
Chapter 7

Frequencies around
multiplicities

Finally, let us turn to finding estimates for the first term of (6.2.3), which we
may write in the form

∫

Ω

eix∙ξ
( L∑

k=1

eiτk(ξ)tAkj (t, ξ)
)
χ(ξ)f̂(ξ) dξ ,

where the characteristic roots τ1(ξ), . . . , τL(ξ) coincide in a set M ⊂ Ω of
codimension ` (in the sense of Section 2.1), Ω ⊂ Rn is a bounded open set
and χ ∈ C∞0 (Ω).
As before, we must consider the cases where the image of the phase

function(s) either lie on the real axis, are separated from the real axis or meet
the real axis. One additional thing to note in this case is that in principle the
order of contact at points of multiplicity may be infinite as the roots are not
necessarily analytic at such points; we have no examples of such a situation
occurring, so it is not worth studying too deeply unless such an example
can be found—for now, we can use the same technique as if the point(s)
were points where the roots lie entirely on the real axis, and the results in
these two situations are given together in Theorem 2.4.1. We study this very
briefly nevertheless to ensure the completeness of the obtained results.
Unlike in the case away from multiplicities of characteristic roots, we have

no explicit representation for the coefficients Akj (t, ξ) (as we have in Lemma
6.1.1 away from the multiplicities), which in turn means we cannot split this
into L separate integrals. To overcome this, we first show, in Section 7.1,
that a useful representation for the above integral does exist that allows us
to use techniques from earlier. Using this alternative representation, it is a
simple matter to find estimates in the case where the image of the set M
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108 CHAPTER 7. FREQUENCIES AROUND MULTIPLICITIES

mapped by the characteristic roots is separated from the real axis (this is
Theorem 2.1.2) and when it arises on the real axis as a result of all the roots
meeting the axis with finite order, and these are done in Sections 7.2 and 7.3,
respectively.
The situations where the roots meet on the real axis and at least one

has a zero of infinite order there (either because it fully lies on the axis, or
because it meets the axis with infinite order) is slightly more complicated;
this is discussed in Section 7.4.

7.1 Resolution of multiple roots

In this section, we find estimates for

L∑

k=1

eiτk(ξ)tAkj (t, ξ) ,

corresponding to (2.1.4), where τ1(ξ), . . . , τL(ξ) coincide in a setM of codi-
mension `. For simplicity, first consider the simplest case of two roots inter-
secting at a single point, so that we have L = 2 andM = {ξ0}; the general
case works in a similar way, and we shall show how it differs below. So,
assume

τ1(ξ
0) = τ2(ξ

0) and τk(ξ
0) 6= τ1(ξ

0) for k = 3, . . . ,m ;

by continuity, there exists a ball of radius ε > 0 about ξ0, Bε(ξ
0), in which

the only root which coincides with τ1(ξ) is τ2(ξ). Then:

Lemma 7.1.1. For all t ≥ 0 and ξ ∈ Bε(ξ0), we have

∣
∣
∣
2∑

k=1

eiτk(ξ)tAkj (t, ξ)
∣
∣
∣ ≤ C(1 + t)e−min(Im τ1(ξ),Im τ2(ξ))t , (7.1.1)

where the minimum is taken over ξ ∈ Bε(ξ0).

Proof. First, note that in the set

S := {ξ ∈ Rn : τ1(ξ) 6= τk(ξ) ∀k = 2, . . . ,m and τ2(ξ) 6= τl(ξ) ∀l = 3, . . . ,m}

the formula (6.1.3) is valid for A1j(ξ) and A
2
j(ξ). Now, recall that the sum

Ej(t, ξ) =
∑m
k=1 e

iτk(ξ)tAkj (t, ξ) is the solution to the Cauchy problem (6.1.1a),
(6.1.1c), and thus is continuous; therefore, for all η ∈ Rn such that τ1(η) 6=
τk(η) and τ2(η) 6= τk(η) for k = 3, . . . ,m (but allow τ1(η) = τ2(η)), we have

2∑

k=1

eiτk(η)tAkj (t, η) = lim
ξ→η

(
eiτ1(ξ)tA1j(ξ) + e

iτ2(ξ)tA2j(ξ)
)
,



7.1. RESOLUTION OF MULTIPLE ROOTS 109

provided ξ varies in the set S (thus, ensuring eiτ1(ξ)tA1j(ξ) + e
iτ2(ξ)tA2j(ξ) is

well-defined). Hence, to obtain (7.1.1) for all ξ ∈ Bε(ξ0), it suffices to show
∣
∣eiτ1(ξ)tA1j(ξ) + e

iτ2(ξ)tA2j(ξ)
∣
∣ ≤ C(1 + t)e−min(Im τ1(ξ),Im τ2(ξ))t

for all t ≥ 0, ξ ∈ B′ε(ξ
0) = Bε(ξ

0) \ {ξ0}.
Now, note the following trivial equality:

K1e
iy1+K2e

iy2 = K1e
iy2ei(y1−y2) +K2e

iy1e−i(y1−y2)

=
ei(y1−y2) − e−i(y1−y2)

2
K1e

iy2 +
ei(y1−y2) + e−i(y1−y2)

2
K1e

iy2

+
e−i(y1−y2) − ei(y1−y2)

2
K2e

iy1 +
e−i(y1−y2) + ei(y1−y2)

2
K2e

iy1

= sinh(y1 − y2)[K1e
iy2 −K2e

iy1 ] + cosh(y1 − y2)[K1e
iy2 +K2e

iy1 ] .

Using this, we have, for all ξ ∈ B′ε(ξ
0), t ≥ 0,

eiτ1(ξ)tA1j(ξ) + e
iτ2(ξ)tA2j(ξ)

= sinh[(τ1(ξ)− τ2(ξ))t](e
iτ2(ξ)tA1j(ξ)− e

iτ1(ξ)tA2j(ξ))

+ cosh[(τ1(ξ)− τ2(ξ))t](e
iτ2(ξ)tA1j(ξ) + e

iτ1(ξ)tA2j(ξ)) . (7.1.2)

We estimate each of these terms:

(a) “sinh” term: The first term is simple to estimate: since

sinh[(τ1(ξ)− τ2(ξ))t]
(τ1(ξ)− τ2(ξ))

→ t as (τ1(ξ)− τ2(ξ))→ 0 ,

or, equivalently, as ξ → ξ0 through S, and Akj (ξ)(τ1(ξ) − τ2(ξ)) is con-
tinuous in Bε(ξ

0) for k = 1, 2, it follows that, for all ξ ∈ B′ε(ξ
0), t ≥ 0,

we have
∣
∣sinh[(τ1(ξ)− τ2(ξ))t](A

1
j(ξ)e

iτ2(ξ)t − A2j(ξ)e
iτ1(ξ)t)

∣
∣

≤ Ct[|eiτ2(ξ)t|+ |eiτ1(ξ)t|] ≤ Cte−min(Im τ1(ξ),Im τ2(ξ))t . (7.1.3)

(b) “cosh” term: Estimating the second term is slightly more complicated.
First, recall the explicit representation (6.1.3) for the Akj (ξ) at points
away from multiplicities of τk(ξ)

Akj (ξ) =

(−1)j
∑k

1≤s1<∙∙∙<sm−j−1≤m

m−j−1∏

q=1

τsq(ξ)

m∏

l=1,l 6=k

(τl(ξ)− τk(ξ))

.
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So, we can write

cosh[(τ1(ξ)− τ2(ξ))t](A
1
j(ξ)e

iτ2(ξ)t + A2j(ξ)e
iτ1(ξ)t)

=
cosh[(τ1(ξ)− τ2(ξ))t]∏m

k=3(τk(ξ)− τ1(ξ))(τk(ξ)− τ2(ξ))

eiτ2(ξ)tF 1,2j+1(ξ)− e
iτ1(ξ)tF 2,1j+1(ξ)

τ1(ξ)− τ2(ξ)
,

where

F ρ,σi (ξ) :=




∑ρ

1≤s1<∙∙∙<sm−i≤m

m−i∏

q=1

τsq(ξ)




m∏

k=1,k 6=ρ,σ

(τk(ξ)− τσ(ξ)).

Now,
(
cosh[(τ1(ξ) − τ2(ξ))t]

)/(∏m
k=3(τk(ξ) − τ1(ξ))(τk(ξ) − τ2(ξ))

)
is

continuous in S, hence it is bounded there, and, thus, absolutely con-
verges to a constant, C ≥ 0 say, as ξ → ξ0 through S. This leaves the
[eiτ2(ξ)tF 1,2j+1(ξ)− e

iτ1(ξ)tF 2,1j+1(ξ)]/(τ1(ξ)− τ2(ξ)) term.

For this, write

F ρ,σi (ξ) =
m−1∑

κ=0

Qρ,σκ,i (ξ)τσ(ξ)
κ,

where the Qρ,σκ,i (ξ) are polynomials in the τk(ξ) for k 6= ρ, σ (which
depend on i); also, note Qρ,σκ,i (ξ) = Q

σ,ρ
κ,i (ξ). Then, we have

eiτ2(ξ)tF 1,2j+1(ξ)− e
iτ1(ξ)tF 2,1j+1(ξ)

τ1(ξ)− τ2(ξ)

=

∑m−1
κ=0

[
Q1,2κ,j+1(ξ)(τ2(ξ)

κeiτ2(ξ)t − τ1(ξ)κeiτ1(ξ)t)
]

τ1(ξ)− τ2(ξ)
. (7.1.4)

Let us show that this is continuous in Bε(ξ
0) and is bounded absolutely

by Cte−min{λ1,λ2}: for y1 6= y2, and for all r, s ∈ N, t ≥ 0, we have

ys2y
r
1e
iy2t − ys1y

r
2e
iy1t

y1 − y2
=

ys2y
r
1(e
iy2t − eiy1t)
y1 − y2

+
ys2e

iy1t(yr1 − y
r
2)

y1 − y2
+
eiy1tyr2(y

s
2 − y

s
1)

y1 − y2
.

Furthermore, for all y1, y2 ∈ C, t ∈ [0,∞), s ∈ N,

∣
∣
∣
eiy2t − eiy1t

y1 − y2

∣
∣
∣ ≤ C0te

−min(Im y1,Im y2)t and
∣
∣
∣
ys1 − y

s
2

y1 − y2

∣
∣
∣ ≤ Cs ,
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for some constants C0, Cs. Using these with y1 = τ1(ξ), y2 = τ2(ξ),
r = κ, and s chosen appropriately for Q1,2κ,j+1(ξ), the continuity and
upper bound follow immediately. Thus, for all ξ ∈ B′ε(ξ

0), t ≥ 0,

|cosh[(τ1(ξ)− τ2(ξ))t](A
1
j(ξ)e

iτ2(ξ)t + A2j(ξ)e
iτ1(ξ)t)|

≤ Cte−min(Im τ1(ξ),Im τ2(ξ))t . (7.1.5)

Combining (7.1.2), (7.1.3) and (7.1.5) we have (7.1.1), which completes the
proof of the lemma.

Now we show that a similar result holds in the general case: suppose the
characteristic roots τ1(ξ), . . . , τL(ξ), 2 ≤ L ≤ m, coincide in a set M, and
that τ1(ξ) 6= τk(ξ) for all ξ ∈ M when k = L + 1, . . . ,m. By continuity, we
may take ε > 0 so that the setMε = {ξ ∈ Rn : dist(ξ,M) < ε} contains no
points η at which τ1(η), . . . , τL(η) = τk(η) for k = L + 1, . . . ,m. With this
notation, we have:

Lemma 7.1.2. For all t ≥ 0 and ξ ∈Mε, we have the estimate

∣
∣
∣
L∑

k=1

eiτk(ξ)tAkj (t, ξ)
∣
∣
∣ ≤ C(1 + t)L−1e−tmink=1,...,L Im τk(ξ) , (7.1.6)

where the minimum is taken over ξ ∈Mε.

Note that this estimate does not depend on the codimension of M.

Proof. First note that, just as in the previous proof, for all η ∈ Rn such that
τ1(η) . . . , τL(η) 6= τk(η) when k = L + 1, . . . ,m (but allowing any or all of
τ1(η), . . . , τL(η) to be equal),

L∑

k=1

eiτk(η)tAkj (t, η) = lim
ξ→η

(
eiτ1(ξ)tA1j(ξ) + ∙ ∙ ∙+ e

iτL(ξ)tALj (ξ)
)
,

provided ξ to varies the set S :=
⋃L
l=1 Sl, where

Sl := {ξ ∈ R
n : τl(ξ) 6= τk(ξ) ∀k 6= l},

to ensure that each term of the sum on the right-hand side is well-defined.
Note that Lemma 6.2.1 ensures every point in M is the limit of a sequence
of points in S in the case of differential operators. Thus, we must simply
show, for all t ≥ 0, ξ ∈ (Mε)′ =Mε \M, that we have the estimate

∣
∣eiτ1(ξ)tA1j(ξ) + ∙ ∙ ∙+ e

iτL(ξ)tALj (ξ)
∣
∣ ≤ C(1 + t)L−1e−tmink=1,...,L Im τk(ξ) .
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Now, we claim that we can write
∑L
k=1 e

iτk(ξ)tAkj (t, ξ), for ξ ∈ (M
ε)′ and

t ≥ 0, as a sum of terms involving products of (L−1)L
2
sinh and cosh terms of

differences of coinciding roots; to clarify, (7.1.2) is this kind of representation
for L = 2, while for L = 3, we want sums of terms such as

sinh[α1(τ1(ξ)− τ2(ξ))t] cosh[α2(τ1(ξ)− τ3(ξ))t] sinh[α3(τ2(ξ)− τ3(ξ))t] ,

where the αi are appropriately chosen constants; incidentally, a comparison
to the L = 2 case suggests that the term above is multiplied by

(
A1j(ξ)e

iτ2(ξ)t − A2j(ξ)e
iτ1(ξ)t

)

in the full representation.
To show this, we do induction on L; Lemma 7.1.1 gives us the case L = 2

(note that the proof holds with ξ0 and Bε(ξ
0) replaced throughout byM and

Mε, respectively). Assume there is such a representation for L = K ≤ m−1.
Observe,

K+1∑

k=1

eiτk(ξ)tAkj (ξ) =
1

K

K∑

k=1

eiτk(ξ)tAkj (ξ) +
1

K

K+1∑

k=1,k 6=K

eiτk(ξ)tAkj (ξ)

+ ∙ ∙ ∙+
1

K

K+1∑

k=2

eiτk(ξ)tAkj (ξ) ;

by the induction hypothesis, there is a representation for each of these terms
by means of products of (K−1)K

2

sinh[αk,l(τk(ξ)− τl(ξ))t] and cosh[βk,l(τk(ξ)− τl(ξ))t] terms,

where 1 ≤ k, l ≤ K + 1 and the αk,l, βk,l are some non-zero constants. Next,
note that we can write (τ1(ξ)− τ2(ξ)) (or, indeed, the difference of any pair
of roots from τ1(ξ), . . . , τK+1(ξ)) as a linear combination of the

K(K+1)
2

dif-
ferences τk(ξ)− τl(ξ) such that 1 ≤ k < l ≤ K + 1; that is

sinh[α1,2(τ1(ξ)− τ2(ξ))t] = sinh
[ ∑

1≤k<l≤K+1

α′k,l(τk(ξ)− τl(ξ))t
]
,

for some non-zero constants α′k,l; similarly, there is such a representation for
cosh[β1,2(τ1(ξ) − τ2(ξ))t]. Lastly, repeated application of the double angle
formulae

sinh(a± b) = sinh a cosh b± cosh a sinh b ,

cosh(a± b) = cosh a cosh b± sinh a sinh b ,
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yields products of K(K+1)
2
terms, which completes the induction step.

Now, as in the previous proof, each of these terms must be estimated.
The key fact to observe is that

Akj (ξ)
L∏

l=1,l 6=k

(τl(ξ)− τk(ξ))

is continuous inMε for all k = 1, . . . , L. Then, using the same arguments as
for each of the terms in the earlier proof, and observing that the exponent
of t is determined by the products involving either

(a) (sinh[αk,l(τk(ξ)− τl(ξ)t)])/(τk(ξ)− τl(ξ)) terms, or

(b) (eiτk(ξ)t − eiτl(ξ)t)/(τk(ξ)− τl(ξ)) terms (see (7.1.4)),

the estimate (7.1.6) is immediately obtained.

7.2 Phase separated from the real axis: The-

orem 2.1.2

We now turn back to finding Lp − Lq estimates for
∫

Ω

eix∙ξ
( L∑

k=1

eiτk(ξ)tAkj (t, ξ)
)
χ(ξ)f̂(ξ) dξ ,

when τ1(ξ), . . . , τL(ξ) coincide in a setM of codimension `; choose ε > 0 so
that these roots do not intersect with any of the roots τL+1(ξ), . . . , τm(ξ) in
Mε. The set Ω is bounded, and we may take χ ∈ C∞0 (M

ε).
In this section (under assumptions of Theorem 2.1.2), we assume that

there exists δ > 0 such that Im τk(ξ) ≥ δ for all ξ ∈Mε—so, mink Im τk(ξ) ≥
δ > 0. For this, we use the same approach as in Section 6.10, but using
Lemma 7.1.2 to estimate the sum. Firstly, the L1 − L∞ estimate:

∥
∥
∥DrtD

α
x

(∫

Ω

eix∙ξ
( L∑

k=1

eiτk(ξ)tAkj (t, ξ)
)
χ(ξ)f̂(ξ) dx

)∥∥
∥
L∞(Rnx)

=
∥
∥
∥

∫

Ω

eix∙ξ
( L∑

k=1

eiτk(ξ)tAkj (t, ξ)τk(ξ)
r
)
ξαχ(ξ)f̂(ξ) dx

∥
∥
∥
L∞(Rnx)

≤ max
k
sup
Ω
|τk(ξ)|

r

∫

Mε

∣
∣
∣
L∑

k=1

eiτk(ξ)tAkj (t, ξ)
∣
∣
∣|ξ||α||f̂(ξ)| dx

≤ C(1 + t)L−1e−δt‖f̂‖L∞(Mε) ≤ C(1 + t)L−1e−δt‖f‖L1 .
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Similarly, the L2 − L2 estimate:

∥
∥
∥DrtD

α
x

(∫

Ω

eix∙ξ
( L∑

k=1

eiτk(ξ)tAkj (t, ξ)
)
χ(ξ)f̂(ξ) dx

)∥∥
∥
L2(Rnx)

=
∥
∥
∥
( L∑

k=1

eiτk(ξ)tAkj (t, ξ)τk(ξ)
r
)
ξαχ(ξ)f̂(ξ)

∥
∥
∥
L2(Ω)

≤ C(1 + t)L−1e−δt‖f̂‖L2(Ω) ≤ C(1 + t)L−1e−δt‖f‖L2 .

Then, Theorem 6.2.3 yields

∥
∥
∥DrtD

α
x

(∫

Ω

eix∙ξ
( L∑

k=1

eiτk(ξ)tAkj (t, ξ)
)
χ(ξ)f̂(ξ) dx

)∥∥
∥
Lq(Rnx)

≤ C(1 + t)L−1e−δt‖f‖Lp ,

where 1
p
+ 1
q
= 1, 1 ≤ p ≤ 2. Once again, we have exponential decay. This,

together with (6.10.1) gives the statement when there are multiplicities away
from the axis and completes the proof of Theorem 2.1.2.

7.3 Phase meeting the real axis: Theorem

2.3.1

We next look at the case where the characteristic roots τ1(ξ), . . . , τL(ξ) that
coincide in the C1 set M of codimension ` meet the real axis in M with
finite orders. If there are more points in M at which the above roots meet
the axis with finite order (or even with infinite order/lying on the axis), they
may be considered separately in the same way (or using the method below
where necessary), while away from such points, the roots are separated from
the axis, and the previous arguments and results of Section 2.1 may be used.
Since the characteristic roots are not necessarily analytic (or even differ-

entiable) inM, we must look at each branch of the roots as they approach
the real axis; set sk to be the maximal order of the contact with the real axis
for τk(ξ), that is, the maximal value for which there exist constant c0 > 0
such that

c0 dist(ξ, Zk)
sk ≤ Im τk(ξ) ,

for all ξ sufficiently near Zk, where Zk = {ξ ∈ Rn : Im τk(ξ) = 0}. By as-
sumptions of Theorem 2.3.1, we have the estimate

c0 dist(ξ,M)
s ≤ Im τk(ξ) ,
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for some c0 > 0 and s ≥ max(s1, . . . , sL), for ξ close toM. We will need the
following extension of Proposition 6.11.1. Its proof is similar to the proof of
Proposition 6.11.1 if we consider the C1 coordinate system associated toM.
As usualMε = {ξ ∈ Rn : dist(ξ,M) < ε}.

Proposition 7.3.1. Let U ⊂ Rn be open and let φ : U → R be a continuous
function. SupposeM⊂ U is a C1 set of codimension ` such that

c0 dist(ξ,M)
s ≤ φ(ξ) ,

for some c0 > 0, and all ξ ∈ Mε for sufficiently small ε > 0. Then, for
any function a(ξ) that is bounded and compactly supported in U , and for all
t ≥ 0, f ∈ C∞0 (R

n), and r ∈ R, we have
∫

Mε

e−φ(ξ)t dist(ξ,M)r|a(ξ)||f̂(ξ)| dξ ≤ C(1 + t)−(`+r)/s‖f‖L1 ,

and

∥
∥e−φ(ξ)t dist(ξ,M)ra(ξ)f̂(ξ)

∥
∥
L2(Mε)

≤ C(1 + t)−r/s‖f‖L2 .

The proof of this proposition is similar to the proof of Proposition 6.11.1
and is omitted. Theorem 2.3.1 states that we must have the estimate (2.3.1),
which is

∥
∥
∥DrtD

α
x

(∫

Mε

eix∙ξ
( L∑

k=1

eiτk(ξ)tAkj (t, ξ)
)
χ(ξ)f̂(ξ) dξ

)∥∥
∥
Lq(Rnx)

≤ C(1 + t)−
`
s

(
1
p
− 1
q

)
+L−1‖f‖Lp .

By Lemma 7.1.2 and Proposition 7.3.1, to estimate the sum in the am-
plitude, for all t ≥ 0, we have

∥
∥
∥DrtD

α
x

(∫

Mε

eix∙ξ
( L∑

k=1

eiτk(ξ)tAkj (t, ξ)
)
χ(ξ)f̂(ξ) dξ

)∥∥
∥
L∞(Rnx)

≤ C
∥
∥
∥

∫

Mε

eix∙ξ
( L∑

k=1

eiτk(ξ)tAkj (t, ξ)τk(ξ)
r
)
ξαχ(ξ)f̂(ξ) dξ

∥
∥
∥
L∞(Rnx)

≤ C

∫

Mε

(1 + t)L−1e−tmink=1,...,L Im τk(ξ)|χ(ξ)||f̂(ξ)| dξ

≤ C(1 + t)L−1−(`/s)‖f‖L1 .
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Also, using the Plancherel’s theorem, we have

∥
∥
∥DrtD

α
x

(∫

Mε

eix∙ξ
( L∑

k=1

eiτk(ξ)tAkj (t, ξ)
)
χ(ξ)f̂(ξ) dξ

)∥∥
∥
L2(Rnx)

=
∥
∥
∥

∫

Mε

eix∙ξ
( L∑

k=1

eiτk(ξ)tAkj (t, ξ)τk(ξ)
r
)
ξαχ(ξ)f̂(ξ) dξ

∥
∥
∥
L2(Rnx)

=
∥
∥
∥
( L∑

k=1

eiτk(ξ)tAkj (t, ξ)τk(ξ)
r
)
ξαχ(ξ)f̂(ξ)

∥
∥
∥
L2(Mε)

≤ C(1 + t)L−1
∥
∥e−tmink=1,...,L Im τk(ξ)|χ(ξ)||f̂(ξ)|

∥
∥
L2(Mε)

≤ C(1 + t)L−1‖f‖L2 .

Therefore, interpolation Theorem 6.2.3 yields, for all t ≥ 0,

∥
∥
∥DrtD

α
x

(∫

Mε

eix∙ξ
( L∑

k=1

eiτk(ξ)tAkj (t, ξ)
)
χ(ξ)f̂(ξ) dξ

)∥∥
∥
Lq(Rnx)

≤ C(1 + t)−
`
s

(
1
p
− 1
q

)
+L−1‖f‖Lp ,

where 1
p
+ 1
q
= 1, 1 ≤ p ≤ 2; this, together with (6.11.3) proves Theorem 2.3.1

for roots meeting the axis with finite order.

7.4 Phase on the real axis for bounded fre-

quencies

Recall that in the division of the integral in Section 6.2, we have

∫

B2M (0)

eix∙ξ
( m∑

k=1

eiτk(ξ)tAkj (t, ξ)
)
f̂(ξ) dξ ,

which we then subdivide around and away from multiplicities. The cases
where the root or roots are either separated from the real axis or meet it
with finite order have already been discussed; here we shall complete the
analysis by proving estimates for the situation where a root or roots lie on
the real axis. These results can be also applied to the case of multiple roots.
We note that in the case of nonhomogeneous symbols this analysis is es-

sential since time genuinely interacts with frequencies. Unlike in the case of
homogeneous symbols in Section 1.2, where one could eliminate time com-
pletely from estimates by rescaling, here it is present in phases and amplitude
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and causes them to blow up even for low frequencies. Thus, we must carry
out a detailed investigation of the structure of solutions for low frequencies,
and it will be done in this section.
A number of estimates can be already obtained using our results on mul-

tiple roots from Section 7.1. To have any possibility of obtaining better
estimates, we must impose additional conditions on the characteristic roots
at low frequencies—for large |ξ|, these properties were obtained by using per-
turbation results, but naturally such results are no longer valid for |ξ| ≤M .
Also, we can impose the convexity condition on the roots to obtain a better
result than the general case. We will give different formulation of possible
results in this section.
Again, throughout we assume that either τ(ξ) ≥ 0 for all ξ or τ(ξ) ≤ 0 for

all ξ. The key point is to use a carefully chosen cut-off function to isolate the
multiplicities and then use Theorem 4.3.1 or Theorem 5.1.2 to estimate the
integrals where there are no multiplicities (and hence the coefficients Akj (t, ξ)
are independent of t) and use suitable adjustments around the singularities.
For these purposes, let us first assume that the only multiplicity is at a point
ξ0 ∈ B2M(0) and τ1(ξ0) = τ2(ξ0) are the only coinciding roots, and let χ be a
cut-off function around ξ0. Then, we must consider the sum of the first two
roots, where we have a multiplicity at ξ0,

I =

∫

B2M (0)

eix∙ξ
( 2∑

k=1

eiτk(ξ)tAkj (t, ξ)
)
χ(ξ)f̂(ξ) dξ , (7.4.1)

and terms involving the remaining roots, which are all distinct,

II =
m∑

k=3

∫

B2M (0)

ei(x∙ξ+τk(ξ))tAkj (t, ξ)χ(ξ)f̂(ξ) dξ .

Case of no multiplicities: Theorem 2.2.6

For the second of these integrals II, we wish to apply Theorem 4.3.1 if τk(ξ)
satisfies the convexity condition, and Theorem 5.1.2 otherwise.
In order to ensure the hypotheses of these theorems are satisfied, however,

we need to impose an additional regularity condition on the behaviour of the
characteristic roots for the relevant frequencies (i.e. ξ ∈ B2M(0)) to avoid
pathological situations:

Assume |∂ωτk(λω)| ≥ C0 for all ω ∈ S
n−1, 2M ≥ λ > 0. (7.4.2)

Since this is satisfied for large |ξ| (see Proposition 3.2.4) and always satisfied
for roots of operators with homogeneous symbols, it is quite a natural extra
assumption.
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The other hypotheses of these theorems hold: hypothesis (i) is satisfied
because |∂αξ τk(ξ)| ≤ Cα for all ξ since the characteristic roots are smooth
in Rn; hypothesis (ii) only requires information about high frequencies; and
hypotheses (iv) holds by the same argument as for large |ξ|, where only
Part II of Proposition 3.2.1 is needed, and that holds for all ξ ∈ Rn. Also,
the coefficients Ajk(ξ) are smooth away from multiplicities, so the symbolic
behaviour (i.e. decay, or bounded for small frequencies) holds.

Now L1 − L∞ and L2 − L2 estimates can be found as in the case for
large |ξ|, and the interpolation theorem used to give the desired results.
Thus, with condition (7.4.2), we have proved the on axis, no multiplicities
case of Theorem 2.2.6.

Multiplicities: shrinking neighborhoods

Now we can turn to the other integral given by (7.4.1). Here we will analyse
what happens in certain shrinking neighborhoods of multiplicities. First we
will assume that only two roots intersect at an isolated point, and then we
will indicate what happens in the general situation.

To continue the analysis of an isolated point of multiplicity as in (7.4.1),
we introduce a cut-off function ψ ∈ C∞0 ([0,∞)), 0 ≤ ψ(s) ≤ 1, which is
identically 0 for s > 1 and 1 for s < 3

4
; then (7.4.1) can be rewritten as the

sum of two integrals I = I1 + I2, where

I1 = (2π)
−n

∫

Rn
eix∙ξψ(t|ξ − ξ0|)χ(ξ)

2∑

k=1

Akj (t, ξ)e
iτk(ξ)tf̂(ξ) dξ ,

I2 = (2π)
−n

∫

Rn
eix∙ξ(1− ψ)(t|ξ − ξ0|)χ(ξ)

2∑

k=1

Akj (t, ξ)e
iτk(ξ)tf̂(ξ) dξ .

We study L1−L∞ estimates for I1 and L2−L2 estimates for both I1 and I2
in this section.

L1 − L∞ estimates: For this, we use the resolution of multiplicities tech-
nique of Section 7.1. By Lemma 7.1.1, we have, in particular,

∣
∣
∣
2∑

k=1

Akj (t, ξ)e
iτk(ξ)t

∣
∣
∣ ≤ C(1 + t),

for |ξ− ξ0| < t−1. Now, we may estimate the integral using the compactness
of the support of ψ(s): for 0 ≤ t ≤ 1, I1 is clearly bounded; for t > 1, we
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have

|I1| ≤ Ct

∫

Rn
|ψ(t|ξ − ξ0|)||f̂(ξ)| dξ

= Ct1−n‖f̂‖L∞
∫

Rn
ψ(|η|) dη ≤ C(1 + t)1−n‖f‖L1 .

This argument can be extended to the case when L roots meet on a set of
codimension `. In the following proposition we will change the notation for
the cut-off function to avoid any confusion with point multiplicities in the
case above.

Proposition 7.4.1. Suppose that L roots intersect in a setM of codimension
`. LetMε = {ξ ∈ Rn : dist(ξ,M) < ε}, and let θ ∈ C∞0 (M

ε) for sufficiently
small ε > 0. Then we have the estimate

∣
∣
∣
∣
∣

∫

Rn
eix∙ξθ(t dist(ξ,M))

L∑

k=1

Akj (t, ξ)e
iτk(ξ)tf̂(ξ) dξ

∣
∣
∣
∣
∣
≤ C(1 + t)L−1−`. (7.4.3)

Proof. By using Lemma 7.1.2 in the (bounded) neighborhoodMε ofM, we
obtain

∣
∣
∣
L∑

k=1

eiτk(ξ)tAkj (t, ξ)
∣
∣
∣ ≤ C(1 + t)L−1 .

The size of the support of θ(t dist(ξ,M)) can be bounded by (1+ t)−`, which
implies estimate (7.4.3).

L2 − L2 estimates: Let us now analyse the L2-estimate. This analysis
will apply not only in a shrinking, but in a fixed neighborhood of the set
of multiplicities. We will discuss first the case of two roots intersecting at a
point in more detail, thus analysing mainly integral I in (7.4.1). We can have
several versions of L2-estimates dependent on conditions on multiplicities and
on the Cauchy data that we can impose. For example, by Lemma 7.1.1 and
Plancherel’s theorem we get

‖I‖L2 ≤ C(1 + t)‖f‖L2 . (7.4.4)

On the other hand we can improve the time behaviour of the L2-estimate
(7.4.4) if we make additional regularity assumptions for the data. For ex-
ample, we can eliminate time from estimate (7.4.4) if we work in suitable
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Sobolev type spaces taking the singularity into account. Let us rewrite

I = (2π)−n
∫

Rn
eix∙ξχ(ξ)

2∑

k=1

Akj (t, ξ)e
iτk(ξ)tf̂(ξ) dξ

= (2π)−n
∫

Rn
eix∙ξχ(ξ)

[

(τ1(ξ)− τ2(ξ))
2∑

k=1

Akj (t, ξ)e
iτk(ξ)t

]

×

× (τ1(ξ)− τ2(ξ))
−1f̂(ξ) dξ.

Using the representation from Lemma 6.1.1 we see that the expression in the
square brackets is bounded. Hence by the Plancherel’s theorem we get that

‖I‖L2 ≤

‖(τ1(ξ)− τ2(ξ))
−1χ(ξ)f̂(ξ)‖L2 = ‖(τ1(D)− τ2(D))

−1χ(D)f‖L2 . (7.4.5)

An example of this is the appearance of homogeneous Sobolev spaces for small
frequencies in the analysis of the wave equations, or more general equations
with homogeneous symbols. For example, in the case of the wave equation
we have τ1(ξ) = |ξ| and τ2(ξ) = −|ξ|, so that (7.4.5) means that we have the
low frequency estimate for the solution of the form

‖I‖L2 ≤ ‖f‖Ḣ−1 ,

with the homogeneous Sobolev space Ḣ−1.
In the case of several roots intersecting in a setM, we have similarly:

Proposition 7.4.2. Suppose that L roots intersect in a set M. Let Mε =
{ξ ∈ Rn : dist(ξ,M) < ε}, and let θ ∈ C∞0 (M

ε) for sufficiently small ε > 0.
Let J denote the part of solution corresponding to these roots microlocalised
near the setM of multiplicities:

J(t, x) =

∫

Rn
eix∙ξθ(ξ)

L∑

k=1

Akj (t, ξ)e
iτk(ξ)tf̂(ξ) dξ.

Then we have the estimate

||J ||L2(Rnx) ≤ C(1 + t)L−1||f ||L2(Rnx). (7.4.6)

Moreover, let us assume without loss of generality that intersecting L roots
are labeled by τ1, ∙ ∙ ∙ , τL. Then we also have

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∏

1≤l<k≤L

(τl(D)− τk(D))
−1J

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
L2(Rnx)

≤ C||f ||L2(Rnx). (7.4.7)
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Estimate (7.4.6) follows from Lemma 7.1.2 and Plancherel’s theorem. Es-
timate (7.4.7) follows from Plancherel’s theorem and formula (6.1.3).
Interpolating between Propositions 7.4.3 and 7.4.6, we can obtain dif-

ferent versions of the dispersive estimate in a region shrinking around M,
depending on whether we use (7.4.6) or (7.4.7).

Multiplicities: fixed neighborhoods

Here, for simplicity, we will concentrate on the case of two roots τ1 and τ2
intersecting at an isolated point ξ0. We will discuss both L1−L∞ and L2−L2

estimates under additional assumptions on the roots τ1 and τ2.

L1−L∞ estimates: For I2 we are away from the singularity, so we can use
that

2∑

k=1

Akj (t, ξ)e
iτk(ξ)t = A1j(ξ)e

iτ1(ξ)t + A2j(ξ)e
iτ2(ξ)t .

Now, we would like to apply Theorem 4.3.1 (for the case where the root
satisfies the convexity condition) and Theorem 5.1.2 (for the general case),
as in the case of simple roots; however, the proximity of the multiplicity
brings the additional cut-off function, (1 − ψ)(t|ξ − ξ0|), into play, and this
depends on t. Therefore, the aforementioned results cannot be used directly.
However, a similar result does hold, provided we impose some additional
conditions, producing analogues of Theorems 4.3.1 and 5.1.2 in this case.

Proposition 7.4.3. Let χ ∈ C∞0 (R
n). Suppose τk(ξ), k = 1, 2, satisfy the

following assumptions on suppχ:

(i) for each multi-index α there exists a constant Cα > 0 such that, for
some δ > 0,

|∂αη [(∇ξτk)(ξ
0 + sη)]| ≤ Cα(1 + |η|)

−|α| , for small s > 0 and |η| > δ ;

(ii) there exists a constant C0 > 0 such that |∂ωτk(ξ0 + λω)| ≥ C > 0 for
all ω ∈ Sn−1 and λ > 0; in particular, each of the level sets

λΣ′λ ≡ Σλ =
{
η ∈ Rn : τk(ξ

0 + η) = λ
}

is non-degenerate ;

(iii) there exists a constant R1 > 0 such that, for all λ > 0,

Σ′λ :=
1

λ
Σλ(τk) ⊂ BR1(0) .
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Furthermore, assume that Akj (ξ) satisfies the following condition: for each
multi-index α there exists a constant Cα > 0 such that

(iv) we have the estimate

|∂αη [A
k
j (ξ
0+sη)]| ≤ Cαs

−j(1+ |η|)−j−|α| , for small s > 0 and |η| > δ .

Finally, assume that ψ ∈ C∞0 ((−δ, δ)) is such that ψ(σ) = 1 for |σ| ≤ δ/2.
Then, the following estimate holds for all x ∈ Rn, t ≥ 0:

∣
∣
∣
2∑

k=1

∫

Rn
ei(x∙ξ+τk(ξ)t)Akj (ξ)(1− ψ)(t|ξ − ξ

0|)χ(ξ) dξ
∣
∣
∣ ≤ C(1 + t)j−n , (7.4.8)

for j ≥ n− n−1
γ
, where γ := supλ>0 γ(Σλ(τk)), if τk(ξ) satisfies the convexity

condition; and for j ≥ n− 1
γ0
, where γ0 := supλ>0 γ0(Σλ(τk)), if it does not.

Remark 7.4.4. Conditions (i), (ii) and (iv) appear and are satisfied natu-
rally when roots τk(ξ) are homogeneous functions of order one—for example,
the wave equation, or for homogeneous equations.

Remark 7.4.5. Assumption (iv) is needed because Akj (ξ) has a singularity
at ξ0, so we must ensure we are away from that—this is the role of the cut-off
function (1− ψ)(|η|) in this proposition;

Remark 7.4.6. As usual, for example in the convex case, taking j = n− n−1
γ
,

we get the time decay estimate

| Left hand side of (7.4.8) | ≤ C(1 + t)−
n−1
γ .

Proof. As before, cut-off near the wave front: let κ ∈ C∞0 (R
n) be a cut-off

function supported in B(0, r). Then, consider

I1(t, x) :=
2∑

k=1

∫

Rn
ei(x∙ξ+τk(ξ)t)Akj (ξ)(1−ψ)(t|ξ− ξ

0|)χ(ξ)κ
(
t−1x+∇τk(ξ)

)
dξ,

and

I2(t, x) :=
2∑

k=1

∫

Rn
ei(x∙ξ+τk(ξ)t)Akj (ξ)(1− ψ)(t|ξ − ξ

0|)χ(ξ)

(1− κ)
(
t−1x+∇τk(ξ)

)
dξ.
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Away from the wave front set: First, we estimate I2(t, x); we claim
that

|I2(t, x)| ≤ Cr(1 + t)
j−n for all t > 0 , x ∈ Rn . (7.4.9)

In order to show this, we consider each term of the sum separately,

Ik2 (t, x) =

∫

Rn
ei(x∙ξ+τk(ξ)t)Akj (ξ)(1− ψ)(t|ξ − ξ

0|)χ(ξ)(1− κ)
(
x
t
+∇τk(ξ)

)
dξ ,

and imitate the proof of Lemma 4.3.3 (in which the corresponding term was
estimated in Theorem 4.3.1), but noting that in place of gR(ξ) ∈ C∞0 (R

n) we
have (1 − ψ)(t(ξ − ξ0)), which depends also on t; in particular, this means
that care must be taken when carrying out the integration by parts when
derivatives fall on (1 − ψ)(t|ξ − ξ0|). To take this into account, use the
change of variables ξ = ξ0 + t−1η:

Ik2 (t, x) = e
ix∙ξ0

∫

Rn
ei(t

−1x∙η+τk(ξ0+t−1η)t)Akj (ξ
0 + t−1η)(1− ψ)(|η|)

χ(ξ0 + t−1η)(1− κ)
(
t−1x+ (∇ξτk)(ξ

0 + t−1η)
)
t−n dη.

Integrating by parts, with respect to η gives

Ik2 (t, x) = e
ix∙ξ0t−n

∫

Rn
ei(t

−1x∙η+τk(ξ0+t−1η)t)P ∗
[
Akj (ξ

0 + t−1η)(1− ψ)(|η|)

χ(ξ0 + t−1η)(1− κ)
(
t−1x+ (∇ξτk)(ξ

0 + t−1η)
)]
dη ,

where P ∗ is the adjoint operator to P =
t−1x+(∇ξτk)(ξ0+t−1η)
i|t−1x+(∇ξτk)(ξ0+t−1η)|2

∙ ∇η; this

integration by parts is valid as |t−1x + (∇ξτk)(ξ0 + t−1η)| ≥ r > 0, in the
support of (1−κ)

(
t−1x+∇τk(ξ0+t−1η)

)
. For suitable functions f ≡ f(η; x, t),

and ξ = ξ0 + t−1η, we have

P ∗f =∇η ∙
[ t−1x+ (∇ξτk)(ξ)
i|t−1x+ (∇ξτk)(ξ)|2

f
]

=
∇η ∙ (∇ξτk)(ξ)

i|t−1x+ (∇ξτk)(ξ)|2
f +

t−1x+ (∇ξτk)(ξ)
i|t−1x+ (∇ξτk)(ξ)|2

∙ ∇ηf

−
2(t−1x+ (∇ξτk)(ξ)) ∙ [∇η[(∇ξτk)(ξ)] ∙ (t−1x+ (∇ξτk)(ξ))]

i|t−1x+ (∇ξτk)(ξ)|4
f.

Comparing this to (4.3.5), observe that the first and third terms have one
power of t fewer in the denominator due to the transformation; this is critical
in this case where we are approaching a singularity in Akj (ξ

0 + t−1η) when
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t → ∞. By hypothesis (i), for η in the support of the integrand of Ik2 (t, x),
we get

∇η∙ [(∇ξτk)(ξ0 + t−1η)]
|t−1x+ (∇ξτk)(ξ0 + t−1η)|2

≤ Cr(1 + |η|)
−1 ;

thus, we have
|P ∗f | ≤ Cr[(1 + |η|)

−1|f |+ |∇ηf |] .

In Lemma 4.3.3, we carried out this integration by parts repeatedly in
order to estimate the integral. Here, however, note that differentiating (1 −
ψ)(|η|) once is sufficient: by definition of ψ(s),

∂ηj [(1− ψ)(|η|)] = −
ηj

|η|
(∂sψ)(|η|)

is supported in 3
4
≤ |η| ≤ 1, so

|∂ηj [(1− ψ)(|η|)]| ≤ C11≥|η|≥3/4(η) ,

where 11≥|η|≥3/4(η) denotes the characteristic function of the set

{η ∈ Rn : 1 ≥ |η| ≥ 3/4} ;

hence, by hypothesis (iv), for large t we have
∫

Rn

∣
∣
∣
t−1x+ (∇ξτk)(ξ0 + t−1η)

i|t−1x+ (∇ξτk)(ξ0 + t−1η)|2

∣
∣
∣|Akj (ξ

0 + t−1η)||∂ηj [(1− ψ)(|η|)]|

|χ(ξ0 + t−1η)||(1− κ)
(
t−1x+∇τk(ξ

0 + t−1η)
)
|t−n dη

≤ Cr

∫

3
4
≤|η|≤1

|Akj (ξ
0 + t−1η)|t−n dη

≤ Crt
j

∫

3
4
≤|η|≤1

1

(1 + |η|)j
t−n dη ≤ Crt

j−n , (7.4.10)

which is the desired estimate (7.4.9).
On the other hand, if, when integrating by parts, the derivative does not

fall on ψ(|η|), we use a similar argument to that in the earlier proof; let us
look at the effect of differentiating each of the other terms: in the support of
ψ(|η|), for each multi-index α and t > 0,

• |∂αη [A
k
j (ξ
0 + t−1η)]| ≤ Cαt

j(1 + |η|)−j−|α| by hypothesis (iv);

• |∂αη [χ(ξ
0 + t−1η)]| ≤ Cα(1 + |η|)−|α|: for α = 0, take Cα = 1; for |α| ≥ 1,

note that
∂αη [χ(ξ

0 + t−1η)] = t−|α|(∂αξ χ)(ξ
0 + t−1η) ,

and that (∂αξ χ)(ξ
0 + t−1η) is supported in N ≤ |ξ0 + t−1η| ≤ 2N , so

t−1 ≤ CN,ξ0 |η|−1;
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• |∂αη [(1−κ)
(
t−1x+(∇ξτk)(ξ0+t−1η)

)
]| ≤ Cα(1+ |η|)−|α|: obvious for α = 0;

for |α| ≥ 1, note

∂αη [(1− κ)(t
−1x+ (∇ξτk)(ξ

0 + t−1η))]

= −(∂αξ κ)(t
−1x+∇ξτk(ξ))∂

α
η [(∇ξτk)(ξ

0 + t−1η)] ,

which yields the desired estimate by hypothesis (i).

Summarising, this means

∣
∣(1−ψ)(|η|)∂αη

[
Akj (ξ

0+t−1η)χ(ξ0+t−1η)(1−κ)
(
t−1x+(∇ξτk)(ξ

0+t−1η)
)]∣∣

≤ Cr(1 + |η|)
−j−|α|tj1|η|≥3

4
(η) .

So, repeatedly integrating by parts we find that either a derivative falls on
(1−ψ)(|η|) (in which case a similar argument to that in (7.4.10) above works)
or we eventually get the integrable function Ctj(1+ |η|)−n−11|η|≥3/4(η) as an
upper bound; in either case, we have (7.4.9).

On the wave front set: Next, we look at the term supported around
the wave front set, I1(t, x). As in the case away from the wave front, set
ξ = ξ0 + t−1η: consider, for k = 1, 2,

Ik1 (t, x) := e
ix∙ξ0

∫

Rn
ei(t

−1x∙η+τk(ξ0+t−1η)t)Akj (ξ
0 + t−1η)(1− ψ)(|η|)

χ(ξ0 + t−1η)κ
(
t−1x+ (∇ξτk)(ξ

0 + t−1η)
)
t−n dη .

As in the proof of Theorems 4.3.1 and 5.1.2, let {Ψ`(η)}
L
`=1 be a conic par-

tition of unity, where the support of Ψ`(η) is a cone K`, and each cone can
be mapped by rotation onto K1, which contains en = (0, . . . , 0, 1). Then, it
suffices to estimate

t−n
∫

Rn
ei(t

−1x∙η+τk(ξ0+t−1η)t)Akj (ξ
0 + t−1η)(1− ψ)(|η|)

Ψ1(η)χ(ξ
0 + t−1η)κ

(
t−1x+ (∇ξτk)(ξ

0 + t−1η)
)
dη ,

for k = 1, 2.
Let us parameterise the cone K1: it follows from hypothesis (ii) that each

of the level sets

Σλ,t ≡
{
η ∈ Rn : τk(ξ

0 + t−1η) = t−1λ
}
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is non-degenerate; so, for some U ⊂ Rn−1, and smooth function hk(t, λ, ∙) :
U → R,

K1 = {(λy, λhk(t, λ, y)) : λ > 0, y ∈ U} .

If τk(ξ) satisfies the convexity condition, then hk is also a concave function
in y. Now, we change variables η 7→ (λy, λhk(t, λ, y)) and will often omit
t from the notation of hk since the dependence on t will be uniform. We
obtain:

t−n
∫ ∞

0

∫

U

eiλ(t
−1x′∙y+t−1xnhk(λ,y)+1)Akj (ξ

0 + t−1λ(y, hk(λ, y)))

(1− ψ)(λ|(y, hk(λ, y))|)Ψ1(λ(y, hk(λ, y)))χ(ξ
0 + t−1λ(y, hk(λ, y)))

κ
(
t−1x+ (∇ξτk)(ξ

0 + t−1λ(y, hk(λ, y)))
) dη

d(λ, y)
dλdy, (7.4.11)

where we have used τk(ξ
0 + t−1(λy, λhk(λ, y))) = t−1λ. As in the earlier

proofs, we ensure xn is away from zero in the cone—this requires hypothe-
ses (i) and (iii)). So, in the general case, we can write this as, with x̃ = t−1x,

λ̃ = λx̃n = λt
−1xn,

t−n
∫ ∞

0

∫

U

eiλxn(t
−1x−1n x

′∙y+t−1hk(λ,y)+x̃
−1
n )Akj (ξ

0 + t−1λ(y, hk(λ, y)))

(1− ψ)(λ|(y, hk(λ, y))|)Ψ1(λ(y, hk(λ, y)))χ(ξ
0 + t−1λ(y, hk(λ, y)))

κ
(
t−1x+ (∇ξτk)(ξ

0 + t−1λ(y, hk(λ, y)))
) dη

d(λ, y)
dλdy .

If the convexity condition holds, then, as in the proof of Theorem 4.3.1,
we have the Gauss map

nk : K1 ∩ Σ
′
λ → Sn−1, nk(ζ) =

∇ζ [τk(ξ0 + t−1ζ)]
|∇ζ [τk(ξ0 + t−1ζ)]|

=
(∇ξτk)(ξ0 + t−1ζ)
|(∇ξτk)(ξ0 + t−1ζ)|

,

and, as before, can define zk(λ) ∈ U so that

nk(zk(λ), hk(λ, z(λ))) = −x/|x| .

Then,

x′

xn
= −∇yhk(λ, z(λ)) .
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So, in this case, (7.4.11) becomes:

(Ik1 )
′ := t−n

∫ ∞

0

∫

U

eiλxn[−t
−1∇yhk(λ,z(λ))∙y+t−1hk(λ,y)+x̃

−1
n ]

Akj (ξ
0 + t−1λ(y, hk(λ, y)))(1− ψ)(λ|(y, hk(λ, y))|)Ψ1(λ(y, hk(λ, y)))

χ(ξ0 + t−1λ(y, hk(λ, y)))κ
(
x̃+ (∇ξτk)(ξ

0 + t−1λ(y, hk(λ, y)))
) dη

d(λ, y)
dλdy,

Let us estimate this integral in the case where the convexity condition holds.
We have:

• The same argument as in the earlier proof (which uses hypothesis (ii)),
shows ∣

∣
∣

dη

d(λ, y)

∣
∣
∣ ≤ Cλn−1 .

The constant C here is independent of t;

• Now, with Ãjk(ν) = Ajk(ν)χ(ν)κ
(
x̃ + (∇ξτk)(ν)

)
Ψ1(λ(y, hk(λ, y))), where

ν = ξ0 + t−1λ(y, hk(λ, y)), we have

|(Ik1 )
′| ≤ tj−n

∫ ∞

0

∣
∣
∣

∫

U

eiλx̃n[−(y−z(λ))∙∇yhk(λ,z(λ))+hk(λ,y)+hk(λ,z(λ))]

t−jλjÃkj (ξ
0 + t−1λ(y, hk(λ, y)))(1− ψ)(λ|(y, hk(λ, y))|) dy

∣
∣
∣λn−1−j dλ .

• Now, applying Theorem 4.1.1— this may be used due to the properties of
Akj (ξ) and τk(ξ) stated in hypotheses (iv) and (i)—we find that

∣
∣
∣

∫

U

eiλx̃n[−(y−z(λ))∙∇yhk(λ,z(λ))+hk(λ,y)+hk(λ,z(λ))]

t−jλjÃkj (ξ
0+ t−1λ(y, hk(λ, y)))(1−ψ)(λ|(y, hk(λ, y))|) dy

∣
∣
∣ ≤ Cλj−nχ̃(λ) ,

where χ̃(λ) is a compactly supported smooth function that is zero in a
neighbourhood of the origin.

• Hence,

|(Ik1 )
′| ≤ tj−n

∫ ∞

0

χ̃(λ)λ−1 dλ ≤ Ctj−n .

Finally, the general case without convexity can be estimated in a similar way,
with the necessary changes used in the proof of Theorem 5.1.2 to account
for the change in the phase function—in particular, the use of the Van der
Corput Lemma, Lemma 5.0.5, in place of Theorem 4.1.1. This completes the
proof of (7.4.8).
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Using Proposition 7.4.3, it is clear that

∥
∥
∥

∫

Rn
eix∙ξ(1− ψ)(t|ξ − ξ0|)χ(ξ)

2∑

k=1

Akj (t, ξ)e
iτk(ξ)tf̂(ξ) dξ

∥
∥
∥
L∞(Rnx)

≤ C(1 + t)−
n−1
γ ‖f‖L1

if the roots satisfy the convexity condition, and

∥
∥
∥

∫

Rn
eix∙ξ(1− ψ)(t|ξ − ξ0|)χ(ξ)

2∑

k=1

Akj (t, ξ)e
iτk(ξ)tf̂(ξ) dξ

∥
∥
∥
L∞(Rnx)

≤ C(1 + t)
− 1
γ0 ‖f‖L1

otherwise. In comparison to (6.6.6), here we have L1-norms on the right
hand sides, since χ is a cut-off function to bounded frequencies.
Finally, we must consider the case where L roots intersect; the above

proof can easily be adapted for such a case, giving corresponding results.

L2 − L2 estimates: For the L2-estimates on the support of (1 − ψ)(t|ξ −
ξ0|)χ(ξ) we only need assumption (iv) of Proposition 7.4.3 with α = 0 for
the amplitude, namely that

|Akj (ξ
0 + sη)| ≤ Cαs

−j(1 + |η|)−j , for small s > 0 and |η| > δ . (7.4.12)

Then, for the left hand side of (7.4.8), we have
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2∑

k=1

∫

Rn
ei(x∙ξ+τk(ξ)t)Akj (ξ)(1− ψ)(t|ξ − ξ

0|)χ(ξ)f̂(ξ) dξ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
L2(Rnx)

=

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2∑

k=1

eiτk(ξ)tAkj (ξ)(1− ψ)(t|ξ − ξ
0|)χ(ξ)f̂(ξ)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
L2(Rnξ )

≤ ||tj(1 + |η|)−j f̂(ξ0 + t−1η)||L2(Rnη ),

where we used Plancherel’s theorem, (7.4.12), and the notation s = t−1,
ξ = ξ0 + t−1η, so that η = t(ξ − ξ0). Then we can easily estimate

||tj(1 + |η|)−j f̂(ξ0 + t−1η)||L2(Rnη ) = ||t
j(1 + t|ξ − ξ0|)−j f̂(ξ)||L2(Rnξ )

= ||(t−1 + |ξ − ξ0|)−j f̂(ξ)||L2(Rnξ )

≤ || |ξ − ξ0|−j f̂(ξ)||L2(Rnξ )

= || |D −D0|
−jf ||L2(Rnx),
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where D−D0 is a Fourier multiplier with symbol ξ−ξ0. So, we finally obtain
the estimate

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2∑

k=1

∫

Rn
ei(x∙ξ+τk(ξ)t)Akj (ξ)(1− ψ)(t|ξ − ξ

0|)χ(ξ)f̂(ξ) dξ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
L2(Rnx)

≤ C|| |D −D0|
−jf ||L2(Rnx).

In the case of equations with homogeneous symbols (like for the wave equa-
tion), when roots are homogeneous, we have ξ0 = 0, so that the right hand
side becomes just the norm in the corresponding homogeneous Sobolev space.
Due to the earlier bound near the multiplicity, we can combine the results

with the interpolation Theorem 6.2.3.




