕ hC will be described
as

∆̂ = {α + nδ : α ∈ ∆, n ∈ Z} ∪ {nδ : n ∈ Z} ,
where ∆ is the set of roots of gC with respect to hC. Accordingly, the set of positive
roots of Ce0 ⊕ LgC with respect to Ce0 ⊕ hC is identified with

∆̂+ = {α+ nδ : α ∈ ∆, n > 0} ∪ {nδ : n > 0} ∪∆+ ,

where ∆+ is the set of positive roots of gC with respect to hC. If {α1, . . . , αl} is a
system of simple roots of gC with respect to hC, and A is the highest root in ∆+,
then any root in ∆̂+ may be written in the form

n0α0 + n1α1 + · · ·+ nlαl

with non-negative integer coefficients n0, n1, . . . , nl, where α0 := δ − A. We call
{α0, α1, . . . , αl} a system of affine simple roots in ∆̂.

We associate with any root a = (n, α) the root subspace g(n,α) in LgC, defined by

g(n,α) = gαz
n for α ̸= 0 ,

g(n,0) = hCz
n for α = 0 .

The loop analogue of the decomposition of the Lie algebra gC

gC = hC ⊕ n+ ⊕ n− ,

where n± are nilpotent subalgebras of gC of the form

n+ =
⊕
α∈∆+

gα , n− =
⊕
α∈∆−

gα ,

has the form
LgC = hC ⊕N+gC ⊕N−gC ,

where

N+gC = n+ ⊕

[⊕
n>0

gC · zn
]

, N−gC = n− ⊕

[⊕
n<0

gC · zn
]
.

The loop analogues of the Borel subalgebras have the form

B±gC = hC ⊕N±gC .

We introduce now a central extension L̃gC of the loop algebra LgC. Recall (cf.
Sec. 8.2) that such an extension is determined by a 2-cocycle on LgC, given by the
formula

ω(ξ, η) = ω0(ξ, η) =
1

2π

∫ 2π

0

< ξ(eiθ), η′(eiθ) > dθ , ξ, η ∈ LgC ,
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where < · , · > is an invariant inner product on the Lie algebra gC. As a vector
space,

L̃gC = LgC ⊕ C c ,

with commutation relations

[ξ + s c, η + t c] = [ξ, η] + ω(ξ, η) c

for ξ, η ∈ LgC, s, t ∈ C. We denote the corresponding central extension of the loop

group LGC (cf. Sec. 8.2) by L̃GC.
The representations of the loop algebra Lg and the loop group LG, which we

consider here, are projective and intertwine with the S1-action. It means that they
arise, in fact, from representations of the affine algebra

L̂gC = Ce0 ⊕ L̃gC = Ce0 ⊕ LgC ⊕ C c

and the affine group

L̂GC := C∗ n L̃GC .

The root decomposition of the affine algebra L̂gC has the form

L̂gC = ĥC ⊕N+gC ⊕N−gC ,

where
ĥC = Ce0 ⊕ h̃C = Ce0 ⊕ hC ⊕ C c .

Accordingly,

B̂±gC = ĥC ⊕N±gC .

Having a root α ∈ h∗
C, we extend it to ĥC by setting α( c) = α(e0) = 0. We also

extend the functional δ ∈ (Ce0 ⊕ hC)∗ to ĥC by setting δ( c) = 0. It’s also useful to

introduce a functional β ∈ (ĥC)∗, defined by

β( c) = 1 , β(e0) = 0 , β(hC) = 0 .

With any system α0, α1, . . . , αl of affine simple roots we can associate a corre-
sponding system of co-roots α∨

0 , α
∨
1 , . . . , α

∨
l , where α∨

j , j = 1, . . . , l, are the co-roots,
associated with simple roots αj of the algebra gC, and

α∨
0 = −A∨ +

2 c

< A,A >

is the affine co-root, associated with the highest root A ∈ ∆+.
Denote by {ω1, . . . , ωl} the system of fundamental weights of the algebra gC, dual

to the simple root system α1, . . . , αl. We can introduce the corresponding system
{ω̂0, ω̂1, . . . , ω̂l} of fundamental weights of L̂gC, dual to the system α0, α1, . . . , αl of
affine simple roots, defined by

ω̂i(α
∨
k ) = δik for 0 ≤ i, k ≤ l , ω̂i(e0) = 0 .

Then

ω̂0 =
1

2
< A,A > β , ω̂j = ωj+ < ωj, A > β , 1 ≤ j ≤ l .
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16.1.2 Highest weight representations of affine algebras

Suppose that ρ : L̂gC → V is a representation of the loop algebra L̂gC, i.e. an
L̂gC-module. Consider for any linear form on ĥC, i.e. an element λ ∈ (ĥC)∗, the
subspace

Vλ = {v ∈ V : ρ(h)v = λ(h)v for h ∈ ĥC} .

If Vλ ̸= 0, then λ is called the weight of ρ, and the subspace Vλ is the weight subspace
of ρ, corresponding to λ. Any vector v ∈ Vλ \ {0} is called the weight vector of ρ.

A weight λ ∈ (ĥC)∗ is dominant integral , if λ(α∨
i ) is a non-negative integer for

any affine co-root α∨
i , 0 ≤ i ≤ l. Any such weight can be written in the form

λ = n0ω̂0 + . . .+ nlω̂l + sδ , (16.2)

where ni = λ(α∨
i ), 0 ≤ i ≤ l, and s = λ(e0) ∈ C. Respectively, an anti-dominant

integral weight λ ∈ (ĥC)∗ takes non-positive integer values on affine co-roots α∨
i ,

0 ≤ i ≤ l, and can be written in the same form (16.2) with non-positive integer
coefficients ni, 0 ≤ i ≤ l.

Given a weight λ ∈ (ĥC)∗, we can extend it to the Borel subalgebra B̂+gC by

setting it equal to zero on N+gC. Consider an L̂gC-module of the form

V̂ ≡ V̂λ = U(L̂gC)⊗U(B̂+gC)
Cλ ,

where the symbol ”U ” stands for the universal enveloping algebra, and Cλ denotes

the 1-dimensional B̂+gC-module, i.e. the complex line C, provided with an action

of the Borel subalgebra B̂+gC, given by: z 7−→ λ(b)z for b ∈ B̂+gC, z ∈ C. Since

L̂gC = N−gC ⊕ B̂+gC ,

the Poincaré–Birkhoff–Witt theorem implies that

U(L̂gC) ∼= U(N−gC)⊗ U(B̂+gC) .

So we have a natural isomorphism

V̂λ ∼= U(N−gC)⊗ Cλ .

Denote by V ≡ Vλ the quotient of V̂ modulo the maximal submodule in V̂ ,
strictly contained in V̂ (in other words, the maximal submodule, not containing

1 ⊗ 1). This V , together with the natural action of L̂gC, is called the standard

representation of the Lie algebra L̂gC with the highest weight λ and the weight
vector 1⊗ 1.

More generally, we shall say that a representation ρ : L̂gC → EndVλ of the affine
algebra L̂gC is the highest weight representation with weight λ ∈ (ĥC)∗, if there
exists a highest weight vector vλ ∈ Vλ such that:

1. ρ(h)vλ = λ(h)vλ for any h ∈ ĥC ;

2. ρ(n)vλ = 0 for any n ∈ N+gC ;
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3. Vλ is spanned by vectors ρ(b)vλ with b ∈ B̂−gC .

The highest weight vector vλ plays the role, analogous to that of the vacuum in the
Heisenberg representation.

In analogous way one can define the lowest weight representation of the affine
algebra L̂gC. For that one should replace in the above definition the nilpotent

subalgebra N+gC by the nilpotent subalgebra N−gC and the Borel subalgebra B̂−gC

by the Borel subalgebra B̂+gC.
The standard L̂gC-module Vλ, defined above, is an irreducible highest weight

representation of L̂gC, if λ ∈ (ĥC)∗ is an integral dominant weight. Moreover, it was
proved in [23], that if λ(e0) is real, then Vλ admits a positive-definite (contravariant)
Hermitian inner product. We denote by H ≡ Hλ the completion of V ≡ Vλ with
respect to this inner product. The space Hλ will play the role of the Fock space,
associated with the weight λ.

16.2 Representations of loop groups

We present here some general properties of irreducible representations of the affine

group L̂GC and the Borel–Weil construction for L̂GC.

16.2.1 Irreducible representations of affine groups

Consider the affine group
L̂G := U(1) n L̃G

and fix a maximal torus T̂ in L̂G, given by

T̂ := U(1)× T × S

Here, the first factor U(1) = S1 is the group of rotations, the second factor T is a

maximal torus in G, and the third one S = S1 is a central subgroup in L̃G.
Any irreducible representation of the affine group L̂G has a unique highest weight

λ, which is a character of the maximal torus T̂ . This character has the form

λ = (n, λ0, h) ,

where n ∈ Z is an eigenvalue of the S1-rotation operator e0, called the energy of
the representation, λ0 is a character of T , and h ∈ Z is an eigenvalue of the central
subgroup action, called the level of the representation. The highest weights of L̂G
are integral and dominant and the isomorphism classes of irreducible representations
of L̂G are in 1:1 correspondence with the set of integral dominant weights.

There is a similar characterization of irreducible representations of the affine
group L̂G in terms of lowest weights.

16.2.2 Borel–Weil construction

Consider the full flag loop space (cf. Sec. 7.6)

ΩTG = LG/T = LGC/B+GC .
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In terms of central extensions, ΩTG may be written in the form

ΩTG = L̃GC/B̃+GC .

Suppose that λ is a lowest weight of the maximal torus T̃ = T ×S. We extend it to

B̃+GC by setting λ = 1 on the nilpotent subgroup N+GC in

B̃+GC = T̃C ×N+GC .

Define a holomorphic line bundle L = Lλ over ΩTG by

L = L̃GC ×
B̃+GC C −→ ΩTG = L̃GC/B̃+GC ,

where B̃+GC acts on the complex line C by the character λ:

B̃+GC ∋ b : z 7−→ λ(b)z .

Denote by Γ = Γλ the vector space of holomorphic sections of L = Lλ. Sections

s ∈ Γ can be identified with holomorphic functions ṡ : L̃GC → C, satisfying the
condition

ṡ(γb−1) = λ(b)ṡ(γ)

for any b ∈ B̃+GC, γ ∈ L̃GC. The group L̃GC acts in a natural way on L and

on Γ, and this action defines a holomorphic representation of L̃GC on Γ. We note
that Γ is non-trivial (i.e. contains non-zero holomorphic sections of L) if and only
if the weight λ is anti-dominant (cf. [65], Prop. 11.3.1). Under this condition it
may be proved (cf. [65], Prop. 11.1.1) that the corresponding representation of the

loop group L̃G is an irreducible lowest weight representation of L̃G with the lowest
weight λ. Moreover, it can be proved (cf. [65], Prop. 11.2.3) that any irreducible

representation of the group L̃G is essentially equivalent to some Γλ.
Note that Γ contains a 1-dimensional subspace of sections, invariant under the

action of the nilpotent subgroup N−GC. Indeed, it follows from the representation
(7.18) in Sec. 7.6 that ΩTG contains a dense open orbit, containing the origin o ∈
ΩTG, which can be identified with the subgroup N−GC. Hence, any N−GC-invariant
section in Γ is uniquely determined by its value at o. We take for the vacuum the
lowest weight vector v = vλ, which is an N−GC-invariant section in Γ, equal to 1 at
the origin o.

There is a Hermitian inner product, defined on a dense subspace of Γ. Namely,
consider the anti-dual space Γ

∗
and introduce a complex-linear map β : Γ

∗ → Γ,
which value on the element ξ ∈ Γ

∗
is a section β(ξ) ∈ Γ, identified with the function

β̇(ξ) on L̃GC, defined by

β̇(ξ)(γ) := ξ(γ · v) for γ ∈ L̃GC .

Using this map, we define a Hermitian inner product of two elements ξ, η ∈ Γ
∗

by

< ξ, η >:= η
(
β(ξ)

)
.
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The constructed inner product on Γ
∗

is positive definite and we denote by H = Hλ

the completion of Γ
∗

with respect to this inner product, so that Γ
∗ ⊂ H ⊂ Γ. The

space H plays the role of the Fock space, associated with the lowest weight λ.
The elements ϵγ of Γ

∗
with γ ∈ L̃G, defined by

ϵγ(s) := ṡ(γ̄−1) , s ∈ Γ ,

play the role of the coherent states. They have the inner product, equal to

< ϵγ1 , ϵγ2 >= v(γ2γ̄
−1
1 ) ,

and generate a dense subset in Γ
∗
.

16.3 Twistor quantization of ΩTG

There are two different approaches to the geometric quantization of the loop space
ΩTG. One method is to replace the original classical system (ΩTG, L̂g o vir) by
an enlarged system. One can do it by enlarging first the phase space ΩTG to the
Sobolev spaceHG of half-differentiable loops inG (cf. Sec. 9.1), and then embedding
HG into the space V G := H1/2(S1,GL (V )), using a faithful representation V of

the group G. Accordingly, the algebra of observables L̂g o vir should be enlarged
to an algebra A, which is an extension of the semi-direct product of the algebra
Hg, embedded into V g := H1/2(S1,End(V )), and the Lie algebra of the symplectic
Hilbert–Schmidt group SpHS(V ), acting on V G and V g by change of variables. We
obtain the quantization of the original system by first quantizing the enlarged system
and then by restricting this quantization to the original system. The described
method was used in Ch. 15 for the quantization of ΩRd. In this Chapter we follow a
more direct approach, based on the Goodman–Wallach construction of a projective
action of the diffeomorphism group Diff+(S1) on representations of the affine algebra

L̂gC and affine group L̂GC.

16.3.1 Projective representation of Vect(S1)

The projective action of Diff+(S1), mentioned in the introduction to this Section,
can be generated by exponentiating a projective representation of the Lie algebra
Vect(S1), constructed in this Subsection.

Choose an orthonormal base {eα}, α = 1, . . . , N , of the Lie algebra g with respect
to an invariant inner product < · , · > on g. Then the elements

eα(n) := eαz
n , z = eiθ, α = 1, . . . , N, n ∈ Z ,

form a basis in the vector space LgC.
Introduce for k ∈ Z the operators, given by the formal series

∆k :=
1

2

∑
n∈Z

N∑
α=1

: eα(n) eα(k − n)) : ,



198 CHAPTER 16. QUANTIZATION OF ΩTG

where the normally ordered product : · : is defined by the rule

: e(m)e(n) :=

{
e(m)e(n) for m ≤ n,

e(n)e(m) for m > n .

The operators ∆k are correctly defined, when applied to any element v ∈ V , since in
this case the series reduces to a finite sum (cf. [23]). In other words, the operators
∆k determine endomorphisms of V . The operator ∆k is homogeneous of order k
with respect to the action of the operator e0 in the sense that

e0∆kv = ∆k(e0 + k)v for any v ∈ V .

Moreover, for any ξ ∈ gC and any n ∈ Z the following relation between operators
on V holds

[ξ(n),∆k] = n

(
c+

1

2

)
ξ(n+m) .

Given a λ ∈ (L̂hC)∗, denote by λ0 its restriction to the Cartan subalgebra h, and
set ρ =

∑l
j=1 ωj. Then we have the following

Proposition 30. ([26]) The operators ∆0 +
(
c+ 1

2

)
e0 and

[∆m,∆n] +

(
c+

1

2

)
(n−m)∆m+n

commute with the action of L̃gC on V . Moreover,

∆0 = −µe0 +

(
1

2
< λ0, λ0 + 2ρ > +µλ(e0)

)
I ,

[∆m,∆n] = µ(m− n)∆m+n + δm,−nνm(m2 − 1) ,

where µ := λ(c) + 1
2
, ν := dim g

12
λ(c)µ.

Using the introduced operators ∆k, we construct a projective action of Vect(S1)
on V . More precisely, recall (cf. Sec. 10.1) that the Virasoro algebra vir is a central
extension of the Lie algebra Vect(S1). As a vector space, vir = Vect(S1)⊕Rκ, and
the Lie bracket is given by

[ξ + sκ, η + tκ] = [ξ, η] + ω(ξ, η)κ ,

where ξ, η ∈ Vect(S1), s, t ∈ R, and ω is the Gelfand–Fuks cocycle, defined on the
basis elements {en} by

ω(em, en) = δm,−n
n(n2 − 1)

12
.

Then the following Theorem is true.
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Theorem 13. ([26]) Let (V, π) ≡ (Vλ, πλ) be a highest weight representation of L̂gC

with the dominant integral weight λ. Introduce the operators

Dk := − 1

µ
∆k for k ∈ Z .

Then the representation π of L̃gC on V can be extended to a representation π̂ of the

algebra L̃gC o vir on V by setting

π̂(ek) = Dk , π̂(κ) =
dim g

12µ
λ(c)I .

Moreover, V can be provided with a positive definite Hermitian form, contravariant

with respect to L̃gC o vir.

The operator D0 = π̂(e0) from Theor. 13, which is given by the formula

D0 = π(e0)− λ(e0)−
< λ0, λ0 + 2ρ >

2λ(c) + 1
,

is diagonalizable on V with eigenvalues

µi = −i− < λ0, λ0 + 2ρ >

2λ(c) + 1
, i = 0, 1, . . . , .

The eigenspaces of D0 are finite-dimensional and mutually orthogonal. Denote by
T the closure of I −D0, then T is a self-adjoint operator, bounded from below by I
and having a compact inverse T−1. So by spectral theorem, all its powers T t with
t ∈ R are correctly defined and we can set

∥v∥t := ∥T tv∥ for any v ∈ V .

Denote by H t ≡ H t
λ the completion of V ≡ Vλ with respect to the norm ∥ · ∥t and

set

H∞ ≡ H∞
λ =

∩
t∈R

H t
λ , H−∞ ≡ H−∞

λ =
∪
t∈R

H t
λ .

The inner product on H defines a sesquilinear pairing between H∞ and H−∞, and
the operator T t yields an isomorphism between Hs and H t−s, defining a pairing
between them, given by

(u, v) := (T tu, T−tv) for u ∈ H t, v ∈ H−t ,

where the inner product on the right is taken in H.

16.3.2 Goodman–Wallach construction

We extend a natural right action of Diff+(S1) on LgC by change of variables to

L̃gC, demanding that Diff+(S1) acts trivially on the central subalgebra in L̃gC. For

f ∈ Diff+(S1) we denote the action of f on L̃gC by: ξ 7→ ξf , ξ ∈ L̃gC.
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Given a highest weight representation (V, π) ≡ (Vλ, πλ) of L̃gC we define an
action of f ∈ Diff+(S1) on (V, π) by setting

f : π 7−→ πf , where πf (ξ)v := π(ξf )v

for ξ ∈ L̃gC, v ∈ V . Note that for v ∈ H∞ the image π(ξf )v is again in H∞.
The main result of [26] asserts that representations π and πf are unitary equivalent.
More precisely, we have the following

Theorem 14. (Goodman–Wallach [26]) There is a unitary projective action σ of
Diff+(S1) on H ≡ Hλ such that the map

Diff+(S1)×Hn −→ Hn , (f, v) 7−→ σ(f)v ,

is continuous for any n ≥ 0, and

σ(f)πf (ξ)v = π(ξ)σ(f)v

for any v ∈ H∞, f ∈ Diff+(S1), ξ ∈ L̃gC.

Moreover, in [26] it is proved that this Diff+(S1)-action on H is uniquely defined
up to projective equivalence. More precisely, suppose that τ is another projective
action of Diff+(S1) on H, such that τfH

∞ ⊂ H∞ for any f ∈ Diff+(S1), which
intertwines π with πf , i.e.

τfπf (ξ) = π(ξ)τf

for any f ∈ Diff+(S1), ξ ∈ L̃gC. Then there exists a continuous map µ : Diff+(S1)→
S1, such that τf = µ(f)σf .

16.3.3 Twistor quantization of ΩTG

In Subsec. 16.2.2 we have constructed for any lowest weight λ of the loop algebra L̃g

a holomorphic line bundle L ≡ Lλ → ΩTG and the space Γ ≡ Γλ of its holomorphic
sections, on which the representation of L̃G with lowest weight λ is realized. We
denoted by H ≡ Hλ the completion of Γ

∗
with respect to the natural norm on Γ

∗
.

This construction depends on the complex structure on ΩTG, which is provided
by the complex representation

ΩTG = LGC/B+GC .

Denote this complex structure by J0 and the corresponding spaces of sections Γλ
and Hλ respectively by Γ0 and H0, so that we have a representation π0 of L̃G in Γ0.

If we change this complex structure to Jf by the action of a diffeomorphism
f ∈ Diff+(S1), then we can again, using the Borel–Weil construction, realize the

lowest weight representation πf of the group L̃G, corresponding to the lowest weight
λ, in the space Γf of sections of L, holomorphic with respect to the complex structure

Jf on ΩTG. Denote the corresponding completion of Γ
∗
f by Hf .

By the Goodman–Wallach construction, there is a projective unitary action

Uf : Γ0 −→ Γf
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of the group Diff+(S1), intertwining the representations π0 and πf :

πfUf (v) = Ufπ0(v) for v ∈ H0 .

It is uniquely defined by the normalization condition on the lowest weight vectors:
Ufv0 = vf , and defines a continuous unitary operator

Uf : H0 −→ Hf .

So we have again, as in Sec. 15.4, a holomorphic Hilbert space bundle

H =
∪
f∈S

Hf

and a projective unitary action of the group Diff+(S1) on H, given by f 7→ Uf ,
which covers the natural Diff+(S1)-action on S. The infinitesimalization of this
action yields a projective unitary representation ρ of lowest weight λ of the Lie
algebra Vect(S1) in the space H0, constructed in Subsec. 16.3.1.

Having a projective representation ρ of Vect(S1), we can construct a Diff+(S1)-
invariant connection A on the bundle H → S, whose curvature at the origin o ∈ S
coincides with the cocycle of ρ, given in the basis {ek} by (cf. [53, 54])

[ρ(em), ρ(en)]− ρ ([em, en]) =
c(g)

12
(m3 −m)δm,−n ,

where

c(g) =
h dim g

h+ κ(g)
,

and κ(g) is the dual Coxeter number of g (cf., e.g., [77]).
The construction of the connection A is similar to that in Subsec. 15.4.2. Namely,

we have again a splitting of the Lie algebra Vect(S1) into the direct sum

Vect(S1) = sl(2,R)⊕m ,

where sl(2,R) is the Lie algebra of Möb(S1) and m ∼= T0S. This splitting is, in
fact, induced by the splitting (15.11) from Subsec. 15.4.2, under the embedding of
Vect(S1) into spHS(H0). The above splitting together with the projective representa-
tion ρ : Vect(S1)→ End (H0) determine, as in Subsec. 15.4.2, a Diff+(S1)-invariant
connection A on the bundle H → S, whose curvature at the origin o ∈ S coincides
with the cocycle of ρ.

Consider now, as in Sec. 15.5.2, the quantization bundle

H := H ⊗K−1/2 → S

and provide it with the tensor-product connection C:

C := A⊗ 1 + 1⊗B ,

where B is the connection on K−1/2, defined in Subsec. 15.5.1. The curvature of C
in the basis {ek} is equal to

RC(em, en) =
c(g)− 26

12
(m3 −m)δm,−n ,

which vanishes precisely for c(g) = 26. Under this condition we get a flat unitary
connection on H. By integrating it, we obtain a unitary action of Diff+(S1) on H,
yielding the geometric quantization of the system (ΩTG,A) in H0.



202 CHAPTER 16. QUANTIZATION OF ΩTG

Bibliographic comments

In Sec. 16.1 we follow mostly the papers [23, 26]. The Borel–Weil construction
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