
CHAPTER 4

Part 1. Examples of $\Gamma.$

In Part 1 of this chapter, we shall give some examples of $\Gamma$ . They are obtained from

quatemion algebras $A$ over totally real algebraic number fields $F$; and up to commensu-
rability, they are the only examples of $\Gamma$ that we know at present. We shall also prove that

if $L$ is a quasi-irreducible $G_{\mathfrak{p}}$-field over $C$ such that the corresponding discrete subgroup

is commensurable with one obtained from a quatemion algebra $A$ over $F$, then the field $h$

(defined by Theorem 5 of Chapter 2) contains $F$ (see Theorem 1, \S 5).

Examples of $\Gamma.$

\S 1. Quaternion algebra. By a quatemion algebra over a field $F$, we mean a simple

algebra $A$ with center $F$ and with $[A : F]=4$ . The simplest example is $A=M_{2}(F)$ , and

all other quatemion algebras are division algebras. In the following, we shall make no
distinction between two quatemim algebras over $F$ which are isomorphic over $F$ . If $F$ is

algebraically closed (e.g., if $F=C$) , then $A=M_{2}(F)$ is the only quatemion algebra over
$F$ . If $F=R$ or $F=k_{\mathfrak{p}}$ ( $\mathfrak{p}$-adic number field), then there is a unique division quatemion

algebra over $F$, which will be denoted by $D_{R}$ or $D_{\mathfrak{p}}$ respectively.

Now let $F$ be an algebraic number field, and let $\mathfrak{p}$ be a prime divisor (finite or infinite)
of $F$ . Denote by $F_{\mathfrak{p}}$ the $\mathfrak{p}$-adic completion of $F$, so that either $F_{\mathfrak{p}}\cong C$ , or $F_{\mathfrak{p}}\cong R$, or
$F_{\mathfrak{p}}$ is a $\mathfrak{p}$-adic number field. For each quatemion algebra $A$ over $F$, put $A_{\mathfrak{p}}=A\otimes_{F}F_{\mathfrak{p}}$ ;

hence $A_{\mathfrak{p}}$ is a quatemim algebra over $F_{\mathfrak{p}}$ . Therefore, if $F_{\mathfrak{p}}\cong C,$ $A_{\mathfrak{p}}$ must be $M_{2}(C)$ , and if
$F_{\mathfrak{p}}\neq C$ , then there are two possibilities for $A_{\mathfrak{p}}$ ; namely, $M_{2}(F_{\mathfrak{p}})$ or $D_{\mathfrak{p}}$ $($or $D_{R}$ if $F_{\mathfrak{p}}\cong R)$ .
A prime divisor $\mathfrak{p}$ of $F$ is called unramified in $A$ if $A_{\mathfrak{p}}\cong M_{2}(F_{\mathfrak{p}})$ holds, and ramified if
$A_{\mathfrak{p}}\not\cong M_{2}(F_{\mathfrak{p}})$ . Denote by $\delta(A)$ the set of all prime divisors of $F$ which are ramified in $A.$

Then it is well-known that $\delta(A)$ is finite and that its cardinal number is even. Conversely,
if $\delta$ is any finite set of prime divisors of $F$ not containing complex prime divisors and

having even cardinal number, then there exists a quatemim algebra $A$ over $F$, unique up

to an isomorphism over $F$, such that $\delta=\delta(A)$ ;

(1) $A\leftrightarrow_{1:1}\delta.$
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In particular, $A=M_{2}(F)$ corresponds to $\delta=\phi.$

Let $A$ be a quatemion algebra over an algebraic number field $F$ . For each $\mathfrak{p}$, put

(2) $A_{\mathfrak{p}}^{1}=\{x_{\mathfrak{p}}\in A_{\mathfrak{p}}|N_{A_{\nu}/F},x_{\mathfrak{p}}=1\}.$

Then $A_{\mathfrak{p}}^{1}$ is a locally compact group under multiplication, and

(3) $\left\{\begin{array}{ll}A_{\mathfrak{p}}^{1}\underline{\simeq}SL_{2}(F_{\mathfrak{p}}) & \cdots P\not\in\delta,\\= compact & \cdots \mathfrak{p}\in\delta.\end{array}\right.$

Let $S_{\infty}$ be the set of all infinite prime divisors of $F$, and let $S$ be anyfinite set of prime
divisors of $F$ containing $S_{\infty}$ . Put

(4)
$A_{s}^{1}=\prod_{p\epsilon S}A_{\mathfrak{p}}^{1}$

(direct product).

Let $\mathfrak{o}$ be the ring of integers of $F$, and let $\mathfrak{o}^{(S)}$ be the ring of all elements of $F$ of the form
$\alpha/\beta$ with $\alpha,\beta\in \mathfrak{o}$ such that all prime factors $of\beta \mathfrak{o}$ are contained in $S$ ; or in short}

(5) $\mathfrak{o}^{(S)}=\bigcup_{n\overline{-}0}^{\infty}(\mathfrak{p}_{1}\cdots \mathfrak{p}_{s})^{-n}, S-S_{\infty}=\{\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{s}\}.$

In particular, $\mathfrak{o}^{(S_{\infty})}=\mathfrak{o}$ . By an $\mathfrak{o}^{(S)}$-order $O^{(S)}$ of $A$ , we mean a subring of $A$ containing
1 which is a finite $\mathfrak{o}^{(S)}$-module and which satisfies $O^{(S)}\otimes_{\mathfrak{o}^{(S)}}F=A$ . Then, it is easy to
see that all $\mathfrak{o}^{(S)}$-orders are given by $O\otimes_{0}\mathfrak{o}^{(S)}$ with some $\mathfrak{o}$-order $O$ . Now let $O^{(S)}$ be an
$\mathfrak{o}^{(S)}$-order of $A$ , and put

(6) $\Gamma^{\langle S)}=\{x\in O^{(S)}|N_{\Lambda/F}x=1\}.$

By the diagonal embedding, we shall consider $\Gamma^{\langle S)}$ as a subgroup of $A_{s}^{1}$ ;

(7) $\Gamma^{\langle S)}\subset A_{s}^{1}.$

Then $\Gamma^{(S)}$ is a discrete subgmup of $A_{s}^{1}$ ; the quotient $A_{s}^{1}/r^{\langle S)}$ hasfinite invariant volume
and is compact ifand only if$A\neq M_{2}(F)$; if $\mathfrak{p}_{0}\in S,$ $\mathfrak{p}_{0}\not\in\delta$, then the projection of $\Gamma^{\langle S)}$ to
$\prod_{\mathfrak{p}\epsilon S-\{\mathfrak{p}_{0}\}}A_{\mathfrak{p}}^{1}$ is dense in the latter. These are special cases of more general theorems on
arithmetic of algebraic groups (cf. [2], [9], [20]). Since $A_{\mathfrak{p}}^{1}$ for $\mathfrak{p}\in\delta$ are compact, it is
clear that ifwe replace $A_{s}^{1}$ by $A_{S-\delta}^{1}=\prod_{\mathfrak{p}\epsilon S,\not\in\delta}A_{\mathfrak{p}}^{1}$ and consider $r^{\langle S)}$ as a subgroup of $A_{s-\delta}^{1},$

then we still get the same results as those italicized above.

\S 2. Now let k, beagiven $\mathfrak{p}$-adic number held, and let us construct discrete subgroups
of $SL_{2}(R)\times SL_{2}(k_{p})$ by the above method. Thus, the problem is to hnd $F,S$ , and $\delta(\leftrightarrow A)$

such that $A_{s-\delta}^{1}\cong SL_{2}(R)\times SL_{2}(k_{\mathfrak{p}})$ . First, $ S-\delta$ cannot contain complex prime divisors.
But $S$ must contain all inhnite prime divisors of $F$, and $\delta$ cannot contain complex prime
divisors. Therefore, $F$ cannot have complex prime divisors at all, so that $F$ must be totally
real. Since $ S-\delta$ contains one and only one real prime divisor, $\delta$ contains all real prime
divisors of $F$ except one. Also, $F$ must have a hnite prime divisor $\mathfrak{p}\not\in\delta$ such that $F_{p}\cong k_{\mathfrak{p}}.$

lWe shall call this ring $\mathfrak{o}^{(S)}$ the ring ofall elements of$F$ which are integral except at $S.$
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Therefore, the necessary and sufficient conditions $(mF, \delta, S)$ for $A_{S-\delta}^{1}$ to be isomor-
phic to $SL_{2}(R)\times SL_{2}(k_{\mathfrak{p}})$ are the following:

$\left\{\begin{array}{l}F : totally real, \exists a finite prime divisor \mathfrak{p} of F\\such that F_{\mathfrak{p}}\cong k_{\mathfrak{p}};\end{array}\right.$(8) $\delta$ : contains all real prime divisors of $F$ but one,

and $\delta\not\supset \mathfrak{p}$ ;

$S=$ $S_{\infty}\cup\{\mathfrak{p}\}.$

It is clear that there exist such $F,$ $\delta$ and $S$ . Take any such $ F,\delta$ , put $S=S_{\infty}U\{\mathfrak{p}\}$ , and denote
as $\mathfrak{o}^{(S)}=\mathfrak{o}^{(\mathfrak{p})}$ . Then, by taking an $\mathfrak{o}^{(\mathfrak{p})}$ -order $O^{(\mathfrak{p})}$ and defining $\Gamma^{(\mathfrak{p})}$ to be the subgroup of
$O^{(\mathfrak{p})}$ formed of all elements ofnorm 1, we get a discrete subgroup $\Gamma^{(\mathfrak{p})}$ of $SL_{2}(R)\times SL_{2}(k_{\mathfrak{p}})$

whose quotient has finite invariant volume and whose projection to each factor is dense in
that factor. Therefore, we have proved the following proposition.

PROPOSITION 1. Let $F$ be a totally real algebraic numberfield and let $A$ be a quaternion
algebm over $F$ in which all realprime divisors of$F$ but one (denotedby $\mathfrak{p}_{\infty,1}$ ) are ramified
Let $\mathfrak{p}$ be afinite prime divisor of$F$ which is unramified in $A$ , and let $\mathfrak{o}^{(\mathfrak{p})}$ be the ring ofall
elements of$F$ which are integral except at $\mathfrak{p}$ . Let $O^{(\mathfrak{p})}$ be any $\mathfrak{o}^{(\mathfrak{p})}$-order of$A$, andput

(9) $\Gamma=\{x\in O^{(\mathfrak{p})}|N_{A/F}x=1\}/\pm 1.$

Then, by the diagonal embedding of $\Gamma$ into

$A_{\mathfrak{p}_{\infty,1}}^{1}/(\pm 1)\times A_{\mathfrak{p}}^{1}/(\pm 1)\cong PSL_{2}(R)\times PSL_{2}(F_{\mathfrak{p}})$ ,

$\Gamma$ is regarded as a discrete subgroup of $G=PSL_{2}(R)\times PSL_{2}(F_{p})$ whose quotient has

finite invariant volume and whose projection to each factor is dense in that factor. The

quotient is compact ifand only if$A\not\cong M_{2}(Q)$.

COROLLARY. Let $k_{\mathfrak{p}}$ be a $\mathfrak{p}$-adic numberfield Then there exists a discrete subgroup $\Gamma$

of $PSL_{2}(R)\times PSL_{2}(k_{\mathfrak{p}})$ with compact quotient andwith dense image ofprojection in each
component of $G.$

In particular, by taking $A=M_{2}(Q)$ and $O^{(\mathfrak{p})}=M_{2}(Z^{(p)})$ , where $Z^{(p)}=U_{n=0}^{\infty}p^{-n}Z(p$ : a
prime number), we get $\Gamma=PSL_{2}(Z^{(p)})$ . This was the only example of $\Gamma$ discussed in the
preceding chapters (ofVolume 1).

\S 3. Up to commensurability, the examples of $\Gamma$ given in \S 2 are the only examples of
$\Gamma$ that we know at present. On the other hand, if $\Gamma$ is such as given in \S 2, thenwe can define
its congmence subgroups in the usual manner (the modulus must be coprime to $\mathfrak{p}$); and
a problem arises whether all subgroups of $\Gamma$ with finite indices contain some congmence
subgroup. Recently, this problem was solved affirmatively for the group $\Gamma=PSL_{2}(Z^{(p)})$

by J. Mennicke [23] and J. P. Serre [26]. But it remains open in the case $A\not\cong M_{2}(Q)$ .
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That $h$ contains $F.$

\S 4. To prove Theorem 1 (\S 5), we need the following proposition.

PROPOSITION $2$ Let $F,$ $A$ and $\Gamma$ be as in Pvoposition 1. Then we have $F=$
$Q((tr\gamma_{R})^{2}|\gamma_{R}\in\Gamma_{R}),\cdot$ and if $A\not\cong M_{2}(Q)$, then the quatemion algebra attached to $\Gamma$

(defined in Chapter 3 (\S 12)) is nothing but $A.$

PROOF It is clear that if $A=M_{2}(Q)$ , then $F=Q((tr\gamma_{R})^{2}|\gamma_{R}\in\Gamma_{R})$ holds. Now
assume that $A\not\cong M_{2}(Q)$ , so that $A$ is a division algebra and $ G/\Gamma$ is compact. Let $\Gamma^{*}$ be the
intersection of all normal subgroups of $\Gamma$ whose quotients are finite $(2, \cdots , 2)$ type, and
let $A^{*}=Q[\Gamma^{*}]$ be the subalgebra of $A$ generated over $Q$ by $\Gamma^{*}$ . We shall prove $A^{*}=A,$

which, by virtue of Proposition 6 (Chapter 3, \S 13), would prove our Proposition. For
that purpose, put $F^{*}=F\cap A^{*}$ and let $x\mapsto\overline{x}$be the canonical conjugation of $A$ over $F.$

Then since $\overline{\gamma}^{*}=\gamma^{*-1}$ for each $\gamma^{*}\in\Gamma^{*}$ , we have $A^{*}-=A^{*}$ ; hence $A^{*}$ is a division algebra.
By the same reason, $A^{*}\cdot F$ is also a divison algebra and $F\subset A^{*}\cdot F\subset A$ holds. But
since $\Gamma^{*}$ is non-commutative, we get $A^{*}\cdot F=A$ . Therefore, $A^{*}$ contains four elements
$x_{i}(1\leq i\leq 4)$ that are linearly independent over $F$ . Then we have $\det((ff_{A/F}(x_{i}x_{j})))\neq 0,$

and $ff_{A/F}(x_{i}x_{j})=x_{i}x_{j}+\overline{x_{i}x_{j}}\in A^{*}\cap F=F^{*}$ . This shows that $A^{*}=F^{*}x_{1}+\cdots+F^{*}x_{4}$ ;
hence we have $A\cong A^{*}\otimes_{F}\cdot F$ over $F$ . But if $F^{*}\neq F$, then it cannot happen that all but
one infinite prime divisor of $F$ are ramified in $A^{*}\otimes_{F}\cdot F$ (the number ofunramified infinite
prime divisors must be divisible by $[F:F^{*}])$ . Therefore, $F^{*}=F$; hence $A^{*}=A^{*}F=A,$

which proves our Proposition. $\square $

COROLLARY. Let $F,A,\Gamma,$ $G$ be as in Proposition 1. Then all subgroups of $G$ which are
commensurable with $\Gamma$ are contained in the image of the diagonal embedding of $A^{x}/F^{\times}$

into $PL_{2}(R)\times PL_{2}(F_{\mathfrak{p}})$ .

PROOF Let $\varphi_{R},$ $\varphi_{\mathfrak{p}}$ , and $\varphi$ be our embeddings $A\rightarrow M_{2}(R),A\rightarrow M_{2}(F_{\mathfrak{p}})$ , and
$A\rightarrow M_{2}(R)\times M_{2}(F_{\mathfrak{p}})$ (diagonal) respectively, and let $\varphi_{R}^{\times},\varphi_{\mathfrak{p}}^{\times}$ , and $\varphi^{\times}$ be the embeddings
$A^{\times}/p\times\rightarrow PL_{2}(R),$ $\rightarrow PL_{2}(F_{\mathfrak{p}})$ , and $\rightarrow PL_{2}(R)\times PL_{2}(F_{\mathfrak{p}})$ that are induced by $\varphi_{R},\varphi_{\mathfrak{p}}$ , and
$\varphi$ respectively. Let $\Gamma’$ be a subgroup of $G=PSL_{2}(R)\times PSL_{2}(F_{\mathfrak{p}})$ which is commen-
surable wiffi $\Gamma$ , and put $\Gamma’’=\Gamma\cap\Gamma’$ . Then $Q[\Gamma_{R^{*}}’]=Q[\Gamma_{R^{*}}’’]=Q[\Gamma_{R}^{*}]$ (Corollary of
Proposition 6 of Chapter 3), and it is isomorphic over the center $F$ to $A$ . But then,, it is
clear that $Q[\Gamma_{R}^{*}]=\varphi_{R}(A)$ . Now, by $\Gamma_{R}’\subset Q[\Gamma_{R}’]^{\times}/F^{\times}\subset PL_{2}(R)$ (Proposition 6 ofChapter
3 $)$ , we get $\Gamma_{R}’\subset\varphi_{R}(A)^{\times}/F^{\times}=\varphi_{R}^{\times}(A^{\times}/F^{\times})$ . Put $\Delta=\varphi_{R}^{\times-1}(\Gamma_{R}’)$ . Then $\varphi^{\times}(\Delta)$ is a discrete
subgroup of $PSL_{2}(R)\times PL_{2}(F_{\mathfrak{p}})$ , and is commensurable with $\Gamma$ . Therefore, $\varphi^{\times}T$) is com-
mensurab1e
$\Gamma’=\varphi^{\times}(\Delta)$ .

with $\Gamma’$ and $\varphi^{\times}(\Delta)_{R}=\Gamma_{R}’$ . Therefore, by Supplement \S 3 (Remark 2), we get
$\square $

The notations being as above, put $\varphi^{\times-1}(G)=A_{0}/F^{\times}$ , so that

(10) $A_{0}=\{x\in A|N_{\Lambda/F}(x)\in(R^{\times})^{2}, \in(F_{\mathfrak{p}}^{\times})^{2}\}.$

2 To be more precise, we should write $\mathfrak{p}_{\infty,1}(F)$ instead of $F$. The only reason for excluding the case
of $A\cong M_{2}(Q)$ is that the quaternion algebra attached to $\Gamma$

” was defined only when $ G/\Gamma$ is compact (see

Chapter 3).
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\S 5. Now we shall prove the following theorem.

THEOREM 1. Let $F,A,\Gamma,$ $G$ be as in Proposition 1, and let $\Gamma’$ be a subgroup of $G$ which

is commensumble with $\Gamma$ . Let $L$ be the $G_{p}$ -field over $C$ which corresponds to $\Gamma’$ , and

suppose that $L$ contains a full $G_{\mathfrak{p}}$-subfield over a field $ k\subset$ $C$ . Then $k$ contains F. In

particular, $ifL$ is quasi-irreducible, then thefield $h$ (defined by Theorem 5 ofChapter 2)
contains $F.$

(Here, to be more precise, we should write $\mathfrak{p}_{\infty,1}(F)$ instead of $F$ (see Proposition 1 for

the definition of $\mathfrak{p}_{\infty,1}$ ), but since it is always ofthis meaning whenever we consider $F$ as a

subfield of $R$ or $C$ , we denote it simply as $F.$)

REMARK. By the Corollary ofProposition 2, $\Gamma’$ is of the form $\varphi^{\times}(\Delta)$ with $\Delta\subset A_{0}/F^{\times}.$

By Corollary 4 of Theorem 3 in Chapter 2, we have $(N(\Gamma’) : \Gamma’)<\infty$ ; hence by the

former corollary, $N(\Gamma’)$ is also contained in $\varphi^{\times}(A_{0}/F^{\times})$ . Therefore, $L$ is quasi-irreducible

ifand only ifthe normalizer of $\Delta$ in $A_{0}/F^{\times}is$ $\Delta$ itself.

PROOR Since $\Gamma’$ is of the form $\varphi^{x}(\Delta)$ and $\varphi$ is the diagonal embedding, it is clear that
$\Gamma’$ satisfies the condition given in Lemma 12 ofChapter 2. Hence our Theorem is a direct

consequence of Theorem 8 (Chapter 2, \S 36) and Proposition 2 of this chapter. $\square $

Further study ofthese $\Gamma$ will be left to the succeeding parts of this chapter.
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