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1 Introduction

The theory of multiple zeta-functions has a long history, from the work of Barnes and Mellin
at the beginning of the 20th century, or even from the days of Euler. A new stream of research
of multiple zeta-functions began in 1990s, when some fascinating connections between the theory
of multiple zeta-functions and various branches of mathematics and mathematical physics were
discovered. An epoch-making paper is Zagier [33], in which two types of multiple zeta-functions
are discussed. One is the r-fold zeta-function of the form

ζEZ,r(s1, . . . , sr) =
∞∑

m1=1

· · ·
∞∑

mr=1

m−s1
1 (m1 +m2)

−s2

× · · · × (m1 + · · ·+mr)
−sr ,

(1.1)

which is now sometimes called the Euler-Zagier r-ple zeta-function. Zagier [33] considered the
values of (1.1) when s1, . . . , sr are positive integers and sr ≥ 2. Note that Hoffman [5] independently
studied the same values at about the same time.

Another type of multiple zeta-functions discussed in Zagier’s paper is the class of Witten’s zeta-
functions. Let g be a complex semisimple Lie algebra. The Witten zeta-function associated with
g is defined as

ζW (s; g) =
∑

ϕ

(dimϕ)−s, (1.2)

where ϕ runs over all finite dimensional irreducible representations of g. Special values of this
series were first studied by Witten [32] in connection with a problem in quantum gauge theory. As
we will see later, we can write down a more explicit form of ζW (s; g) by using Weyl’s dimension
formula. We will find that the explicit form of ζW (s; g) is an r-fold sum, where r is the rank of g.
Therefore ζW (s; g) is a kind of multiple zeta-functions.

The original form of ζW (s; g) is a function in one variable, though the sum in the definition
is multiple. However it has been noticed recently that, for deeper investigations of ζW (s; g), it
is convenient to introduce the multi-variable generalization of ζW (s; g) and discuss its properties.
This is the main theme of the present article.

Since the present lecture is of introductory nature, we begin with the explanation of the basic
theory of Lie algebras. It is impossible to give the full account of the theory here; for the details,
see, for example, [2], [7], or [20].

The present article is an extended written version of a lecture of the first-named author at the
French-Japanese Winter School on Zeta and L-functions (at Miura, Japan, January 2008).
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In what follows, N, N0, Z, Q, R, and C denote the set of positive integers, non-negative integers,
integers, rational numbers, real numbers, and complex numbers, respectively.

The authors express their sincere gratitude to the referee for many useful comments and sugges-
tions.

2 Fundamentals of the theory of Lie algebras

In this article by Lie algebra we mean a finite dimensional vector space g over C, with a bilinear
map [ , ] : g × g → g, satisfying the skew-symmetry [X,X] = 0 for any X ∈ g and the Jacobi
identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

for any X,Y, Z ∈ g. The skew-symmetry implies

0 = [X + Y,X + Y ] = [X,Y ] + [Y,X],

hence [X,Y ] = −[Y,X]. In particular, we call g Abelian if [X,Y ] = 0 for any X,Y ∈ g.
A subspace a of g is called a Lie subalgebra if it is closed under the above bracket operation.

The normalizer N(a) of a is the set of all X ∈ g for which

[X, a] = {[X,Y ] | Y ∈ a} ⊂ a

holds. If N(a) = g, we call a an ideal of g.
The derived Lie subalgebra g′ of g is the ideal [g, g], spanned by all [X,Y ] (X,Y ∈ g). Define

the series
g ⊃ g′ ⊃ g′′ ⊃ · · · ⊃ g(n) ⊃ · · ·

by g(n) = (g(n−1))′. If this series (the derived series) goes down to zero for some finite n, we
call g solvable. We also define the lower central series, by replacing g(n) in the derived series by
gn = [g, gn−1], and call g nilpotent if the lower central series goes down to zero.

A Cartan subalgebra of a Lie algebra g is a nilpotent Lie subalgebra h of g, with the property
N(h) = h. (It follows that h is maximal nilpotent.) This is not uniquely determined, but its
dimension does not depend on the choice of h. We call this dimension the rank of g.

A representation of a Lie algebra g on a complex vector space U is a homomorphism ϕ of g into
the general linear algebra GL(U). We denote by dimϕ the dimension of the representation space
U . The most fundamental representation is the adjoint representation ad : g→ GL(g) defined by
(adX)Y = [X,Y ] for any X,Y ∈ g. By using the adjoint representation we define the symmetric
bilinear form

〈X,Y 〉 = κ(X,Y ) = Tr(adX ◦ adY ),

which is called the Killing form.
It is known that any g contains the unique maximal solvable ideal r, the radical of g. We

call a Lie algebra g (6= {0}) semisimple if its radical is zero. Since an Abelian ideal is solvable,
semisimplicity implies that g has no non-zero Abelian ideal. If a non-Abelian Lie algebra g has
no non-trivial ideals, g is called simple. A simple Lie algebra is semisimple. It is known that any
semisimple Lie algebra can be written as a direct sum of simple Lie algebras. It is also known that
g is semisimple if and only if the Killing form is non-degenerate.

From now on we assume that g is semisimple. Then any Cartan subalgebra is Abelian, and
hence is maximal Abelian. We fix one Cartan subalgebra h of g, and write r = rank g = dim h.
Let α be a non-zero element of the dual space h∗ of h. We call α a root of g (with respect to h)
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if there exists a non-zero X ∈ g such that ad(H)X = α(H)X for any H ∈ h. Denote the set of
all such X by gα. There are only finitely many roots, and they span h∗. We denote the set of all
roots by ∆ = ∆(g). The decomposition

g = h⊕
⊕

α∈∆

gα (2.1)

holds. Note that dimgα = 1 for any α ∈ ∆.
Let α ∈ ∆. Then there exists a unique element α′ ∈ h satisfying 〈α′,H〉 = α(H) for any H ∈ h.

By this correspondence α ↔ α′ we can identify h∗ with h, and transfer the Killing form to h∗ by
putting 〈α, α〉 = 〈α′, α′〉. Let h0 be the real subspace of h formed by all real linear combinations
of α′, for α ∈ ∆. Then h0 and its dual space h∗

0 can be identified by the above way.
Since α′ is clearly non-zero, we can define

α∨ =
2

〈α′, α′〉α
′, (2.2)

which we call the coroot associated with α. Clearly α(α∨) = 2. More generally, the values

a(β, α) = β(α∨) =
2〈β, α〉
〈α, α〉 (2.3)

for any α, β ∈ ∆ are integers, which we call the Cartan integers of g. It can be shown that
β − a(β, α)α is again a root. Another important property is that if both α and cα (c ∈ C) are
roots, then c = ±1.

For any α, β ∈ ∆, there exist p, q ∈ N0, such that β + tα ∈ ∆ if and only if −q ≤ t ≤ p. The
sequence β − qα, . . . , β + pα is called the α-string through β. It is known that

a(β, α) = q − p. (2.4)

Now we define the notion of (abstract) reduced root systems. Let V be an r-dimensional real
vector space with an inner product 〈 , 〉. For any α ∈ V \ {0}, define σα : V → V by σα(β) =
β − a(β, α)α. A finite non-empty subset R of V , not containing 0, is called a reduced root system
if it spans V and satisfies

(i) for α, β ∈ R, a(β, α) = 2〈β, α〉/〈α, α〉 ∈ Z,
(ii) for α, β ∈ R, the vector σα(β) is also in R,
(iii) if both α and cα (c ∈ R) are in R, then c = ±1.

We call r the rank of the root system R. Obviously ∆ is a reduced root system with the vector
space V = h∗

0.
For α ∈ V \ {0}, let Pα = {β ∈ V | 〈β, α〉 = 0}. This is the hyperplane orthogonal to α. Since

R is a finite set, it is obvious that V \∪α∈R Pα is non-empty. The elements of this set are called
regular. If γ ∈ V is regular, then R = R+(γ) ∪ (−R+(γ)), where

R+(γ) = {α ∈ R | 〈γ, α〉 > 0}.

We call α ∈ R+(γ) decomposable if α = β1 + β2 for some β1, β2 ∈ R+(γ), and indecomposable
otherwise. Denote by Ψ = Ψγ the set of all indecomposable elements of R+(γ). Then it is known
that Ψ is a basis of V , and each root β can be written as β =

∑
α∈Ψ kαα with integral coefficients

kα, all non-negative or all non-positive. We call β positive (resp. negative) if all kα ≥ 0 (resp.
≤ 0). The elements of Ψ are called simple or fundamental, and |Ψ| = r. We call Ψ a base, or a
fundamental system, of R. When R = ∆ = ∆(g), we write Ψ = Ψ(∆) = Ψ(g).
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Two root systems R1 and R2 (with the underlying vector spaces V1 and V2, respectively) are
equivalent when there is a similarity (constant multiple of an isometry) V1 → V2 which sends R1

onto R2. A very important fact is that there is a bijection between the set of equivalence classes
of reduced root systems and the set of isomorphism classes of semisimple Lie algebras. Therefore,
hereafter, we assume that the root system R is corresponding to a semisimple Lie algebra g, the
inner product is given by the Killing form, and write R = ∆ = ∆(g). We also write ∆+ = R+(γ),
∆− = −(R+(γ)). Therefore ∆ = ∆+ ∪∆−. Note that Ψ, ∆+ and ∆− depend on the choice of γ.

Let γ′ be the element of h0 corresponding to γ ∈ h∗
0. Then α ∈ ∆+ if and only if α(γ′) > 0. This

suggests the definition of the following partial order in h∗
0; for λ, µ ∈ h∗

0, we define λ > µ (resp.
λ ≥ µ) if λ(γ′) > µ(γ′) (resp. λ(γ′) ≥ µ(γ′)). The definition of this order also depends on γ.

The mapping σα is the reflection with respect to Pα. All σα, α ∈ ∆, generates a group W =
W (∆) of isometries of V , which is called the Weyl group of ∆. This group is generated by all the
elements of Ψ. If Ψ′ is another fundamental system of ∆, then there exists an element w ∈W for
which Ψ′ = w(Ψ) holds.

3 Examples of simple Lie algebras

A root system ∆ is called irreducible if it cannot be written as the union of two proper subsets,
each root in one of them is orthogonal to each root in the other. Irreducible root systems have
been completely classified by the Cartan-Killing theory. The result can be written as the list
of all irreducible root systems, that is, Ar (r ≥ 1), Br (r ≥ 2), Cr (r ≥ 3), Dr (r ≥ 4), and
the five exceptional systems E6, E7, E8, F4, and G2. This list exactly corresponds to the list of
possible simple Lie algebras. Hereafter, when g corresponds to the root system of type Xr (X =
A,B,C,D,E, F or G), we sometimes write ∆(g) = ∆(Xr), Ψ(g) = Ψ(Xr), ζr(s; g) = ζr(s;Xr),
etc. (The subscript r indicates the rank of g as in the preceding section.)

The root system of type Ar corresponds to the Lie algebra

sl(r + 1) = {X ∈Mr+1(C) | TrX = 0},

whereMm(C) denotes the set of all m×m matrices with complex entries. The bracket operation
is given by [X,Y ] = X · Y − Y · X, where the “dot” on the right-hand side is the usual matrix
multiplication. By diag(a1, . . . , ar+1) we mean the (r + 1) × (r + 1) matrix whose diagonal en-
tries are a1, . . . , ar+1 and all other entries are 0. When g = g(Ar) = sl(r + 1), the set h of all
diag(a1, . . . , ar+1) with a1 + · · ·+ ar+1 = 0 is a Cartan subalgebra of g. Then

∆ = ∆(Ar) = {εi − εj | 1 ≤ i, j ≤ r + 1, i 6= j},

where εi is defined by εi(diag(a1, . . . , ar+1)) = ai.
Choose γ′ = diag(a1, . . . , ar+1) with a1 > a2 > · · · > ar > 0 and ar+1 = −(a1 + · · ·+ ar). Then

εi − εj > 0 implies ai − aj > 0, which further implies i < j. Therefore

∆+(Ar) = {εi − εj | 1 ≤ i, j ≤ r + 1, i < j}.

The fundamental system is Ψ(Ar) = {αi | 1 ≤ i ≤ r}, where αi = εi−εi+1. It can be shown that the
Killing form on sl(r+1) is 〈X,Y 〉 = 2(r+1)Tr(X ·Y ). Therefore α′

i = (2(r+1))−1(ei−ei+1), where
ei is the matrix whose (i, i)-entry is 1 and all other entries are 0. Hence the coroot corresponding
to αi is α∨

i = ei − ei+1. All positive roots and coroots can be written as

εi − εj =
∑

i≤k<j
αk (3.1)
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and

ei − ej =
∑

i≤k<j
α∨
k , (3.2)

respectively.
Such explicit descriptions of positive roots can be done for other types of simple Lie algebras.

Here we only mention the case of Br type, which corresponds to the algebra

o(2r + 1) = {X ∈M2r+1(C) | tX +X = 0}.

A Cartan subalgebra h of o(2r + 1) is the set of all matrices of the form




0

0 a1

−a1 0
. . .

0 ar
−ar 0




(where all elements in the empty blocks are 0), but we may identify this h with

{diag(a1, . . . , ar) | a1, . . . , ar ∈ C} ⊂ Cr.

Positive roots are εi (1 ≤ i ≤ r) and εi ± εj (1 ≤ i < j ≤ r). The fundamental system Ψ(Br)
consists of αi = εi−εi+1 (1 ≤ i ≤ r−1) and αr = εr. The corresponding coroots are α∨

i = ei−ei+1

(1 ≤ i ≤ r − 1) and α∨
r = 2er. The list of positive coroots is

2ei = 2
∑

i≤k<r
α∨
k + α∨

r (1 ≤ i ≤ r),

ei − ej =
∑

i≤k<j
α∨
k (1 ≤ i < j ≤ r),

and
ei + ej =

∑

i≤k<j
α∨
k + 2

∑

j≤k<r
α∨
k + α∨

r (1 ≤ i < j ≤ r).

4 Weyl’s dimension formula

Now we return to the general situation. Let ϕ : g → GL(U) be a representation, where U is a
finite dimensional complex vector space. We call u ∈ U a weight vector if it is a joint eigenvector
of all the operators ϕ(H), H ∈ h. Hence ϕ(H)u = λ(H)u, where λ(H) ∈ C. Then λ : H 7→ λ(H)
is an element of h∗. We call λ the weight of u.

For each λ ∈ h∗, let Uλ be the subspace of U consisting of 0 and all weight vectors u with weight
λ. When Uλ is non-zero, we call λ a weight of ϕ. There is only a finite number of weights. A
weight λ is called dominant if λ(α∨) ≥ 0 for all α ∈ Ψ. If the strict inequality holds for all α ∈ Ψ,
then we call strongly dominant.

Write Ψ = {α1, . . . , αr}, and define λi ∈ h∗ by λi(α
∨
j ) = δij (Kronecker’s delta). Then clearly

λi (1 ≤ i ≤ r) are dominant. We call them fundamental weights, and write Λ = {λ1, . . . , λr}.
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The weight ρ = λ1 + · · · + λr is called the lowest strongly dominant form. It is known that any
dominant weight λ can be written as

λ = n1λ1 + · · ·+ nrλr (n1, . . . , nr ∈ N0). (4.1)

A representation (ϕ,U) is irreducible if there is no non-trivial invariant subspace of U . A prin-
cipal result is that there is a bijection between the set of (equivalence classes of) irreducible repre-
sentations and the set of dominant weights. Let ϕ a finite dimensional irreducible representation
of g, and λ the corresponding dominant weight. Then Weyl’s dimension formula asserts

dimϕ =
∏

α∈∆+

〈α∨, λ+ ρ〉
〈α∨, ρ〉

=
∏

α∈∆+

〈α∨, (n1 + 1)λ1 + · · ·+ (nr + 1)λr〉
〈α∨, λ1 + · · ·+ λr〉

.

(4.2)

(Here we use the notation 〈α∨, ρ〉 = ρ(α).) At a first glance it seems that the right-hand side
depends on the choice of h and γ. It is possible, however, to show directly that the right-hand side
is independent of those choices, by using the fact that any two Cartan subalgebras are conjugate,
and the aforementioned transitivity of the Weyl group on the set of fundamental systems.

Since each ϕ corresponds to each (n1, . . . , nr) ∈ Nr
0, substituting (4.2) into (1.2), we now obtain

the following explicit form of Witten zeta-functions:

ζW (s; g) = K(g)s
∞∑

m1=1

· · ·
∞∑

mr=1

∏

α∈∆+

〈α∨,m1λ1 + · · ·+mrλr〉−s, (4.3)

where

K(g) =
∏

α∈∆+

〈α∨, λ1 + · · ·+ λr〉. (4.4)

To investigate the analytic behaviour of the multiple sum part of (4.3), it is convenient to introduce
the following multi-variable version. Let s = (sα)α∈∆+ ∈ Cn, where n = |∆+|. Let

ζr(s; g) =

∞∑

m1=1

· · ·
∞∑

mr=1

∏

α∈∆+

〈α∨,m1λ1 + · · ·+mrλr〉−sα . (4.5)

Then

ζW (s; g) = K(g)sζr((s, . . . , s); g). (4.6)

If g is a direct sum of two Lie algebras g1 and g2, then

ζW (s; g) = ζW (s; g1)ζW (s; g2). (4.7)

This follows easily from the fact that any irreducible representation ϕ of g is equivalent to the
tensor product of two irreducible representations ϕ1 of g1 and ϕ2 of g2, and conversely, if ϕi is an
irreducible representation of gi (i = 1, 2) then ϕ1 ⊗ ϕ2 is an irreducible representation of g1 ⊕ g2.
Therefore it is sufficient to study Witten zeta-functions only in the case when g is simple. And
when g is simple, by using the data of the classification theory, we can give a more explicit form
of ζW (s; g) and ζr(s; g). We will discuss some low-rank cases in the next section.
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5 The cases A1, A2 and B2

Let g be of Ar type, that is, g = sl(r + 1). Since any positive coroot α∨ of sl(r + 1) can be
written as (3.2), we have

〈α∨,m1λ1 + · · ·+mrλr〉
=
∑

i≤k<j
〈α∨

k ,m1λ1 + · · ·+mrλr〉 = mi + · · ·+mj−1. (5.1)

Therefore

ζr(s;Ar) =

∞∑

m1=1

· · ·
∞∑

mr=1

∏

1≤i<j≤r+1

(mi + · · ·+mj−1)
−sij (5.2)

where sij corresponds to the coroot ei − ej .

Remark 5.1. If we put sij = 0 for all (i, j) with i ≥ 2, then (5.2) is reduced to (1.1). Therefore
ζr(s; g) is not only a multi-variable version of Witten zeta-functions, but also a generalization of
Euler-Zagier sums.

When r = 1, it is clear from (5.2) that ζ1(s;A1) is nothing but the Riemann zeta-function ζ(s).
The case r = 2 is also a classical object. In this case we find that

ζ2(s1, s2, s3;A2) =

∞∑

m1=1

∞∑

m2=1

m−s1
1 m−s2

2 (m1 +m2)
−s3 (5.3)

(s = (s1, s2, s3), here we use a suffix system different from that used in (5.2)), which is some-
times called the Mordell-Tornheim (or simply Tornheim) double zeta-function and denoted by
ζMT,2(s1, s2, s3). It is Tornheim [24] who first introduced the double series (5.3) and studied its
values when s1, s2, s3 are positive integers. He proved various evaluation formulas, which express
special values of (5.3) in terms of Bernoulli numbers. Mordell [19] considered the case when
s1 = s2 = s3 = k ∈ N, and proved that if k is even then

ζ2(k, k, k;A2) = C(k, k, k;A2)π
3k, C(k, k, k;A2) ∈ Q. (5.4)

In particular, when k = 2, Mordell obtained

ζ2(2, 2, 2;A2) =
1

2835
π6. (5.5)

The explicit value of C(k, k, k;A2) for even k ≥ 4 was obtained by Subbarao and Sitaramachan-
drarao [21], and by Zagier [33]. An evaluation formula for the value ζ2(k, k, k;A2) when k is odd
was obtained by Huard, Williams and Zhang [6].

Subbarao and Sitaramachandrarao [21] discovered a kind of reciprocity relation. They proved
that if k1, k2, k3 are positive even integers, then

ζ2(k1, k2, k3;A2) + ζ2(k2, k3, k1;A2) + ζ2(k3, k1, k2;A2)

can be expressed in terms of Bernoulli numbers. The third-named author [25] proved the following
more general result.
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Theorem 5.2 ([25]). Let k1, k2, k3 ∈ N0 satisfying k1 + k2 ≥ 2 and k3 ≥ 2. Then

ζ2(k1, k2, k3;A2) + (−1)k2ζ2(k2, k3, k1;A2) + (−1)k2+k3ζ2(k3, k1, k2;A2)

is a polynomial in ζ(j), 2 ≤ j ≤ k1 +k2 +k3, with rational coefficients. When k1 +k2 +k3 is even,
then the above quantity can be expressed in terms of Bernoulli numbers.

The second assertion of Theorem 5.2 is not explicitly stated in [25], but it can be seen from the
expression given in Theorem 3.1 of [15].

The basic idea in [25] (“u-method”) is to introduce the parameter u > 1, and consider the series

∞∑

m1=1

∞∑

m2=1

(−u)−m1−m2

ms1
1 m

s2
2 (m1 +m2)s3

(or some variant of it). Because of the existence of the factor (−u)−m1−m2 , the above series has
nice convergence properties, so we can treat it much easier than the original series (5.3). Then
finally take the limit u→ 1 carefully to obtain various formulas on (5.3).

A typical example of formulas given by Theorem 5.2 is as follows:

ζ2(4, 5, 3;A2)− ζ2(5, 3, 4;A2) + ζ2(3, 4, 5;A2) =
19

182432250
π12. (5.6)

Subbarao and Sitaramachandrarao [21] raised the problem of evaluating the special values of the
following alternating analogues of ζ2(s;A2):

∞∑

m1=1

∞∑

m2=1

(−1)m2

ms1
1 m

s2
2 (m1 +m2)s3

,

∞∑

m1=1

∞∑

m2=1

(−1)m1+m2

ms1
1 m

s2
2 (m1 +m2)s3

.

This problem was solved in some cases by the third-named author [26], [27], [29], again by the
u-method. In [27], [29], he introduced the partial Tornheim series

∞∑

m1=0

∞∑

m2=0

(2m1 + b1)
−s1(2m2 + b2)

−s2(2m1 + 2m2 + b1 + b2)
−s3 (5.7)

where b1, b2 ∈ {1, 2}, reduced the problem to the evaluation of special values of (5.7), and applied
the u-method to (5.7).

The above are the results on the special values of the series. Next we consider ζ2(s;A2) as a
function of complex variables. The meromorphic continuation of ζ2(s1, s2, s3;A2) to C3 was first
established by S. Akiyama and also by S. Egami in 1999, but both of their proofs are unpublished.
The second-named author proved the following theorem in [16].

Theorem 5.3 ([16]). The function ζ2(s1, s2, s3;A2) can be continued meromorphically to the whole
space C3, and its singularities are s1 + s3 = 1− l, s2 + s3 = 1− l (l ∈ N0), and s1 + s2 + s3 = 2.

The key to the proof of Theorem 5.3 in [16] is the Mellin-Barnes integral formula

(1 + λ)−s =
1

2π
√
−1

∫

(c)

Γ(s+ z)Γ(−z)
Γ(s)

λzdz, (5.8)
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where s, λ ∈ C, λ 6= 0, | arg λ| < π, <s > 0, c is real with −<s < c < 0, and the path of integration
is the vertical line from c−

√
−1∞ to c+

√
−1∞. To prove Theorem 5.3, at first assume that <sj

(j = 1, 2, 3) are sufficiently large. Applying (5.8) with λ = m2/m1, we have

m−s1
1 m−s2

2 (m1 +m2)
−s3 = m−s1−s3

1 m−s2
2

(
1 +

m2

m1

)−s3

=
1

2π
√
−1

∫

(c)

Γ(s3 + z)Γ(−z)
Γ(s3)

m−s1−s3−z
1 m−s2+z

2 dz,

(5.9)

where −<s3 < c < 0, and hence

ζ2(s1, s2, s3;A2)

=
1

2π
√
−1

∫

(c)

Γ(s3 + z)Γ(−z)
Γ(s3)

ζ(s1 + s3 + z)ζ(s2 − z)dz.
(5.10)

The meromorphic continuation can be shown by shifting the path of integration on the right-hand
side of (5.10) sufficiently to the right. This shifting is possible, because applying Stirling’s formula
to the gamma factors of the integrand one can see that the integrand is of rapid decay when
|=z| → ∞. Let M be a sufficiently large positive integer, ε be a small positive number. When
we shift the path of integration to <z = M − ε, the relevant poles are at z = 0, 1, . . . ,M − 1 and
z = s2 − 1. Therefore we have

ζ2(s1, s2, s3;A2)

=
Γ(s2 + s3 − 1)Γ(1− s2)

Γ(s3)
ζ(s1 + s2 + s3 − 1)

+
M−1∑

k=0

(−s3
k

)
ζ(s1 + s3 + k)ζ(s2 − k)

+
1

2π
√
−1

∫

(M−ε)

Γ(s3 + z)Γ(−z)
Γ(s3)

ζ(s1 + s3 + z)ζ(s2 − z)dz.

(5.11)

The last integral is holomorphic in the region <s3 > −M + ε, <(s1 + s3) > 1 −M + ε, <s2 <
1 +M − ε. Since M is arbitrary, this implies the meromorphic continuation of ζ2(s1, s2, s3;A2) to
C3. Moreover, we find that s1 + s3 = 1− l, s2 + s3 = 1− l, and s1 + s2 + s3 = 2 are singularities of
the residue terms on the right-hand side of (5.11). Apparently s2 = 1 + l also seems singular, but
this singularity is cancelled. The proof of Theorem 5.3 is complete.

Recently the first-named author [9] obtained an alternative proof of the meromorphic continua-
tion of ζ2(s1, s2, s3;A2), whose main tool is surface integration.

Next consider the Br case. We have

ζr(s;Br)

=

∞∑

m1=1

· · ·
∞∑

mr=1

∏

1≤i≤r
(2(mi + · · ·+mr−1) +mr)

−si

×
∏

1≤i<j≤r
(mi + · · ·+mj−1)

−s−ij

×
∏

1≤i<j≤r
(mi + · · ·+mj−1 + 2(mj + · · ·+mr−1) +mr)

−s+ij ,

(5.12)
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where si, s
−
ij , s

+
ij correspond to 2ei, ei − ej , ei + ej , respectively. In particular,

ζ2(s1, s2, s3, s4;B2)

=
∞∑

m1=1

∞∑

m2=1

m−s1
1 m−s2

2 (m1 +m2)
−s3(2m1 +m2)

−s4 (5.13)

(s = (s1, s2, s3, s4)). This multi-variable zeta-function for B2 was introduced by the second-named
author in [17], which inspired the general definition (4.5) of ζr(s; g), given in [18] (in the Ar case),
[10], and [11]. In [17], similarly to (5.11), it has been shown that

ζ2(s1, s2, s3, s4;B2) =
1

2π
√
−1

∫

(c)

Γ(s4 + z)Γ(−z)
Γ(s4)

× ζ2(s1, s2 − z, s3 + s4 + z;A2)dz.

(5.14)

The analytic properties of ζ2(s;B2), which can be derived from (5.14), are discussed in [11].
In [28], the third-named author showed that ζ2(r1, r2, r3, r4;B2), where r1, r2, r3, r4 ∈ N0 for

which the series is convergent, can be expressed as a sum of special values of ζ2(s;A2) and the
series (5.7). Therefore, using the results in [6] and [29], we can deduce evaluation formulas for
ζ2(r1, r2, r3, r4;B2). A typical example is

ζ2(2, 2, 1, 2;B2) = −185

16
ζ(7) +

55

48
π2ζ(5). (5.15)

6 Mellin-Barnes reductions

In the preceding section, we gave the Mellin-Barnes integral expressions of ζ2(s;A2) and ζ2(s;B2)
((5.10) and (5.13), respectively), from which the meromorphic continuation of those functions can
be proved. In [17], this argument has been much more generalized. Let Mnr = (aij)1≤i≤n,1≤j≤r be
an n× r matrix, where aij are non-negative real numbers. Assume that all rows and all columns
of Mnr include at least one non-zero element. Define

ζr(s1, . . . , sn;Mnr) =
∞∑

m1=1

· · ·
∞∑

mr=1

(a11m1 + · · ·+ a1rmr)
−s1

× · · · × (an1m1 + · · ·+ anrmr)
−sn .

(6.1)

Then

Theorem 6.1 ([17]). The function ζr(s1, . . . , sn;Mnr) can be continued meromorphically to the
whole space Cn.

From this theorem it immediately follows that ζr(s; g), defined by (4.5), can be continued mero-
morphically to Cn.

Note that Essouabri [3] [4] developed a method of proving the continuation of very general form
of multiple Dirichlet series, which is quite different from our Mellin-Barnes argument. The contin-
uation of ζr(s; g), and even the above Theorem 6.1, is actually included in Essouabri’s theorem.
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However, our argument has an advantage; from the Mellin-Barnes integral expression it is not
difficult to deduce various explicit information, such as location of singularities. Another important
point is that, by our method, we can find a recursive structure among the family of multiple
zeta-functions. In fact, (5.10) is an expression of ζ2(s;A2) by a “simpler” zeta-function, that is
ζ(s). Similarly, (5.14) expresses ζ2(s;B2) by ζ2(s;A2), which is “simpler” than ζ2(s;B2). We may
understand that there is the recursive structure

A2 → (A1, A1), B2 → A2. (6.2)

The same structure can be found in higher-rank situation. For this purpose, now we introduce the
notion of multiple zeta-functions of root sets. Let ∆∗ be a subset of ∆+ = ∆+(g). We call ∆∗ a
root set if for any λj (1 ≤ j ≤ r) there exists an element α ∈ ∆∗ such that 〈α∨, λj〉 6= 0. If ∆∗ is a
root set, we can define

ζr(s;∆
∗) =

∞∑

m1=1

· · ·
∞∑

mr=1

∏

α∈∆∗
〈α∨,m1λ1 + · · ·mrλr〉−sα , (6.3)

where s = s(∆∗) = (sα)α∈∆∗ ∈ Cn∗ with n∗ = |∆∗|. We call ζr(s;∆
∗) the zeta-function of the root

set ∆∗. When ∆∗ = ∆+(g), ζr(s;∆
∗) coincides with ζr(s; g) defined by (4.5). From this viewpoint

it is suitable to call ζr(s; g) the zeta-function of the root system ∆.
Consider the zeta-function of Ar-type, that is (5.3). Define the root set

∆∗
h(Ar) = {ε1 − εj | 2 ≤ j ≤ h} ∪ {εi − εj | 2 ≤ i < j ≤ r + 1} (6.4)

for 2 ≤ h ≤ r + 1 and

∆∗(Ar) = {εi − εj | 2 ≤ i < j ≤ r + 1}. (6.5)

The term (m1+ · · ·+mr)
−s1,r+1 corresponds to the coroot e1−er+1, or the root ε1−εr+1. Applying

the Mellin-Barnes formula (5.8) we have

(m1 + · · ·+mr)
−s1,r+1 = (m1 + · · ·+mr−1)

−s1,r+1

× 1

2π
√
−1

∫

(c)

Γ(s1,r+1 + z)Γ(−z)
Γ(s1,r+1)

(
mr

m1 + · · ·+mr−1

)z
dz,

(6.6)

and hence

ζr(s;Ar) =
1

2π
√
−1

∫

(c)

Γ(s1,r+1 + z)Γ(−z)
Γ(s1,r+1)

× ζr(s∗(Ar, z);∆∗
r(Ar))dz,

(6.7)

where

s∗(Ar, z) = (s12, . . . , s1,r−1, s1r + s1,r+1 + z, s23, . . . , sr,r+1 − z). (6.8)

The formula (6.7) gives the recursive relation ζr(· ;Ar) → ζr(· ;∆∗
r(Ar)), which corresponds to

removing one root ε1 − εr+1 from ∆+(Ar). Similarly, ζr(· ;∆∗
r(Ar)) can be expressed as the

Mellin-Barnes integral involving ζr(· ;∆∗
r−1(Ar)). Repeating this procedure, we finally arrive at

ζr(· ;∆∗
2(Ar)). In the definition of ζr(· ;∆∗

2(Ar)), the only term including m1 is m−s12
1 , so the sum

with respect to m1 can be completely separated. Hence ζr(· ;∆∗
2(Ar)) can be written as a product
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of ζr−1(· ;∆∗(Ar)) and ζ(·). However the root set ∆∗(Ar) is actually equivalent to ∆+(Ar−1).
Therefore, corresponding to the reduction of root sets

∆+(Ar) = ∆∗
r+1(Ar) ⊃ ∆∗

r(Ar) ⊃ ∆∗
r−1(Ar) ⊃ · · ·

· · · ⊃ ∆∗
2(Ar) ⊃ ∆∗(Ar) = ∆+(Ar−1),

(6.9)

the recursive structure among zeta-functions

ζr(· ;Ar)→ ζr(· ;∆∗
r(Ar))→ · · · → ζr(· ;∆∗

3(Ar))

→ ζr(· ;∆∗
2(Ar)) = ζr−1(· ;Ar−1)ζ(·)

(6.10)

exists, which can be described by Mellin-Barnes integrals. The conclusion of (6.10) can be sum-
marized as

Ar → (Ar−1, A1), (6.11)

a generalization of the first relation of (6.2).
The same type of recursive structures can be found for zeta-functions of the other root systems.

For the details, see [11].

7 Dynkin diagrams and Dynkin reductions

In this section we introduce the notion of Dynkin diagrams, and explain the recursive structure
given in the preceding section in terms of Dynkin diagrams.

Let g be a semisimple Lie algebra, and Ψ = Ψ(g) = {α1, . . . , αr} be a fundamental system. We
define the Dynkin diagram Γ = Γ(g) associated with g as follows. First, to each αi, we associate
a vertex, with the weight 〈αi, αi〉. Any two different vertices αi and αj are connected by aij · aji
edges, where aij = a(αj , αi) is the Cartan integer defined by (2.3). In particular, if 〈αi, αj〉 = 0,
then there is no edge which connects αi and αj . The number of edges connecting two vertices are
1, 2, or 3. In the case when number of edges are 2 or 3, we add an arrow, pointing from the vertex
of higher weight to that of lower weight.

Since simple Lie algebras are corresponding to irreducible root systems, it is easy to see that
Γ(g) is connected if and only if g is simple. Therefore the problem of the classification of simple
Lie algebras can be reduced to that of the classification of connected Dynkin diagrams.

In the case of Ar type, the fundamental system consists of αi = εi− εi+1 (1 ≤ i ≤ r). For i 6= j,

αi + tαj = εi − εi+1 + t(εj − εj+1)

is a root if and only if t = 0 or t = 1, i + 1 = j or t = 1, j + 1 = i. Therefore if |i − j| = 1, then
the αi-string through αj consists of just two elements, so by (2.4) we have aji = −1. Hence the
vertices αi and αj are connected by just one edge. If |i − j| ≥ 2, then a(αj , αi) = 0, or in other
words αi and αj are orthogonal to each other, and there is no edge between the corresponding
vertices. Therefore the Dynkin diagram Γ(Ar) is as follows:

α1c α2c c �������� c c c αrc (Ar)

Figure 1:

The Mellin-Barnes reduction process for Ar, described in the preceding section, is actually the
process of removing all terms corresponding to the roots ε1 − εh (2 ≤ h ≤ r + 1). These roots are
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exactly the roots which include the term α1 when one writes them as sums of fundamental roots.
Therefore we can summarize that the process is to separate α1 from the other fundamental roots,
that is, to cut off the leftmost edge of the above Dynkin diagram. Then the resulting diagram has
two connected components, which are diagrams of A1 and Ar−1.

α1c α2c c �������� c c c αrc (Ar)

Figure 2:

Therefore the above cutting process expresses the recursive relation (6.11).
The cutting of some other edge gives a different recursive relation. If one cuts the edge between

αl−1 and αl, one finds that the two connected components of the resulting diagram are the diagrams
of Al−1 and Ar−l+1. This implies that ζr(s;Ar) can be expressed as an integral of the Mellin-
Barnes type whose integrand includes ζl−1(· ;Al−1) and ζr−l+1(· ;Ar−l+1). We write this structure
as Ar → (Al−1, Ar−l+1). In general, we can show the following theorem.

Theorem 7.1 ([11]). By cutting off any edge of a Dynkin diagram, we find that the zeta-function
of the corresponding root system can be written as a (multiple) integral, whose integrand includes
zeta-functions of every connected components of the resulting Dynkin diagram.

Examine the Br case. In this case, for 1 ≤ i, j ≤ r − 1, i 6= j, we have aij = 1 if |i− j| = 1 and
aij = 0 otherwise. Also we have ar−1,r = 1. However ar,r−1 = 2, because

αr−1 + tαr = εr−1 − εr + tεr

is a root for t = 0, 1, 2. Moreover, since 〈αi, αi〉 = 1/(2r − 1) (1 ≤ i ≤ r − 1) and 〈αr, αr〉 =
1/2(2r − 1) (see (4.4.49) of [30]), the direction of the arrow is from αr−1 to αr. Therefore the
Dynkin diagram for Br is as follows.

α1c α2c c �������� c c c 〉 αrc (Br)

Figure 3:

If one cuts the leftmost edge, one obtains the recursive structure Br → (Br−1, A1). This is an
analogue of (6.11). On the other hand, if one cuts the rightmost two edges, one obtains a different
recursive structure, that is Br → (Ar−1, A1). Another way is to cut only one of the rightmost
edges. In this case the resulting diagram is still connected, that is the diagram of Ar. Therefore
the corresponding recursive relation is Br → Ar.

We do not mention the recursive structures for the Cr and Dr cases, but those are also discussed
in [11]. Those structures give a way of expressing zeta-functions of higher-rank root systems
as a (multiple) integral involving zeta-functions of lower-rank root systems. Therefore, analytic
properties of zeta-functions of root systems can be obtained inductively, by going upstream the
arrows in the recursive structures. Following this way, we have determined all the singularity sets
of ζ3(s;A3) in [18]. The list of possible singularity sets of ζ3(s;B3) and ζ3(s;C3) are given in [11].

Among the five exceptional algebras, the most accessible one is G2. It is known that the Dynkin
diagram of G2 is as follows.

Therefore, by cutting one edge we have G2 → B2. By using this structure we can study the
properties of the zeta-function of G2, which will be given in [13].
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α1c 〉 α2c (G2)

Figure 4:

8 The Weyl group symmetry

It is known that in Lie theory, the Weyl groups play essential roles. For example, Weyl’s
dimension formula is derived by using this symmetry. Therefore it is natural to investigate the
Weyl group symmetry of zeta-functions of root systems. Our starting point is functional relations
among Lerch zeta-functions ϕ(s, y) and Bernoulli polynomials Bk(y), namely,

ϕ(k, y) + (−1)kϕ(k,−y) = −Bk({y})
(2π
√
−1)k

k!
, (8.1)

where k ∈ Z≥2, y ∈ R, ϕ(s, y) is the Lerch zeta-function defined by

ϕ(s, y) =

∞∑

m=1

e2π
√−1my

ms
(8.2)

and
tet{y}

et − 1
=

∞∑

k=0

Bk({y})
tk

k!
, (8.3)

with {y} = y − [y] (i.e. fractional part).
Motivated by this observation, we introduce Lerch-type generalizations of (4.5) as

ζr(s,y; g) =

∞∑

m1=1

· · ·
∞∑

mr=1

e2π
√−1〈y,m1λ1+···+mrλr〉

×
∏

α∈∆+

〈α∨,m1λ1 + · · ·+mrλr〉−sα ,
(8.4)

where y ∈ h0. To define an action of the Weyl group, we identify s = (sα)α∈∆+ with (sα)α∈∆ by
sα = s−α. Since w(−α) = −w(α) for α ∈ ∆ and w ∈W , an action of the Weyl group is naturally
induced on any function f in s and y as follows: For w ∈W ,

(wf)(s,y) = f(w−1s, w−1y), (8.5)

where for β ∈ ∆,

(σβs)α = sσβα, (8.6)

σβy = y − 〈y, β〉β∨. (8.7)

We define a main object of the following sections as follows:

S(s,y; g) =
∑

w∈W

( ∏

α∈∆+∩w∆−

(−1)−sα

)
(wζr)(s,y; g). (8.8)

Here we give two examples, from which we will observe that the function S(s,y; g) plays an role
of periodic Bernoulli functions in the classical theory.

128



Y. Komori, K. Matsumoto and H. Tsumura

Example 8.1. In the A1 case, we have ∆+ = {α = α1} and W = {id, σα}. By putting y = yα∨

and s = (k) with k ∈ Z≥2, we obtain

ζ1(s,y;A1) =

∞∑

m=1

e2π
√−1mym−k = ϕ(k, y) (8.9)

and
S(s,y;A1) = ϕ(k, y) + (−1)−kϕ(k,−y), (8.10)

which is reduced to the left-hand side of (8.1).

Example 8.2. In the A2 case with y = 0, we have ∆+ = {α1, α2, α1 + α2} and

W = {id, σ1, σ2, σ1σ2, σ2σ1, σ1σ2σ1 = σ2σ1σ2},

where σ1 = σα1 and σ2 = σα2 . For simplicity we set sα1 = k1, sα2 = k2, sα1+α2 = k3 with
k1, k2, k3 ∈ Z≥2 and we abbreviate ζ2(s,0;A2) = ζ2(s1, s2, s3;A2). We obtain

∆+ ∩ id∆− = ∅,
∆+ ∩ σ1∆− = {α1},
∆+ ∩ σ2∆− = {α2},

∆+ ∩ σ1σ2∆− = {α1, α1 + α2},
∆+ ∩ σ2σ1∆− = {α2, α1 + α2},

∆+ ∩ σ1σ2σ1∆− = {α1, α2, α1 + α2},

(8.11)

which implies

S(s,y;A2)

= ζ2(k1, k2, k3;A2) + (−1)−k1ζ2(k1, k3, k2;A2)

+ (−1)−k2ζ2(k3, k2, k1;A2) + (−1)−k1−k3ζ2(k2, k3, k1;A2)

+ (−1)−k2−k3ζ2(k3, k1, k2;A2)

+ (−1)−k1−k2−k3ζ2(k2, k1, k3;A2)

= (1 + (−1)k1+k2+k3)

× (ζ2(k1, k2, k3;A2) + (−1)k2ζ2(k2, k3, k1;A2)

+ (−1)k1ζ2(k3, k1, k2;A2))

(8.12)

by use of ζ2(k1, k2, k3;A2) = ζ2(k2, k1, k3;A2). When k1 + k2 + k3 is even, then (8.12) coincides
with the linear combination in Theorem 5.2 up to a constant factor. Hence they can be expressed
in terms of Bernoulli numbers.

From these examples, we can expect that S(k,y; g) has nice properties when all kα are positive
integers. In fact, in the next section we will construct multiple generalizations of periodic Bernoulli
functions P (k,y; g), so that S(k,y; g) is expressed in terms of them. More precisely we have

Theorem 8.3 ([12]).

S(k,y; g) = (−1)n
( ∏

α∈∆+

(2π
√
−1)kα

kα!

)
P (k,y; g). (8.13)
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That is, the value at s = k of the Weyl group symmetric linear combination of ζr(s,y; g) can
be expressed in terms of generalized periodic Bernoulli functions P (s,y; g). Since P (s,y; g) can
be explicitly calculated (see the next section), Theorem 8.3 gives relations among special values of
ζr(s,y; g).

We omit the proof of Theorem 8.3 and admit this statement because it is quite lengthy. For the
details, see [12].

It should be noted that in [22, 23], Szenes studied generalizations of Bernoulli polynomials from
the viewpoint of the theory of arrangement of hyperplanes which include P (k,y; g) appearing
above, and that he also gave an algorithm for calculating them by use of iterated residues of
meromorphic functions at the points of indeterminacy.

Corollary 8.4. Assume that k = (kα)α∈∆+ ∈ 2Nn satisfies k = wk for all w ∈W . Then

ζr(k,0; g) =
1

|W |(−1)n
( ∏

α∈∆+

(2π
√
−1)kα

kα!

)
P (k,0; g). (8.14)

If all kα = k, then k = wk for all w ∈ W and hence Corollary 8.4 implies ζr((k, k, ..., k),0; g) ∈
Qπ|k|, where |k| = ∑

α∈∆+
kα. This is called Witten’s volume formula [32, 33]. Our (8.14) gives

the explicit value of the rational coefficient, which was not determined in the original formula of
Witten.

Example 8.5. We have

ζ2((2, 2, 2),0;A2) =
1

6
(−1)3

(2π
√
−1)6

(2!)3
1

3780
=

π6

2835
, (8.15)

where the rational number 1/3780 is P ((2, 2, 2),0;A2) and calculated by using the explicit form
of the generating function given in Example 9.2 in the next section. This recovers Mordell’s result
(5.5).

In an irreducible root system, k = wk for all w ∈ W is equivalent to kα = kβ if 〈α, α〉 = 〈β, β〉.
Hence if the root system is non-simply laced, that is, in the cases of Br, Cr, F4, G2, then by
Corollary 8.4, we can also obtain generalizations of Witten’s volume formula. The following is a
typical example.

Example 8.6. In the root system of type B2, we have ∆+ = {α1, α2, α1 + α2, α1 + 2α2} and
(α1 + α2)

∨ = 2α∨
1 + α∨

2 , (α1 + 2α2)
∨ = α∨

1 + α∨
2 . Hence by setting kα1 = kα1+2α2 = 4, kα2 =

kα1+α2 = 2, we obtain

ζ2(k,0;B2)

=
∞∑

m1,m2=1

1

m4
1m

2
2(m1 +m2)4(2m1 +m2)2

=
(−1)4

222!

(
(2π
√
−1)2

2!

)2((2π
√
−1)4

4!

)2 53

1513512000

=
53π12

6810804000
.

(8.16)

Before proceeding to the construction of generating functions of generalized periodic Bernoulli
functions, we discuss the Weyl symmetry of the function S(k,y; g) and its consequence. Denote
by Z≥2 the set of integers ≥ 2.
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Theorem 8.7 ([12]). For k ∈ Zn≥2 and y ∈ h0, and for w ∈W , we have

(wS)(k,y; g) =
( ∏

α∈∆+∩w∆−

(−1)−kα

)
S(k,y; g). (8.17)

This theorem can be easily derived from definition (8.8). Furthermore direct calculations yield
the following corollary.

Corollary 8.8. For k ∈ Zn≥2 and y ∈ h0, we have S(k,y; g) = 0 if there exists an element
w ∈Wk ∩Wy such that ∑

α∈∆+∩w∆−

kα 6∈ 2Z, (8.18)

where Wk and Wy are the stabilizers of k and y respectively by regarding y ∈ h0 (mod
⊕r

j=1 Zα∨
j ).

Example 8.9. In the A1 case, choosing an odd k(> 1) and w = σα in Example 8.1, we see that

(wS)(k,y;A1) = −S(k,y;A1), (8.19)

by Theorem 8.7. Let y = jα∨/2 ∈ (α∨/2)Z. Then wy = −y = −jα∨/2 = jα∨/2 (mod Q∨), and
so

(wS)(k,y;A1) = S(k,−jα∨/2;A1) = S(k, jα∨/2;A1).

This and (8.19) imply S(k,y;A1) = 0. This is the simplest case of Corollary 8.8, and is nothing
but the classical result Bk(0) = Bk(1/2) = 0 when k(> 1) is odd.

Example 8.10. In the root system of type A2, we set y = y1α
∨
1 + y2α

∨
2 and consider

S((3, 2, 2), (y1, y2);A2). We see that ∆+ ∩ σ1∆− = {α1}, σ1(s1, s2, s3) = (s1, s3, s2) and σ1y =
y − 〈y, α1〉α∨

1 . Hence if 〈y, α1〉 ∈ Z, then σ1y ≡ y (mod Q∨), which is equivalent to

y1 =
2n+ y

3
, y2 =

n+ 2y

3
, (8.20)

where n ∈ Z and y ∈ R. Therefore we see that

S
(
(3, 2, 2),

(2n+ y

3
,
n+ 2y

3

)
;A2

)
= 0 (8.21)

for all n ∈ Z and y ∈ R by Corollary 8.8.
In fact, (8.21) is directly checked by use of the explicit form of S((3, 2, 2), (y1, y2);A2). We have

S((3, 2, 2), (y1, y2);A2) = −128
√
−1π7×

( 1

840
{y1}7 +

1

240
{y2 − y1}{y1}6 −

1

160
{y1}6 +

1

240
{y2 − y1}2{y1}5

− 1

60
{y2 − y1}{y1}5 +

1

90
{y1}5 −

1

96
{y2 − y1}2{y1}4 +

1

48
{y2 − y1}{y1}4

− 1

144
{y1}4 +

1

144
{y2 − y1}2{y1}3 −

1

144
{y2 − y1}{y1}3 −

{y1}3
4320

− 1

480
{y2 − y1}{y1}2 +

1

960
{y1}2 −

{y2 − y1}2{y1}
1440

+
{y2 − y1}{y1}

1440

+
{y1}
12096

+
{y2}7
1260

+
1

240
{y1 − y2}{y2}6 −

7{y2}6
1440

+
1

120
{y1 − y2}2{y2}5 −

1

48
{y1 − y2}{y2}5 +

1

96
{y2}5 +

1

144
{y1 − y2}3{y2}4
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− 1

32
{y1 − y2}2{y2}4 +

5

144
{y1 − y2}{y2}4 −

5

576
{y2}4 −

{y1 − y2}3
4320

− 1

72
{y1 − y2}3{y2}3 +

5

144
{y1 − y2}2{y2}3 −

1

48
{y1 − y2}{y2}3 +

1

720
{y2}3

+
{y1 − y2}2

2880
+

1

144
{y1 − y2}3{y2}2 −

1

96
{y1 − y2}2{y2}2 +

1

720
{y1 − y2}{y2}2

+
1

960
{y2}2 −

{y1 − y2}
60480

− 1

720
{y1 − y2}2{y2}+

1

720
{y1 − y2}{y2}

− {y2}
10080

+
{y2 − y1}

10080
− 1

10080

)
, (8.22)

which can be calculated by use of the generating function. (See the next section.)

9 Generating functions and Bernoulli polynomials of root systems

As mentioned in the previous section, we construct the generating functions of multiple periodic
Bernoulli functions. To this end, we prepare some definitions.

Let V be the set of all bases V ⊂ ∆+. For V ∈ V , let V∨ = {β∨}β∈V and V∗ = {µV
β }β∈V, the

dual basis of V∨, that is, 〈α∨, µV
β 〉 = δαβ for α, β ∈ V. Let Q∨ =

⊕r
i=1 Zα∨

i be the coroot lattice
and L(V∨) =

⊕
β∈V Zβ∨. Then we see that L(V∨) is a sublattice of Q∨ with finite index.

Besides these definitions, we need to define a fractional part of y ∈ h0. There are two possibilities
of the “fractional part” even in the one-dimensional case, namely, for y ∈ R,

{y}r = y − byc,
{y}l = 1 + y − dye = 1− (−y) + b−yc = 1− {−y}r,

(9.1)

where

byc = max{m ∈ Z | m ≤ y},
dye = min{m ∈ Z | m ≥ y}. (9.2)

Note that {y}r is right-continuous while {y}l is left-continuous and that {y}r = {y}l for y ∈ R \Z.
Although {y}r is usually called the fractional part {y} of y and used extensively, we may work
with {y}l instead. In multiple cases, there are more possibilities and no standard choice. Hence
we need to fix a direction from which the “fractional part” is continuous. To do so, we fix φ ∈ h0

such that 〈φ, µV
β 〉 6= 0 for all V ∈ V and all β ∈ V, and we define

{y}V,β =

{
{〈y, µV

β 〉} (〈φ, µV
β 〉 > 0),

1− {−〈y, µV
β 〉} (〈φ, µV

β 〉 < 0)
(9.3)

for y ∈ h0, where {y} = {y}r denotes the fractional part of y in the usual sense. It is clear that
{y}V,β depends on a specific choice of φ. However it can be shown that the generating functions
F (t,y; g) defined just below with this symbol, are independent of φ if the root system is not of
type A1.

Now we are in position to define the generating functions of multiple analogues of periodic
Bernoulli functions. By introducing new variables t = (tα)α∈∆+ and using the definitions above,
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we define

F (t,y; g)

=
∑

V∈V

( ∏

γ∈∆+\V

tγ

tγ −
∑

β∈V tβ〈γ∨, µV
β 〉
)

× 1

|Q∨/L(V∨)|
∑

q∈Q∨/L(V∨)

(∏

β∈V

tβ exp(tβ{y + q}V,β)
etβ − 1

)
.

(9.4)

It seems that F (t,y; g) has a singularity at the origin with respect to t. However, F (t,y; g) is
indeed holomorphic in the neighborhood of the origin. (In fact, this statement follows from its
construction. See [14].) Hence this function is expanded as

F (t,y; g) =
∑

k∈Nn
0

P (k,y; g)
∏

α∈∆+

tkα
α

kα!
, (9.5)

by which we define the periodic Bernoulli function P (k,y; g) of type g.

Example 9.1. With the same notation as in Example 8.1, we put t = (t). Then we have V = {V}
with

V∨ = {α∨}, V∗ = {λ}. (9.6)

We choose φ = α∨, so that 〈φ, λ〉 = 1 > 0 and

{y}V,α = {〈y, λ〉} = {y}. (9.7)

Therefore we obtain

F (t,y;A1) =
tet{y}

et − 1
=

∞∑

k=0

P (k, y;A1)
tk

k!
, (9.8)

where P (k, y;A1) = Bk({y}).
Here we observe what will happen if we choose φ = −α∨. Then (9.7) is replaced by

{y}V,α = 1− {−〈y, λ〉} = 1− {−y} (9.9)

and the resulting periodic Bernoulli functions are

P (k, y;A1) = Bk(1− {−y}) = Bk({y}), (9.10)

due to the property Bk(0) = Bk(1) if k 6= 1, which coincide with those of (9.8) if k 6= 1. Hence
the replacement (9.9) only affects the definition of P (1, y;A1). In the case of the root systems
other than A1, this phenomenon does not happen. Namely, P (k,y;Xr) does not depend on φ if
Xr 6= A1.

Example 9.2. We treat the A2 case. As in Example 8.2, we put t = (tα1 , tα2 , tα1+α2) = (t1, t2, t3)
and set y = y1α

∨
1 + y2α

∨
2 . Fix φ = α∨

1 + εα∨
2 with a sufficiently small ε > 0. Since ∆∨

+ =
{α∨

1 , α
∨
2 , α

∨
1 + α∨

2 }, we have V = {V1,V2,V3}, where

V∨
1 = {α∨

1 , α
∨
2 }, V∗

1 = {λ1, λ2}, (9.11a)

V∨
2 = {α∨

1 , α
∨
1 + α∨

2 }, V∗
2 = {λ1 − λ2, λ2}, (9.11b)

V∨
3 = {α∨

2 , α
∨
1 + α∨

2 }, V∗
3 = {λ2 − λ1, λ1}. (9.11c)
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Correspondingly we obtain

F (t,y;A2) =
t3

t3 − t1 − t2
t1e

t1{y1}

et1 − 1

t2e
t2{y2}

et2 − 1
(9.12a)

+
t2

t2 + t1 − t3
t1e

t1{y1−y2}

et1 − 1

t3e
t3{y2}

et3 − 1
(9.12b)

+
t1

t1 + t2 − t3
t2e

t2(1−{y1−y2})

et2 − 1

t3e
t3{y1}

et3 − 1
. (9.12c)

For example, we have

P ((2, 2, 2), (y1, y2);A2) =
1

3780
+

1

90
({y1} − {y1 − y2} − {y2})

+
1

90
(−{y1}2 − 2{y1 − y2}{y1}+ {y1 − y2}2 − {y2}2 + 2{y1 − y2}{y2})

+
1

18
(−{y1}3 + 3{y1 − y2}{y1}2 + 3{y2}3 + 3{y1 − y2}{y2}2)

+
1

18
({y1}4 − 2{y1 − y2}{y1}3 − 3{y1 − y2}2{y1}2

− 5{y2}4 − 10{y1 − y2}{y2}3 − 3{y1 − y2}2{y2}2)

+
1

30
({y1}5 − 5{y1 − y2}{y1}4 + 10{y1 − y2}2{y1}3

+ 5{y2}5 + 15{y1 − y2}{y2}4 + 10{y1 − y2}2{y2}3)

+
1

30
(−{y1}6 + 4{y1 − y2}{y1}5 − 5{y1 − y2}2{y1}4

− {y2}6 − 4{y1 − y2}{y2}5 − 5{y1 − y2}2{y2}4).

(9.13)

In particular, by putting y1 = y2 = 0, we obtain

P ((2, 2, 2),0;A2) =
1

3780
, (9.14)

which implies (8.15).

From this example, we see that if we can remove the fractional parts symbolically in P ((2, 2, 2), (y1, y2);A2),
then it is indeed a polynomial in y1 and y2 and is of total degree 6. This fact holds in the case of
any root system and is formulated as follows.

Theorem 9.3 ([12, 14]). The function P (k,y; g) is analytically continued to a polynomial function
on the whole space C⊗ h0 ' h with its total degree at most |k|.

We call the polynomials obtained in Theorem 9.3 Bernoulli polynomials of type g, which are
multiple generalizations of classical Bernoulli polynomials.

10 L-functions of root systems

In the previous section, we obtained the explicit form of generating functions of multiple periodic
Bernoulli functions of root systems. Here we apply them to the calculation of special values of
L-functions of root systems.
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For comparison, first we review some results about classical L-functions. For a primitive Dirichlet
character χ of conductor f , g(χ) denotes the Gauss sum defined by

g(χ) =

f−1∑

m=0

χ(m)e2π
√−1m/f . (10.1)

The Dirichlet L-function associated with χ is defined by

L(s, χ) =
∞∑

n=1

χ(n)

ns
. (10.2)

Then it is known that special values of the L-function are given in terms of Bernoulli polynomials
by the following formula: For k satisfying (−1)−kχ(−1) = 1,

L(k, χ)g(χ) =
−1

2

(2π
√
−1)k

k!

f∑

a=1

χ(a)Bk(a/f). (10.3)

This formula can be rewritten in terms of the classical generalized Bernoulli numbers. Let Bk,χ be
the k-th classical generalized Bernoulli number given by

Bk,χ = fk−1
f∑

a=1

χ(a)Bk(a/f) (10.4)

(see [31, Proposition 4.1], [8, p.10]), which is also given in terms of the generating function as

f∑

a=1

χ(a)teta

eft − 1
=

∞∑

k=0

Bk,χ
tk

k!
. (10.5)

Then we have the formula

L(k, χ) =
(−1)k+1

2

(2π
√
−1)k

k!fk
g(χ)Bk,χ (10.6)

(see [8, p.12]). It is also known that the following parity result holds for generalized Bernoulli
numbers:

Bk,χ = 0 (10.7)

if (−1)−kχ(−1) 6= 1 and χ is non-trivial.
In the following, we will observe how these classical results are generalized to the case of L-

functions of root systems.
Let χα be a Dirichlet character modulo fα ∈ N for α ∈ ∆ with χα = χ−α. Set χ = (χα)α∈∆.

We define an action of W on characters by

(wχ)α = χw−1α (10.8)

and define the multiple L-function by

Lr(s,χ; g) =
∞∑

m1=1

· · ·
∞∑

mr=1

∏

α∈∆+

χα(〈α∨,m1λ+ · · ·+mrλr〉)
〈α∨,m1λ1 + · · ·+mrλr〉sα

. (10.9)
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It is possible to show that Lr(s,χ; g) can be continued meromorphically to the whole space
([14]). In the case of multiple L-functions of Euler-Zagier type (that is, series of type (1.1) with
Dirichlet characters), the meromorphic continuation and the location of possible singularities were
already studied by Akiyama and Ishikawa [1].

Now we state a formula for the special value Lr(k,χ; g) in terms of multiple periodic Bernoulli
functions P (k,y; g). Set

cα(m) =
1

fα

fα∑

aα=1

χα(aα)e−2π
√−1aαm/fα . (10.10)

Then we have

χα(m) =

fα∑

aα=1

cα(aα)e2π
√−1aαm/fα . (10.11)

Note that if χα is a primitive character of conductor fα, we have

cα(m) =
χα(m)

g(χα)
, (10.12)

so that

χα(m)g(χα) =

fα∑

aα=1

χα(aα)e2π
√−1aαm/fα . (10.13)

For a = (aα)α∈∆+ ∈ Zn and f = (fα)α∈∆+ ∈ Nn, let

y(a; f) =
∑

α∈∆+

aαα
∨/fα. (10.14)

Then we have the following result, which is regarded as a generalization of (10.3).

Theorem 10.1 ([14]). Let kα ∈ Z≥2 for α ∈ ∆+, and assume

kα = kβ, χα = χβ if 〈α, α〉 = 〈β, β〉,
(−1)−kαχα(−1) = 1.

(10.15)

Then we have

Lr(k,χ; g) =
(−1)n

|W |

( ∏

α∈∆+

(2π
√
−1)kα

kα!

) fα∑

aα=1
α∈∆+

( ∏

α∈∆+

cα(aα)
)
P (k,y(a; f); g), (10.16)

and in particular, if all χα’s are primitive,

Lr(k,χ; g)
∏

α∈∆+

g(χα)

=
(−1)n

|W |

( ∏

α∈∆+

(2π
√
−1)kα

kα!

) fα∑

aα=1
α∈∆+

( ∏

α∈∆+

χα(aα)
)
P (k,y(a; f); g). (10.17)
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We define the generalized Bernoulli numbers Bk,χ(g) of type g, by its generating function
G(t,χ; g) as

G(t,χ; g) =

fα∑

aα=1
α∈∆+

( ∏

α∈∆+

χα(aα)/fα

)
F (f t,y(a; f); g)

=
∑

k∈Nn
0

Bk,χ(g)
∏

α∈∆+

tkα
α

kα!
,

(10.18)

where f t = (fαtα)α∈∆+ . Then we have a multiple generalization of (10.4).

Theorem 10.2 ([14]). We have

Bk,χ(g) =
( ∏

α∈∆+

fkα−1
α

) fα∑

aα=1
α∈∆+

( ∏

α∈∆+

χα(aα)
)
P (k,y(a; f); g). (10.19)

By combining Theorems 10.1, 10.2 and the formula

χ(−1)g(χ)g(χ) = f (10.20)

for a primitive character χ of conductor f , we immediately obtain the following theorem corre-
sponding to (10.6).

Theorem 10.3 ([14]). Assume (10.15) and that all χα’s are primitive. Then

Lr(k,χ; g) =
(−1)|k|+n

|W |

( ∏

α∈∆+

(2π
√
−1)kα

kα!fkα
α

g(χα)

)
Bk,χ(g). (10.21)

We give a sufficient condition for Bk,χ(g) = 0 by use of the action of the Weyl group. For
w ∈W , we define

(wG)(t,χ; g) = G(w−1t, w−1χ; g). (10.22)

Theorem 10.4 ([14]). Assume that g is simple. Moreover assume that fα > 1 if g is of type A1.
Then for w ∈W ,

(wG)(t,χ; g) =
( ∏

α∈∆+∩w∆−

χα(−1)
)
G(t,χ; g), (10.23)

Bw−1k,w−1χ(g) =
( ∏

α∈∆+∩w∆−

(−1)−kαχα(−1)
)
Bk,χ(g). (10.24)

As a direct consequence of this theorem, we obtain a multiple analogue of the parity result
(10.7).

Theorem 10.5 ([14]). Under the same assumptions as in Theorem 10.4, we have Bk,χ(g) = 0 if
there exists an element w ∈Wk ∩Wχ such that

∏

α∈∆+∩w∆−

(−1)−kαχα(−1) 6= 1, (10.25)

where Wk and Wχ are the stabilizers of k and χ respectively.
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The above theorems show that basic properties of classical L-functions and Bernoulli numbers
(polynomials) can be successfully generalized in our framework.

Example 10.6. For the quadratic character ρ5 of conductor 5, namely ρ5(1) = ρ5(4) = 1, ρ5(2) =
ρ5(3) = −1, we have

L2((2, 2, 2), (ρ5, ρ5, ρ5);A2) =
(−1)6+3

6

(
(2πi)2

2!52

√
5

)3(
− 28

125

)

= − 112
√

5

1171875
π6,

(10.26)

by Theorem 10.3. As seen in Example 8.10, we have ∆+∩σ1∆− = {α1}. Furthermore, ρ5(−1) = 1
and (−1)kα1 = −1. Hence by Theorem 10.5, we have

B(3,2,2),(ρ5,ρ5,ρ5)(A2) = 0. (10.27)

This can be directly checked by (8.22), Theorems 8.3 and 10.2.

As Corollary 8.4 follows from Theorem 8.3, we obtain Theorem 10.1 from an L-analogue of
Theorem 8.3, which we omitted in this article. As generalizations of Theorem 8.3 and its L-
analogue, we can show certain functional relations which include those theorems as special cases.
This is another important topic in our theory, but here we have no room for discussing this
direction. For the details, see [12, 14, 15].
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[2] N. Bourbaki, Groupes et Algèbres de Lie, Chapitres 4, 5 et 6, Hermann, Paris, 1968.

[3] D. Essouabri, Singularités des séries de Dirichlet associées à des polynômes de plusieurs
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