
Author’s Notes (2008)

(I) This is a reproduction of “On Congmence Monodromy Problems” Volume 1
(1968) and Volume 2 (1969) issued as Lecture Notes (No 1,2) from Department ofMath-
ematics, Univeristy of Tokyo, which remained unpublished (except for a Russian trans-
lation [11] of Volume 1). When this reproduction was proposed, I was sure they were
old, for old colleagues, but at the same time not so sure whether they did not contain
anything new for the newcomers, because they had not been buried so peacefully. There
had been several occasions when I felt I would have liked to share a piece of mathemat-
ics in its natural form whose understanding would have clarffied my younger colleague’s
contemporary questions. And on some other occasions, I had to face with some basic
misunderstandingsl. So, I agreed that the main results (including those obtained later,

which will be briefly reviewed below), some points of view, methods used, and related
open problems may still deserve some attention.

I have then re-read the text carefully, and fortunately or unfortunately, found no errors
other than small local ones. Aside from these corrections and some arrangements to

unify the two Volumes, no changes have been made in the present reproduction. On the
other hand, obviously, the author had been too nervous in giving all the details almost
everywhere. So, for the possible readers of this reproductim I would suggest reading

only the introductions and the outlines, and for details, only when necessary.
This reproductim was proposed by a colleague ofmine, Takayuki Oda, who has also

taken the labor to put the original typed text into TeX’ text (mainly Volume 1). I wish to

express my deep gratitude to him and to T.Ichikawa, M.Kaneko and H.Tsutsumi, who had
helped a great deal in continuing and finishing this laborious task.

(II) For a given finite Galois extension $K/k$ of global fields, knowing the global

Artin $L$-functions $L(s,\chi,K/k)$ (for all irreducible characters $\chi$ of the Galois group) is
one thing, knowing the Frobenius conjugacy class for each (mramffied) prime of $k$ is
quite another. They are the same when $k$ is the rational number field $Q$ , but essentially

different for fimctim fields over finite fields. This simple fact does not seem to be widely

recognized even in the circle ofnumber theorists, and since thejustffication ofthe present
reproduction of old lecture notes will never be understood without this recognition, $I$

started with this; now let me recall the reason.
From a global Artin $L$-function, what one can pick up as local data is, for each prime

number $p$ , just the product of Euler factors corresponding to those primes of $k$ whose

1The biggest ofwhich is that (even in the case of function fields) the Langlands correspondence should

contain everything related to non-abelian classfield theory and hence our work merely gives its“examples”

in disguise. The following (otherwise superfluous) subsection (II) is for some extra guide $\cdots$
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noms are some powers of $p$ . When $k=Q$, each $p$-factor can be picked up. But in
case of function fields over $F_{q}$ , the situation is the other extreme; all noms are some
powers of one and the same $q$ . No single local factor is determined by the global L-
function. Knowing the Artin-Weil polynomials for all $\chi$ does not help much in knowing
the individual Frobenius elements. For a clearcut example, consider any non-trivial (e.g.
$A_{5}$ -) extensim without constant extensions such that the genus of the overfield $K$ is still
0. Then all $L$-functions for irreducible non-principal characters are identically equal to 1!

The situation is similar for $L$-functions associated with more general $I$-adic represen-
tations ofGal$(k^{sep}/k)$ . Knowing their automorphy (by [7] [29]) does not help unless each
local automorphic representatim can be picked up from the global one.

(III) The”congruence monodromyproblem” is aimed at the study ofindividual Frobe-
nius elements for some special but natural systems ofGalois extensions of function fields
over finite fields arising from Shimura curves.

First let us briefly recall the elliptic modular case (Chapter 5, plus [15]). To begin
with, recall that

(1) $\Delta=\{\delta\epsilon SL_{2}(Z);\delta\equiv 1(mod 2)\}/\pm 1$

is the topological fundamental group of $P^{1}(C)-\{0,1, \infty\}$ . Its subgroups with finite indices
correspond bijectively with the connected finite covermings of the complex projective line
unramified outside $0,1,$ $\infty$ . As in the main text, write $Z^{(p)}=Z[\frac{1}{p}]$ , and for any prime
$p\neq 2$ consider the group

(2) $\Gamma_{p}=\{\gamma\in SL_{2}(Z^{(p)});\gamma\equiv 1(mod 2)\}/\pm 1.$

Then $\Gamma_{p}$ is, in the sense described below, “the arithmetic fundamental group” for the
system of comected coverings of the projective line over $F_{p^{2}}$ characterized by:

(i) it is unramffied outside $ 0,1,\infty$ , and at most tamely ramffied at $0,1,$ $\infty,$

(ii) all points of $\mathfrak{S}_{p}$ are decomposed completely.
Here, $\mathfrak{S}_{p}$ denotes the set of all supersingular $\lambda$-invariants of the elliptic curve $y^{2}=x(x-$

$1)(x-\lambda)$ . They are the roots of the polynomial

(3) $P(\lambda)=\sum_{i=0}^{r}(_{i}^{r})^{2}\lambda^{i}$ $(r=(p-1)/2)$

over $F_{p}$ (all simple and contained in $F_{p^{2}}$ ). For example, $\mathfrak{S}_{3}=\{-1\}.$

It means, first, that the subgroups of $\Gamma_{p}$ with finite indices correspond bijectively with
the finite subcoverings in this system. In fact, we have the isomorphisms:

(4)
$\Gamma_{p}\rightarrow\hat{\Gamma}_{p}\simeq\{g\in\prod_{1\neq p}SL_{2}(Z_{\psi});g\equiv 1(mod 2)\}/\pm 1$

$\simeq$ $Gal(\mathfrak{R}/F_{F}(\lambda))=Ga1(\hat{\mathfrak{R}}/F_{p^{2}}(\lambda))$ ,

where $\hat{\Gamma}_{p}$ denotes the profinite completion, $\mathfrak{R}$ is the composite of the fields of modular
functions of all levels $\not\equiv O(mod p)$ over $F_{p^{2}}$ , and $\overline{\mathfrak{R}}$ is the total function field of the system
characterized by (i)(ii). The first isomorphism expresses the congruence subgroup prop-
erty of $SL_{2}$ over $Z^{(p)}$ proved by J.Mennicke and J-P.Serre, the second is treated in Chapter
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5, and the last equality holds because the Conjecture $\hat{\mathfrak{R}}=\mathfrak{R}$ (Chapter 5 \S 30) was later
solved [15]. This is the first aspect.

Secondly, $\Gamma_{p}$ has another embedding as a discrete subgroup

(5) $\Gamma_{p}\rightarrow G_{R}\times G_{p}=PSL_{2}(R)\times PSL_{2}(Q_{p})$ ,

which defines naturally the notion of”primitive elliptic” $\Gamma_{p}$-conjugacy classes (Chap-

ter 1, \S 11). The main result of Chapter 5 asserts that the “positive” primitive elliptic
$\Gamma_{p}$-conjugacy classes correspond bijectively with the set of $F_{p^{2}}$ -conjugacy classes $of\overline{F}_{p^{-}}$

rational points of $P^{1}-\{0,1, \infty\}-\mathfrak{S}_{p}$ , via the Frobenius elements in (4).

From my point of view, this countable dense subgroup $\Gamma_{p}$ is more remarkable com-
pared to the full profinite Galois group $\overline{\Gamma}_{p}$ , because it is “just ofthe correct size” to enable
us to pick up the Frobenius conjugacy classes; it explains why the conjugacy classes cor-
responding to $\mathfrak{S}_{p}$ are missing in $\Gamma_{p}$ , and also allows another approach for study (Selberg

type zeta functions, etc.). In this strong sense, $\Gamma_{p}$ is the arithmetic fundamental group”.
It is, thoug, still mysterious. For example, is there a direct relation between the

following two expressions?

(6) $\Gamma_{p} =\Delta*\Delta^{0}\Delta’,$

(7) $\hat{\Gamma}_{p} =\pi_{1}^{tame}(X)/\langle \mathfrak{S}_{p}\rangle.$

Here, the first expression is the free product decomposition with amalgamated subgroup
$\Delta^{0}=\Delta\cap\Delta’$ , where $\Delta’=\omega_{p}^{-1}\Delta\omega_{p}$ $(\omega_{p}= (_{0}p01))$ . Since $\Delta^{0}$ is free of rank $p+2,$

this expresses $\Gamma_{p}$ by 4 generators and $p+2$ relations. In the second expression, $X$ is
the projective line minus $0,1,$ $\infty$ over $F_{p^{2}}$ , and $\pi_{1}^{tame}$ is Grothendieck’s tame fundamental
group2. Thus, by (4), the quotient of $\pi_{1}^{tame}(X)$ by the normal subgroup $\langle \mathfrak{S}_{p}\rangle$ generated by

the Frobenius elements above $\mathfrak{S}_{p}$ must coincide with $\hat{\Gamma}_{p}.$

More basically, how should one understand the appearance of $\mathfrak{S}_{p}$ when we reduce the
covering system modulo $p$? Its connection with the reduction $mod p$ of the Schwarzian
differential equation defining the unifomization of $P^{1}-\{0,1, \infty\}$ over $C$ (inspired by
Igusa’s differential equation satisfied by the polynomial $P(\lambda))$ , is another subject of our
study. Or can we start from curves over finite fields? (For these, see (VI)(IX) below).

(IV) As stated in the General Introduction, the main aim of the intended series of
Volumes was to solve the Main Conjectures (Conjectures 1,2,3) proposed there. But since
then, instead of continuing on to Volumes 3,4, $\ldots$ etc., the subsequent related works by the
author have been published one by one in some Joumals or Proceedings. And later, these
conjectures have been affirmatively solved, at least in the author’s mind, when the final

2Let us briefly recall the basic known facts about $\pi_{1}^{tame}(X)$ . Let $pr$ : $\pi_{1}^{tame}(X)\rightarrow Ga1(\overline{F}_{p}/F_{p^{2}})$ denote the

projection. Then, first, by Grothendieck, its kernel $\pi_{1}^{tame}(X\otimes\overline{F}_{p})$ is a quotient of $\hat{\Delta}$, about which not much

is known other than that it has the same maximal prime-to-p” quotient as $\overline{\Delta}$. Secondly, by the work of

A.Tamagawa [41] on the tame fundamental groups of affine hyperbolic curves over finite fields, the group-
theoretic pair $(\pi_{1}^{tme}(X), pr)$ in a sense contains all the information on the points of X. But we still know

very little about the difference between $\pi_{1}^{tame}(X\otimes\overline{F}_{p})$ and 2;, or about the Frobenius outer action on the
former group.
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comection was made at the time ofthe publication ofY.Morita’s paper [36]. More precise
account on what is proved and how, is explained in [25][26]. A briefreview will be given
below in (VII). But the proof obtained relies very much on Margulis’ result [31] for the
arithmeticity of discrete subgroups, and also on Shimura’s work on Shimura curves over
number fields and their reductions using the moduli of (highly structured) abelian varieties
[39]. A more direct proof seems desirable.

Before going on to review later developments, let us recall the Main Conjectures stated
in the General Introduction, under a slig$\iota$ly generalized form and with more precision,
and now as a theorem, as it has been proved since then.

First, a generalization. Let $k_{\mathfrak{p}}$ be any finite extension of $Q_{p}$ . As for the group $G_{\mathfrak{p}}$ , we
shall now take

$G_{\mathfrak{p}}=PGL_{2}^{+}(k_{\mathfrak{p}})=\{g\in GL_{2}(k_{\mathfrak{p}});ord_{\mathfrak{p}}\det(g)\equiv 0(mod 2)\}/k_{\mathfrak{p}}^{x},$

and instead of assuming the image of the projectim of $\Gamma$ on $G_{\mathfrak{p}}$ to be dense, impose
only that the topological closure of the projectim image contains $PSL_{2}(k_{\mathfrak{p}})$ . Let us call a
discrete subgroup $\Gamma$ of $G=G_{R}\times G_{\mathfrak{p}}$ with finite volume quotient irreducible lattice when
this condition is satisfied, in addition to the density of the projection image on $G_{R}$ . For

our over $F_{q^{2}}$ -results”, this is the most natural choice.
Secondly, we shall make it more explicit on what choice of isomorphisms our basic

functors will depend. We embed $Q$ diagonally into the ring $C\oplus\overline{k}_{\mathfrak{p}}(\overline{k}_{\mathfrak{p}}$ : an algebraic closure
of $k_{\mathfrak{p}})$ , and fix an algebmic closure $\overline{Q}_{\infty,\mathfrak{p}}$ of $Q$ in this ring. This is equivalent with fixing

an isomorphism between the algebraic closure of $Q$ in $C$ and that in $\overline{k}_{\mathfrak{p}}$ . Moreover, we
assume that $\overline{Q}_{\infty,p}$ can be so chosen as to contain $t(\gamma)=(t(\gamma_{R}), t(\gamma_{\mathfrak{p}}))$ for all $\gamma\in\Gamma$ . Here,
for any $g\in PGL_{2}$ over any field, we put $t(g)=(ff(\tilde{g}))^{2}/\det(\tilde{g}),\tilde{g}$ being a representative of
$g$ in $GL_{2}$ . Before Margulis’ arithmeticity result, this assumption was one ofthe first goals
to prove (Chapter 3, \S \S 12-13). But by his arithmeticity, $\Gamma$ must be commensurable with
a group arising from a quatemion algebra $B$ over a totally real number field $F$, and hence

this condition is obviously satisfied. Note that $F=Q(t(\gamma);\gamma\in\Gamma)$ (cf. Chapter4, esp. \S 4).
Given such a choice of $\overline{Q}_{\infty,\mathfrak{p}}$ , we define the positivity of an element $\gamma$ of $\Gamma_{z}$ (the stabi-

lizer of $z\in \mathfrak{H}$ in $\Gamma$; cf. Chapter 1, \S 3), as follows. Since $\gamma$ fixes $z$, its action on the tangent
space at $z$ is a scalar multiplication. Call this scalar $\lambda_{R}$ . It is a root of $\lambda_{R}+\lambda_{R}^{-1}+2=t(\gamma_{R})$ .
Define $\lambda_{\mathfrak{p}}$ by the condition $(\lambda_{R}, \lambda_{\mathfrak{p}})\in\overline{Q}_{\infty,\mathfrak{p}}$ . We call $\gamma\in\Gamma_{z}$ positive when $ord_{\mathfrak{p}}\lambda_{\mathfrak{p}}<0$ . This
is in accordance with the definition ofpositive generator in Chapter 5 Part 2 \S 23. Finally,
for any subring $A_{\mathfrak{p}}\subseteq\overline{k}_{\mathfrak{p}}$ , we wnite

$A_{\mathfrak{p}}^{alg}=\overline{Q}_{\infty,\mathfrak{p}}\cap(C\oplus A_{\mathfrak{p}})$ .

Thus, $A_{\mathfrak{p}}^{alg}$-schemes are equipped with the base changes $\otimes C,$ $\otimes A_{\mathfrak{p}}.$

Main Theorem To each torsion-free cocompact irreducible lattice $\Gamma$ of$G=G_{R}\times G_{\mathfrak{p}},$

one can associate a complete smooth geometrically irreducible curve X over $F_{q^{2}}$ $(q=$

$N(\mathfrak{p}))$ ofgenus $g\geq 2$, together with a set $\mathfrak{S}$ consisting of$(q-1)(g-1)F_{q^{2}}$-rationalpoints
ofX, such that ifwe denote by $\wp(\Gamma)$ (resp. $\wp(X)$) the set ofall positive primitive elliptic
$\Gamma$-conjugacy classes (resp. that of $F_{q^{2}}$-conjugacy classes of $\overline{F}_{q}$-rationalpoints of$X-\mathfrak{S}$),
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then:

(MT-1) There is a canonical bijection

(8) $\wp(\Gamma)\approx\wp(X)$ .

(MT-2) There is a canonical isomorphism (determined up to conjugacy)

(9) $\hat{\Gamma}\simeq Ga1(\hat{\mathfrak{R}}/K)$

from the profinite completion of $\Gamma$ to the Galois group Gal $(\overline{\mathfrak{R}}/K)$, where $K$ is thefunction
field of $X$ over $F_{q^{2}}$ and $\hat {}\mathfrak{R}$ is the maximal unramified Galois extension of $K$ in which all

points of $\mathfrak{S}$ are decomposed completely.

(MT-3) For each element of$\wp(X)$, its Frobenius conjugacy class in $Ga1(R/K)$ is given by

the image ofthe corresponding element of $\wp(\Gamma)$ .

I shall review briefly how they have been proved, together with other related results,

open problems, and give additional references.

(V) The main lines of investigations pursued after these Volumes will now be sum-
marized. Here, brevity is preferred; for precise account, cf. the referred articles. For (V),

cf. [20][21][22]. We assume, for simplicity here, that $\Gamma$ is cocompact and torsion-free.

First, recall that $G_{\mathfrak{p}}$ is the free product of two mutually adjacent maximal compact

subgroups $V,$ $V’$ with amalgamated subgroup $V^{0}=V\cap V’$ , and that $\Gamma$ can be regarded as
that of two corresponding discrete subgroups $\Delta,$ $\Delta’$ of $G_{R}=PSL_{2}(R)$ with amalgamated

subgroup $\Delta^{0}=\Delta\cap\Delta’$ . (Chap 2, \S 28). Hence each $\Gamma$ determines a system

(10) $\mathcal{X}_{C}=\{X_{\mathbb{C}}\leftarrow X_{c}^{0}\rightarrow\chi_{c^{\}}}$

of three compact Riemann surfaces. Subgroups of $\Gamma$ with finite indices correspond bijec-

tively with the systems of“unramified coverings of $\mathcal{X}_{\mathbb{C}}$”.

On the other hand, for a given (proper smooth geometrically irreducible) curve X over
$F_{q^{2}}$ and a non-empty subset $\mathfrak{S}ofX(F_{q^{2}})$ , we can associate a system

(11) $\mathcal{X}_{q}=\{X\leftarrow X^{0}\rightarrow X’\},$

where X’ is the conjugate of $X$ over $F_{q},$
$X^{0}$ consists oftwo irreducible components $\Pi^{P}\simeq^{r_{1}}X$

and $\Pi’\simeq X’pr_{2}$ ($pr_{i}$ : the projections), the image on $X\times X’$ of $\Pi$ (resp. $\Pi’$ ) is the graph ofthe
q-th power morphism $X\rightarrow X’$ (resp. $X$’ $\rightarrow X$), and finally, $pr_{1}(\Pi\cap\Pi’)=\mathfrak{S}$ . Note that this

is possible because $\mathfrak{S}\subseteq X(F_{q^{2}})$ , and that $\Pi,\Pi’$ meet transversally at each intersection. $A$

key point of this constmctim is that, finite unramified coverings ofX in which all points
of $\mathfrak{S}$ decompose completely correspond bijectively with “finite etale coverings of $\mathcal{X}_{q}$”.

The system $\mathcal{X}_{q}$ , in a sense, geometrically realizes the arithmetic condition of complete

decompositions above $\mathfrak{S}.$

Thus, in order to compare the coverings of $\mathcal{X}_{\mathbb{C}}$ and $\mathcal{X}_{q}$ , which is the main content of

($MT$-2), the crucial point is to study (the existence and consequences of) a system

(12) $\mathcal{X}=\{\mathfrak{X}\leftarrow \mathfrak{X}^{0}\rightarrow \mathfrak{X}’\}$
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of proper flat $O_{\mathfrak{p}}^{(2)}$-schemes whose reduction $mod \mathfrak{p}$ gives $\mathcal{X}_{q}$ and whose suitable base
change $\otimes C$ gives the complex system $\mathcal{X}_{\mathbb{C}}$ . Here, $O_{\mathfrak{p}}^{(2)}$ denotes the unique unramified qua-
dratic extension of the ring $O_{\mathfrak{p}}$ of integers of $k_{\mathfrak{p}}$ . Each member of X is assumed to be
integral and normal, and $\mathfrak{X},\mathfrak{X}’$ moreover smooth. It is also natural to impose the addi $\cdot$

tional condition that $\mathcal{X}$ be symmetric, i.e., its transpose is conjugate to itself over $O_{\mathfrak{p}}.$

First, in (VI) below, we shall discuss consequences of existence of the comecting
system $\mathcal{X}.$ $I$ recall that when this work was presented (around 1975), the major reaction
was well, if you assume this, then no wonder such consequences can be derived”. This
is in a sense correct; $I$ was able to prove them. But compare with the single curve case,

$\{X_{\mathbb{C}}\}$ and {$X$} connected by $\{\mathfrak{X}\}$ over $O_{\mathfrak{p}}.$

Grothendieck theory of fundamental groups tells us that the category ofetale coverings of
the latter two schemes are mutually equivalent, but as for the comparison with the etale
coverings of $\chi_{c}$ , we need Abhyankar’s lemma. Even ifwe do not care about the constant
rings, the best comparison theorem is for those coverings whose (Galois-)degrees are not
divisible by the residue characteristic. A great merit here is that it is very general. In our
case, Shimura curves are very rare, especially if one fixes the genus (cf. [32][40][33]),
so, for many researchers, our object of study may appear to be too special. But this
is more like the study of Hilbert modular surfaces each of which is isolated and does
not have moduli. And a merit of considering the three-curve systems is that we have
a complete comparism theorem (The “second Galois theory” described below). Other
arithmetic results also require codimension 2 geometric considerations, combined with
some specffic group theory arising from the decomposition $X^{0}=\Pi\cup\Pi’.$ $I$ hope this will
now be better accepted by the readers.

(VI) Study starting from any given lifting $\mathcal{X}$ of a system $\mathcal{X}_{q}$ . Here, we assume the
existence of $\mathcal{X}$ whose reduction is of the form $\mathcal{X}_{q}$ . We do not assume that its base change
$\otimes C$ corresponds to some $\Gamma$ . In particular, included here is the case where the projections
$X_{c}^{0}\rightarrow\chi_{c}$ and $X_{c}^{0}\rightarrow\chi_{c}$ involve ramifications. The basic references are [20][21][22]
([21] supplies the remaining details for [20]; [22] is for the second Galois theory” in the
ramified case) $)$ .

[The first Galois theory] This is the arithmetic Galois theory $mod \mathfrak{p}$
” arising from

two projections in $\mathcal{X}$ indicated by horizontal arrows. Denote by $K,K’\subset K^{0}$ the ftmction
fields of $\mathfrak{X},\mathfrak{X}’,\mathfrak{X}^{0}$ respectively. They are ftmctim fields of one variable over the unique
unramified quadratic extension $k_{\mathfrak{p}}^{(2)}$ of $k_{\mathfrak{p}}$ . Let $L$ be the smallest Galois extension of $K^{0}$

which is Galois over both $K,K’$ . It is an infimite extension. It does not follow from the
assumptions, nor is it additionally assumed, that only finitely many prime divisors of $K$

are ramified in $L$ . Let $V,$ $V’,$ $V^{0}$ be the Galois groups of $L$ over $K,K’,K^{0}$ , respectively,
and call $G_{\mathfrak{p}}^{\star}$ the subgroup of the automorphism group of $L$ generated by $V,$ $V’$ . When it
corresponds to some $\Gamma,$ $L$ is essentially the $G_{\mathfrak{p}}$-field studied in Chapter 2. (To be more
precise, $\overline{\Gamma}_{\mathfrak{p}}$ (the topological closure) acts trivially over the constant field of $L$, and the
quotient $G_{\mathfrak{p}}/\overline{\Gamma}_{\mathfrak{p}}$ corresponds to the constant field extension in $L.$) In the general situation,
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$G_{\mathfrak{p}}^{\star}$ is still the free product of $VV’$ with amalgamated subgroup $V^{0}$ , and the union of the
coset spaces $(V\backslash G_{\mathfrak{p}}^{\star})u(V’\backslash G_{\mathfrak{p}}^{\star})$ has a structure of $a$ (two-colored) tree which is the same
as the tree $\mathcal{T}_{\mathfrak{p}}$ associated with $PGL_{2}^{+}(k_{\mathfrak{p}})$ . Thus, $G_{\mathfrak{p}}^{\star}$ can be regarded as a subgroup of the
automorphism group of $\mathcal{T}_{\mathfrak{p}}.$

Now consider the $G_{\mathfrak{p}}^{\star}$ -orbit space in the set of all those places of $L/k_{\mathfrak{p}}$ whose stabilizer
in $G_{\mathfrak{p}}^{\star}$ is big” (the condition [A] in [20]\S 3.3). Then (ibid. Th. 3.4.1)

Theorem A The reduction mod $\mathfrak{p}$ induces a bijection between this orbit space and
the set ofall $F_{q^{2}}$ -conjugacy classes of $\overline{F}_{q}$-rationalpoints of $X-\mathfrak{S}.$

A basis for this proof is the construction of the canonical lifting of each $F_{q^{2n}}$ -rational
point of $X-\mathfrak{S}$ to a $k_{\mathfrak{p}}^{(2n)}$-rational point of $\mathfrak{X}\otimes k_{p}^{(2n)}$ , where $k_{\mathfrak{p}}^{(2n)}$ denotes the unique
unramffied extension of $k_{\mathfrak{p}}$ of degree $2n(n\geq 1)$ . Just a word to explain the geometric
construction of the canonical lifting. For $n=1$ , let $\mathfrak{X}^{00}$ be the image of $\mathfrak{X}^{0}$ on the fiber
product $\mathfrak{X}\times \mathfrak{X}’$ . Then the canonical lifting of an $F_{q^{2}}$ -rational point $x$ of $X-\mathfrak{S}$ is simply
the first projection ofthe unique ordinary double point on the general fiber of $\mathfrak{X}^{00}$ that lifts
$(x, x^{q})$ . For $n>1$ , we use higher iterations of the algebraic correspondence $\mathfrak{X}^{00}$ and use
the unique liftability of an ordinary double point on the special fiber that is not normal on
the total $O_{\mathfrak{p}}$-scheme, to an ordinary double point on the general fiber. This theorem will
be a basis for the proof of ($MT$-1), and a certain stronger form, for that of ($MT$-3).

[The second Galois theory] Denote by $\Delta^{*},$ $(\Delta^{*})’,$ $(\Delta^{*})^{0}$ the topological fundamen-
tal groups of the compact Riemann surfaces obtained from $\mathfrak{X},$ $\mathfrak{X}’,$

$\mathfrak{X}^{0}$ by any given base
change $\otimes C$ (and w.r. $t$ . a compatible set of base points), so that we have canonical ho-
momorphisms $(\Delta^{*})^{0}\rightarrow\Delta^{*},$ $(\Delta^{*})^{0}\rightarrow(\Delta^{*})’$ . Call $\Gamma^{*}$ the free product of $\Delta^{*},$ $(\Delta^{*})’$ with
amalgamation defined by these two homomorphisms. When it corresponds to some $\Gamma$

(cocompact, torsion-free), then $\Gamma^{*}=\Gamma$ . In general, we have (cf [20][21][22])

Theorem B Subgroups of $\Gamma^{*}with$finite indices are categorically equivalent with the
connected etale coverings ofeach of X, $\mathcal{X}_{q}$ and $\mathcal{X}_{C}.$

A basis for this proof is a “Frobenius-criterion” for good reduction of unramified cov-
erings [18](a joint work with H. Miki). This theorem will be basic in proving ($MT$-2).

[The unramified case] In general, we have

(13) $|\mathfrak{S}|\geq(q-1)(g-1)$

($g$ : the genus of X). The equality holds if and only if the two projections in $\mathcal{X}$ are both
unramified on the general fiber. We call the system“unramified”, when this is satisfied.
In this case, the homomorphisms $\Delta^{*},$ $(\Delta^{*})’\rightarrow\Gamma^{*}$ are injective and $\Gamma^{*}$ can be regarded as a
discrete subgroup of the product $G_{R}\times G_{\mathfrak{p}}^{\star}$ ;

(14) $\Gamma^{*}\subset G_{R}\times G_{\mathfrak{p}}^{\star}.$

In this unramified case, (a suitably rephrased) Main Theorem is valid (cf. [20][21]). In
particular,
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Theorem $C$ The above Main Theorem is valid ifthere exists a system $\mathcal{X}$ over $(O_{\mathfrak{p}}^{(2)})^{alg}$

connecting the given $\mathcal{X}_{\mathbb{C}}$ with $\mathcal{X}_{q}.$

[The ramified case] In this case, the group $\Gamma^{*}$ thus constructed can be a finite group.
If one starts from an irreducible lattice $\Gamma$ of $G$ which is torsion-free but not cocompact,

and build a system $\mathcal{X}_{\mathbb{C}}$ , then passing to the groups with the asterisk means dividing by

the normal subgroup generated by all parabolic elements; hence $\Gamma^{*}$ can be much smaller

than the original youp $\Gamma$ . For example, let $N$ be an integer with $N>1,$ $(N,p)=1$ , and
take $\Gamma$ to be the principal congruence subgroup of $PSL_{2}(Z^{(p)})$ of level $N$. Then it has

three corresponding systems $\mathcal{X},$ $\mathcal{X}_{\mathbb{C}},$ $\mathcal{X}_{p}$ (a symmetric form of the Kronecker congmence
relation), and in this case, it $mms$ out that $\Gamma^{*}=(1)$ $($cf. $[15])^{3}$ This was the key to the
affirmative solution of”Conjecture $\Gamma^{*}$

” proposed in Chapter 5 Part 2 (cf. the arguments
given in \S 33).

[The associated differential $\omega$] The basic reference is [17] (cf. also [12][27]).

The special fiber X of $\mathfrak{X}$ defines a discrete valuation $\mathfrak{p}_{K}$ ofthe function field $K$, and $\Pi,$ $\Pi’$

also define those of $K^{0}$ extending $\mathfrak{p}_{K}$ . Consider the $\mathfrak{p}_{K}$-adic completion $\overline{K}$ of $K$ . Then the
component $\Pi$ induces an endomorphism $\sigma$ of $\overline{K}$ which lifts the q-th power map of the
residue field. Let $\overline{K}^{ur}$ denote the completion of the maximal unramified extension of $\overline{K},$

and $\sigma^{ur}$ denote the unique extensim of $\sigma$ to an endomorphism of $\overline{K}^{u}$‘ that induces the q-th

power map of the residue field.

Theorem D (i) There exists a differential $\omega$ of $\overline{K}^{ur}$

, unique up to constant multiples,

which is $\mathfrak{p}$-integral andwhose reduction mod $\mathfrak{p}$ is not identically zero, satisfying

(15) $\omega^{o^{nr}}/\omega\in k_{\mathfrak{p}}^{x}.$

(ii) In the unramified case, let $S$ be the canonical $S$ -operator of$L$ (cf. Chapter 2, Part 3B)

restricted to $K,$ and $S$ denote the unique $S$ -opemtor of $\overline{K}^{ur}$ that extends S. Then $S^{ur}$ is

an inner $S$-operator with respect to $\omega$; namely,

(16) $S^{ur}\langle\omega\rangle=0.$

A basic numerical invariant is $v$ $:=ord_{\mathfrak{p}_{K}}(r/\xi)$ , where $\xi$ is any non-zero differential
on $\overline{K}^{ur}$ . This is clearly independent of the choice of $\xi$, and is also equal to the different-
exponent of the valuation defined by $\Pi$ in the extension $K^{0}/K’$ . This $v$ is also related to

a codimension 2 invariant. The scheme $\mathfrak{X}^{0}$ being nomal, a formal local equation for $\mathfrak{X}^{0}$

at each double point $P\in\Pi\cap\Pi’$ on the special fiber can be written as $ XY=n^{\mu_{P}}(\pi$ : a
prime element) with some $\mu_{P}>0$ . We have $\mu_{P}\geq v$ for any $P$, and the equahty holds ifthe
projections are unramified on every generalization of $P$ on the general fiber. In particular,

in the unramified case, $\mu_{P}=v$ holds for any $P$; hence $\mathfrak{X}^{0}$ is regular if and only if $v=1$ ; cf
[17]. On the other hand, $0<v\leq ord_{\mathfrak{p}}q$ ; hence $v=1$ when $O_{\mathfrak{p}}=Z_{p}.$

3Incidentally, this (Lemma 3.2 of [15]) was later used for’towering the levels” in Wiles [43].
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Now, since $\sigma^{ur}$ commutes with each element of $Aut(\tilde{K}^{ur}/\tilde{K})\simeq Ga1(K^{sep}/K)$ , where
$K=F_{q^{2}}(X)$ , this Galois group acts on $\omega$ by scalar multiplications, hence a character

(17) $\chi$ : $Ga1(K^{sep}/K)\mapsto(O_{\mathfrak{p}}^{ur})^{\times},$

into the $\mathfrak{p}$-adic unit group $(O_{\mathfrak{p}}^{ur})^{x}$ is induced. This character $\chi$ is unramified outside $\mathfrak{S}.$

In the unramified case, we can show easily that $S^{ur}$ is the unique $\sigma^{ur}$-invariant $S$ -

operator and hence must coincide with the inner $S$ -operator with respect to $\omega$ . This asso-
ciated differential plays a central role in the process of construction of a system $\mathcal{X}$ from
$\mathcal{X}_{q}$ . The $(q-1)st$ tensor power of the reductim $mod \mathfrak{p}$ of $\omega$ , called here $\omega_{\mathfrak{p}}$ , is rational
over X, and has 2 $\sum_{P\in \mathfrak{S}}P$ as its divisor; in short,

(18) $(\omega_{\mathfrak{p}}^{\otimes(q-1)})=2\mathfrak{S}.$

In some cases, this differential can be calculated by using the Schwarzian differential

equation $mod \mathfrak{p}$ , and hence also their zero set $\mathfrak{S}$ can be computed. This is a generalization
of (3). The differential $\omega_{\mathfrak{p}}$ is essentially related to the first infinitesimal lifting of $\mathcal{X}_{q}$ (see

(IX) below).

(VII) How our Main Theorem has been proved (The basic references are [26][25].)
Theorem C in (VI) reduced our Main Theorem to the existence of a system $\mathcal{X}$ over

$(O_{p}^{(2)})^{alg}$ whose base change $\otimes C$ corresponds to the system $\mathcal{X}_{C}$ induced from $\Gamma$ . By second

Galois theory, if the existence is shown for one group $\Gamma$, then it holds for any $\Gamma’\subset\Gamma$ with

finite index. M.Ohta’s argument in [37] shows that one can go the other way, too; i.e., one
can pass over from a result for one $\Gamma$ to any $\Gamma’\triangleright\Gamma$ with finite index. Thus, it suffices to

show the existence for one $\Gamma$ from each commensurability class.

I tried to find a more direct proof, but the way this has been settled is as follows.

For the case of Shimura curves (cf. Chapter 4 of this Volume), Shimura’s congmence
relatim for almost all $\mathfrak{p}[39]$ already shows the existence of $\mathcal{X}$ for almost all $\mathfrak{p}$ starting

from discrete groups over Z. Then YMorita proved the existence for individual primes $\mathfrak{p}$

not dividing the discriminant of the quatemion algebra $B$ , by combining Shimura theory

with our computatim of $\zeta_{\Gamma}(u)$ given in Theorem 1 ofChapter 1, Part 1 (cf. Y.Morita [36];

esp. \S 1.2; Remark right below Main Theorem 24). He also gave proofs of some parts of

($MT$- $I$ )($MT$-3). And by the celebrated Margulis’ arithmeticity theorem [31][32], every $\Gamma$

is arithmetic. We do not know whether the congmence subgroup property holds also for

the quartemim modular groups over“ $\mathfrak{o}_{F}^{(\mathfrak{p})}$”, but this does not matter, because our second
Galois theory is general. For more details, cf. [20]\S 6 and also [25] \S \S 4-5.

A direct proofmay be obtained in the following way. Let us assume the existence of
$\overline{Q}_{\infty,\mathfrak{p}}$ satisfying the condition stated in (IV). Let $\gamma$ be any negative (resp. positive) element

in the stabilizer $\Gamma_{z}$ . Then its actim on the tangent space at $z$ reduces $mod \mathfrak{p}$ to $0$ (resp.

$\infty)$ . This should imply the inseparability at $z(mod \mathfrak{p})$
” of one of the two projections of

4The case when the quatemion algebra $B$ is over $F=Q$ goes back to his Master’s thesis (University

of Tokyo, 1970). I also understand that the general case was done around 1973 while he was staying at

IAS, Princeton. This general case is much more difficult, because $B$ is not totally indefinite and the relation

with the moduli problem is more complicated. Cf. also Langlands [30] (totally indefinite case, but includes
higher dimensional cases, more adelic and not using discrete subgroups over $Z^{Cp)}$ ).
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the correspondence defined by the system $\mathcal{X}_{C}$ , where the base field is suitably lowered to
a number field. To use this more systematically, observe that the actim of each of $VV’$

on the $\mathfrak{p}$-adic projective line is transitive while that of $V^{0}$ has two distinct orbits. Use this
orbital decomposition for the“ $\mathfrak{p}$-part” of $z$. This aims at a non-abelian analogue of the
method used in Shimura-Taniyama theory for proving the prime ideal decomposition of
the Frobenius endomorphism. There, a cmcial point lies on looking at the actim of the

$\pi$-multiplication” on holomorphic differentials, reducing it modulo a prime and showing
that the reduced endomorphism must be inseparable. In our case, I started with a minimal
regular model of the base curve, and tried to proceed analogously, appealing also to the
purity of branch locus, but was able to obtain only a partial result. With modem tools at
hand, someone else may be able to cultivate this method fully.

(VIII) An additional conjecture (cf. [25]) First, let us note the following. If $\mathcal{X}$

is any system (12) over $O_{\mathfrak{p}}^{(2)}$ for some $\mathfrak{p}$-adic field $k_{\mathfrak{p}}$ which reduces $mod \mathfrak{p}$ to the system
$\mathcal{X}_{q}(q=N(\mathfrak{p}))$, and $k_{\mathfrak{p}}/k_{\mathfrak{p}}$ is any totally rmified extension, then the correspondming base
change of $\mathcal{X}$ also reduces to the same $\mathcal{X}_{q}$ . What would characterize the minimal choice
of the base ring is the regularity of the middle scheme $\mathfrak{X}^{0}$ , which is equivalent to the
condition $v=1$ when $\mathcal{X}$ is of unramffied type. Note that the other two schemes are
smooth and hence always regular. The following conjecture still remains open.

Conjecture Torsion-fiee cocompact irreducible lattices $\Gamma$ of $G=G_{R}\times G_{\mathfrak{p}}$, and
unramified symmetric systems $\mathcal{X}$, consisting ofregular schemes over $O_{\mathfrak{p}}^{(2)}$ whose reduction
is of thefom $\mathcal{X}_{q}$, are categorically equivalent. The equivalencefunctor depends on the
choice of $\overline{Q}_{\infty,\mathfrak{p}}.$

Starting from $\mathcal{X}$ we have constructed $\Gamma$, as explained in (VI) except that we have not
shown $G_{p}^{\star}\subseteq PGL_{2}^{+}(k_{\mathfrak{p}})$ . We know $G_{\mathfrak{p}}^{\star}\subseteq Aut(\mathcal{T}_{\mathfrak{p}})$ , but in general without the unramified-
ness condition, the image can be essentially bigger than $PGL_{2}^{+}(k_{\mathfrak{p}})$ . The problem here is
to find a natural $\mathfrak{p}$-adic projective linear representation of the group $G_{\mathfrak{p}}^{\star}$ in the unramified
case. Of course, using arithmeticity of $\Gamma$, one should be able to say much more about
the image, but we want to find a natural representation. The naming of the title $con\Psi^{u-}$

mce monodromy problem” was initially motivated by the thougt that this is probable.
(The arithmeticity was then“half-suspected”.) The study of canonical $S$ -operator and its
connectim with $\omega$ may give some hint.

Starting from $\Gamma$, as explained in (VII), $\mathcal{X}$ was constructed, except that we do not know
in general whether the schemes are regular. Only when $k_{\mathfrak{p}}=Q_{p}$ , we must have $v=1$ and
hence the regularity is automatically satisfied.

(IX) Which systems $\mathcal{X}_{q}$ are liftable to $\mathcal{X}$? ([19][23]) Starting from a given system
$\mathcal{X}_{q}$ , or equivalently, starting from a pair $(X, \mathfrak{S})$ , we ask ourselves whether there exists a
system $\mathcal{X}$ over some (or given) $\mathfrak{p}$-adic ring of integers, or more generally, ask what can be
said about the existence and the main properties of “the universal deformation” of $\mathcal{X}_{q}.$

In [19], we studied each infinitesimal step of the lifting, and have shown that the
associated differential plays a fundamental role. In particular, assume $O_{\mathfrak{p}}=Z_{p}$ . Then, for
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a given lifting
$\{\mathfrak{X}_{n}\leftarrow \mathfrak{X}_{n}^{0}\rightarrow \mathfrak{X}_{n}’\}$

of $\mathcal{X}_{q}$ over $O_{p}^{(2)}/\mathfrak{p}^{n}(n\geq 1)$ , we have proved that its liftings $mod \mathfrak{p}^{n+1}$ correspond bijectively
with the differentials $\omega_{n}$ on some (generically unramified) covering of $\mathfrak{X}_{n}$ satisfying some
local conditions above each point of $\mathfrak{S}$ . The local condition is an obvious necessary
condition. At first I did not understand how to patch local liftings together, but then $I$

realized that the associated differential is the natural “globe” on which this patch work
should be done. Here, of course, local or global refers to the geometic part and not to the
base ring. In particular, the first infinitesimal step is well-understood, including the case
of the liftings to $F_{p}[\epsilon](\epsilon^{2}=0)$ .

In [23], the existence of the universal deformation of $\mathcal{X}_{q}$ over a complete noetherian
local $W(F_{q})$-algebra $R$ is proved and some properties of $R$ is studied. For example, cor-
responding to (13), we have $\dim R=0$ if $|\mathfrak{S}|<(q-1)(g-1)$ , and on the other hand, if
$|\mathfrak{S}|\geq 2(q-1)(g-1)$ , then $\dim R\geq 1$ , which implies that either $\mathcal{X}_{q}$ has a lifting over $O_{\mathfrak{p}}^{(2)}$

for some $k_{\mathfrak{p}}$ , or has a non-trivial deformation over $F_{q^{2}}[[t]]$ . Some sufficient conditions for
the liftability to $Z_{p}$ , uniqueness of symmetric liffings in the unramified case, and some
numerical examples are also given in these articles. (For the case$ g=2,$ see also [10].)

But we had only started; $I$ hope that it will be continued on by someone.
[Problems] (i) Can one make use of the $\mathfrak{p}$-adic character $\chi$ described above in the

study of liftings? (ii) Can one characterize $\chi$ classfield theoretically in the elliptic mod-
ular case? (In this case, the kemel of $\chi$ corresponds to Igusa’s modular tower, and the
differential $\omega$ , to $dlogq$ , where $q$ is “Tate’s $q=$ Dwork’s $q$

”
$.$)

(X) Additional Comments

[Curves over $F_{q^{2}}$ with many rational points] ([15][20][24][25]; see also Tsfasman-
Vladut-Zink [42] and Drinfeld-Vladut [8] $)$

5 One ofmy starting points (1965) was the fol-
lowing observation. The reduction $mod \mathfrak{p}$ of a typical Shimura curve has $a$

”
$\mathfrak{p}$-canonical”

model over $F_{q^{2}}(q=N(\mathfrak{p}))$ that contains $(q-1)(g-1)$ special rational points. Since this is
for the whole system, these points should decompose completely in the system ofhigher
level coverings. This was observed first from the computatim of the zeta function of $\Gamma.$

Earlier, after having worked with the discrete subgroups of $PGL_{2}(k_{\mathfrak{p}})$ , $I$ was looking for
discrete subgroups whose Selberg type zeta fimction is closer to a congmence zeta func-
tion of a curve. The extra factor $(1-u)^{(q-1)(g-1)}$ of $\zeta_{\Gamma}(u)$ suggested the existence of these
special points6. As is well-known, the discovery of Goppa codes has drawn a great deal

5Here, only the older references are given. This is mainly because the later important papers on this
subject are (numerous and) well-known, but also because of frequent confusions related to less-known his-

tory”. In terms ofthe quantity $A(q)=\lim\sup_{C/F_{q}}N(C)/g(C)$”, the historical order is: first, the inequality

$A(q)\geq\sqrt{q}-1$ ( $q$ : square) was recognized and proved, then $A(q)\leq\sqrt{2q}$ (general $ q;[24]\ldots$ which showed

that it can be essentially better than the Weil bound), and then, by refining this idea, a decisive inequality
$A(q)\leq\sqrt{q}-1$ (general q) was proved [8].

6As is pointed out in my earlier article ([15] in the (main) Bibliography), the exponent $(q-1)(g-1)$ is
the multiplicity in $L^{2}(G/\Gamma)$ of the tensor product of the”special representations” of $G_{R}$ and of $G_{\mathfrak{p}}$ . Further
study of the zeta function of $\Gamma$ using spectral decomposition has been pursued by J.P.Labesse [28].
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of attention to curves with many rational points, and then significant progress has been
made by several mathematicians.

[Changing quatemions] An unexpected development of our study of $G_{\mathfrak{p}}$-fields was
the work of \v{C}erednik [2] [3] on the comparison of Shimura curves at a prime $q$ divid-
ing the discriminant of $B/F$ with Mumford curves associated with discrete subgroups of
$PGL_{2}(F_{q})$ . The latter arises from the quatemion algebra $B’$ obtained from $B$ by replacing
the ramified prime $q$ by the unique unramified archimedean prime.

[Changing levels, Modularity] Another unexpected direction of the use of a lemma
in [15] (lemma 3.2) is in Ribet [38] and Wiles [43]. $A$ conjectural (representation theo-
retic) generalization and its important consequences are given in Clozel-Harris-Taylor [4]
(cf. also Diamond-Taylor [5]).

[More recent new developments] Among other recent works in which I was able to
see some (intemal) connections, I would like to mention, especially:

The work [6] ofDarmon,

Mochizuki’s theory (cf. e.g. [34][35]).
Cf. also, [1][9][41].

[Left to the future $\cdots$] The most cmcial question would be: “Is there any other
system that also possesses an arithmetic fundamental group in such a strong sense as
above?”. Especially, one asks:

“Does there exist an infinite Galois extensim $\mathfrak{R}/K$ over a number field and a discrete
group $\Gamma$ equipped with two embeddings:

$i:\Gamma\rightarrow\hat{\Gamma}\simeq Ga1(\mathfrak{R}/K)$ ,

$j:\Gamma\rightarrow G\supset T\simeq(R^{+})^{\times},$

such that $G$ is some locally compact group, $j(\Gamma)$ is a lattice in $G$ , and that some analogy of
the case $G=PSL_{2}(R)\times PGL_{2}^{+}(k_{\mathfrak{p}})$ holds when $PSO_{2}(R)\times PGL_{2}^{+}(k_{\mathfrak{p}})$ is replaced by $T?$

”

This would in particular imply that the Dedekind zeta function $\zeta_{K}(s)$ of $K$ is essen-
tially equal to the Selberg type zeta functim $\zeta_{\Gamma.T}(s)$ . The extension $\mathfrak{R}/K$ must be almost
unramified, and the Galois group must be essentially non-abelian, because only the prime
powers should possess Frobenius elements. In order to understand the zeta functions hav-
ing the Euler product, such as $\zeta_{K}(s)$ , better, it is of course indispensable to find a structure
on the set of all prime powers of $K$ . It was encouraging that in our case, the prime powers
are those $\Gamma$-conjugacy classes that are conjugate in $G$ to an element of $T.$

This has been my dream for 40 years, but has not been realized at all. Some col-
leagues may have heard about this all too often. But I hope it will keep on living modestly
somewhere in someone’s mind $\ldots$

2008 Summer Yasutaka Ihara
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