CHAPTER 3

Part 1. Some properties of Γ .

Throughout Part 1 of this chapter, we assume that the quotient G/Γ is compact. Our main purpose is to prove the following results (i)~(iv) (particularly (iv)).

(i) The commutator subgroup [Γ, Γ] of Γ is of finite index in Γ. Moreover, if Γ is torsion-free, then the index (Γ : [Γ, Γ]) is a divisor of P(1)², where

$$P(u) = \prod_{i=1}^{g} (1 - \pi_i u) (1 - \pi'_i u)$$

is the numerator of the main factor of $\zeta_{\Gamma}(u)$ (Theorem 2, §6).

- (ii) $\Gamma_{\mathbf{R}}$ has no non-trivial deformation in $G_{\mathbf{C}} = PL_2(\mathbf{C})$ (Theorem 3, §7).
- (iii) Γ is residually finite. Moreover, Γ contains a torsion-free subgroup of finite index (Theorem 4, §9).
- (iv) The field $F = \mathbf{Q}((\operatorname{tr} \gamma_{\mathbf{R}})^2 | \gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}})$ is an algebraic number field. Moreover, there is a quaternion algebra A over F, which is uniquely determined by Γ , such that for any field $K \subset \mathbf{C}$ the following two statements (a), (b) are equivalent:
 - (a) There is an element $t \in G_{\mathbb{C}} = PL_2(\mathbb{C})$ such that $t^{-1}\Gamma_{\mathbb{R}}t \subset PL_2(K)$.
 - (b) K contains F and $A \otimes_F K \cong M_2(K)$.

Furthermore, $\Gamma_{\mathbf{R}}$ can be considered as a subgroup of A^{\times}/F^{\times} (Theorem 5, Proposition 6;§12, §13).

We begin with some preliminaries; then we shall prove Theorem 1 (§5) which asserts $H^1(\Gamma_{\mathbf{R}}, \rho_n) = \{0\} \ (n \ge 0)$, where ρ_n is the symmetric tensor representation of $G_{\mathbf{R}}$ of degree 2n (see §3). This is a consequence of Eichler-Shimura's isomorphism (see §4), Kuga's lemma (Lemma 10 of Chapter 1), and our remarks on cohomology groups (§1 §2). Now, Theorem 1 is basic for all our results (i)-(iv). In fact, (i) and (ii) are almost direct consequences of $H^1(\Gamma_{\mathbf{R}}, \rho_n) = \{0\}$ for n = 0 and n = 1 respectively; and (iii), (iv) are results of our study of "deformation variety" of $\Gamma_{\mathbf{R}}$ in $G_{\mathbf{C}}$, of which (ii) is the starting point.

Finally, we remark that some of our results are valid also for more general dense subgroups $\Gamma_{\mathbf{R}}$ of $G_{\mathbf{R}}$ satisfying some conditions (see Remark 1 in §7).

The vanishing of $H^1(\Gamma_{\mathbf{R}}, \rho_n)$ and its consequences.

§1. In general, let A be an additive abelian group, and let ρ be a homomorphism of an arbitrary abstract group Γ into the group of all automorphisms of A;

(1)
$$\rho: \Gamma \to \operatorname{Aut} A; \quad \rho(\gamma \gamma')a = \rho(\gamma)(\rho(\gamma')a).$$

As usual, 1-cocycles are A-valued functions $a(\gamma)$ on Γ satisfying

$$a(\gamma\gamma') = a(\gamma) + \rho(\gamma)a(\gamma') \quad (\gamma, \gamma' \in \Gamma),$$

and 1-coboundaries are such 1-cocycles $a(\gamma)$ as can be written as $a(\gamma) = (1 - \rho(\gamma))a$ with some fixed $a \in A$. We denote by $H^1(\Gamma, \rho)$ the 1-cohomology group, i.e., the quotient of the group of all 1-cocycles by that of all 1-coboundaries. If Γ^0 is a subgroup of Γ and if ρ_0 is the restriction of ρ to Γ^0 , then we get a restriction homomorphism

(2)
$$\varphi: H^1(\Gamma, \rho) \to H^1(\Gamma^0, \rho_0).$$

LEMMA 1. If for every $\gamma \in \Gamma$, $\rho(\Gamma^0 \cap \gamma^{-1}\Gamma^0\gamma)$ has no common fixed element $\neq 0$ of A, then φ is injective.

PROOF. Let $a(\gamma)$ be a cocycle representing a class contained in the kernel of φ . Then we get $a(\gamma_0) = (1 - \rho(\gamma_0))a$ $(a \in A)$ for all $\gamma_0 \in \Gamma^0$. Put $a'(\gamma) = a(\gamma) - (1 - \rho(\gamma))a$. Then $a'(\gamma)$ is a 1-cocycle with respect to Γ and ρ , and we have $a'(\gamma_0) = 0$ for all $\gamma_0 \in \Gamma^0$. Let δ be any element of Γ . Then we have

$$a'(\delta^{-1}\gamma\delta) = a'(\delta^{-1}) + \rho(\delta^{-1})a'(\gamma) + \rho(\delta^{-1}\gamma)a'(\delta)$$
$$= -\rho(\delta^{-1})a'(\delta) + \rho(\delta^{-1})a'(\gamma) + \rho(\delta^{-1}\gamma)a'(\delta).$$

Hence if $\gamma \in \Gamma^0 \cap \delta \Gamma^0 \delta^{-1}$ so that γ and $\delta^{-1} \gamma \delta$ are both contained in Γ^0 , then we get $(\rho(\gamma) - 1)a'(\delta) = 0$. Since this holds for all $\gamma \in \Gamma^0 \cap \delta \Gamma^0 \delta^{-1}$, we get $a'(\delta) = 0$ by our assumption. Therefore, $a'(\delta) = 0$ for all $\delta \in \Gamma$; hence we get $a(\gamma) = (1 - \rho(\gamma))a$ for all $\gamma \in \Gamma$. Therefore, $a(\gamma)$ is a coboundary.

COROLLARY. Let Γ^0 be a discrete subgroup of $G_{\mathbf{R}} = PSL_2(\mathbf{R})$ such that the quotient $G_{\mathbf{R}}/\Gamma^0$ is of finite invariant volume, and let Γ be a group with $\Gamma^0 \subset \Gamma \subset G_{\mathbf{R}}$, such that $\gamma^{-1}\Gamma^0\gamma$ and Γ^0 are commensurable with each other for every $\gamma \in \Gamma$. Let $\tilde{\rho}$ be a finite dimensional non-trivial irreducible representation of $G_{\mathbf{R}}$, and let ρ be its restriction to Γ . Then the restriction homomorphism φ given by (2) is injective.

PROOF. By Borel's density theorem (see [1] and Supplement §1), $\rho|_{\Gamma^0 \cap \gamma^{-1} \Gamma^0 \gamma}$ is irreducible for all $\gamma \in \Gamma$.

§2. Returning to the general situation, let Γ^0 be a subgroup of Γ , and assume now that $\gamma^{-1}\Gamma^0\gamma$ is commensurable with Γ^0 for every $\gamma \in \Gamma$. Let $\mathcal{H}(\Gamma, \Gamma^0)$ be the Hecke ring defined with respect to the left Γ^0 -cos t decomposition of Γ . For each $\Gamma^0\gamma\Gamma^0 \in \mathcal{H}(\Gamma, \Gamma^0)$, let

.....

 $d(\Gamma^0 \gamma \Gamma^0)$ be the number of left Γ^0 -cosets contained in $\Gamma^0 \gamma \Gamma^0$, and for each $X \in \mathcal{H}(\Gamma, \Gamma^0)$, we define d(X) by linearity. Then

$$\mathcal{H}(\Gamma,\Gamma^0) \ni X \mapsto d(X) \in \mathbb{Z}$$

is a homomorphism.

Now we shall define an action ρ^* of $\mathcal{H}(\Gamma, \Gamma^0)$ on $H^1(\Gamma^0, \rho_0)$. Take any double coset $\Gamma^0 \gamma \Gamma^0 = \sum_{i=1}^d \Gamma^0 \gamma_i$ (disjoint), and for each $\sigma \in \Gamma^0$ and $i \ (1 \le i \le d)$, put $\gamma_i \sigma = x_{ij} \gamma_j$ with $x_{ij} \in \Gamma^0$. For any 1-cocycle $a(\sigma)$, put

(3)
$$\rho^*(\Gamma^0\gamma\Gamma^0)a(\sigma) = \sum_{i=1}^d \rho(\gamma_i^{-1})a(x_{ij}).$$

Then, as can be checked directly, this is also a 1-cocycle; and moreover, if $a(\sigma)$ is a coboundary, it is also a coboundary. In fact, if $a(\sigma) = (1 - \rho(\sigma))a$, then (3) will be equal to $(1 - \rho(\sigma)) \sum_{i=1}^{d} \rho(\gamma_i^{-1})a$. Moreover, if we take another left Γ^0 -coset decomposition $\Gamma^0 \gamma \Gamma^0 = \sum_{i=1}^{d} \Gamma^0 \gamma'_i$ with $\gamma'_i = \sigma_i \gamma_i$ ($\sigma_i \in \Gamma^0$), and define $\rho^{*'}(\Gamma^0 \gamma \Gamma^0)$ with respect to this decomposition, a simple straightforward computation (note that $a(\gamma^{-1}) = -\rho(\gamma^{-1})a(\gamma)$ ($\gamma \in \Gamma$)) shows that

(4)
$$\rho^{*'}(\Gamma^0\gamma\Gamma^0)a(\sigma) = \rho^{*}(\Gamma^0\gamma\Gamma^0)a(\sigma) - (1-\rho(\sigma))\sum_{i=1}^d \rho(\gamma_i^{-1})a(\sigma_i^{-1}).$$

Therefore, $\rho^*(\Gamma^0\gamma\Gamma^0)$ defines an endomorphism of $H^1(\Gamma^0, \rho^0)$, which is well-defined by $\Gamma^0\gamma\Gamma^0$ and does not depend on the choice of $\gamma_1, \dots, \gamma_d$. Define $\rho^*(X)$ for any $X \in \mathcal{H}(\Gamma, \Gamma^0)$ by linearity. Thus, for each $X \in \mathcal{H}(\Gamma, \Gamma^0)$, $\rho^*(X)$ is an element of End $H^1(\Gamma^0, \rho_0)$, the endomorphism ring of $H^1(\Gamma^0, \rho_0)$.

PROPOSITION 1. The notations being as above,

(i) ρ^* is an anti-homomorphism of $\mathcal{H}(\Gamma, \Gamma^0)$ into End $H^1(\Gamma^0, \rho_0)$;

(5)
$$\rho^*(X \cdot Y) = \rho^*(Y) \circ \rho^*(X) \quad \forall X, Y \in \mathcal{H}(\Gamma, \Gamma^0).$$

(ii) If $a(\sigma)$ is contained in $\varphi(H^1(\Gamma, \rho))$, then

(6)
$$\rho^*(X)a(\sigma) = d(X)a(\sigma) \quad \forall X \in \mathcal{H}(\Gamma, \Gamma^0),$$

holds.

PROOF. (i). This can be checked in a straightforward manner and hence is omitted.

(ii) Let $a(\sigma)$ be a cocycle on Γ . Then,

$$\rho^{*}(\Gamma^{0}\gamma\Gamma^{0})a(\sigma) = \sum_{i=1}^{d} \rho(\gamma_{i}^{-1})a(x_{ij}) = \sum_{i=1}^{d} \rho(\gamma_{i}^{-1})a(\gamma_{i}\sigma\gamma_{j}^{-1})$$

$$= \sum_{i=1}^{d} \rho(\gamma_{i}^{-1})a(\gamma_{i}) + \sum_{i=1}^{d} \rho(\gamma_{i}^{-1})\rho(\gamma_{i})a(\sigma) + \sum_{i=1}^{d} \rho(\gamma_{i}^{-1})\rho(\gamma_{i}\sigma)a(\gamma_{j}^{-1})$$

$$= \sum_{i=1}^{d} \rho(\gamma_{i}^{-1})a(\gamma_{i}) + d \cdot a(\sigma) - \sum_{j=1}^{d} \rho(\sigma)\rho(\gamma_{j}^{-1})a(\gamma_{j})$$

$$= d \cdot a(\sigma) + (1 - \rho(\sigma)) \sum_{i=1}^{d} \rho(\gamma_{i}^{-1})a(\gamma_{i})$$

$$\sim d \cdot a(\sigma) = d(\Gamma^{0}\gamma\Gamma^{0})a(\sigma),$$

which proves (ii).

§3. Now let ρ_n $(n = 0, 1, 2, \dots)$ be the real symmetric tensor representation of $G_{\mathbf{R}} = PSL_2(\mathbf{R})$ of degree 2n. Namely, put

(7)
$$\pm \begin{pmatrix} u_1 \\ v_1 \end{pmatrix} = \pm \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}; \quad \pm \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G_{\mathbf{R}}, \begin{pmatrix} u \\ v \end{pmatrix} \in \mathbf{R}^2,$$

and put

(8)
$$\begin{pmatrix} u_1^{2n} \\ u_1^{2n-1}v_1 \\ \vdots \\ v_1^{2n} \end{pmatrix} = \rho_n \left(\pm \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) \begin{pmatrix} u^{2n} \\ u^{2n-1}v \\ \vdots \\ v^{2n} \end{pmatrix}.$$

Then ρ_n is an absolutely irreducible representation of $G_{\mathbf{R}}$ in $V_n = \mathbf{R}^{2n+1}$. In particular, ρ_0 is the trivial representation, and as can be easily checked, ρ_1 is equivalent to the adjoint representation Ad of $G_{\mathbf{R}}$ in the Lie algebra $g_{\mathbf{R}} = \{X \in M_2(\mathbf{R}) | \operatorname{tr} X = 0\}$ of $G_{\mathbf{R}}$;

(9)
$$G_{\mathbf{R}} \ni g_{\mathbf{R}} : X \mapsto (\operatorname{Ad} g_{\mathbf{R}})X = g_{\mathbf{R}}^{-1}Xg_{\mathbf{R}}.$$

§4. Let $\Gamma_{\mathbf{R}}^{0}$ be a discrete subgroup of $G_{\mathbf{R}}$ with compact quotient, let $\rho_{n,0}$ $(n = 0, 1, 2, \cdots)$ be the restriction of ρ_n to $\Gamma_{\mathbf{R}}^{0}$, and let \mathfrak{M}_{2n+2} be the vector space over \mathbf{R} of all holomorphic automorphic forms of weight 2n+2 with respect to $\Gamma_{\mathbf{R}}^{0}$. Then, by Eichler-Shimura [12] [31], the following map ι gives an \mathbf{R} -linear isomorphism of \mathfrak{M}_{2n+2} onto $H^1(\Gamma_{\mathbf{R}}^{0}, \rho_{n,0})$:

(10)
$$\iota: \mathfrak{M}_{2n+2} \ni f(z) \mapsto a(\sigma) = \operatorname{Re} \begin{pmatrix} \int_{z}^{\sigma z} f(\tau) \tau^{2n} d\tau \\ \int_{z}^{\sigma z} f(\tau) \tau^{2n-1} d\tau \\ \vdots \\ \int_{z}^{\sigma z} f(\tau) d\tau \end{pmatrix}$$

141

where z is an arbitrarily fixed point of \mathfrak{H} . Let $\Gamma_{\mathbf{R}} \supset \Gamma_{\mathbf{R}}^{0}$ be a group contained in the commensurability subgroup of $\Gamma_{\mathbf{R}}^{0}$ in $G_{\mathbf{R}}$, and let $\tilde{\rho}_{n}$ be the anti-representation of $\mathcal{H}(\Gamma_{\mathbf{R}}, \Gamma_{\mathbf{R}}^{0})$ in \mathfrak{M}_{2n+2} defined by linearity and by

(11)
$$\mathfrak{M}_{2n+2} \ni f(z) \mapsto \widetilde{\rho}_n(\Gamma^0_{\mathbf{R}}\gamma\Gamma^0_{\mathbf{R}})f(z) = \sum_{i=1}^d f(\gamma_i z)(c_i z + d_i)^{-2n-2} \in \mathfrak{M}_{2n+2},$$

where $\Gamma_{\mathbf{R}}^{0}\gamma\Gamma_{\mathbf{R}}^{0} = \sum_{i=1}^{d}\Gamma_{\mathbf{R}}^{0}\gamma_{i}$ (disjoint), and $\gamma_{i} = \pm \begin{pmatrix} a_{i} & b_{i} \\ c_{i} & d_{i} \end{pmatrix}$ $(1 \le i \le d)$. Then, as can be checked directly, the anti-representations ρ_{n}^{*} of $\mathcal{H}(\Gamma_{\mathbf{R}}, \Gamma_{\mathbf{R}}^{0})$ in $H^{1}(\Gamma_{\mathbf{R}}^{0}, \rho_{n,0})$, and $\tilde{\rho}_{n}$ of $\mathcal{H}(\Gamma_{\mathbf{R}}, \Gamma_{\mathbf{R}}^{0})$ in \mathfrak{M}_{2n+2} are equivalent by the isomorphism ι ; i.e., we have

(12)
$$\rho_n^*(X) \circ \iota = \iota \circ \widetilde{\rho}_n(X) \quad \forall X \in \mathcal{H}(\Gamma_{\mathbf{R}}, \Gamma_{\mathbf{R}}^0),$$

cf. [31] §8.

§5. Now we are in the situation to prove the following Theorem.

THEOREM 1. Let $\Gamma_{\mathbf{R}}^{0}$ be a discrete subgroup of $G_{\mathbf{R}} = PSL_{2}(\mathbf{R})$ with compact quotient, and let $\Gamma_{\mathbf{R}}$ be a dense subgroup of $G_{\mathbf{R}}$ containing $\Gamma_{\mathbf{R}}^{0}$ such that $\gamma_{\mathbf{R}}^{-1}\Gamma_{\mathbf{R}}^{0}\gamma_{\mathbf{R}}$ and $\Gamma_{\mathbf{R}}^{0}$ are commensurable with each other for all $\gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}}$. Let ρ_{n} $(n = 0, 1, 2, \cdots)$ be as in §3, and identify $\rho_{n}|_{\Gamma_{\mathbf{R}}}$ with ρ_{n} . Then we have

(13) $H^1(\Gamma_{\mathbf{R}},\rho_n) = \{0\} \quad (n = 1, 2, 3, \cdots).$

Moreover, if $\Gamma_{\mathbf{R}}$ does not contain a normal subgroup of infinite index containing $\Gamma_{\mathbf{R}}^{0}$, then we also have

(14)
$$H^1(\Gamma_{\mathbf{R}}, \rho_0) = \{0\}.$$

PROOF. The case n > 0. Let $\rho_{n,0}$ be the restriction of ρ_n to $\Gamma_{\mathbf{R}}^0$. Then the restriction homomorphism φ of $H^1(\Gamma_{\mathbf{R}}, \rho_n)$ into $H^1(\Gamma_{\mathbf{R}}^0, \rho_{n,0})$ is injective. In fact, since ρ_n is irreducible and $\neq 1$, we can apply the Corollary of Lemma 1. So, we shall consider $H^1(\Gamma_{\mathbf{R}}, \rho_n)$ as a subspace of $H^1(\Gamma_{\mathbf{R}}^0, \rho_{n,0})$. Now we have an anti-representation ρ_n^* of $\mathcal{H}(\Gamma_{\mathbf{R}}, \Gamma_{\mathbf{R}}^0)$ in $H^1(\Gamma_{\mathbf{R}}^0, \rho_{n,0})$, and by Proposition 1, $H^1(\Gamma_{\mathbf{R}}, \rho_n)$ is contained in the kernel of $\rho_n^*(X) - d(X) \cdot I$ for any $X \in \mathcal{H}(\Gamma_{\mathbf{R}}, \Gamma_{\mathbf{R}}^0)$. Let H_1, \dots, H_N be the set of all subgroups of $G_{\mathbf{R}}$ containing $\Gamma_{\mathbf{R}}^0$ as a subgroup of finite index. By a well-known theorem on fuchsian groups, such subgroups are finite in number. Since $(\Gamma_{\mathbf{R}} : \Gamma_{\mathbf{R}}^0) = \infty$, we can take $\gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}}$ that is not contained in any H_i $(1 \leq i \leq N)$. Then $\Gamma_{\mathbf{R}}^0$ and $\gamma_{\mathbf{R}}$ generate a subgroup of $\Gamma_{\mathbf{R}}$ which contains $\Gamma_{\mathbf{R}}^0$ as a subgroup of *infinite* index; hence $\Gamma_{\mathbf{R}}^0$ and $\gamma_{\mathbf{R}}$ generate a dense subgroup¹ of $G_{\mathbf{R}}$. Therefore, by Lemma 10 of Chapter 1, if λ is an eigenvalue of $\tilde{\rho}_n(\Gamma_{\mathbf{R}}^0\gamma_{\mathbf{R}}\Gamma_{\mathbf{R}}^0)$. Therefore by (12), we see immediately that if λ is an eigenvalue of $\rho_n^*(\Gamma_{\mathbf{R}}^0\gamma_{\mathbf{R}}\Gamma_{\mathbf{R}}^0)$ in $H^1(\Gamma_{\mathbf{R}}^0, \rho_{n,0})$, then $\lambda \neq d(\Gamma_{\mathbf{R}}^0\gamma_{\mathbf{R}}\Gamma_{\mathbf{R}}^0)$. This shows that the kernel of $\rho_n^*(\Gamma_{\mathbf{R}}^0\gamma_{\mathbf{R}}\Gamma_{\mathbf{R}}^0) - d(\Gamma_{\mathbf{R}}^0\gamma_{\mathbf{R}}\Gamma_{\mathbf{R}}^0)$ is trivial, and hence $H^1(\Gamma_{\mathbf{R}}, \rho_n) = \{0\}$.

¹See Supplement §1.

The case n = 0. The above proof of the injectivity of the restriction map φ does not apply to this case, but the rest of the proof applies to this case also. Therefore, it is enough to prove the injectivity of φ .

Since $\rho_0 = I$, $H^1(\Gamma_{\mathbf{R}}, \rho_0)$ resp. $H^1(\Gamma_{\mathbf{R}}^0, \rho_{0,0})$ can be identified with $\operatorname{Hom}(\Gamma_{\mathbf{R}}, \mathbf{R})$ resp. Hom $(\Gamma_{\mathbf{R}}^0, \mathbf{R})$. Let $\alpha \in \operatorname{Hom}(\Gamma_{\mathbf{R}}, \mathbf{R})$ with $\alpha|_{\Gamma_{\mathbf{R}}^0} = 0$. Let *H* be the kernel of α . Then *H* is a normal subgroup of $\Gamma_{\mathbf{R}}$ containing $\Gamma_{\mathbf{R}}^0$, and if $\alpha \neq 0$, $\Gamma_{\mathbf{R}}/H$ must be infinite. Therefore by our assumption, we get $\alpha = 0$. Hence φ is injective.

COROLLARY. Let Γ be a discrete subgroup of $G = G_{\mathbf{R}} \times G_{\mathfrak{p}}$ with compact quotient and with dense images of projections $\Gamma_{\mathbf{R}}, \Gamma_{\mathfrak{p}}$ in $G_{\mathbf{R}}, G_{\mathfrak{p}}$ respectively. Then we have

(15)
$$H^1(\Gamma_{\mathbf{R}},\rho_n) = \{0\} \quad (n = 0, 1, 2, \cdots).$$

PROOF. Put $\Gamma^0 = \Gamma \cap (G_{\mathbb{R}} \times PSL_2(O_p))$. Then $\Gamma^0_{\mathbb{R}}$ is maximal in $\Gamma_{\mathbb{R}}$ (Corollary of Lemma 11 in Chapter 1), and obviously is not normal in $\Gamma_{\mathbb{R}}$. Therefore, all conditions in Theorem 1 are satisfied.

§6. Consequence of $H^1(\Gamma_{\mathbf{R}}, \rho_0) = \{0\}$. Let Γ be as in the above Corollary, and let $[\Gamma, \Gamma]$ be the commutator subgroup. Then, since Γ is finitely generated (see §25, Chapter 2), the quotient $\Gamma/[\Gamma, \Gamma]$ is a finitely generated abelian group, and hence is isomorphic to a direct product of a finite group and a free abelian group of finite rank. But since the above corollary for n = 0 asserts that

$$\operatorname{Hom}(\Gamma, \mathbf{R}) = \operatorname{Hom}(\Gamma_{\mathbf{R}}, \mathbf{R}) = H^{1}(\Gamma_{\mathbf{R}}, \rho_{0}) = \{0\},\$$

we see immediately that $\Gamma / [\Gamma, \Gamma]$ must be finite.

As an exercise, let us give some estimation of the group index (Γ : [Γ , Γ]) in the case where Γ is torsion-free. For this purpose, it is more convenient to consider the homology group than the cohomology group. Thus let

$$\Gamma^{\mathsf{u}} = \Gamma \cap (G_{\mathsf{R}} \times PSL_2(\mathcal{O}_{\mathfrak{v}})),$$

and let $g (\geq 2)$ be the genus of $\mathfrak{H}/\Gamma^0_{\mathbb{R}}$. Put $A = \Gamma^0/[\Gamma^0, \Gamma^0]$ and consider it as an additive group. Then $A \cong \mathbb{Z}^{2g}$, and we have an anti-representation ρ_0^* of $\mathcal{H}(\Gamma, \Gamma^0)$ on

$$H^{1}(\Gamma^{0}, \mathbb{Z}) = \operatorname{Hom}(\Gamma^{0}, \mathbb{Z}) = \operatorname{Hom}(A, \mathbb{Z})$$

(see §2).² Its dual \Re is a representation of $\mathcal{H}(\Gamma, \Gamma^0)$ on A defined by

(16)
$$\Re(\Gamma^0 \gamma \Gamma^0) \overline{\sigma} = \prod_{i=1}^d x_{ij}$$

where $\sigma \in \Gamma^0$,

(i) $\overline{\sigma}$ is the $[\Gamma^0, \Gamma^0]$ -coset containing σ ,

(ii) $\Gamma^0 \gamma \Gamma^0 = \sum_{i=1}^d \Gamma^0 \gamma_i$ (disjoint), and $\gamma_i \sigma = x_{ij} \gamma_j$ with $x_{ij} \in \Gamma^0$ ($1 \le i \le d$).

² Since $\mathcal{H}(\Gamma, \Gamma^0)$ is commutative (see Chapter 1, §10), all anti-representations of $\mathcal{H}(\Gamma, \Gamma^0)$ are representations.

Moreover, it can be immediately checked that

(17)
$$\{\Re(\Gamma^0\gamma\Gamma^0) - d(\Gamma^0\gamma\Gamma^0)\}A \subset [\Gamma,\Gamma] \cap \Gamma^0/[\Gamma^0,\Gamma^0]$$

holds for any $\gamma \in \Gamma$. Therefore, the group index

$$(\Gamma:[\Gamma,\Gamma])=(\Gamma^0:[\Gamma,\Gamma]\cap\Gamma^0)$$

divides det{ $\Re(\Gamma^0\gamma\Gamma^0) - d(\Gamma^0\gamma\Gamma^0)$ } for any $\gamma \in \Gamma$. Now let ρ_0 be the anti-representation of $\mathcal{H}(\Gamma, \Gamma^0) \cong \mathcal{H}(\Gamma_{\mathbf{R}}, \Gamma_{\mathbf{R}}^0)$ in \mathfrak{M}_2 defined by (11). Then by the identification $\mathfrak{M}_2 \cong_{\mathbf{R}}$ Hom($A \otimes_{\mathbf{Z}} \mathbf{R}, \mathbf{R}$), ρ_0 is equivalent to $\rho_0^* \otimes_{\mathbf{Z}} \mathbf{R}$. Hence the above determinant is also equal to det{ $\rho_0(\Gamma^0\gamma\Gamma^0) - d(\Gamma^0\gamma\Gamma^0)$ }. Now consider \mathfrak{M}_2 as a vector space over \mathbf{C} . Then ρ_0 may also be regarded as a *g*-dimensional complex anti-representation of $\mathcal{H}(\Gamma, \Gamma^0)$ in \mathfrak{M}_2 . Call it $\rho_0^{\mathbf{C}}$. Then by Petersson, $\rho_0^{\mathbf{C}}$ is a direct sum of one-dimensional representations χ_1, \dots, χ_g ; and $\chi_i(X)$ ($1 \le i \le g$) are real numbers for all $X \in \mathcal{H}(\Gamma, \Gamma^0)$ (see Chapter 1, §9). Therefore,

(18)
$$\det\{\widetilde{\rho}_{0}(\Gamma^{0}\gamma\Gamma^{0}) - d(\Gamma^{0}\gamma\Gamma^{0})\} = |\det\{\widetilde{\rho}_{0}^{C}(\Gamma^{0}\gamma\Gamma^{0}) - d(\Gamma^{0}\gamma\Gamma^{0})\}|^{2} = \det\{\widetilde{\rho}_{0}^{C}(\Gamma^{0}\gamma\Gamma^{0}) - d(\Gamma^{0}\gamma\Gamma^{0})\}^{2}.$$

Put $\Gamma^0 \gamma \Gamma^0 = \Gamma^1$ (see Chapter 1, §10). Then (18) will be equal to

(19)
$$\det\{\widetilde{\rho}_0^{\mathbf{C}}(\Gamma^1) - q^2 - q\}^2$$

But $\tilde{\rho}_0^{\mathbf{C}}$ is nothing but $\rho = \rho_2$ of Chapter 1. Therefore by (54) of Chapter 1, we finally get (20) $\det\{\Re(\Gamma^1) - d(\Gamma^1)\} = P(1)^2$,

where $P(u) = \prod_{i=1}^{g} (1 - \pi_i u)(1 - \pi'_i u)$ is the main numerator of $\zeta_{\Gamma}(u)$. So, we have proved the following.

THEOREM 2. Let Γ be a discrete subgroup of $G = G_{\mathbf{R}} \times G_{\mathfrak{p}}$ with compact quotient and with dense images of projections $\Gamma_{\mathbf{R}}, \Gamma_{\mathfrak{p}}$ in $G_{\mathbf{R}}, G_{\mathfrak{p}}$ respectively. Then the commutator quotient group $\Gamma/[\Gamma, \Gamma]$ is finite, and if Γ is moreover torsion-free, its group order is a divisor of $P(1)^2$, where

$$P(u) = \prod_{i=1}^{g} (1 - \pi_i u)(1 - \pi'_i u)$$

is the main numerator of $\zeta_{\Gamma}(u)$ (see Chapter 1, §8 (20)).³

§7. Consequence of $H^1(\Gamma_{\mathbf{R}}, \rho_1) = \{0\}$. Let Γ be as in Theorem 2 (but not assumed to be torsion-free). Then, since ρ_1 is equivalent to the adjoint representation Ad of $G_{\mathbf{R}}$ in $g_{\mathbf{R}}$ (see §3 (9)), the corollary of Theorem 1 for n = 1 shows that $H^1(\Gamma_{\mathbf{R}}, \mathrm{Ad}) = \{0\}$. Put $G_{\mathbf{C}} = PL_2(\mathbf{C}) \cong PSL_2(\mathbf{C})$, let $g_{\mathbf{C}} = g_{\mathbf{R}} \otimes \mathbf{C}$ be its Lie algebra, and let Ad_C be the adjoint representation of $G_{\mathbf{C}}$ in $g_{\mathbf{C}}$. Denote its restriction to $\Gamma_{\mathbf{R}}$ also by Ad_C. Then it follows immediately from the equality $H^1(\Gamma_{\mathbf{R}}, \mathrm{Ad}) = \{0\}$ that

$$H^1(\Gamma_{\mathbf{R}}, \mathrm{Ad}_{\mathbf{C}}) = \{0\}.$$

Now, by A. Weil (A. Weil [37]), we have the following:

³By Chapter 1, Theorem 2, we have $\pi_i, \pi'_i \neq 1$.

LEMMA 2 (A. Weil). Let X be a real Lie group, let Δ be a finitely generated subgroup of X, and let Ad be the adjoint representation of X (or its restriction to Δ). Then, if $H^{1}(\Delta, Ad) = \{0\}, \Delta$ has no non-trivial deformation in X.

By applying this to $X = G_{\mathbf{C}}$ and $\Delta = \Gamma_{\mathbf{R}}$, we get the following theorem by (21):

THEOREM 3. Let Γ be as in Theorem 2 (but not necessarily torsion-free). Then $\Gamma_{\mathbf{R}}$ has no non-trivial deformation in $G_{\mathbf{C}} = PSL_2(\mathbf{C})$.

REMARK 1. Since we used only Theorem 1 (for n = 1) and Lemma 2 to get Theorem 3, it is clear that the triviality of deformation of $\Gamma_{\mathbf{R}}$ in $G_{\mathbf{C}}$ is valid for any subgroup $\Gamma_{\mathbf{R}}$ of $G_{\mathbf{R}}$ satisfying the following three conditions.

- (i) $\Gamma_{\mathbf{R}}$ contains a discrete subgroup $\Gamma_{\mathbf{R}}^{0}$ of $G_{\mathbf{R}}$ with compact quotient $G_{\mathbf{R}}/\Gamma_{\mathbf{R}}^{0}$, and $\Gamma_{\mathbf{R}}^{0}$, $\gamma_{\mathbf{R}}^{-1}\Gamma_{\mathbf{R}}^{0}\gamma_{\mathbf{R}}$ are commensurable with each other for every $\gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}}$.
- (ii)⁴ $\Gamma_{\mathbf{R}}$ is dense in $G_{\mathbf{R}}$.
- (iii) $\Gamma_{\mathbf{R}}$ is finitely generated.

REMARK 2. Theorem 3 is slightly stronger than the Corollary of Lemma 8 in Chapter 2, which asserts the triviality of deformation of $\Gamma_{\mathbf{R}}$ in $G_{\mathbf{R}}$ only. While the proof of Lemma 8 and its corollary (Chapter 2) is quite elementary with the elliptic elements of $\Gamma_{\mathbf{R}}$ playing the main role, the proof of Theorem 3 is slightly more sophisticated, based on the inequality (89) (Kuga) of Chapter 1 for automorphic forms of weight 4, Borel's density theorem for fuchsian groups, Eichler-Shimura's isomorphism (10), and Weil's Lemma 2. While Lemma 8 was necessary and sufficient for our purpose in Chapter 2, what we now need is our Theorem 3, the triviality of deformation of $\Gamma_{\mathbf{R}}$ in $G_{\mathbf{C}}$.

Applications of Theorem 3; the deformation variety.

§8. As before and throughout the following, let Γ be a discrete subgroup of $G = G_{\mathbf{R}} \times G_{\mathfrak{p}}$ with compact quotient and with dense images of projections $\Gamma_{\mathbf{R}}, \Gamma_{\mathfrak{p}}$ in $G_{\mathbf{R}}, G_{\mathfrak{p}}$ respectively. Let $\gamma_1, \dots, \gamma_n$ be a set of generators of Γ , and let $R_{\lambda}(\gamma_1, \dots, \gamma_n) = I$ ($\lambda \in \Lambda$) be a system of fundamental relations between $\gamma_1, \dots, \gamma_n$. Let $G_{\mathbf{C}} = PL_2(\mathbf{C})$ be identified with a Zariski open subspace

$$\{(x^{11}:x^{12}:x^{21}:x^{22})|x^{11}x^{22}-x^{12}x^{21}\neq 0\}$$

of the projective space \mathbb{P}^3 . Put $G_{\mathbb{C}}^n = G_{\mathbb{C}} \times \cdots \times G_{\mathbb{C}}$ (*n*-copies), and let $V = V_{\Gamma}$ be an algebraic subset of $G_{\mathbb{C}}^n$ formed of all points $(x_1, \cdots, x_n) \in G_{\mathbb{C}}^n$ satisfying $R_{\lambda}(x_1, \cdots, x_n) = 1$ for all $\lambda \in \Lambda$. Then it is clear that for any homomorphism (as abstract groups) φ of Γ into $G_{\mathbb{C}}$, $(\varphi(\gamma_1), \cdots, \varphi(\gamma_n))$ lies on V; and conversely, if (x_1, \cdots, x_n) is on V, then by putting $\varphi(\gamma_1) = x_1, \cdots, \varphi(\gamma_n) = x_n$, we get a homomorphism φ of Γ into $G_{\mathbb{C}}$. In this manner, points on V are in one-to-one correspondence with homomorphisms (as abstract groups)

⁴This is equivalent to $(\Gamma_{\mathbf{R}} : \Gamma_{\mathbf{R}}^{0}) = \infty$ (see Supplement §1).

of Γ into $G_{\mathbf{C}}$. Therefore, we shall identify them and call V the deformation variety of Γ in $G_{\mathbf{C}}$.

For any element $x \in G_{\mathbb{C}}$, we put $x = ((x^{ij}))$ $(1 \le i, j \le 2)$ with projective coordinates x^{ij} . Then for each $\lambda \in \Lambda$, $((R_{\lambda}(x_1, \dots, x_n)^{ij})) \in G_{\mathbb{C}} \subset \mathbb{P}^3$ is well-defined, and $R_{\lambda}(x_1, \dots, x_n)^{ij}$ are (multi-homogeneous) polynomials of x_k^{ij} with rational integral coefficients. Therefore, V is a bunch of algebraic varieties in $G_{\mathbb{C}}^n$ and it is *normally algebraic* over \mathbb{Q} . Let $\varphi_{\mathbb{R}}$ be the projection ${}^5\Gamma \to \Gamma_{\mathbb{R}} \subset G_{\mathbb{R}} \subset G_{\mathbb{C}}$, and let V_0 be an irreducible component of V containing $\varphi_{\mathbb{R}}$. Then, since V is normally algebraic over \mathbb{Q} , V_0 is defined over $\overline{\mathbb{Q}}$, i.e., the algebraic closure of \mathbb{Q} . On the other hand, $G_{\mathbb{C}}$ acts on V as

(22)
$$G_{\mathbf{C}} \ni t : V \ni \varphi \mapsto \operatorname{Int}(t) \circ \varphi \in V,$$

where φ is a homomorphism of Γ into $G_{\mathbb{C}}$ considered as a point on V, and $\operatorname{Int}(t)$ denotes the inner automorphism $x \mapsto t^{-1}xt$ of $G_{\mathbb{C}}$. Since $\varphi_{\mathbb{R}}(\Gamma) = \Gamma_{\mathbb{R}}$ is dense in $G_{\mathbb{R}}$, its centralizer in $G_{\mathbb{C}}$ is {1}; hence the stabilizer of $\varphi_{\mathbb{R}} \in V_0$ in $G_{\mathbb{C}}$ is trivial. Now, by Theorem 3, there exists a neighborhood U of $\varphi_{\mathbb{R}}$ in $G_{\mathbb{C}}^n$ such that $U \cap V$ is contained in the $G_{\mathbb{C}}$ -orbit of $\varphi_{\mathbb{R}}$. Therefore, V'_0 denoting the $G_{\mathbb{C}}$ -orbit of $\varphi_{\mathbb{R}}$, V'_0 is obviously irreducible, dim $V'_0 = 3$, and $U \cap V = U \cap V'_0$. Therefore V_0 is the unique irreducible component of V containing $\varphi_{\mathbb{R}}$, dim $V_0 = 3$, and V'_0 is a Zariski dense algebraic subset of V_0 . Before going into a detailed study of V_0 , we shall give some simple application of this to the structure of Γ .

§9. Subgroups of Γ with finite indices. In general, an abstract group Δ is called *residually finite* if the intersection of all subgroups of Δ with finite indices is {1}, or equivalently, if the intersection of all normal subgroups of Δ with finite indices is {1}.

THEOREM 4. Let Γ be a discrete subgroup of $G = G_{\mathbf{R}} \times G_{\mathfrak{p}}$ with compact quotient and with dense images of projections in $G_{\mathbf{R}}$ and $G_{\mathfrak{p}}$. Then

(i) Γ is residually finite.

(ii) Γ contains a subgroup with finite index which has no elements $\neq 1$ of finite order.

PROOF. Since V'_0 is Zariski dense in V_0 and since V_0 is defined over $\overline{\mathbf{Q}}$, there are infinitely many $\overline{\mathbf{Q}}$ -rational points on V'_0 . Let (a_1, \dots, a_n) be such a point, and let K be an algebraic number field such that all a_i $(1 \le i \le n)$ are K-rational. Let φ be the homomorphism of Γ into $G_{\mathbf{C}}$ defined by $\varphi(\gamma_i) = a_i$ $(1 \le i \le n)$. Then, since (a_1, \dots, a_n) lies on V'_0 , φ is of the form $\varphi = \operatorname{Int}(t) \circ \varphi_{\mathbf{R}}$ with some $t \in G_{\mathbf{C}}$. In particular, φ is injective. Therefore, Γ is isomorphic to a subgroup $\varphi(\Gamma)$ of $PL_2(K)$. Put $a_k = ((a_k^{ij}))$ with $a_k^{ij} \in K$ $(\forall i, j, k)$, and let I be a prime ideal of K such that all a_k^{ij} and all $(a_k^{11}a_k^{22} - a_k^{12}a_k^{21})^{-1}$ are I-integral. Now denote by $O_{\mathbf{I}}$ the I-adic completion of the ring of integers of K. Then, since a_1, \dots, a_n generate $\varphi(\Gamma)$, this shows that $\varphi(\Gamma)$ can be considered as a subgroup of $PL_2(O_1)$; therefore,

(23)
$$\Gamma \cong \text{ a subgroup of } PL_2(O_1).$$

Now the residual finiteness of Γ follows immediately from that of $PL_2(O_1)$ (take congruence subgroups!). This settles (i). Finally, it is well-known (and easy to prove) that O_1

 $^{{}^{5}\}varphi_{\mathbf{R}}$ is injective (see Chapter 1, §2, Proposition 1).

being the ring of I-adic integers of any I-adic number field, there exists some n such that the congruence subgroup

$$\{x \in SL_2(O_1) | x \equiv \pm 1 \pmod{l^n}\} / \pm 1$$

is torsion-free. This settles (ii).

REMARK. In the proof of Theorem 4, we only used the fact that small deformation of $\Gamma_{\mathbf{R}}$ in $G_{\mathbf{C}}$ is *injective*. This is, of course, a consequence of Theorem 3, but it is much weaker than Theorem 3 and can be proved much more easily.

Study of V_0 ; the field $F = \mathbf{Q}((\operatorname{tr} \gamma_{\mathbf{R}})^2 | \gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}})$.

§10.

PROPOSITION 2. The notations being as in §8, we have $V_0 = V'_0$.

PROOF. We have shown in §8 that V'_0 is Zariski dense in V_0 . Therefore, it is enough to prove that V'_0 is closed in $G_{\mathbf{C}}^n$. For each $t \in G_{\mathbf{C}}$, put

(24)
$$x_t = (t^{-1}\gamma_{1,\mathbf{R}}t, \cdots, t^{-1}\gamma_{n,\mathbf{R}}t) \in G_{\mathbf{C}}^n.$$

Then V'_0 is the set of all x_t with $t \in G_{\mathbb{C}}$, and the map $t \mapsto x_t$ is one-to-one (see §8). Now let $\mathbb{C}[\Gamma_{\mathbb{R}}]$ be the subalgebra of $M_2(\mathbb{C})$ generated by $\gamma_{1,\mathbb{R}}, \dots, \gamma_{n,\mathbb{R}}$ over \mathbb{C} . Then $\mathbb{C}[\Gamma_{\mathbb{R}}] \supset \pm \Gamma_{\mathbb{R}}$; hence $\mathbb{C}[\Gamma_{\mathbb{R}}] \supset SL_2(\mathbb{R})$; hence we get $\mathbb{C}[\Gamma_{\mathbb{R}}] = M_2(\mathbb{C})$. In particular, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ are contained in $\mathbb{C}[\Gamma_{\mathbb{R}}]$. Put $t = ((t_{ij})) \in PSL_2(\mathbb{C}) \cong G_{\mathbb{C}}$, and suppose that $t^{-1}\gamma_{1,\mathbb{R}}t, \dots, t^{-1}\gamma_{n,\mathbb{R}}t$ are contained in a given compact subset of $G_{\mathbb{C}}$. Then

$$t^{-1} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} t = \begin{pmatrix} * & t_{22}^2 \\ -t_{21}^2 & * \end{pmatrix} \text{ and } t^{-1} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} t = \begin{pmatrix} * & -t_{12}^2 \\ t_{11}^2 & * \end{pmatrix}$$

must also be contained in some compact subset of $M_2(\mathbb{C})$; hence all t_{ij} $(1 \le i, j \le 2)$ must be contained in some compact subset of \mathbb{C} . Therefore, the intersection of V'_0 with any given compact subset of $G^n_{\mathbb{C}}$ is contained in the image (by $t \mapsto x_t$) of some compact subset of $G_{\mathbb{C}}$. But this implies that V'_0 is closed in $G^n_{\mathbb{C}}$, since the map $t \mapsto x_t$ is continuous and $G^n_{\mathbb{C}}$ is locally compact.

COROLLARY. V_0 is the connected component of V containing $\varphi_{\mathbf{R}}$.

PROOF. Since V_0 is irreducible, it is connected. Therefore, it is enough to show that if V_1 is any irreducible component of V with $V_0 \cap V_1 \neq \phi$, then $V_1 = V_0$. Let V_1 be such an irreducible component, and let $\varphi \in V_0 \cap V_1$. Then since $V_0 = V'_0$, there is an element $t \in G_C$, such that $\varphi_R = \text{Int}(t) \circ \varphi$. But then, φ_R is contained in $\text{Int}(t) \circ V_1$, which is also an irreducible component of V. But we know that V_0 is the unique irreducible component of V containing φ_R . Therefore, $\text{Int}(t) \circ V_1 = V_0$; hence $V_1 = \text{Int}(t^{-1})V_0 = V_0$.

(25)
$$F = \mathbf{Q}((\operatorname{tr} \gamma_{\mathbf{R}})^2 | \gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}}) \supset F_0 = \mathbf{Q}((\operatorname{tr} \gamma_{\mathbf{R}})^2 | \gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}}^{(e)}).$$

PROPOSITION 3. Let $k (\subset \mathbb{C})$ be a field of definition of V_0 . Then $F \subset k$.

PROOF. Let σ be any automorphism of \mathbb{C} which is trivial on k. Then $V_0^{\sigma} = V_0$. Therefore, the homomorphism $\Gamma \ni \gamma \mapsto \gamma_{\mathbb{R}}^{\sigma} \in G_{\mathbb{C}}$ is conjugate (in $G_{\mathbb{C}}$) to $\varphi_{\mathbb{R}}$. Hence there exists $t \in G_{\mathbb{C}}$ such that $\gamma_{\mathbb{R}}^{\sigma} = t^{-1}\gamma_{\mathbb{R}}t$ for all $\gamma_{\mathbb{R}} \in \Gamma_{\mathbb{R}}$. By taking traces of both sides, which are well-defined up to the signs, we get $\pm \operatorname{tr}(\gamma_{\mathbb{R}}^{\sigma}) = \pm \operatorname{tr} \gamma_{\mathbb{R}}$; hence $\pm \operatorname{tr}(\gamma_{\mathbb{R}})^{\sigma} = \pm \operatorname{tr} \gamma_{\mathbb{R}}$ for all $\gamma_{\mathbb{R}} \in \Gamma_{\mathbb{R}}$. Therefore, $(\operatorname{tr} \gamma_{\mathbb{R}})^2$ is σ -invariant for any $\sigma \in \operatorname{Aut}_k(\mathbb{C})$. Therefore, $(\operatorname{tr} \gamma_{\mathbb{R}})^2 \in k$ for any $\gamma_{\mathbb{R}} \in \Gamma_{\mathbb{R}}$, which implies $F \subset k$.

COROLLARY. The fields F, F_0 are algebraic number fields.

PROOF. Since V_0 is defined over **Q** (see §8), we can take k to be an algebraic number field.

PROPOSITION 4. V_0 is defined over F_0 .

PROOF. To begin with, we shall prove that $\Gamma_{\mathbf{R}}^{(e)}$ generates $\Gamma_{\mathbf{R}}$. By a remark given in Chapter 1 (§3), the set

 $S = \{ \operatorname{tr} \gamma_{\mathbf{R}} \mid \gamma_{\mathbf{R}} : \text{ of finite order} \}$

is finite. Therefore, if we put

$$X = \{x \in G_{\mathbf{R}} \mid |\operatorname{tr} x| < 2, \operatorname{tr} x \notin S\},\$$

then X is an open subset of $G_{\mathbf{R}}$ satisfying $X^{-1} = X$ and $\Gamma_{\mathbf{R}} \cap X = \Gamma_{\mathbf{R}}^{(e)}$. Moreover, since $G_{\mathbf{R}}$ is connected, X generates $G_{\mathbf{R}}$ (as abstract group). Now let $\gamma_{\mathbf{R}}$ be an arbitrary element of $\Gamma_{\mathbf{R}}$, and put $\gamma_{\mathbf{R}} = x_1 \cdots x_n$ with $x_i \in X$ $(1 \le i \le n)$. For each i $(1 \le i \le n-1)$, let $\gamma_{\mathbf{R}}^{(i)} \in \Gamma_{\mathbf{R}}$ be sufficiently near x_i . Then $\gamma_{\mathbf{R}}^{(i)} \in \Gamma_{\mathbf{R}} \cap X = \Gamma_{\mathbf{R}}^{(e)}$ for $1 \le i \le n-1$, and moreover $(\gamma_{\mathbf{R}}^{(1)} \cdots \gamma_{\mathbf{R}}^{(n-1)})^{-1} \gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}}$ is sufficiently near x_n ; hence it is contained in $\Gamma_{\mathbf{R}} \cap X = \Gamma_{\mathbf{R}}^{(e)}$. Therefore, we have $\gamma_{\mathbf{R}} = \gamma_{\mathbf{R}}^{(1)} \cdots \gamma_{\mathbf{R}}^{(n)}$ with $\gamma_{\mathbf{R}}^{(i)} \in \Gamma_{\mathbf{R}}^{(e)}$ for all i $(1 \le i \le n)$. Hence $\Gamma_{\mathbf{R}}^{(e)}$ generates $\Gamma_{\mathbf{R}}$.

Now, let σ be an automorphism of **C** which is trivial on F_0 . Since V_0 can be considered as the set of all homomorphisms φ_t of $\Gamma_{\mathbf{R}}$ into $G_{\mathbf{C}}$ given by $\varphi_t(\gamma_{\mathbf{R}}) = t^{-1}\gamma_{\mathbf{R}}t$ (with $t \in G_{\mathbf{C}}$), it is clear that V_0^{σ} can be considered as the set of all homomorphisms φ_t^{σ} of $\Gamma_{\mathbf{R}}$ into $G_{\mathbf{C}}$ given by $\varphi_t^{\sigma}(\gamma_{\mathbf{R}}) = \varphi_t(\gamma_{\mathbf{R}})^{\sigma} = (t^{\sigma})^{-1}\gamma_{\mathbf{R}}^{\sigma}t^{\sigma}$.

Let φ and φ' be, at the moment, arbitrary elements of V_0 and V_0^{σ} respectively, and identify $G_{\mathbf{C}} = PL_2(\mathbf{C})$ with $PSL_2(\mathbf{C})$. Then tr $\varphi(\gamma_{\mathbf{R}})$, tr $\varphi'(\gamma_{\mathbf{R}}) \in \mathbf{R}$ are well-defined up to the signs, and since σ is trivial on F_0 , we have

$$|\operatorname{tr}(\gamma_{\mathbf{R}}^{\sigma})| = |(\operatorname{tr} \gamma_{\mathbf{R}})^{\sigma}| = |\operatorname{tr} \gamma_{\mathbf{R}}| \quad \text{for any } \gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}}^{(e)}.$$

Therefore, we have $|\operatorname{tr} \varphi'(\gamma_{\mathbf{R}})| = |\operatorname{tr} \varphi(\gamma_{\mathbf{R}})|$ for any $\gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}}^{(e)}$. Now, fix any $\delta_{\mathbf{R}} \in \Gamma_{\mathbf{R}}^{(e)}$, and let $\pm(\varepsilon, \varepsilon^{-1})$ be the eigenvalues of $\delta_{\mathbf{R}}$. Then, since $\delta_{\mathbf{R}}^{\sigma}$ and $\delta_{\mathbf{R}}$ have the same traces,

 $\pm(\varepsilon,\varepsilon^{-1})$ are also the eigenvalues of $\delta_{\mathbf{R}}^{\sigma}$. Therefore, there exist $t, t' \in G_{\mathbf{C}}$ such that

$$t^{-1}\delta_{\mathbf{R}}t = t'^{-1}\delta_{\mathbf{R}}^{\sigma}t' = \pm \begin{pmatrix} \varepsilon & 0\\ 0 & \varepsilon^{-1} \end{pmatrix}.$$

Therefore, by putting $\varphi = \varphi_t \in V_0$ and $\varphi' = \varphi_{t'^{\sigma^{-1}}}^{\sigma} \in V_0^{\sigma}$, we get $\varphi(\delta_{\mathbf{R}}) = \varphi'(\delta_{\mathbf{R}}) = \pm \begin{pmatrix} \varepsilon & 0 \\ 0 & \varepsilon^{-1} \end{pmatrix}$. Now, let $\gamma_{\mathbf{R}}$ be any element of $\Gamma_{\mathbf{R}}^{(e)}$, and put

$$\varphi(\gamma_{\mathbf{R}}) = \pm \begin{pmatrix} x & y \\ z & w \end{pmatrix}, \varphi'(\gamma_{\mathbf{R}}) = \pm \begin{pmatrix} x' & y' \\ z' & w' \end{pmatrix}$$

with x + w = x' + w'. Take an integer $n \neq 0$ such that ε^n is sufficiently near 1. Then $\delta^n_{\mathbf{R}}$ is sufficiently near 1; hence $\gamma_{\mathbf{R}} \cdot \delta^n_{\mathbf{R}}$ is also contained in $\Gamma^{(e)}_{\mathbf{R}}$ (since $\Gamma^{(e)}_{\mathbf{R}} = \Gamma_{\mathbf{R}} \cap X$ and X is open). Therefore, $|\operatorname{tr} \varphi(\gamma_{\mathbf{R}} \delta^n_{\mathbf{R}})| = |\operatorname{tr} \varphi'(\gamma_{\mathbf{R}} \delta^n_{\mathbf{R}})|$; hence $x\varepsilon^n + w\varepsilon^{-n} = \pm (x'\varepsilon^n + w'\varepsilon^{-n})$. If $x + w = x' + w' \neq 0$ and if ε^n is still nearer 1, then $x\varepsilon^n + w\varepsilon^{-n} = x'\varepsilon^n + w'\varepsilon^{-n}$ are sufficiently near $x + w = x' + w' \neq 0$; therefore, we have $x\varepsilon^n + w\varepsilon^{-n} = x'\varepsilon^n + w'\varepsilon^{-n}$. If on the other hand, x + w = x' + w' = 0, then we can replace $\begin{pmatrix} x & y \\ z & w \end{pmatrix}$ by $-\begin{pmatrix} x & y \\ z & w \end{pmatrix}$ if necessary and assume that $x\varepsilon^n + w\varepsilon^{-n} = x'\varepsilon^n + w'\varepsilon^{-n}$. Now, by the two equations x + w = x' + w' and $x\varepsilon^n + w\varepsilon^{-n} = x'\varepsilon^n + w'\varepsilon^{-n}$, we get x = x' and w = w'. Therefore, if $\gamma_{\mathbf{R}} \in \Gamma^{(e)}_{\mathbf{R}}$, we can put

$$\varphi(\gamma_{\mathbf{R}}) = \pm \begin{pmatrix} x & y \\ z & w \end{pmatrix}, \varphi'(\gamma_{\mathbf{R}}) = \pm \begin{pmatrix} x & y' \\ z' & w \end{pmatrix}.$$

Now fix another element $\delta'_{\mathbf{R}} \in \Gamma_{\mathbf{R}}^{(e)}$ such that

$$\varphi(\delta'_{\mathbf{R}}) = \pm \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, and $\varphi'(\delta'_{\mathbf{R}}) = \pm \begin{pmatrix} a & b' \\ c' & d \end{pmatrix}$ with $ad \neq 1$.

It is clear that such $\delta'_{\mathbf{R}}$ exists, since $\Gamma_{\mathbf{R}}^{(e)} = \Gamma_{\mathbf{R}} \cap X$ and X is open in $G_{\mathbf{R}}$. Since their determinants are 1, we have $bc, b'c' \neq 0$. Hence we have $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \rho^{-1} \begin{pmatrix} a & b' \\ c' & d \end{pmatrix} \rho$, with $\rho = \begin{pmatrix} b' & 0 \\ 0 & b \end{pmatrix}$; hence if we put $\varphi'' = \operatorname{Int}(\rho) \circ \varphi' \in V_0^{\sigma}$, we get

(26)

$$\begin{aligned}
\varphi(\delta_{\mathbf{R}}) &= \varphi''(\delta_{\mathbf{R}}) &= \pm \begin{pmatrix} \varepsilon & 0 \\ 0 & \varepsilon^{-1} \end{pmatrix} \text{ and} \\
\varphi(\delta'_{\mathbf{R}}) &= \varphi''(\delta'_{\mathbf{R}}) &= \pm \begin{pmatrix} a & b \\ c & d \end{pmatrix}, ad \neq 1
\end{aligned}$$

(Note that ρ commutes with $\begin{pmatrix} \varepsilon & 0 \\ 0 & \varepsilon^{-1} \end{pmatrix}$.) Now we shall prove that $\varphi = \varphi''$. First, let $\gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}}^{(e)}$, and put

$$\varphi(\gamma_{\mathbf{R}}) = \pm \begin{pmatrix} x & y \\ z & w \end{pmatrix}, \ \varphi''(\gamma_{\mathbf{R}}) = \pm \begin{pmatrix} x & y' \\ z' & w \end{pmatrix}.$$

For each integer $n \neq 0$, put $\binom{a \ b}{c \ d}^n = \binom{a_n \ b_n}{c_n \ d_n}$, and take *n* such that this matrix is sufficiently near 1 (recall that $\delta'_{\mathbf{R}}$ is in $\Gamma_{\mathbf{R}}^{(e)}$ and hence this is possible). Then $\delta'_{\mathbf{R}}^n \cdot \gamma_{\mathbf{R}}$ is contained in $\Gamma_{\mathbf{R}}^{(e)}$. Therefore, if the signs of matrices are suitably chosen, the two matrices $\varphi(\delta'_{\mathbf{R}}^n \gamma_{\mathbf{R}})$ and $\varphi'(\delta'_{\mathbf{R}}^n \gamma_{\mathbf{R}})$ must have the common diagonal components. Thus, by applying the similar arguments as before on the signs of matrices (and by changing the sign of $\binom{x \ y'}{z' \ w}$ if x = w = 0 and if necessary), we get $a_n x + b_n z = a_n x + b_n z'$ and $c_n y + d_n w = c_n y' + d_n w$; hence

(27)
$$b_n(z-z') = c_n(y-y') = 0.$$

But we have $b_n c_n \neq 0$. In fact, since the centralizer of $\delta'_{\mathbf{R}}$ in $G_{\mathbf{R}}$ is isomorphic to \mathbf{R}/\mathbf{Z} , it is topologically generated by any one power $\delta'_{\mathbf{R}}{}^n$ $(n \neq 0)$ of $\delta'_{\mathbf{R}}$. Moreover, φ is induced by an inner automorphism of $G_{\mathbf{C}}$ and hence is continuous. Therefore, if $n \neq 0$, then $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ can be approximated by the powers of $\begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix}$. Therefore, $b_n = 0$ $(n \neq 0)$ implies b = 0, which is a contradiction to $ad \neq 1$. Therefore, we get $b_n \neq 0$, and in the same manner we get $c_n \neq 0$. Therefore by (27), we get z = z' and y = y'. Therefore, $\varphi(\gamma_{\mathbf{R}}) = \varphi''(\gamma_{\mathbf{R}})$ holds for all $\gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}}^{(e)}$. But since $\Gamma_{\mathbf{R}}^{(e)}$ generates $\Gamma_{\mathbf{R}}$, $\varphi(\gamma_{\mathbf{R}}) = \varphi''(\gamma_{\mathbf{R}})$ holds for all $\gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}}$; hence we get $\varphi = \varphi''$. Since $\varphi \in V_0$ and $\varphi'' \in V_0^{\sigma}$, this implies $V_0 \cap V_0^{\sigma} \neq \phi$. But V_0, V_0^{σ} are $G_{\mathbf{C}$ -orbits of any one element of each. Therefore $V_0^{\sigma} = V_0$. Therefore, $V_0^{\sigma} = V_0$ holds for all $\sigma \in \operatorname{Aut}(\mathbf{C})$ which are trivial on F_0 . Hence V_0 is defined over F_0 .

COROLLARY. We have $F = F_0$; and it is the smallest field of definition of V_0 .

PROOF. Since V_0 is defined over F_0 (Proposition 4), Proposition 3 shows $F_0 \supset F$. But $F_0 \subset F$. Therefore, $F_0 = F$. By Proposition 3, if k is a field of definition of V_0 , then $k \supset F = F_0$. Therefore, F_0 is the smallest field of definition of V_0 .

§12. V_0 as a principal homogeneous space. Let k be a field of definition of V_0 . Then, since $G_{\mathbb{C}} = PL_2(\mathbb{C})$ acts on V_0 in a simply transitive manner and since its action is defined over k, we can regard V_0 as a principal homogeneous space of PL_2 defined over k. Let A_k be the quaternion algebra over k which corresponds to this principal homogeneous space.⁶ Then, for any field $K \supset k$, V_0 has a K-rational point if and only if $A_k \otimes_k K \cong M_2(K)$. In particular, let k = F (= F_0), and put $A = A_F$. Then A is a quaternion algebra over F, and $A_k = A \otimes_F k$ holds for any field of definition k for V_0 (i.e., for any $k \supset F$). We shall call this A the quaternion algebra attached to Γ . Note that if K is a subfield of C such that V_0 has a K-rational point, then K contains F. In fact, that implies $t^{-1}\Gamma_{\mathbf{R}}t \subset PL_2(K)$ for some $t \in G_{\mathbf{C}}$. Therefore, if $\gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}}$, we can put $t^{-1}\gamma_{\mathbf{R}}t = \rho \cdot ((a_{ij}))$ with $\rho \in \mathbf{C}^{\times}$, $\forall a_{ij} \in K$.

⁶ Cf. e.g. [34] for the one-to-one correspondence; principal homogeneous space of PL_n over $k \Leftrightarrow$ central simple algebra of degree n^2 over k.

Taking $(trace)^2$ /determinant of both sides, we get

$$(\operatorname{tr} \gamma_{\mathbf{R}})^2 = (\operatorname{tr}((a_{ij})))^2 / \operatorname{det}((a_{ij})) \in K.$$

Therefore, $(\operatorname{tr} \gamma_{\mathbb{R}})^2 \in K$ holds for all $\gamma_{\mathbb{R}} \in \Gamma_{\mathbb{R}}$; hence $F \subset K$. Therefore, for any subfield K of C, V_0 has a K-rational point if and only if $K \supset F$ and $A \otimes_F K \cong M_2(K)$. By summarizing our results in §8, §10 ~ §12, we get the following Theorem.

THEOREM 5. Let Γ be a discrete subgroup of $G = G_{\mathbf{R}} \times G_{\mathfrak{p}}$ with compact quotient and with dense projection images $\Gamma_{\mathbf{R}}, \Gamma_{\mathfrak{p}}$ in $G_{\mathbf{R}}, G_{\mathfrak{p}}$ respectively. Let V be the deformation variety of Γ in $G_{\mathbf{C}} = PL_2(\mathbf{C})$ (see §8), and let V_0 be an irreducible component of V, containing the projection map $\varphi_{\mathbf{R}} : \Gamma \to \Gamma_{\mathbf{R}}$. Then V_0 is unique and coincides with the $G_{\mathbf{C}}$ -orbit of $\varphi_{\mathbf{R}}$. Moreover, if we put $F = \mathbf{Q}((\operatorname{tr} \gamma_{\mathbf{R}})^2|\gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}})$, then F is an algebraic number field, and it is the smallest field of definition of V_0 . Finally, let A be the quaternion algebra over F attached to Γ (see §12). Then for any subfield K of C, V_0 has K-rational point (i.e., $\Gamma_{\mathbf{R}}$ can be realized in $PL_2(K)$) if and only if $K \supset F$ and $A \otimes_F K \cong M_2(K)$.

Examples will be given in Chapter 4, Part 1.

§13. More about F and A. Throughout the following, we shall denote by Γ^* the intersection of all normal subgroups Γ' of Γ whose quotients Γ/Γ' are finite and of type $(2, 2, \dots, 2)$. Then Γ^* contains the commutator subgroup $[\Gamma, \Gamma]$ of Γ , and by Theorem 2, $[\Gamma, \Gamma]$ is of finite index in Γ . Therefore, Γ^* is also of finite index in Γ .

PROPOSITION 5. Let Γ be as in Theorem 5, and let Γ' be a subgroup of Γ of finite index. Put $F = \mathbf{Q}((\operatorname{tr} \gamma_{\mathbf{R}})^2 | \gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}}), F' = \mathbf{Q}((\operatorname{tr} \gamma'_{\mathbf{R}})^2 | \gamma'_{\mathbf{R}} \in \Gamma'_{\mathbf{R}}), and let A, A' be the quaternion$ $algebras attached to <math>\Gamma$, Γ' respectively. Then F = F', and A is isomorphic to A' over F. Moreover, Γ^* being as above, we have $F = \mathbf{Q}(\operatorname{tr} \gamma'_{\mathbf{R}} | \gamma'_{\mathbf{R}} \in \Gamma'_{\mathbf{R}})$ for all subgroups Γ' of Γ^* of finite indices.

PROOF. It is clear that $F' \,\subset F$. Let V_0 (resp. V'_0) be the connected component of the deformation variety of Γ (resp. Γ') in $G_{\mathbb{C}}$ containing the projection map $\varphi_{\mathbb{R}} : \Gamma \to \Gamma_{\mathbb{R}}$ (resp. $\varphi'_{\mathbb{R}} : \Gamma' \to \Gamma'_{\mathbb{R}}$). We shall show that if K is a subfield of C, then V_0 has a K-rational point if and only if V'_0 has a K-rational point. The "only if " part is trivial. To show the "if" part, suppose that V'_0 has a K-rational point. Then there exists $t \in G_{\mathbb{C}}$ such that $\tau^{-1}\Gamma'_{\mathbb{R}}t \subset PL_2(K)$. But since Γ' is finitely generated, the intersection $\tau^{-1}\Gamma'_{\mathbb{R}}t \cap PSL_2(K)$ is of finite index in $\tau^{-1}\Gamma'_{\mathbb{R}}t$; hence there is a normal subgroup $\hat{\Gamma}_{\mathbb{R}}$ of $\Gamma_{\mathbb{R}}$ of finite index such that $\tau^{-1}\hat{\Gamma}_{\mathbb{R}}t \subset PSL_2(K)$. Put $\Delta_{\mathbb{R}} = t^{-1}\Gamma_{\mathbb{R}}t$, $\hat{\Delta}_{\mathbb{R}} = t^{-1}\hat{\Gamma}_{\mathbb{R}}t$. Since $\widehat{\Gamma}_{\mathbb{R}}$ is dense in $G_{\mathbb{R}}$, $\widehat{\Gamma}_{\mathbb{R}}$ spans $M_2(\mathbb{C})$ over C; hence so does $\widehat{\Delta}_{\mathbb{R}}$. But $\widehat{\Delta}_{\mathbb{R}} \subset PSL_2(K)$. Therefore $\widehat{\Delta}_{\mathbb{R}}$ spans $M_2(K)$ over K. Now let $\delta_{\mathbb{R}} \in \Delta_{\mathbb{R}}$. Then $\delta_{\mathbb{R}}^{-1}\widehat{\Delta}_{\mathbb{R}}\delta_{\mathbb{R}} = \widehat{\Delta}_{\mathbb{R}}$; hence $\delta_{\mathbb{R}}^{-1}M_2(K)\delta_{\mathbb{R}} = M_2(K)$. Therefore, $\delta_{\mathbb{R}} \in PL_2(K)$; hence $\Delta_{\mathbb{R}} \subset PL_2(K)$; hence V_0 has a K-rational point. Therefore, V_0 has a K-rational point if and only if V'_0 has a K-rational point; hence

(28)
$$K \supset F, A \otimes_F K \cong M_2(K) \Leftrightarrow K \supset F', A' \otimes_{F'} K \cong M_2(K).$$

But in general, if B is a quaternion algebra over an algebraic number field k, then there are infinitely many quadratic extensions l of k which split B; i.e., $B \otimes_k l = M_2(l)$. Moreover,

if B' is another quaternion algebra over k which is not isomorphic to B over k, then there exists l which splits one of B or B' but not the other (however, there may not exist l which splits the given B and which does not split B'). Now, these show that F = F' and that $A \cong A'$ over F. In fact, by our first remark, the intersection of all K containing F (resp. F') and splitting A (resp. A') is F (resp.F'). Therefore, (28) implies F = F'. Also, by our second remark, we see immediately that (28) implies $A \cong A'$ over F.

Finally, let K_1, K_2 be two distinct quadratic extensions of F which split A, so that V_0 has K_i -rational points (i = 1, 2). Take $t_1, t_2 \in G_C$ such that $t_i^{-1}\Gamma_R t_i \subset PL_2(K_i)$ (i = 1, 2). Then, since $\Gamma_R \cap t_i PSL_2(K_i)t_i^{-1}$ are normal subgroups of Γ_R whose quotients are finite and of $(2, 2, \dots, 2)$ type, they contain Γ_R^* . Hence $t_i^{-1}\Gamma_R^* t_i \subset PSL_2(K_i)$ (i = 1, 2). Therefore, if $\gamma_R^* \in \Gamma_R^*$, then we have tr $\gamma_R^* \in K_1 \cap K_2 = F$. Therefore, if Γ_R' is a subgroup of Γ_R^* of finite index, then on one hand, we have $Q(\operatorname{tr} \gamma_R' | \gamma_R' \in \Gamma_R') \subset F$, and on the other hand (by what we have shown already), $Q((\operatorname{tr} \gamma_R')^2 | \gamma_R' \in \Gamma_R') = F$. Therefore, we get $Q(\operatorname{tr} \gamma_R' | \gamma_R' \in \Gamma_R') = F$ for all such Γ' .

REMARK 1. The field $Q(tr \gamma_R | \gamma_R \in \Gamma_R)$ is a finite $(2, \dots, 2)$ type extension of F, and in general, it does not coincide with F.

PROPOSITION 6. Let Γ be as in Theorem 5, and let Γ^* be the subgroup of Γ defined at the beginning of this section. Let $A^* = \mathbb{Q}[\Gamma_{\mathbb{R}}^*]$ be the subalgebra of $M_2(\mathbb{R})$ generated over \mathbb{Q} by $\Gamma_{\mathbb{R}}^*$. Then its center consists of all scalar matrices $a \cdot I$ with $a \in F = \mathbb{Q}((\operatorname{tr} \gamma_{\mathbb{R}})^2 | \gamma_{\mathbb{R}} \in \Gamma_{\mathbb{R}})$, and A^* is isomorphic over F to the quaternion algebra A attached to Γ . Moreover, if $(A^*)^{\times}/F^{\times}$ is considered as a subgroup of $PL_2(\mathbb{R})$, then $\Gamma_{\mathbb{R}}$ is contained in $(A^*)^{\times}/F^{\times}$.

PROOF. Remark that, by Proposition 5, we have $F = \mathbf{Q}(\operatorname{tr} \gamma_{\mathbf{R}}^* | \gamma_{\mathbf{R}}^* \in \Gamma_{\mathbf{R}}^*)$. Let F^* be the center of A^* . Then, since

$$A^* \ni \gamma_{\mathbf{R}}^* + \gamma_{\mathbf{R}}^{*-1} = (\operatorname{tr} \gamma_{\mathbf{R}}^*) \cdot I$$

for all $\gamma_{\mathbf{R}}^* \in \Gamma_{\mathbf{R}}^*$, F^* contains all scalar matrices $a \cdot I$ with $a \in F$. On the other hand, since $\Gamma_{\mathbf{R}}^*$ is dense in $G_{\mathbf{R}}$, elements of F^* must be scalar matrices. So, let $a^* \cdot I \in F^*$. Then it is a linear combination over \mathbf{Q} of elements of $\Gamma_{\mathbf{R}}^*$. Therefore, its trace $2a^*$ is contained in F; hence $a^* \in F$. Therefore $F^* = \{a \cdot I | a \in F\}$. Now let $\gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}}$. Then $\gamma_{\mathbf{R}}^2 \in \Gamma_{\mathbf{R}}^*$; hence

$$(\operatorname{tr} \gamma_{\mathbf{R}})\gamma_{\mathbf{R}} = \gamma_{\mathbf{R}}^2 + 1 \in \mathbf{Q}[\Gamma_{\mathbf{R}}^*] = A^*.$$

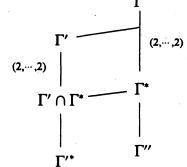
Therefore if $\operatorname{tr} \gamma_{\mathbf{R}} \neq 0$, then $\gamma_{\mathbf{R}}$ is contained in the subgroup $(A^*)^{\times}/F^{\times}$ of $PL_2(\mathbf{R})$ (this does not mean that $\gamma_{\mathbf{R}}$ is contained in $(A^*)^{\times}/F^{\times} \subset GL_2(\mathbf{R})/F^{\times}$). But since $\Gamma_{\mathbf{R}}$ is dense in $G_{\mathbf{R}}$ and the set $\{g_{\mathbf{R}} \in G_{\mathbf{R}} | \operatorname{tr} g_{\mathbf{R}} \neq 0\}$ is open in $G_{\mathbf{R}}$, it is clear that $\Gamma_{\mathbf{R}}$ is generated by elements with non-vanishing traces. Therefore we get $\Gamma_{\mathbf{R}} \subset (A^*)^{\times}/F^{\times} \subset PL_2(\mathbf{R})$.

Finally, we shall show that A^* is isomorphic to A over F. For this purpose, let K be any field with $K \supset F$ and $A \otimes_F K \cong M_2(K)$. Then there exists $t \in G_C$ such that $t^{-1}\Gamma_{\mathbf{R}}t \subset PL_2(K)$. Since $\Gamma_{\mathbf{R}} \cap tPSL_2(K)t^{-1}$ is a normal subgroup of $\Gamma_{\mathbf{R}}$ with finite $(2, \dots, 2)$ type quotient, it contains $\Gamma_{\mathbf{R}}^*$; hence $t^{-1}\Gamma_{\mathbf{R}}^*t \subset PSL_2(K)$. Therefore, $x \mapsto t^{-1}xt$ gives an isomorphism over F of A^* into $M_2(K)$. Now $\Gamma_{\mathbf{R}}^*$ contains four elements that are linearly independent over \mathbf{R} , and since $\Gamma_{\mathbf{R}}^* \subset PSL_2(\mathbf{R})$, they are also linearly independent over C. Therefore, $t^{-1}\Gamma_{\mathbf{R}}^*t$ contains four elements which are linearly independent over K. Therefore, $t^{-1}A^*t \otimes_F K = M_2(K)$; hence $A^* \otimes_F K \cong M_2(K)$ over F. In particular, A^* is a

quaternion algebra over F. Conversely, if K is a field with $K \supset F$ and $A^* \otimes_F K \cong M_2(K)$, then there is an isomorphism φ of A^* into $M_2(K)$ over F; and since φ is trivial on the center F, it is induced by some inner automorphism Int(t) of G_C ; hence $t^{-1}A^*t \subset M_2(K)$. Now since $\Gamma_{\mathbf{R}} \subset (A^*)^{\times}/F^{\times} \subset PL_2(\mathbf{R})$, we get $t^{-1}\Gamma_{\mathbf{R}}t \subset PL_2(K)$; hence K splits A. Therefore, A^* is isomorphic to A over F.

REMARK 2. In general, $\mathbb{Q}[\Gamma_{\mathbb{R}}]$ will not give A. It gives $A \otimes_F \mathbb{Q}(\operatorname{tr} \gamma_{\mathbb{R}} | \gamma_{\mathbb{R}} \in \Gamma_{\mathbb{R}}).$

COROLLARY. The notations being as in Proposition 6, let Γ' be a subgroup of Γ of finite index. Then $\mathbb{Q}[\Gamma_{\mathbb{R}}^*] = \mathbb{Q}[\Gamma_{\mathbb{R}}^*]$. Moreover, $\mathbb{Q}[\Gamma_{\mathbb{R}}^*] = \mathbb{Q}[\Gamma_{\mathbb{R}}^{"}]$ holds for all subgroups Γ'' of Γ^* of finite indices.



PROOF. Since $\Gamma'/\Gamma' \cap \Gamma^*$ is of type $(2, \dots, 2)$, Γ'^* is contained in $\Gamma' \cap \Gamma^*$; hence in Γ^* . Therefore, $\mathbb{Q}[\Gamma_R^*] \subset \mathbb{Q}[\Gamma_R^*]$. But their centers are $\mathbb{Q}((\operatorname{tr} \gamma_R')^2 | \gamma_R' \in \Gamma_R')$ and $\mathbb{Q}((\operatorname{tr} \gamma_R)^2 | \gamma_R \in \Gamma_R)$ respectively, and they are equal by Proposition 5. Hence if we denote the common center by F, we have

 $F \subset \mathbf{Q}[\Gamma_{\mathbf{R}}^{*}] \subset \mathbf{Q}[\Gamma_{\mathbf{R}}^{*}]$ and $[\mathbf{Q}[\Gamma_{\mathbf{R}}^{*}]:F] = [\mathbf{Q}[\Gamma_{\mathbf{R}}^{*}]:F] = 4$.

Therefore, $\mathbf{Q}[\Gamma_{\mathbf{R}}^*] = \mathbf{Q}[\Gamma_{\mathbf{R}}^*]$.

Now, we have $Q[\Gamma_R^{"*}] \subset Q[\Gamma_R^{"}] \subset Q[\Gamma_R^{*}]$, and $Q[\Gamma_R^{"*}] = Q[\Gamma_R^{*}]$; hence $Q[\Gamma_R^{"}] = Q[\Gamma_R^{*}]$.

§14. A remark on F. The following simple remark is needed in Chapter 2, §36. Let F, F_0 be as in §11. We have shown that $F = F_0$ and that it is an algebraic number field. Here, we note that $F = F_0$ holds without the compactness assumption for the quotient G/Γ . (We do not even need the finiteness of volume of G/Γ .) In fact, in our proof of Proposition 4, we have proved that if $\sigma \in \operatorname{Aut}_{F_0} \mathbb{C}$, then the homomorphism $\Gamma_{\mathbb{R}} \ni \gamma_{\mathbb{R}} \mapsto \gamma_{\mathbb{R}}^{\sigma} \in G_{\mathbb{C}}$ is induced by an inner automorphism of $G_{\mathbb{C}}$; and the only properties of $\Gamma_{\mathbb{R}}$ we used in the proof ⁷ of this assertion are

(i) $\Gamma_{\mathbf{R}}$ is dense in $G_{\mathbf{R}}$, and

(ii) the set $S = \{ \operatorname{tr} \gamma_{\mathbf{R}} | \gamma_{\mathbf{R}} \text{ is of finite order} \}$ is finite.

Since on one hand, these properties are satisfied by the projection $\Gamma_{\mathbf{R}}$ (to $G_{\mathbf{R}}$) of any discrete subgroup Γ of $G = G_{\mathbf{R}} \times G_{p}$ having a dense image of projection in each component of G (see Chapter 1, §3 for the property (ii)), and on the other hand, the above italicized assertion implies $F = F_0$ at once, it follows that:

If Γ is a discrete subgroup of $G = G_{\mathbb{R}} \times G_{\mathbb{P}}$ having a dense image of projection in each component of G, then $F = F_0$ holds for such a Γ .

However, we do not know at present whether $F = F_0$ is an algebraic number field in such a general case.

 $^{^{7}}$ We made use of the language of deformation varieties, but as can be immediately seen, it has nothing to do with the proof.