
Supplements.

\S 1. Borel’s density theorem for fuchsian groups.1 Let $G_{R}=PSL_{2}(R)$ . Then
all finite dimensional irreducible ordinary representations of $G_{R}$ are given by $\rho_{n}(n=$

$0,1,2,$ $\cdots)$ , defined in Chapter 3, \S 3. Since they are algebraic representations, it is clear
that if $\Delta$ is a subgroup of $G_{R}$ not contained in any proper algebraic subgroup of $G_{R}$ , then
$\rho_{n}|\Delta$ is also irreducible. In particular, if $\Delta$ is a discrete subgroup of $G_{R}$ whose quotient has
finite invariant volume, then $\Delta$ is Zariski dense in $G_{R}$ (a special case of Borel’s density
theorem [1]; but since $\dim G_{R}=3$ is small, it can also be checked directly); hence $\rho_{n}|\Delta$ is
irreducible.

In particular, $\rho_{1}|\Delta$ is irreducible. Since $\rho_{1}$ is equivalent to the adjoint representation
Ad. of $G_{R}$ in its Lie algebra $\mathfrak{g}_{R}$ , this shows that no proper Lie subalgebra $\neq\{0\}$ of $\mathfrak{g}_{R}$ is
invariant by Ad $\Delta$ . Now if $H_{R}$ is a closed subgroup of $G_{R}$ containing $\Delta$ with $(H_{R} : \Delta)=\infty,$

then $H_{R}$ is non-discrete, and hence the corresponding Lie subalgebra $\mathfrak{y}_{R}$ is non-trivial. But
$\mathfrak{y}_{R}$ is invariant by Ad $H_{R}$ , and hence also by Ad $\Delta$ . Therefore $\mathfrak{y}_{R}=\mathfrak{g}_{R}$ ; hence $H_{R}=G_{R}$

(since $G_{R}$ is connected).
Therefore, if $\tilde{\Delta}$ is a group with $ G_{R}\supset\tilde{\Delta}\supset\Delta$ and with $(\tilde{\Delta} : \Delta)=\infty$ , then $\tilde{\Delta}$ is dense in

$G_{R}.$

Supplements to Chapter 1.

\S 2. A generalization of Lemma 10 of Chapter 1. Here, we shall verify the follow-
ing assertion.2

The Lemma 10 ofChapter 1 remains valid ifwe weaken the compactness assumption

ofthe quotient $ G_{R}/\Delta$ and replace it by thefiniteness ofvolume, and ifwe assume that $f(z)$

is a cuspform. (also by Kuga.)

PROOF As in \S 21 (Chapter 1), put

(1) $F(g)=f(g(\sqrt{-1}))\cdot j(g, \sqrt{-1}) (g\in G_{R})$ ,

so that $F(g)$ is a $\Delta$-invariant continuous function $mG_{R}$ . In this case, the quotient $ G_{R}/\Delta$

may not be compact, but we shall check that $|F(g)|$ still achieves its maximum value on

1This is referred to in the following places: Chapter 2, \S 7, \S 24, Chapter 3, \S 1, \S 8.
2This is used in the proofs ofTheorem 7 (Chapter 1, Part 2) (the inequality (171)), and the Theorem in

Supplement \S 6.
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$G_{R}$ . Since the compactness assumptim of the quotient $ G_{R}/\Delta$ is not used in the rest ofthe
proof ofLemma 10 (Chapter 1), this would settle our assertion.

Let $\mathfrak{F}$ be a closed fundamental domain of $\Delta m\mathfrak{H}$ , so $that\overline{\mathfrak{F}}=\{g\in G_{R}|g(\sqrt{-1})\in \mathfrak{F}\}$

is a closed fundamental domain for $\Delta\backslash G_{R}$ . Let $T_{1},$ $\cdots$ , $T_{t}$ be all the non-equivalent cusps
lying on the borders of $\mathfrak{F}$ . It is enoug to check

(2) $\lim |F(g)|=0 (i=1, \cdots , t)$ .
$g\epsilon\tilde{\mathfrak{F}},g(\sqrt{-1})\rightarrow T_{i}$

(In fact, assuming (2), take sufficiently small neigborhoods $U_{1},$
$\cdots,$

$U_{t}$ of $T_{1},$
$\cdots,$

$T_{t}$ on
$\mathfrak{F}$ . Then $\sup_{g\epsilon\tilde{\mathfrak{F}}}|F(g)|=\sup_{g\in\overline{\mathfrak{F}},g(\sqrt{-1})\not\in U_{i}’ s}|F(g)|$ , and $\mathfrak{F}-\bigcup_{i=1}^{t}U_{i}$ is compact; hence $|F(g)|$

achieves its maximum value $m\overline{\mathfrak{F}}\cdot$) Now to check (2), we may assume, without loss of
generality, that the cusp in questim is $\sqrt{-1}\infty$ . Then by the definition of cusp forms, (2)

is easily reduced to the following trivial equahty:

(3) $\lim_{\delta\rightarrow 0}\delta^{-k/2}e^{-\mu/\delta}=0,$

where $\mu$ is a positive real constant. $\square $

Supplements to Chapter 2.

\S 3. Lemma 8 (Chapter 2) for“ $\mathfrak{p}$-side“, and application. Let $\Gamma$ be a discrete sub-
group of $G=G_{R}\times G_{\mathfrak{p}}$ whose quotient $ G/\Gamma$ has finite invariant volume and whose projec-
tions $\Gamma_{R},$ $\Gamma_{\mathfrak{p}}$ are dense in $G_{R},$ $G_{\mathfrak{p}}$ respectively.

First, let $\Gamma’$ be another such subgroup of $G$, satisfying $\Gamma_{p}’=\Gamma_{\mathfrak{p}}$ . For each $\gamma_{\mathfrak{p}}\in\Gamma_{\mathfrak{p}}$ , let
$\gamma=\gamma_{R}\times\gamma_{\mathfrak{p}}\in\Gamma,\gamma’=V_{R}\times\gamma_{\mathfrak{p}}\in\Gamma’$ , and put $V_{R}=\varphi(\gamma_{R})$ . Then, it is clear that $\varphi$ satisfies the
conditions stated in Lemma 8 (Chapter 2). Therefore, there exists $x\in G_{R}’=PL_{2}(R)$ such
that $\varphi(\gamma_{R})=x^{-1}\gamma_{R}x$ for all $\gamma_{R}\in\Gamma_{R}$ . Therefore, if $\Gamma$ and $\Gamma’$ are moreover commensurable
wiffi each other, then $x$ must commute wiffi all elements of $(\Gamma\cap\Gamma’)_{R}$ ; hence $x=1$ ; hence
$\varphi=1$ ; hence we get $\Gamma’=\Gamma.$

Here, we shall prove the followin$g$ :

PROPOSITI$ON$ . Let $\Gamma$ be as above, and let $\Gamma’$ be another such subgroup of $G$, satisfying
$\Gamma_{R}’=\Gamma_{R}$ . For each $\gamma_{R}\in\Gamma_{R}$, let $\gamma=\gamma_{R}\times\gamma_{\mathfrak{p}}\in\Gamma,$ $f=n\times V_{\mathfrak{p}}\in\Gamma’$, andput $V_{\mathfrak{p}}=\varphi(\gamma_{\mathfrak{p}}).$

Then, there is a topological automorphism $\sigma$ of $G_{\mathfrak{p}}$ such that $\varphi(\gamma_{\mathfrak{p}})=\sigma(\gamma_{\mathfrak{p}})$for all $\gamma_{p}\in\Gamma_{\mathfrak{p}}.$

COROLLARY 1. Let $\Gamma,\Gamma’$ be as in the above pvoposition, and assume that $\Gamma$ and $\Gamma’$ are
moreover commensurable with each other. Then $\Gamma’=\Gamma.$

COROU. $Y2$ . Let $\Gamma$ be as above. Then there exist onlyfinitely $ ma\varphi$ subgroups $\Delta$ of$G$
satisfying $\Delta\supset\Gamma$ and $(\Delta: \Gamma)<\infty.$

First, let us prove the corollaries, assuming the proposition.

PROOF OF COROILARY 1. The automorphism $\sigma$ must be trivial $m(\Gamma\cap\Gamma’)_{\mathfrak{p}}$ , but $(\Gamma\cap\Gamma’)_{\mathfrak{p}}$

is dense in $G_{\mathfrak{p}}$ (since it is of finite index in $\Gamma_{\mathfrak{p}}$). Therefore $\sigma=1$ . Therefore $\Gamma’=\Gamma.$ $\square $
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PROOF OF COROLLARY 2. Let $V$ be an open compact subgroup of $G_{\mathfrak{p}}$ , and put $\Gamma^{V}=$

$\Gamma\cap(G_{R}\times V),$ $\Delta^{V}=\Delta\cap(G_{R}\times V)$ . Then $\Delta_{\mathfrak{p}}=\Delta_{\mathfrak{p}}^{V}\cdot\Gamma_{\mathfrak{p}}$ (since $\Gamma_{\mathfrak{p}}$ is dense in $G_{\mathfrak{p}}$); hence
$\Delta=\Delta^{V}\cdot\Gamma$ . But $\Gamma_{R}^{V}$ is a discrete subgroup of $G_{R}$ whose quotient has finite invariant
volume, and $\Delta_{R}^{V}\supset\Gamma_{R}^{V},$ $(\Delta_{R}^{V} : \Gamma_{R}^{V})=(\Delta : \Gamma)<\infty$ . Therefore, there are only finitely many

possibilities for $\Delta_{R}^{V}$ ; hence there are only finitely many possibilities for $\Delta_{R}=\Delta_{R}^{V}\cdot\Gamma_{R}$ . But
if $\Delta,$ $\Delta’\supset\Gamma,$ $(\Delta : \Gamma)<\infty,(\Delta’ : \Gamma)<\infty$ and $\Delta_{R}=\Delta_{R}’$ then by the above Corollary 1, we get
$\Delta=\Delta’$ . Therefore for each $\Delta_{R}$ , there exists at most me $\Delta$ . Therefore, there are at most
finitely many groups $\Delta.$ $\square $

REMARK 1. The above proof shows that the number of such $\Delta$ is at most equal to the

number of fuchsian groups containing $\Gamma_{R}^{V}$ for $V=PSL_{2}(O_{\mathfrak{p}})$ .

PROOF OF THE PROPOSITION. This is completely parallel to the proofofLemma 8 (Chap-

ter 2). Call $g_{\mathfrak{p}}\in G_{\mathfrak{p}}$
$\mathfrak{p}$-elliptic if its eigenvalues are not contained in $k_{\mathfrak{p}}$ . Then, $g_{\mathfrak{p}}\in G_{\mathfrak{p}}$ is

$\mathfrak{p}$-elliptic if and only if its centralizer in $G_{\mathfrak{p}}$ is compact. Therefore, by an argument com-
pletely parallel to the proof ofLemma 9 (Chapter 2), we can prove that if $\gamma=\gamma_{R}\times\gamma_{\mathfrak{p}}\in\Gamma,$

then $\gamma_{\mathfrak{p}}$ is $\mathfrak{p}$-elliptic if and only ifthe centralizer of $\gamma_{R}$ in $\Gamma_{R}$ is discrete in $G_{R}$ ; hence also if

and only if $\gamma_{\mathfrak{p}}’$ is $\mathfrak{p}$-elliptic, where $V=\gamma_{R}\times\gamma_{\mathfrak{p}}’\in\Gamma’$ . Therefore, $\varphi$ and $\varphi^{-1}$ preserve the $\mathfrak{p}-$

ellipticity ofelements of $\Gamma_{\mathfrak{p}},\Gamma_{\mathfrak{p}}’$ . We can also prove the assertion corresponding to Lemma
10 (Chapter 2) by an argument completely parallel to that used in the proof of Lemma

10 (Chapter 2). Namely, we assert that if $\gamma_{1},\gamma_{2},$
$\cdots$ is any sequence in $\Gamma_{\mathfrak{p}}$ , then it tends

to 1 if and only if for any $\mathfrak{p}$-elliptic element $\delta\in\Gamma_{\mathfrak{p}},$ $\gamma_{n}\delta$ are $\mathfrak{p}$-elliptic for all sufficiently

large $n$ . The proofmns as follows. The only if‘ part is trivial, since $\mathfrak{p}$-elliptic elements

of $G_{\mathfrak{p}}$ form an open subset of $G_{\mathfrak{p}}$ . To prove the if’ part, we first remark that there exist
four elements $\delta_{1},\delta_{2},\delta_{3},\delta_{4}\in\Gamma_{\mathfrak{p}}$ such that $\delta_{i}(1\leq j\leq 4)$ are $\mathfrak{p}$-elliptic and are (additively)

linearly independent over $k_{\mathfrak{p}}$ . In fact, put

$g_{1}=\left(\begin{array}{l}0-1\\1 \alpha\end{array}\right),g_{2}=\left(\begin{array}{l}0-1\\1 \sqrt{}\end{array}\right),g_{3}=\left(\begin{array}{l}\alpha-1\\01\end{array}\right),g_{4}=\left(\begin{array}{ll}\alpha & -\frac{1}{2}\\2 & 0\end{array}\right),$

where
$\alpha,\beta\in k_{\mathfrak{p}},$ $\alpha\neq\beta,$ $\alpha,$ $\beta\neq 0$ ; $\alpha^{2}-4,\beta^{2}-4\not\in k_{\mathfrak{p}}^{2}.$

Then they are $\mathfrak{p}$-elliptic elements of $G_{\mathfrak{p}}$ and are linearly independent over $k_{\mathfrak{p}}$ . Since $\Gamma_{\mathfrak{p}}$

is dense in $G_{\mathfrak{p}}$ , we cm take $\delta_{i}\in\Gamma_{\mathfrak{p}}(1\leq i\leq 4)$ to be sufficiently near $g_{i}(1\leq i\leq 4)$

respectively. Then $\delta_{i}(1\leq i\leq 4)$ satisfy the desired conditions. Put $\Pi=\{x\in G_{\mathfrak{p}}|x\delta_{i}(1\leq$

$i\leq 4)$ are $\mathfrak{p}$-elliptic}. Then, since the map

$M_{2}(k_{\mathfrak{p}})\ni x\mapsto(ff(x\delta_{1}), \cdots,ff(x\delta_{4}))\in k_{\mathfrak{p}}^{4}$

gives an isomorphism of the two vector spaces over $k_{\mathfrak{p}}$ , and since the image of $\Pi$ is con-
tained in $O_{\mathfrak{p}}^{4}$ (eigenvalues of $\mathfrak{p}$-elliptic elements of $G_{\mathfrak{p}}$ are integers since their norms over
$k_{\mathfrak{p}}$ are 1), we see that $\Pi$ is relatively compact. Now, let $\gamma_{I},\gamma_{2},$

$\cdots$ be a sequence in $\Gamma_{\mathfrak{p}}$

such that for any $\mathfrak{p}$-elliptic element $\delta\in\Gamma_{p},$ $\gamma_{n}\delta$ are $\mathfrak{p}$-elliptic for all sufficiently large $n.$

Then, $\gamma_{n}\in\Pi$ holds for all large $n.$ Therefo $\underline{re}$, it suffices to show that if $\xi\in G_{\mathfrak{p}}$ is an
accumulating point of $\gamma_{1},\gamma_{2},$

$\cdots$ (hence $\xi\in\Pi$), ffien $\xi=1$ . Let $\xi$ be an accumulating

point of $\gamma_{1},\gamma_{2},$
$\cdots$ . Then, for each $\mathfrak{p}$-elliptic element $\delta\in\Gamma_{\mathfrak{p}},$ $\xi\delta$ is $m$ accumulating point
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of $\mathfrak{p}$-elliptic elements $\gamma_{n}\delta(n\gg O)$ . Hence $k(\xi\delta)\in O$, holds for all such $\delta$ . Therefore,

$ff(\xi g_{\mathfrak{p}})\in O_{\mathfrak{p}}$ holds for all $\mathfrak{p}$-elliptic elements $g_{\mathfrak{p}}\in G_{\mathfrak{p}}$ . Put $\xi=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)$ and $g_{\mathfrak{p}}=\left(\begin{array}{ll}0 & -z\\\underline{l} & \alpha\\ z & \end{array}\right),$

with
$\alpha\in k_{\mathfrak{p}},$ $\alpha^{2}-4\not\in k_{p}^{2}$ and $z\in k_{\mathfrak{p}}^{x}.$

Then $g_{\mathfrak{p}}$ is $\mathfrak{p}$-elliptic, and we have $tr(\xi g_{\mathfrak{p}})=\frac{b}{z}-cz+d\alpha$ . Now if $b\neq 0$ , let $|z|$ be sufficiently
small; and if $c\neq 0$ , let $|z|$ be sufficiently large. Then in either case we get a contradiction

to $tr(\xi g_{\mathfrak{p}})\in O_{\mathfrak{p}}$ . Therefore $b=c=0$ ; hence $\xi=\left(\begin{array}{ll}a & 0\\0 & a^{-l}\end{array}\right)$ . Now we have shown that if

$\delta\in\Gamma_{\nu}$ is $\mathfrak{p}$-elliptic, then $\xi\delta$ is an accumulating point of $\mathfrak{p}$-elliptic elements. But there are $\mathfrak{p}-$

elliptic elements $\delta\in\Gamma_{\mathfrak{p}}$ which are arbitrarily near 1. Therefore, $\xi$ itself is an accumulating

point of $\mathfrak{p}$-elliptic elements. But $\xi$ being of the form $\left(\begin{array}{ll}a & 0\\0 & a^{-l}\end{array}\right)$ , this is possible only when

$a=\pm 1$ . Therefore $\xi=1.$

Therefore, the convergence (to 1) of sequences $\gamma_{1},\gamma_{2},$
$\cdots$ in $\Gamma_{\mathfrak{p}}$ is characterized in

terms of $\mathfrak{p}$-ellipticity, which is invariant by $\varphi$ . Therefore, $\varphi$ is bicontinuous. Therefore, $\varphi$

can be extended to a topological automorphism $\sigma$ of $G_{p}.$ $\square $

REMARK 2. By a shght modffication of the above argument, we can also prove that if
$G_{\mathfrak{p}}’$ is a subgroup of $PL_{2}(k_{\mathfrak{p}})$ with $PSL_{2}(k_{\mathfrak{p}})=G_{\mathfrak{p}}\subset G_{\mathfrak{p}}’\subset PL_{2}(k_{\mathfrak{p}})$, and if $\Gamma’$ is a discrete
subgroup of $G’=G_{R}\times G_{\mathfrak{p}}’$ whose quotient has finite volume and whose projections $\Gamma_{R}’$ , $\Gamma_{\mathfrak{p}}’$

are dense in $G_{R},$ $G_{\mathfrak{p}}’$ respectively, and if moreover $\Gamma_{R}’=\Gamma_{R}$ holds, then $G_{\mathfrak{p}}’=G_{\mathfrak{p}}$ , and $\Gamma’$

is mapped onto $\Gamma$ by some topological automorphism $\sigma$ of $G_{\mathfrak{p}}$ . This remark is needed in
Chapter 4, \S 4.

\S 4. Proof of Lemma 1 (Chapter 2). In E. B. Dynkin [8], the following Theorem is
proved (cf. [8] Part 1, Theorems I, II).

THEOREM (Dynkin). Let $K$ be a non-discrete simple normedfield and let $R_{1}$ and $R_{2}$

be nomedLie algebras over $K$ Then a homomorphism of$R_{1}$ into $R_{2}$ is at the same time a
local homomorphism ofthe local group $G(R_{1})$ into the local group $G(R_{2})$ . Conversely, an
arbitrary local homomorphism of $G(R_{1})$ into $G(R_{2})$ is equivalent to a certain homomor-
phism of $R_{1}$ into $R_{2}$ . In this manner, homomorphisms $R_{1}\rightarrow R_{2}$ and local homomorphism
classes $G(R_{1})\rightarrow G(R_{2})$ correspond in $a$ one-to-one manner.

Here, by a non-discrete simple normed field, he means either the real number field $R$

or the $p$-adic number field $Q_{p}$ . The definition ofnormed Lie algebra over a normed field
(cf. [8]) is given in [8]. In particular, every finite dimensional Lie algebra over a normed
field $K$ is a nomed Lie algebra over $K$ (in a natural mamer). For each normed Lie algebra
$R_{1}$ over a normed field $K$, the local group $G(R_{1})$ is defined (cf. [8]). As a set, $G(R_{1})$ is a
certain neigborhood of $0$ in $R_{1}.$

Consider the following special cases. Let $K=R$ or $=Q_{p}$ , and let $K’$ be a finite
extensim of $K$. Let $\mathfrak{C}$ be a Lie subalgebra of $M_{n}(K’)$ over $K’$ , and consider $\mathfrak{C}$ as a Lie
algebra over $K$. Then $G(\mathfrak{C})$ is a neigborhood of $0$ in $\mathfrak{C}$ , with the product law given
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by $A\cdot B=\log(\exp A \exp B)(A,B\in G(\mathfrak{C}))$ whenever it exists md is contained in $G(\mathfrak{C})$ .
Therefore, if $\mathfrak{C}=\{X\in M_{n}(K’)| trX=0\}$ , then $G(\mathfrak{C})$ can be identffied (by$ exp, \log$) with
the local group of $PL_{n}(K’)$ . But we can verify the following lemma without any difficulty.

LEMMA. Let $\mathfrak{C}=\{X\in M_{2}(K’)|trX=0\}$ be considered as a Lie algebm over $K.$

Then the non-zero endomorphisms of $\mathfrak{C}$ over $K$ are automorphisms of $\mathfrak{C}_{J}$ and are com-
posites of inner automorphisms $(by PL_{2}(K’))$ and automorphisms of $\mathfrak{C}$ induced byfield
automorphisms of$K’$ over $K.$

Now $G(\mathfrak{C})$ being identffied with the local group of $PL_{2}(K’)$ , it is clear that the cor-
responding local automorphisms of $G(\mathfrak{C})$ are the restrictions to $G(\mathfrak{C})$ of the global auto-
morphisms $\varphi=Int(t)\circ\sigma$ of $PL_{2}(K’)$ , where $t\in PL_{2}(K’)$ and $\sigma$ are the automorphisms
of $PL_{2}(K’)$ induced by the field automorphisms of $K’$ over $K$. Therefore, by the above
Dynkin’s theorem, every local automorphism $ofPL_{2}(K’)$ is equivalent to a global auto-
morphism $\varphi$ of $PL_{2}(K’)$ ofthe form $\varphi=Int(t)\circ\sigma(t\in PL_{2}(K’),\sigma\in Aut_{K}(K’))$ . By putting
$K’=k_{\mathfrak{p}}$ , Lemma 1 (i) ofChapter 2 is settled. To prove the remaining parts ofthis lemma,

we shall show that

(I) $A$ global automorphism of $PSL_{2}(k_{\mathfrak{p}})$ which is an identity on some neigborhood of
1 is itself the identity map.

(II) $A$ global automorphism of $PL_{2}(k_{\mathfrak{p}})$ which is an identity $mPSL_{2}(k_{p})$ is itself the
identity map.

It is clear that (I) and (II) settle (ii) and (iii) of Lemma 1 (Chapter 2). In fact, if $\psi$ is
any global automorphism of $PSL_{2}(k_{\mathfrak{p}})$ , then it is equivalent to a global automorphism of
$PL_{2}(k_{\mathfrak{p}})$ of the fom $\varphi=Int(t)\circ\sigma$ . Then $\psi\circ\varphi^{-1}$ is a global automorphism of $PSL_{2}(k_{\mathfrak{p}})$

which is an identity on some neigborhood of 1. Therefore by (I), we get $\psi=\varphi$ on
$PSL_{2}(k_{\mathfrak{p}})$ , which settles (iii). In particular, if $\psi$ is a global automorphism of $PL_{2}(k_{\mathfrak{p}})$ , then
its restriction 3 to $PSL_{2}(k_{\mathfrak{p}})$ coincides with some $\varphi=Int(t)\circ\sigma$ . Hence by (II) $\psi=\varphi$ on
$PL_{2}(k_{\mathfrak{p}})$ , which settles (ii).

PROOF OF (I). Let $\psi$ be a global automorphism of $PSL_{2}(k_{\mathfrak{p}})$ which is an identity on

some neighborhood of 1. We claim that $\psi$ is then an identity on $N=\{\left(\begin{array}{ll}1 & a\\0 & 1\end{array}\right)|a\in k_{\mathfrak{p}}\}$ . To

show this, put $x=\left(\begin{array}{ll}1 & a\\0 & 1\end{array}\right)$ with $a\in k_{\mathfrak{p}},$ $a\neq 0$ . Let $p$ be the characteristic ofthe residue class

field $0_{\mathfrak{p}}/\mathfrak{p}$ , and let $n$ be a sufficiently large integer such that $ x^{p^{n}}=(_{0}^{1}p_{1}^{n}a\rangle$ is invariant by

$\psi$ . Then $\psi(x)^{p^{n}}=x^{p^{n}}$ . But $x$ commutes with $x^{p^{n}}$ ; hence $\psi(x)$ commutes with $\psi(x^{p^{n}})=x^{p^{n}}$ ;

hence $\psi(x)$ is also of the fom $\pm\left(\begin{array}{ll}1 & b\\0 & 1\end{array}\right)$ with $b\in k_{p}$ . Therefore by $\psi(x)^{p^{n}}=x^{p^{n}}$ we get

$b=a$; hence $\psi(x)=x$ . Therefore, $\psi$ is an identity $mN$. In the same manner, $\psi$ is an

3Since $PSL_{2}(k_{p})$ is a characteristic subgroup of $PL_{2}(k_{\mathfrak{p}})$ (since $PSL_{2}(k_{\mathfrak{p}})$ is infinite and simple; see
proof ofCorollary 2 ofTheorem 3, \S 15, Chap. 2), we have $\psi(PSL_{2}(k_{p}))=PSL_{2}(k_{\mathfrak{p}})$ .
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identity $m{}^{t}N=\{(_{a}^{1}01\rangle|a\in k_{\mathfrak{p}}\}$ . But $PSL_{2}(k_{\mathfrak{p}})$ is generated by $N$ and ${}^{t}N$. Therefore, $\psi$

is the identity map $mPSL_{2}(k_{\mathfrak{p}})$ . $\square $

PROOF OF (II). Let $\psi$ be a global automorphism of $PL_{2}(k_{\mathfrak{p}})$ which is an identity on
$PSL_{2}(k_{\mathfrak{p}})$ . Let $x\in PL_{2}(k_{\mathfrak{p}})$ . Then for any $y\in PSL_{2}(k_{\mathfrak{p}})$ , we have $x^{-1}yx=y’\in PSL_{2}(k_{\mathfrak{p}})$ .
Therefore, $\psi(x)^{-1}y\psi(x)=\psi(y’)=y’$ . Therefore, $\psi(x)x^{-1}$ commutes with $y$ . Since $y$ is an
arbiffary element of $PSL_{2}(k_{\mathfrak{p}})$ , we get $\psi(x)x^{-1}=1$ ; hence $\psi(x)=x$ for all $x\in PL_{2}(k_{\mathfrak{p}})$ . $\square $

This completes the proof of Lemma 1 (Chapter 2).

\S 5. On admissible extensions. Let $k$ be any field, and let $K$ be an algebraic function

field of one variable over $k$ . Let $e=e(P)$ be a $\{$ 1, 2, $\cdots$ ; $\infty\}$-valued fimction defined on
the set of all prime divisors $P$ of $K$ such that

(i) $e(P)=1$ for almost all $P,$

(ii) if $ e(P)<\infty$ , then $e(P)$ is not divisible by the characteristic $p$ of $k,$

and

(iii) $2g-2+\sum_{P}(1-\frac{1}{e(P)})>0$ , where $g$ is the genus of $K.$

A separable extension $K’$ of $K$ will be called an admissible extensim of $\{K, e\}$ if for each

prime divisor $P$ of $K$ and its prime factor $P’$ of $K’,$ $P’/P$ is (at most) tamely ramified4 and

moreover if the ramffication index of $P’/P$ divides $e(P)$ $(ife(P)<\infty)$ .

We shall give here the proofs of the following two (probably well-known) facts (1),

(2), to supplement the arguments of the main text.5
(1) The composite of two admissible extensions of $\{K, e\}$ is also admissible.

Thus, to each $\{K, e\}$ , there exists $a$ (unique) maximum admissible extension. Call it $M$. It is
clear that a conjugate field (over $K$) ofan admissible extension of $\{K, e\}$ is also admissible;

hence $M/K$ is a Galois extension.

(2) If $k=C$ , then for each prime divisor $P$ of $K$ and its prime factor $P$ of $M$, the

ramffication index of $P’/P$ coincides with $e(P)$ .

PROOF OF (1). It is enough to prove in the case of finite extensions. Let $K_{1},K_{2}$ be two

finite admissible extensions of $\{K, e\}$ , let $K_{1},$ $\cdots$ , $K_{m}$ be all the conjugate fields of $K_{1},K_{2}$

over $K$, and let $K’$ be the composite of $K_{1},$ $\cdots$ , $K_{m}$ (so that all $K_{i}$ are also admissible,

and $K’$ is the smallest Galois extension of $K$ containing $K_{1},K_{2}$). It is enoug to prove

that $K’$ is an admissible extension of $\{K,e\}$ . Let $P$ be any prime divisor of $K’$ , and put

$P|_{K}=P$. Since $P/P$ is tamely ramified in all $K_{t}/K$, it is tamely ramified in $K’/K$. So, the
inertia group $T’$ of $P’/P$ is cychc. Put $e=e(P),$ $e’=(T’$ : 1 $)$ , and let $H_{i}$ be the subgroup

of $G(K’/K)$ corresponding to $K_{i}$ . Since the inertia group of $P$ in $K’/K_{i}$ is $T’\cap H_{f}$ , the

ramffication index of $P$ in $K_{f}/K$ is given by $(T’ : T’\cap H_{i})$ ; hence by assumption we
have $(T’ : T’\cap H_{i})|e$ . Let $e_{0}$ be the greatest commm divisor of $e$ and $l$ . Then since
$(T’ : 1)=l$ , we get $(T’ : T’\cap H_{i})|e_{0}$ . Let $\sigma$ be a generator of $T’$ . Then this implies that

4i.e., the residue field extension is also separable and the ramification index is coprime to $p.$

5(1) for Chap.5 \S 30; (2) for Chap.2 \S 42.
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$T’\cap H_{i}$ contains $\sigma^{e_{0}}$ . But we have $\bigcap_{i=1}^{m}H_{i}=1$ ; hence $\sigma^{e_{0}}=1$ ; hence $e_{0}=e’$ ; hence $e’|e.$

Since this holds for all $P’,$ $K’$ is an admissible extension of $\{K,e\}.$ $\square $

PROOF OF (2). Since $\{K,e\}$ over $C$ corresponds to a fuchsian group $\Delta$ , and finite ad-
missible extensions of $\{K, e\}$ correspond to subgroups of $\Delta$ with finite indices in a natural
manner (see Chapter 2, \S 40), it is enoug to prove here the following: Let $z_{1},$ $\cdots,z_{s}$ be all

the non-equivalent cusps of $\Delta$ , and let $H_{l}$ be the stabilizer of $z_{i}$ in $\Delta$ (so that $H_{i}$ are infinite
cyclic). Then for any positive number $N$, there exists a subgroup $\Delta’$ of $\Delta$ of finite index
such that (i) $\Delta’$ is torsion-free, and (ii) $(H_{i} : \Delta’\cap H_{i})\geq N$ for all $i$ . But this is easily checked
as follows: Let $w_{1},$ $\cdots,$ $w_{t}$ be all the non-equivalent elliptic fixed points of $\Delta$ and let $E_{j}$ be
the stabilizer of $w_{j}$ in $\Delta$ (so that $E_{j}$ are finite cyclic). Let $\Delta=\Delta_{1}\supset\Delta_{2}\supset\cdots\supset\Delta_{n}\supset\cdots$ be

any descending series ofnormal subgroups of $\Delta$ of finite indices such that $\bigcap_{\triangleright-1}^{n}\Delta_{k}=\{1\}.$

Then $\Delta_{k}\cap H_{i}(k=1,2, \cdots)$ and $\Delta_{k}\cap E_{j}(k=1,2, \cdots)$ are also descending series with
trivial intersection. Hence for some $k,$ $\Delta_{k}\cap E_{j}=1$ for all $j$ (hence $\Delta_{k}$ is torsion-free), and
$(H_{i} : \Delta_{k}\cap H_{i})\geq N$ for all $i.$ $\square $

Supplements to Chapter 3.

\S 6. The vanishing of $H^{1}(\Gamma_{R},\rho_{n})$ without compactness assumption for $ G/\Gamma$. Here

we shall give a generalization ofthe Corollary ofTheorem 1 ofChapter 3 (\S 5) to the case
where $ G/\Gamma$ is non-compact; namely,

THEOREM. Let $\Gamma$ be a discrete subgroup of $G=G_{R}\times G_{\mathfrak{p}}$ such that $\Gamma_{R},\Gamma_{\mathfrak{p}}$ are dense
in $G_{R},$ $G_{\mathfrak{p}}$ respectively and that the quotient $ G/\Gamma$ hasfinite invariant volume. Let $\rho_{n}(n=$

$0,1,2,$ $\cdots)$ be the symmetric tensor representations of degree $2n$ defined in Chapter 3
(\S 3). Then

(4) $H^{1}(\Gamma_{R},\rho_{n})=0 (n=0,1,2, \cdots)$ .

COROLLARY. The group $\Gamma$ being as above, the commutator quotient $\Gamma/[\Gamma,\Gamma]$ isfinite.

This is a generalization of (a part of) Theorem 2 ofChapter 3 (\S 6), and is an immediate
consequence of the above Theorem for $n=0$ (see \S 6).

For the proof ofthis Theorem, our study ofparabolic elements of $\Gamma$ (Part 2 ofChapter

1 $)$ is basic.

PROOF OF THE THEOREM. Let $\Gamma_{R}^{0}$ be any fuchsim group md let $\rho_{n0}(n=0,1,2, \cdots)$ be

the restriction of $\rho_{n}$ to $\Gamma_{R}^{0}$ . Let $V_{n}$ be the representation space of $\rho_{n}.$
$A$ 1-cocycle $a(\gamma)$

with respect to $\Gamma_{R}^{0}$ and $\rho_{n0}$ is called a parabolic cocycle if for each parabolic element
$\epsilon\in\Gamma_{R}^{0}$ , there exists some $b=b_{\epsilon}\in V_{n}$ , which may depend $m\epsilon$, such that $a(\epsilon)=$

$b-\rho_{n0}(\epsilon)b$ . It is clear that the set of all parabolic cocycles foms a group containing the

group of all coboundaries. Let $H_{n}’$ be the factor group, so that $H_{n}’$ can be considered as a
subgroup of $H^{1}(\Gamma_{R}^{0},\rho_{n0})$ . Then by Shimura [31], all results recalled in \S 4 hold (without

the compactness assumptim of the quotient $G_{R}/\Gamma_{R}^{0}$) ifwe replace $H^{1}(\Gamma_{R}^{0},\rho_{n0})$ by $H_{n}’$ and

if $\mathfrak{M}_{2n+2}$ is the space of all cusp forms (ofweight $2n+2$ with respect to $\Gamma_{R}^{0}$).
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Now let $\Gamma$ be as in the above theorem, and put $r^{\triangleleft}=\Gamma\cap(G_{R}\times PSL_{2}(O_{\mathfrak{p}}))$, so that $\Gamma_{R}^{0}$ is
a fuchsian group. Let $\varphi$ be the restriction homomorphism of $H^{1}(\Gamma_{R},\rho_{n})$ into $H^{1}0_{R}^{\triangleleft},\rho_{n0}$).

Then $\varphi$ is injective. In fact, this follows exactly in the same mamer as in \S 5, Chap. 3.
Now we claim that the image of $\varphi$ is contained in $H_{n}$ . To prove this, let $a(\gamma)$ be any
cocycle with respect to $\Gamma_{R},$

$\rho_{n}$ , and let $\epsilon$ be a parabolic element of $\Gamma_{R}^{0}$ . Our purpose is to
prove that $a(\epsilon)$ is contained in $(1-\rho_{n}(\epsilon))V_{n}$ . By the Corollary 2 ofTheorem 3 ofChapter
1 (Part 2, \S 25), there exists an element $\delta\in\Gamma_{R}$ and an integer $d>1$ such that $\delta^{-1}\epsilon\delta=d.$

Take $t\in G_{R}$ such that $\epsilon’=t^{-1}\epsilon t=\left(\begin{array}{ll}1 & 1\\0 & 1\end{array}\right)$ , and put $\delta’=t^{-1}\delta t$. Then by $\delta^{\prime-1}\epsilon’\delta’=\epsilon^{\prime d},$
$\delta’$

stabilizes $ i\infty$ but is not parabolic; hence $\delta’$ is of the form $\delta’=\left(\begin{array}{ll}a^{-1} & b\\0 & a\end{array}\right)$ , with $a=\sqrt{d}>1.$

If $b\neq 0$ , replace $t$ by the matr $x\left(\begin{array}{ll}1 & -b(a-a^{-l})^{-l}\\0 & 1\end{array}\right)t$, and assume from the beginning that

$\delta’=\left(\begin{array}{ll}a^{-1} & 0\\0 & a\end{array}\right)$ . Now by the definition of $\rho_{n}$ (\S 3, Chap. 3), we have

(5) $\rho_{n}(\epsilon’)=[^{1} 2nO12n.-1 \cdots *11) , \rho_{n}(\delta’)=\left(\begin{array}{lllll}I^{n} & & & & \\ & d^{l-n} & & O & \\ & & P^{-n} & & \\ & & & \ddots & \\ & O & & & d\end{array}\right).$

Therefore, the rank of $\rho_{n}(\epsilon’)$ is $2n(=\dim V_{n}-1)$ , and ${}^{t}(x_{1}, \cdots , x_{2n+1})\in V_{n}$ is contained in
$(1-\rho_{n}(\epsilon’))V_{n}$ if and only if $x_{2n+1}=0$ . Put $A’=1-\rho_{n}(\delta’)\{1+\rho_{n}(\epsilon’)+\cdots+\rho_{n}(\epsilon’)^{d-1}\}.$

Then $A’$ is upper triangular, and the i-th diagonal component is $1-d^{-n}(1\leq i\leq 2n+1)$ .
We claim now that if $x\in V_{n}$ with $A’x\in(1-\rho_{n}(\epsilon’))V_{n}$ , then $x\in(1-\rho_{n}(\epsilon’))V_{n}$ . Put
$x={}^{t}(x_{1}, \cdots,x_{2n+1})$ . Then $A’x\in(1-\rho_{n}(\epsilon’))V_{n}$ implies $(1-\theta^{+1})x_{2n+1}=0$ ; hence
$x_{2n+1}=0$ ; hence $x\in(1-\rho_{n}(\epsilon’))V_{n}$ . Now put $A=1-\rho_{n}(\delta)\{1+\rho_{n}(\epsilon)+\cdots+\rho_{n}(\epsilon)^{d-1}\}$ , so
that $A’=\rho_{n}(t)^{-1}A\rho_{n}(t)$ ; hence

(6) $Ax\in(1-\rho_{n}(\epsilon))V_{n}$ implies $x\in(1-\rho_{n}(\epsilon))V_{n}.$

Therefore it is enoug to prove that $Aa(\epsilon)\in(1-\rho_{n}(\epsilon))V_{n}$ . But by $\epsilon\delta=\delta\epsilon^{d}$, we have
$a(\epsilon)+\rho_{n}(\epsilon)a(\delta)=a(\delta)+\rho_{n}(\delta)a(\epsilon^{d})$

$=a(\delta)+\rho_{n}(\delta)\{1+\rho_{n}(\epsilon)+\cdots+\rho_{n}(\epsilon)^{d-1}\}a(\epsilon)$ ;

hence $Aa(\epsilon)=(1-\rho_{n}(\epsilon))a(\delta)$ . Therefore, by (8), we obtain $a(\epsilon)\in(1-\rho_{n}(\epsilon))V_{n}$ for each
parabolic element $\epsilon$ of $I_{R}^{\triangleleft}$ ; hence the image of $\varphi$ is contained in $H_{n}’.$

Now the proof is completed exactly in the same manner as in the proof ofTheorem 1
in \S 5, Chapter3, ifwe use Supplement \S 2 instead ofLemma 10 ofChapter 1. $\square $


	On Congruence Monodromy ...
	Supplements.


