CHAPTER 4

Part 1. Examples of Γ.

In Part 1 of this chapter, we shall give some examples of Γ. They are obtained from quaternion algebras A over totally real algebraic number fields F; and up to commensurability, they are the only examples of Γ that we know at present. We shall also prove that if L is a quasi-irreducible G_{p}-field over \mathbf{C} such that the corresponding discrete subgroup is commensurable with one obtained from a quaternion algebra A over F, then the field k_{0} (defined by Theorem 5 of Chapter 2) contains F (see Theorem 1, §5).

Examples of Γ.

§1. Quaternion algebra. By a quaternion algebra over a field F, we mean a simple algebra A with center F and with $[A: F]=4$. The simplest example is $A=M_{2}(F)$, and all other quaternion algebras are division algebras. In the following, we shall make no distinction between two quaternion algebras over F which are isomorphic over F. If F is algebraically closed (e.g., if $F=\mathbf{C}$), then $A=M_{2}(F)$ is the only quaternion algebra over F. If $F=\mathbf{R}$ or $F=k_{\mathfrak{p}}$ (\mathfrak{p}-adic number field), then there is a unique division quaternion algebra over F, which will be denoted by $D_{\mathbf{R}}$ or $D_{\mathfrak{p}}$ respectively.

Now let F be an algebraic number field, and let \mathfrak{p} be a prime divisor (finite or infinite) of F. Denote by $F_{\mathfrak{p}}$ the \mathfrak{p}-adic completion of F, so that either $F_{\mathfrak{p}} \cong \mathbf{C}$, or $F_{\mathfrak{p}} \cong \mathbf{R}$, or F_{p} is a \mathfrak{p}-adic number field. For each quaternion algebra A over F, put $A_{\mathrm{p}}=A \otimes_{F} F_{\mathrm{p}}$; hence $A_{\mathfrak{p}}$ is a quaternion algebra over $F_{\mathfrak{p}}$. Therefore, if $F_{\mathfrak{p}} \cong \mathbf{C}, A_{\mathfrak{p}}$ must be $M_{2}(\mathbf{C})$, and if $F_{\mathfrak{p}} \neq \mathbf{C}$, then there are two possibilities for A_{p}; namely, $M_{2}\left(F_{p}\right)$ or D_{p} (or $D_{\mathbf{R}}$ if $F_{p} \cong \mathbf{R}$). A prime divisor \mathfrak{p} of F is called unramified in A if $A_{\mathfrak{p}} \cong M_{2}\left(F_{\mathfrak{p}}\right)$ holds, and ramified if $A_{\mathfrak{p}} \neq M_{2}\left(F_{\mathfrak{p}}\right)$. Denote by $\delta(A)$ the set of all prime divisors of F which are ramified in A. Then it is well-known that $\delta(A)$ is finite and that its cardinal number is even. Conversely, if δ is any finite set of prime divisors of F not containing complex prime divisors and having even cardinal number, then there exists a quaternion algebra A over F, unique up to an isomorphism over F, such that $\delta=\delta(A)$;

In particular, $A=M_{2}(F)$ corresponds to $\delta=\phi$.
Let A be a quaternion algebra over an algebraic number field F. For each \mathfrak{p}, put

$$
\begin{equation*}
A_{\mathfrak{p}}^{1}=\left\{x_{\mathfrak{p}} \in A_{\mathfrak{p}} \mid N_{A_{\mathfrak{p}} / F_{\mathfrak{p}}} x_{\mathfrak{p}}=1\right\} . \tag{2}
\end{equation*}
$$

Then A_{p}^{1} is a locally compact group under multiplication, and

$$
\left\{\begin{array}{rlr}
A_{\mathfrak{p}}^{1} \cong S L_{2}\left(F_{\mathfrak{p}}\right) & \cdots \mathfrak{p} \notin \delta, \tag{3}\\
& =\text { compact } & \cdots \mathfrak{p} \in \delta .
\end{array}\right.
$$

Let S_{∞} be the set of all infinite prime divisors of F, and let S be any finite set of prime divisors of F containing S_{∞}. Put

$$
\begin{equation*}
A_{S}^{1}=\prod_{p \in S} A_{\mathfrak{p}}^{1} \quad \text { (direct product). } \tag{4}
\end{equation*}
$$

Let o be the ring of integers of F, and let ${ }^{(S)}$ be the ring of all elements of F of the form α / β with $\alpha, \beta \in \mathrm{o}$ such that all prime factors of $\beta \mathrm{o}$ are contained in S; or in short, ${ }^{1}$

$$
\begin{equation*}
\mathfrak{o}^{(S)}=\bigcup_{n=0}^{\infty}\left(\mathfrak{p}_{1} \cdots \mathfrak{p}_{s}\right)^{-n}, \quad S-S_{\infty}=\left\{\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{s}\right\} \tag{5}
\end{equation*}
$$

In particular, $\mathrm{o}^{\left(S_{\infty}\right)}=0$. By an $\mathfrak{o}^{(S)}$ order $O^{(S)}$ of A, we mean a subring of A containing 1 which is a finite $0^{(S)}$-module and which satisfies $O^{(S)} \otimes_{0}(S) F=A$. Then, it is easy to see that all $\mathrm{o}^{(S)}$-orders are given by $O \otimes_{0} \mathrm{o}^{(S)}$ with some p -order O. Now let $O^{(S)}$ be an $\mathrm{D}^{(S)}$-order of A, and put

$$
\begin{equation*}
\Gamma^{(S)}=\left\{x \in O^{(S)} \mid N_{A / F} x=1\right\} \tag{6}
\end{equation*}
$$

By the diagonal embedding, we shall consider $\Gamma^{(S)}$ as a subgroup of A_{S}^{1};

$$
\begin{equation*}
\Gamma^{(S)} \subset A_{S}^{1} \tag{7}
\end{equation*}
$$

Then $\Gamma^{(S)}$ is a discrete subgroup of A_{S}^{1}; the quotient $A_{S}^{1} / \Gamma^{(S)}$ has finite invariant volume and is compact if and only if $A \neq M_{2}(F)$; if $\mathfrak{p}_{0} \in S, \mathfrak{p}_{0} \notin \delta$, then the projection of $\Gamma^{(S)}$ to $\Pi_{p \in S-\left(p_{0}\right)} A_{p}^{1}$ is dense in the latter. These are special cases of more general theorems on arithmetic of algebraic groups (cf. [2], [9], [20]). Since $A_{\mathfrak{p}}^{1}$ for $\mathfrak{p} \in \delta$ are compact, it is clear that if we replace A_{S}^{1} by $A_{S-\delta}^{1}=\prod_{p \in S, \& \delta} A_{p}^{1}$ and consider $\Gamma^{(S)}$ as a subgroup of $A_{S-\delta}^{1}$, then we still get the same results as those italicized above.
§2. Now let $k_{\mathfrak{p}}$ be a given \mathfrak{p}-adic number field, and let us construct discrete subgroups of $S L_{2}(\mathbf{R}) \times S L_{2}\left(k_{p}\right)$ by the above method. Thus, the problem is to find F, S, and $\delta(\leftrightarrow A)$ such that $A_{S-\delta}^{1} \cong S L_{2}(\mathbf{R}) \times S L_{2}\left(k_{p}\right)$. First, $S-\delta$ cannot contain complex prime divisors. But S must contain all infinite prime divisors of F, and δ cannot contain complex prime divisors. Therefore, F cannot have complex prime divisors at all, so that F must be totally real. Since $S-\delta$ contains one and only one real prime divisor, δ contains all real prime divisors of F except one. Also, F must have a finite prime divisor $\mathfrak{p} \notin \delta$ such that $F_{\mathfrak{p}} \cong k_{\mathfrak{p}}$.

[^0]Therefore, the necessary and sufficient conditions (on F, δ, S) for $A_{S-\delta}^{1}$ to be isomorphic to $S L_{2}(\mathbf{R}) \times S L_{2}\left(k_{p}\right)$ are the following:

$$
\begin{cases}F: & \text { totally real, } \exists \text { a finite prime divisor } \mathfrak{p} \text { of } F \tag{8}\\ & \text { such that } F_{\mathfrak{p}} \cong k_{\mathfrak{p}} ; \\ \delta: & \text { contains all real prime divisors of } F \text { but one, } \\ & \text { and } \delta \nexists \mathfrak{p} ; \\ S= & S_{\infty} \cup\{\mathfrak{p}\}\end{cases}
$$

It is clear that there exist such F, δ and S. Take any such F, δ, put $S=S_{\infty} \cup\{\mathfrak{p}\}$, and denote as $\mathfrak{o}^{(S)}=\mathfrak{o}^{(p)}$. Then, by taking an $\mathfrak{o}^{(p)}$-order $O^{(p)}$ and defining $\Gamma^{(p)}$ to be the subgroup of $O^{(\mathfrak{p})}$ formed of all elements of norm 1, we get a discrete subgroup $\Gamma^{(p)}$ of $S L_{2}(\mathbf{R}) \times S L_{2}\left(k_{\mathfrak{p}}\right)$ whose quotient has finite invariant volume and whose projection to each factor is dense in that factor. Therefore, we have proved the following proposition.

Proposition 1. Let F be a totally real algebraic number field, and let A be a quaternion algebra over F in which all real prime divisors of F but one (denoted by $p_{\infty, 1}$) are ramified. Let \mathfrak{p} be a finite prime divisor of F which is unramified in A, and let ${ }^{(p)}$ be the ring of all elements of F which are integral except at \mathfrak{p}. Let $O^{(\mathfrak{p})}$ be any $\mathfrak{0}^{(\mathfrak{p})}$-order of A, and put

$$
\begin{equation*}
\Gamma=\left\{x \in O^{(p)} \mid N_{A / F} x=1\right\} / \pm 1 . \tag{9}
\end{equation*}
$$

Then, by the diagonal embedding of Γ into

$$
A_{p_{\infty}, 1}^{1} /(\pm 1) \times A_{\mathfrak{p}}^{1} /(\pm 1) \cong P S L_{2}(\mathbf{R}) \times P S L_{2}\left(F_{\mathfrak{p}}\right)
$$

Γ is regarded as a discrete subgroup of $G=P S L_{2}(\mathbf{R}) \times P S L_{2}\left(F_{\mathfrak{p}}\right)$ whose quotient has finite invariant volume and whose projection to each factor is dense in that factor. The quotient is compact if and only if $A \neq M_{2}(\mathbf{Q})$.

Corollary. Let k_{p} be a \mathfrak{p}-adic number field. Then there exists a discrete subgroup Γ of PS $L_{2}(\mathbf{R}) \times P S L_{2}\left(k_{p}\right)$ with compact quotient and with dense image of projection in each component of G.

In particular, by taking $A=M_{2}(\mathbf{Q})$ and $O^{(p)}=M_{2}\left(\mathbf{Z}^{(p)}\right)$, where $\mathbf{Z}^{(p)}=\cup_{n=0}^{\infty} p^{-n} \mathbf{Z}(p$: a prime number), we get $\Gamma=P S L_{2}\left(\mathbf{Z}^{(p)}\right)$. This was the only example of Γ discussed in the preceding chapters (of Volume 1).
§3. Up to commensurability, the examples of Γ given in $\S 2$ are the only examples of Γ that we know at present. On the other hand, if Γ is such as given in $\S 2$, then we can define its congruence subgroups in the usual manner (the modulus must be coprime to \mathfrak{p}); and a problem arises whether all subgroups of Γ with finite indices contain some congruence subgroup. Recently, this problem was solved affirmatively for the group $\Gamma=P S L_{2}\left(\mathbf{Z}^{(p)}\right)$ by J. Mennicke [23] and J. P. Serre [26]. But it remains open in the case $A \not \equiv M_{2}(\mathbf{Q})$.

That k_{0} contains F.

§4. To prove Theorem 1 (§5), we need the following proposition.
Proposition 2. ${ }^{2}$ Let F, A and Γ be as in Proposition 1. Then we have $F=$ $\mathbf{Q}\left(\left(\operatorname{tr} \gamma_{\mathbf{R}}\right)^{2} \mid \gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}}\right)$; and if $A \neq M_{2}(\mathbf{Q})$, then the quaternion algebra attached to Γ (defined in Chapter 3 (§12)) is nothing but A.

Proof. It is clear that if $A=M_{2}(\mathbf{Q})$, then $F=\mathbf{Q}\left(\left(\operatorname{tr} \gamma_{\mathbf{R}}\right)^{2} \mid \gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}}\right)$ holds. Now assume that $A \not \equiv M_{2}(\mathbf{Q})$, so that A is a division algebra and G / Γ is compact. Let Γ^{*} be the intersection of all normal subgroups of Γ whose quotients are finite $(2, \cdots, 2)$ type, and let $A^{*}=\mathbf{Q}\left[\Gamma^{*}\right]$ be the subalgebra of A generated over \mathbf{Q} by Γ^{*}. We shall prove $A^{*}=A$, which, by virtue of Proposition 6 (Chapter 3, §13), would prove our Proposition. For that purpose, put $F^{*}=F \cap A^{*}$ and let $x \mapsto \bar{x}$ be the canonical conjugation of A over F. Then since $\bar{\gamma}^{*}=\gamma^{*-1}$ for each $\gamma^{*} \in \Gamma^{*}$, we have $\bar{A}^{*}=A^{*}$; hence A^{*} is a division algebra. By the same reason, $A^{*} \cdot F$ is also a divison algebra and $F \subset A^{*} \cdot F \subset A$ holds. But since Γ^{*} is non-commutative, we get $A^{*} \cdot F=A$. Therefore, A^{*} contains four elements $x_{i}(1 \leq i \leq 4)$ that are linearly independent over F. Then we have $\operatorname{det}\left(\left(\operatorname{tr}_{A / F}\left(x_{i} x_{j}\right)\right)\right) \neq 0$, and $\operatorname{tr}_{A / F}\left(x_{i} x_{j}\right)=x_{i} x_{j}+\overline{x_{i} x_{j}} \in A^{*} \cap F=F^{*}$. This shows that $A^{*}=F^{*} x_{1}+\cdots+F^{*} x_{4}$; hence we have $A \cong A^{*} \otimes_{F} . F$ over F. But if $F^{*} \neq F$, then it cannot happen that all but one infinite prime divisor of F are ramified in $A^{*} \otimes_{F} . F$ (the number of unramified infinite prime divisors must be divisible by $\left[F: F^{*}\right]$). Therefore, $F^{*}=F$; hence $A^{*}=A^{*} F=A$, which proves our Proposition.

Corollary. Let F, A, Γ, G be as in Proposition 1. Then all subgroups of G which are commensurable with Γ are contained in the image of the diagonal embedding of A^{\times} / F^{\times} into $P L_{2}(\mathbf{R}) \times P L_{2}\left(F_{\mathfrak{p}}\right)$.

Proof. Let $\varphi_{\mathbf{R}}, \varphi_{\mathrm{p}}$, and φ be our embeddings $A \rightarrow M_{2}(\mathbf{R}), A \rightarrow M_{2}\left(F_{\mathfrak{p}}\right)$, and $A \rightarrow M_{2}(\mathbf{R}) \times M_{2}\left(F_{p}\right)$ (diagonal) respectively, and let $\varphi_{\mathbf{R}}^{\times}, \varphi_{p}^{\times}$, and φ^{\times}be the embeddings $A^{\times} / F^{\times} \rightarrow P L_{2}(\mathbf{R}), \rightarrow P L_{2}\left(F_{\mathfrak{p}}\right)$, and $\rightarrow P L_{2}(\mathbf{R}) \times P L_{2}\left(F_{\mathfrak{p}}\right)$ that are induced by $\varphi_{\mathbf{R}}, \varphi_{p}$, and φ respectively. Let Γ^{\prime} be a subgroup of $G=P S L_{2}(\mathbf{R}) \times P S L_{2}\left(F_{\mathfrak{p}}\right)$ which is commensurable with Γ, and put $\Gamma^{\prime \prime}=\Gamma \cap \Gamma^{\prime}$. Then $\mathbf{Q}\left[\Gamma_{\mathbf{R}}^{*}\right]=\mathbf{Q}\left[\Gamma_{\mathbf{R}}^{\prime *}\right]=\mathbf{Q}\left[\Gamma_{\mathbf{R}}^{*}\right]$ (Corollary of Proposition 6 of Chapter 3), and it is isomorphic over the center F to A. But then, it is clear that $\mathbf{Q}\left[\Gamma_{\mathbf{R}}^{*}\right]=\varphi_{\mathbf{R}}(A)$. Now, by $\Gamma_{\mathbf{R}}^{\prime} \subset \mathbf{Q}\left[\Gamma_{\mathbf{R}}^{\prime *}\right]^{\times} / F^{\times} \subset P L_{2}(\mathbf{R})$ (Proposition 6 of Chapter 3), we get $\Gamma_{\mathbf{R}}^{\prime} \subset \varphi_{\mathbf{R}}(A)^{\times} / F^{\times}=\varphi_{\mathbf{R}}^{\times}\left(A^{\times} / F^{\times}\right)$. Put $\Delta=\varphi_{\mathbf{R}}^{\times-1}\left(\Gamma_{\mathbf{R}}^{\prime}\right)$. Then $\varphi^{\times}(\Delta)$ is a discrete subgroup of $P S L_{2}(\mathbf{R}) \times P L_{2}\left(F_{\mathfrak{p}}\right)$, and is commensurable with Γ. Therefore, $\varphi^{\times}(\Gamma)$ is commensurable with Γ^{\prime} and $\varphi^{\times}(\Delta)_{\mathbf{R}}=\Gamma_{\mathbf{R}}^{\prime}$. Therefore, by Supplement §3 (Remark 2), we get $\Gamma^{\prime}=\varphi^{\times}(\Delta)$.

The notations being as above, put $\varphi^{\times-1}(G)=A_{0} / F^{\times}$, so that

$$
\begin{equation*}
A_{0}=\left\{x \in A \mid N_{A / F}(x) \in\left(\mathbf{R}^{\times}\right)^{2}, \in\left(F_{p}^{\times}\right)^{2}\right\} . \tag{10}
\end{equation*}
$$

[^1]§5. Now we shall prove the following theorem.
Theorem 1. Let F, A, Γ, G be as in Proposition 1, and let Γ^{\prime} be a subgroup of G which is commensurable with Γ. Let L be the G_{p}-field over \mathbf{C} which corresponds to Γ^{\prime}, and suppose that L contains a full G_{p}-subfield over a field $k \subset \mathbf{C}$. Then k contains F. In particular, if L is quasi-irreducible, then the field k_{0} (defined by Theorem 5 of Chapter 2) contains F.
(Here, to be more precise, we should write $\mathfrak{p}_{\infty, 1}(F)$ instead of F (see Proposition 1 for the definition of $\mathfrak{p}_{\infty, 1}$), but since it is always of this meaning whenever we consider F as a subfield of \mathbf{R} or \mathbf{C}, we denote it simply as F.)

Remark. By the Corollary of Proposition $2, \Gamma^{\prime}$ is of the form $\varphi^{\times}(\Delta)$ with $\Delta \subset A_{0} / F^{\times}$. By Corollary 4 of Theorem 3 in Chapter 2, we have $\left(N\left(\Gamma^{\prime}\right): \Gamma^{\prime}\right)<\infty$; hence by the former corollary, $N\left(\Gamma^{\prime}\right)$ is also contained in $\varphi^{\times}\left(A_{0} / F^{\times}\right)$. Therefore, L is quasi-irreducible if and only if the normalizer of Δ in A_{0} / F^{\times}is Δ itself.

Proof. Since Γ^{\prime} is of the form $\varphi^{\times}(\Delta)$ and φ is the diagonal embedding, it is clear that Γ^{\prime} satisfies the condition given in Lemma 12 of Chapter 2. Hence our Theorem is a direct consequence of Theorem 8 (Chapter 2, §36) and Proposition 2 of this chapter.

Further study of these Γ will be left to the succeeding parts of this chapter.

[^0]: ${ }^{1}$ We shall call this ring $0^{(S)}$ the ring of all elements of F which are integral except at S.

[^1]: ${ }^{2}$ To be more precise, we should write $p_{\infty, 1}(F)$ instead of F. The only reason for excluding the case of $A \cong M_{2}(Q)$ is that "the quaternion algebra attached to Γ " was defined only when G / Γ is compact (see Chapter 3).

