
CHAPTER 3

Part 1. Some properties of $\Gamma.$

Throughout Part 1 of this chapter, we assume that the quotient G/ $\Gamma$ is compact. Our

main purpose is to prove the following results (i) $\sim$(iv) (particularly (iv)).

(i) The commutator subgroup $[\Gamma,\Gamma]$ of $\Gamma$ is offinite index in $\Gamma$ . Moreover, if $\Gamma$ is torsion-
free, then the index $(\Gamma:[\Gamma,\Gamma])$ is a divisor ofP(1)2, where

$P(u)=\prod_{i=1}^{g}(1-\pi_{i}u)(1-\pi_{i}’u)$

is the numerator of the main factor of $\zeta_{\Gamma}(u)$ (Theorem 2, \S 6).
(ii) $\Gamma_{R}$ has no non-trivial deformation in $G_{C}=PL_{2}(C)$ (Theorem 3, \S 7).
(iii) $\Gamma$ is residually finite. Moreover, $\Gamma$ contains a torsion-free subgroup of finite index

(Theorem 4, \S 9).
(iv) The field $F=Q((tr\gamma_{R})^{2}|\gamma_{R}\in\Gamma_{R})$ is an algebraic number field. Moreover, there is a

quatemion algebra $A$ over $F$, which is uniquely determined by $\Gamma$, such that for any
field $K\subset C$ the following two statements (a), (b) are equivalent:
(a) There is an element $t\in G_{\mathbb{C}}=PL_{2}(C)$ such that $t^{-1}\Gamma_{R}t\subset PL_{2}(K)$ .
(b) $K$ contains $F$ and $A\otimes_{F}K\cong M_{2}(K)$ .
Furthermore, $\Gamma_{R}$ can be considered as a subgroup of $A^{\times}/F^{\times}$ (Theorem 5, Proposition
6;\S 12, \S 13).

We begin with some preliminaries; then we shall prove Theorem 1 (\S 5) which asserts
$H^{1}(\Gamma_{R},\rho_{n})=\{0\}(n\geq 0)$ , where $\rho_{n}$ is the symmetric tensor representation of $G_{R}$ of

degree $2n$ (see \S 3). This is a consequence of Eichler-Shimura’s isomorphism (see \S 4),

Kuga’s lemma (Lemma 10 of Chapter 1), and our remarks on cohomology groups (\S 1

\S 2). Now, Theorem 1 is basic for all our results $(i)-(iv)$ . In fact, (i) and (ii) are almost

direct consequences of $H^{1}(\Gamma_{R},\rho_{n})=\{0\}$ for $n=0$ and $n=1$ respectively; and (iii), (iv)

are results of our study of“deformation variety” of $\Gamma_{R}$ in $G_{C}$ , ofwhich (ii) is the starting

point.
Finally, we remark that some of our results are valid also for more general dense

subgroups $\Gamma_{R}$ of $G_{R}$ satisfying some conditions (see Remark 1 in \S 7).
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The vanishing of $H^{1}(\Gamma_{R},\rho_{n})$ and its consequences.

\S 1. In general, let $A$ be an additive abelian group, and let $\rho$ be a homomorphism of
an arbitrary abstract group $\Gamma$ into the group of all automorphisms of $A$ ;

(1) $\rho$ : $\Gamma\rightarrow$ Aut $A$ ; $\rho(\gamma\gamma’)a=\rho(\gamma)(\rho(\gamma’)a)$ .

As usual, 1-cocycles are $A$-valued functions $a(\gamma)$ on $\Gamma$ satisfying

$a(\gamma\gamma’)=a(\gamma)+\rho(\gamma)a(\gamma’) (\gamma,\gamma’\in\Gamma)$,

and 1-coboundaries are such 1-cocycles $a(\gamma)$ as can be written as $a(\gamma)=(1-\rho(\gamma))a$ wiffi
some fixed a $\epsilon A$ . We denote by $H^{1}(\Gamma,\rho)$ the 1-cohomology group, i.e., the quotient of
the group of all 1-cocycles by that of all 1-coboundanes. If $\Gamma^{0}$ is a subgroup of $\Gamma$ and if
$\rho_{0}$ is the restriction of $\rho$ to $\Gamma^{0}$ , then we get a restriction homomorphism

(2) $\varphi:H^{1}(\Gamma,\rho)\rightarrow H^{1}\sigma,\rho_{0})$ .

LBMMA 1. Iffor every $\gamma\in\Gamma,$ $\rho(\Gamma^{0}\cap\gamma^{-1}\Gamma^{0}\gamma)$ has no commonfixed element $\neq 0$ of$A,$

then $\varphi$ is injective.

PROOF. Let $a(\gamma)$ be a cocycle representing a class contained in the kemel of $\varphi$ . Then
we get $a(\gamma_{0})=(1-\rho(\gamma_{0}))a(a\in A)$ for all $\gamma_{0}\in\Gamma^{0}$ . Put $a’(\gamma)=a(\gamma)-(1-\rho(\gamma))a$. Then
$a’(\gamma)$ is a 1-cocycle with respect to $\Gamma$ and $\rho$ , and we have $a’(\gamma_{0})=0$ for all $\gamma_{0}\in\Gamma^{0}$ . Let $\delta$

be any element of $\Gamma$ . Then we have

$a’(\delta^{-1}\gamma\delta)=a’(\delta^{-1})+\rho(\delta^{-1})a’(\gamma)+\rho(\delta^{-1}\gamma)a’(\delta)$

$=-\rho(\delta^{-1})a’(\delta)+\rho(\delta^{-1})a’(\gamma)+\rho(\delta^{-1}\gamma)a’(\delta)$ .

Hence if $\gamma\in I^{\triangleleft}\cap\delta\Gamma^{0}\delta^{-1}$ so that $\gamma$ and $\delta^{-1}\gamma\delta$ are both contained in $\Gamma^{0}$ , then we get
$(\rho(\gamma)-1)a’(\delta)=0$ . Since this holds for all $\gamma\in\Gamma^{0}\cap\delta\Gamma^{0}\delta^{-1}$ , we get $a’(\delta)=0$ by our
assumption. Therefore, $a’(\delta)=0$ for all $\delta\in\Gamma$; hence we get $a(\gamma)=(1-\rho(\gamma))a$ for all
$\gamma\in\Gamma$ . Therefore, $a(\gamma)$ is a coboundary. $\square $

COROLLARY. Let $\Gamma^{0}$ be a discrete subgroup of$G_{R}=PSL_{2}(R)$ such that the quotient
$G_{R}/\Gamma^{0}$ is offinite invariant volume, and let $\Gamma$ be a group with $\Gamma^{0}\subset\Gamma\subset G_{R}$, such that
$\gamma^{-1}\Gamma^{0}\gamma$ and $\Gamma^{0}$ are commensurable with each other for every $\gamma\in\Gamma$. Let $\tilde{\rho}$ be afinite
dimensional non-trivial irreducible representation of $G_{R}$, and let $\rho$ be its restriction to $\Gamma.$

Then the restriction homomorphism $\varphi$ given by (2) is injective.

PROOF. By Borel’s density theorem (see [1] and Supplement \S 1), $\rho|_{\Gamma^{0}\cap\gamma^{-1}N\gamma}$ is irre-
ducible for all $\gamma\in\Gamma.$ $\square $

\S 2. Returning to the general situation, let $\Gamma^{0}$ beasubgroup of $\Gamma$, and assume now that
$\gamma^{-1}\Gamma^{0}\gamma$ is commensurable with $\Gamma^{0}$ for every $\gamma\in\Gamma$. Let $\mathcal{H}(\Gamma,\Gamma^{0})$ be the Hecke ring defined
with respect to the left $P$-coset decomposition of $\Gamma$ . For each $\Gamma_{\gamma}^{0}\Gamma^{0}\in \mathcal{H}(\Gamma,\Gamma^{0})$ , let
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$d(\Gamma^{0}\gamma\Gamma^{0})$ be the number of left $\Gamma^{0}$-cosets contained in $\Gamma^{0}\gamma\Gamma^{0}$ , and for each $X\in \mathcal{H}(\Gamma,\Gamma^{0})$ ,

we define $d(X)$ by linearity. Then

$\mathcal{H}(\Gamma,\Gamma^{0})\ni X\mapsto d(X)\in Z$

is a homomorphism.
Now we shall define an action $\rho^{*}$ of $\mathcal{H}(\Gamma,\Gamma^{0})$ on $H^{1}(\Gamma^{0},\rho_{0})$ . Take any double coset

$\Gamma^{0}\gamma\Gamma^{0}=\sum_{i=1}^{d}\Gamma^{0}\gamma_{i}$ (disjoint), and for each $\sigma\in\Gamma^{0}$ and $i(1\leq i\leq d)$ , put $\gamma_{i}\sigma=x_{ij}\gamma_{j}$ with
$x_{ij}\in\Gamma^{0}$ . For any 1-cocycle $a(\sigma)$ , put

(3) $\rho^{*}(\Gamma^{0}\gamma\Gamma^{0})a(\sigma)=\sum_{i=1}^{d}\rho(\gamma_{i}^{-1})a(x_{ij})$ .

Then, as can be checked directly, this is also a 1-cocycle; and moreover, if $a(\sigma)$ is a
coboundary, it is also a coboundary. In fact, if $a(\sigma)=(1-\rho(\sigma))a$, then (3) will be
equal to $(1-\rho(\sigma))\sum_{i=1}^{d}\rho(\gamma_{i}^{-1})a$ . Moreover, ifwe take another left $I^{\triangleleft}$-coset decomposition
$\Gamma^{0}\gamma\Gamma^{0}=\sum_{i=1}^{d}\Gamma^{0}\gamma_{i}’$ with $\gamma_{i}’=\sigma_{i}\gamma_{i}(\sigma_{i}\in\Gamma^{0})$ , and define $\rho^{*/}(\Gamma^{0}\gamma\Gamma^{0})$ with respect to this
decomposition, a simple straightforward computation (note that $a(\gamma^{-1})=-\rho(\gamma^{-1})a(\gamma)$

$(\gamma\in\Gamma))$ shows that

(4) $\rho^{*/}(\Gamma^{0}\gamma\Gamma^{0})a(\sigma)=\rho^{*}(\Gamma^{0}\gamma\Gamma^{0})a(\sigma)-(1-\rho(\sigma))\sum_{i=1}^{d}\rho(\gamma_{i}^{-1})a(\sigma_{i}^{-1})$ .

Therefore, $\rho^{*}(\Gamma^{0}\gamma\Gamma^{0})$ defines an endomorphism of $H^{1}(\Gamma^{0},\rho^{0})$ , which is well-defined by
$\Gamma^{0}\gamma\Gamma^{0}$ and does not depend on the choice of $\gamma_{1},$ $\cdots,\gamma_{d}$ . Define $\rho^{*}(X)$ for any $X\in \mathcal{H}(\Gamma, \Gamma^{0})$

by linearity. Thus, for each $X\in \mathcal{H}(r, r^{\triangleleft}),$ $\rho^{*}(X)$ is an element of End $H^{1}(\Gamma^{0},\rho_{0})$ , the
endomorphism ring of $H^{1}(\Gamma^{0},\rho_{0})$ .

PROPOSITION 1. The notations being as above,

(i) $\rho^{*}$ is an anti-homomorphism of $\mathcal{H}(\Gamma, \Gamma^{0})$ into End $ H^{1}(\Gamma^{0},\rho_{0}),\cdot$

(5) $\rho^{*}(X\cdot Y)=\rho^{*}(Y)\circ\rho^{*}(X) \forall X, Y\in \mathcal{H}(\Gamma,\Gamma^{0})$ .

(ii) If $a(\sigma)$ is contained in $\varphi(H^{1}(\Gamma,\rho))$, then

(6) $\rho^{*}(X)a(\sigma)=d(X)a(\sigma) \forall X\in \mathcal{H}(\Gamma,\Gamma^{0})$ ,

holds.

PROOF. (i). This can be checked in a straightforward manner and hence is omitted.
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(ii) Let $a(\sigma)$ be a cocycle on $\Gamma$ . Then,

$\rho.(\Gamma^{0}\gamma\Gamma^{0})a(\sigma)=\sum_{i=1}^{d}\rho(\gamma_{f}^{-1})a(x_{tj})=\sum_{i=1}^{d}\rho(\gamma_{t}^{-1})a(\gamma_{i}\sigma\gamma_{j}^{-1}) $

$=\sum_{i=1}^{d}\rho(\gamma_{i}^{-1})a(\gamma_{i})+\sum_{i=1}^{d}\rho(\gamma_{j}^{-1})\rho(\gamma_{t})a(\sigma)+\sum_{i=1}^{d}\rho(\gamma_{i}^{-1})\rho(\gamma_{i}\sigma)a(\gamma_{j}^{-1})$

$=\sum_{i=1}^{d}\rho(\gamma_{i}^{-1})a(\gamma_{i})+d\cdot a(\sigma)-\sum_{j=1}^{d}\rho(\sigma)\rho(\gamma_{j}^{-1})a(\gamma_{j})$

$=d\cdot a(\sigma)+(1-\rho(\sigma))\sum_{i=1}^{d}\rho(\gamma_{i}^{-1})a(\gamma_{i})$

$\sim d\cdot a(\sigma)=d(\Gamma^{0}\gamma\Gamma^{0})a(\sigma)$,

which proves (ii). $\square $

\S 3. Now let $\rho_{n}(n=0,1,2, \cdots)$ be the real symmetric tensor representation of $G_{R}=$

$PSL_{2}(R)$ of degree $2n$ . Namely, put

(7) $\pm(_{v_{1}}^{u_{1}}\rangle=\pm(_{c}^{a}db\rangle(_{v}^{u}\rangle; \pm(_{c}^{a}db\rangle\in G_{R}, (_{v}^{u}\rangle\in R^{2},$

and put

(8) $\left(\begin{array}{l}u_{1^{u_{l}^{2n}}}^{2n- 1}v_{l}\\\vdots\\ v_{1}^{2n}\end{array}\right)=\rho_{n}(\pm(_{c}^{a}db\rangle\rangle\left(\begin{array}{l}u^{2n}\\u^{2n- l}v\\\vdots\\ v^{2n}\end{array}\right).$

Then $\rho_{n}$ is an absolutely irreducible representation of $G_{R}$ in $V_{n}=R^{2n+1}$ . In particular, $\rho_{0}$

is the trivial representation, and as can be easily checked, $\rho_{1}$ is equivalent to the adjoint
representation Ad of $G_{R}$ in the Lie algebra $\mathfrak{g}_{R}=\{X\in M_{2}(R)| trX=0\}$ of $G_{R}$ ;

(9) $G_{R}\ni g_{R}$ : $X\mapsto(Adg_{R})X=g_{R}^{-1}Xg_{R}.$

\S 4. Let $\Gamma_{R}^{0}$ be a discrete subgroup of $G_{R}$ with compact quotient, let $\rho_{n.0}(n=$

$0,1,2,$ $\cdots)$ be the restriction of $\rho_{n}$ to $\Gamma_{R}^{0}$ , and let $\mathfrak{M}_{2n+2}$ be the vector space over $R$ of
all holomorphic automorphic foms ofweight $2n+2$ with respect to $\Gamma_{R}^{0}$ . Then, by Eichler-
Shimura [12] [31], the following map $\iota$ gives an $R$-linear isomorphism of $\mathfrak{M}_{2n+2}$ onto
$H^{1}(\Gamma_{R}^{0},\rho_{n,0})$ :

(10) $\iota:\mathfrak{M}_{2n+2}\ni f(z)\mapsto a(\sigma)={\rm Re}\left(\begin{array}{l}\int_{z}^{\sigma z}f(\tau)\tau^{2n-l}d\tau\int_{z}^{\sigma z}f(\tau)\tau^{2n}d\tau\\\vdots\\\int_{z}^{\sigma z}f(\tau)d\tau\end{array}\right),$
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where $z$ is an arbitrarily fixed point of $\mathfrak{H}$ . Let $\Gamma_{R}\supset\Gamma_{R}^{0}$ be a group contained in the com-
mensurability subgroup $ofP_{R}$ in $G_{R}$ , and let $\tilde{\rho}_{n}$ be the anti-representation of $\mathcal{H}(\Gamma_{R},I_{R}^{\triangleleft})$ in
$\mathfrak{M}_{2n+2}$ defined by linearity and by

(11) $\mathfrak{M}_{2n+2}\ni f(z)\mapsto\tilde{\rho}_{n}(\Gamma_{R}^{0}\gamma\Gamma_{R}^{0})f(z)=\sum_{i=1}^{d}f(\gamma_{i}z)(c_{i}z+d_{i})^{-2n-2}\in \mathfrak{M}_{2n+2},$

where $\Gamma_{R}^{0}\gamma\Gamma_{R}^{0}=\sum_{i=1}^{d}\Gamma_{R}^{0}\gamma_{i}$ (disjoint), and $\gamma_{i}=\pm(_{c_{i}}^{a_{i}}d_{i}b_{i\rangle}(1\leq i\leq d)$ . Then, as can

be checked directly, the anti-representations $\rho_{n}^{*}$ of $\mathcal{H}(\Gamma_{R},\Gamma_{R}^{0})$ in $H^{1}\mathbb{P}_{R^{\beta_{n,0})}},$ , and $\tilde{\rho}_{n}$ of
$\mathcal{H}(\Gamma_{R},\Gamma_{R}^{0})$ in $\mathfrak{M}_{2n+2}$ are equivalent by the isomorphism $\iota$ ; i.e., we have

(12) $\rho_{n}(X)\circ\iota=\iota\circ\tilde{\rho}_{n}(X) \forall X\in \mathcal{H}(\Gamma_{R},\Gamma_{R}^{0})$ ,

cf. [31] \S 8.

\S 5. Now we are in the situation to prove the following Theorem.

THEOREM 1. Let $\Gamma_{R}^{0}$ be a discrete subgmup of $G_{R}=PSL_{2}(R)$ with compact quotient,
and let $\Gamma_{R}$ be a dense subgroup of $G_{R}$ containing $\Gamma_{R}^{0}$ such that $\gamma_{R}^{-1}\Gamma_{R}^{0}\gamma_{R}$ and $\Gamma_{R}^{0}$ are com-
mensurable with each otherfor all $\gamma_{R}\in\Gamma_{R}$ . Let $\rho_{n}(n=0,1,2, \cdots)$ be as in \S 3, and
identify $\rho_{n}|_{\Gamma_{R}}$ with $\rho_{n}$ . Then we have

(13) $H^{1}(\Gamma_{R},\rho_{n})=\{0\} (n=1,2,3, \cdots)$ .

Moreover, if $\Gamma_{R}$ does not contain a normal subgroup ofinfinite index containing $\Gamma_{R}^{0}$, then
we also have

(14) $H^{1}(\Gamma_{R},\rho_{0})=\{0\}.$

PROOF. The case $n>0$ . Let $\rho_{n,0}$ be the restriction of $\rho_{n}$ to $\Gamma_{R}^{0}$ . Then the restriction ho-
momorphism $\varphi$ of $H^{1}(\Gamma_{R},\rho_{n})$ into $H^{1}(\Gamma_{R}^{0},\rho_{n,0})$ is injective. In fact, since $\rho_{n}$ is irreducible
and $\neq 1$ , we can apply the Corollary of Lemma 1. So, we shall consider $H^{1}(\Gamma_{R},\rho_{n})$

as a subspace of $H^{1}(\Gamma_{R}^{0},\rho_{n.’ 0})$ . Now we have an anti-representation $\rho_{n}^{*}$ of $\mathcal{H}(\Gamma_{R},\Gamma_{R}^{0})$ in
$H^{1}(\Gamma_{R}^{0},\rho_{n,0})$ , and by Proposltion 1, $H^{1}(\Gamma_{R},\rho_{n})$ is contained in ffie kemel of $\rho_{n}^{*}(X)-d(X)\cdot I$

for any $X\in \mathcal{H}(\Gamma_{R},\Gamma_{R}^{0})$ . Let $H_{1},$ $\cdots$ , $H_{N}$ be the set of all subgroups of $G_{R}$ containing
$\Gamma_{R}^{0}$ as a subgroup of finite index. By a well-known theorem on fuchsian groups, such
subgroups are finite in number. Since $(\Gamma_{R} : \Gamma_{R}^{0})=\infty$ , we can take $\gamma_{R}\in\Gamma_{R}$ that is not
contained in any $H_{i}(1\leq i\leq N)$ . Then $\Gamma_{R}^{0}$ and $\gamma_{R}$ generate a subgroup of $\Gamma_{R}$ which
contains $\Gamma_{R}^{0}$ as a subgroup of infinite index; hence $\Gamma_{R}^{0}$ and $\gamma_{R}$ generate a dense subgroupl
of $G_{R}$ . Therefore, by Lemma 10 of Chapter 1, if $\lambda$ is an eigenvalue of $\overline{\rho}_{n}\Psi_{R}\gamma_{R}\Gamma_{R}^{0}$) in
$\mathfrak{M}_{2n+2}$ , then $\lambda\neq d(\Gamma_{R}^{0}\gamma_{R}\Gamma_{R}^{0})$ . Therefore by (12), we see immediately that if $\lambda$ is an eigen-
value of $\rho_{n}^{*}(\Gamma_{R}^{0}\gamma_{R}\Gamma_{R}^{0})$ in $H^{1}(\Gamma_{R}^{0},\rho_{n,0})$ , then $\lambda\neq d(\Gamma_{R}^{0}\gamma_{R}\Gamma_{R}^{0})$ . This shows that the kemel of
$\rho_{n}^{*}(\Gamma_{R}^{0}\gamma_{R}\Gamma_{R}^{0})-d(\Gamma_{R}^{0}\gamma_{R}\Gamma_{R}^{0})$ is ffivial, and hence $H^{1}(\Gamma_{R},\rho_{n})=\{0\}.$

l See Supplement \S 1.
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The case $n=0$. The above proof of the injectivity of the restriction map $\varphi$ does not
apply to this case, but the rest ofthe proofapplies to this case also. Therefore, it is enough
to prove the injectivity of $\varphi.$

Since $\rho_{0}=I,$ $H^{1}(\Gamma_{R},\rho_{0})$ resp. $H^{1}(\Gamma_{R}^{0},\rho_{0,0})$ can be identified with $Hom(\Gamma_{R},R)$ resp.
$Hom(\Gamma_{R}^{0},R)$ . Let $\alpha\in Hom(\Gamma_{R},R)$ with $\alpha|_{\Gamma_{R}^{0}}=0$ . Let $H$ be the kemel of $\alpha$ . Then $H$ is a
normal subgroup of $\Gamma_{R}$ containing $I_{R}^{\triangleleft}$ , and if $\alpha\neq 0,$ $\Gamma_{R}/H$ must be infinite. Therefore by
our assumption, we get $\alpha=0$ . Hence $\varphi$ is injective. $\square $

COROLLARY. Let $\Gamma$ be a discrete subgroup of $G=G_{R}\times G_{\mathfrak{p}}$ with compact quotient and
with dense images ofprojections $\Gamma_{R},$ $\Gamma_{\mathfrak{p}}$ in $G_{R},$ $G_{\mathfrak{p}}$ respectively. Then we have

(15) $H^{1}(\Gamma_{R},\rho_{n})=\{0\} (n=0,1,2, \cdots)$ .

PROOF. Put $r^{\triangleleft}=\Gamma\cap(G_{R}\times PSL_{2}(O_{\mathfrak{p}}))$ . Then $\Gamma_{R}^{0}$ is maximal in $\Gamma_{R}$ (Corollary ofLemma
11 in Chapter 1), and obviously is not normal in $\Gamma_{R}$ . Therefore, all conditions in Theorem
1 are satisfied. $\square $

\S 6. Consequence of $H^{1}(\Gamma_{R},\rho_{0})=\{0\}$ . Let $\Gamma$ be as in the above Corollary, and let
$[\Gamma,\Gamma]$ be the commutator subgroup. Then, since $\Gamma$ is finitely generated (see \S 25, Chapter
2$)$ , the quotient $\Gamma/[\Gamma,\Gamma]$ is a finitely generated abelian group, and hence is isomorphic to
a direct product of a finite group and a free abelian group of finite rank. But since the
above corollary for $n=0$ asserts that

$Hom(\Gamma,R)=Hom(\Gamma_{R},R)=H^{1}(\Gamma_{R},\rho_{0})=\{0\},$

we see immediately that $\Gamma/[\Gamma,\Gamma]$ must be finite.
As an exercise, let us give some estimation of the group index $(\Gamma:[\Gamma,\Gamma])$ in the case

where $\Gamma$ is torsion-ffee. For this purpose, it is more convenient to consider the homology
group than the cohomology group. Thus let

$\Gamma^{0}=\Gamma\cap(G_{R}\times PSL_{2}(O_{\mathfrak{p}}))$ ,

and let $g(\geq 2)$ be the genus of $\mathfrak{H}/\Gamma_{R}^{0}$ . Put $A=\Gamma^{0}/[\Gamma^{0},\Gamma^{0}]$ and consider it as an additive
group. Then $A\cong Z^{2g}$ , and we have $an$ anti-representation $\rho_{0}^{*}$ of $\mathcal{H}(\Gamma,\Gamma^{0})$ on

$H^{1}(\Gamma^{0},Z)=Hom(\Gamma^{0},Z)=Hom(A,Z)$

(see \S 2)2 Its dual $\Re$ is a representation of $\mathcal{H}(\Gamma,\Gamma^{0})$ on $A$ defined by

(16) $\Re(\Gamma^{0}\gamma\Gamma^{0})\overline{\sigma}=\prod_{i=1}^{d}x_{ij},$

where $\sigma\in\Gamma^{\triangleleft},$

(i) $\overline{\sigma}$ is the $[\Gamma^{0},\Gamma^{0}]$-coset containing $\sigma,$

(ii) $\Gamma^{0}\gamma\Gamma^{0}=\Sigma_{t=1}^{d}\Gamma^{0}\gamma_{f}$ (disjoint), and $\gamma_{i}\sigma=x_{ij}\gamma_{j}$ with $x_{tj}\in\Gamma^{0}(1\leq i\leq d)$ .
2 Since $\mathcal{H}(\Gamma,\Gamma^{0})$ is commutative (see Chapter 1, \S 10), all anti-representations of $\mathcal{H}(r,r^{\theta})$ are represen-

tations.
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Moreover, it can be immediately checked that

(I7) $\{\Re(\Gamma^{0}\gamma\Gamma^{0})-d(\Gamma^{0}\gamma\Gamma^{0})\}A\subset[\Gamma,\Gamma]\cap r^{\theta}/[\Gamma^{0},\Gamma^{0}]$

holds for any $\gamma\in\Gamma$ . Therefore, the group index

$(\Gamma:[\Gamma,\Gamma])=(\Gamma^{0}:[\Gamma,\Gamma]\cap\Gamma^{0})$

divides $\det\{\Re ffl\gamma\Gamma^{0})-d(\Gamma^{0}\gamma\Gamma^{0})\}$ for any $\gamma\in\Gamma$ . Now let $\overline{\rho}_{0}$ be the anti-representation
of $\mathcal{H}(\Gamma,\Gamma^{0})\cong \mathcal{H}(\Gamma_{R},\Gamma_{R}^{0})$ in $\mathfrak{M}_{2}$ defined by (11). Then by the identification $\mathfrak{M}_{2}\cong R$

$Hom(A\otimes_{Z}R,R),\overline{\rho}_{0}$ is equivalent to $\rho_{0}^{*}\otimes_{Z}$ R. Hence the above determinant is also equal to
$\det\{\tilde{\rho}_{0}(\Gamma^{0}\gamma\Gamma^{0})-d(r^{0_{\gamma}}r^{o})\}$ . Now consider $\mathfrak{M}_{2}$ as a vector space over C. Then $\overline{\rho}_{0}$ may also
be regarded as a $g$-dimensional complex anti-representation of $\mathcal{H}(\Gamma,\Gamma^{0})$ in $\mathfrak{M}_{2}$ . Call it $\overline{\rho}_{0}^{C}.$

Then by Petersson, $\overline{\rho}_{0}^{c}$ is a direct sum of one-dimensional representations $\chi_{1},$ $\cdots,\chi_{g}$ ; and
$\chi_{i}(X)(1\leq i\leq g)$ are real numbers for all $X\in \mathcal{H}(\Gamma,\Gamma^{0})$ (see Chapter 1, \S 9). Therefore,

$\det\{\tilde{\rho}_{0}(\Gamma^{0}\gamma\Gamma^{0})-d(\Gamma^{0}\gamma\Gamma^{0})\} = |\det\{\overline{\rho}_{0}^{\mathbb{C}}(\Gamma^{0}\gamma\Gamma^{0})-d(\Gamma^{0}\gamma\Gamma^{0})\}|^{2}$

(18)
$= \det\{\tilde{\rho}_{0}^{C}(\Gamma^{0}\gamma\Gamma^{0})-d(\Gamma^{0}\gamma\Gamma^{0})\}^{2}.$

Put $\Gamma^{0}\gamma\Gamma^{0}=\Gamma^{1}$ (see Chapter 1, \S 10). Then (18) will be equal to

(19) $\det\{\tilde{\rho}_{0}^{C}(\Gamma^{1})-q^{2}-q\}^{2}.$

But $\overline{\rho}_{0}^{c}$ is nothing but $\rho=\rho_{2}$ of Chapter 1. Therefore by (54) of Chapter 1, we finally get

(20) $\det\{\Re(\Gamma^{1})-d(\Gamma^{1})\}=P(1)^{2},$

where $P(u)=\prod_{i=1}^{g}(1-\pi_{i}u)(1-\pi_{i}’u)$ is the main numerator of $\zeta_{\Gamma}(u)$ . So, we have proved
the following.

THEOREM 2. Let $\Gamma$ be a discrete subgroup of $G=G_{R}\times G_{\mathfrak{p}}$ with compact quotient
andwith dense images ofprojections $\Gamma_{R},$ $\Gamma_{\mathfrak{p}}$ in $G_{R},$ $G_{\mathfrak{p}}$ respectively. Then the commutator

quotient group $\Gamma/[\Gamma, \Gamma]$ is finite, and if $\Gamma$ is moreover torsion-free, its group order is a
divisor of$P(1)^{2}$ , where

$P(u)=\prod_{i=1}^{g}(1-\pi_{i}u)(1-\pi_{i}’u)$

is the main numerator of $\zeta_{\Gamma}(u)$ $($see Chapter 1, \S 8 (20) $)^{3}$

\S 7. Consequence of $H^{1}(\Gamma_{R},\rho_{1})=\{0\}$ . Let $\Gamma$ be as in Theorem 2 (but not assumed
to be torsion-free). Then, since $\rho_{1}$ is equivalent to the adjoint representation Ad of $G_{R}$ in
$\mathfrak{g}_{R}$ (see \S 3 (9)), the corollary of Theorem 1 for $n=1$ shows that $H^{1}(\Gamma_{R}, Ad)$ $=\{0\}$ . Put
$G_{C}=PL_{2}(C)\cong PSL_{2}(C)$ , let $\mathfrak{g}_{C}=g_{R}\otimes C$ be its Lie algebra, and let $Ad_{C}$ be the adjoint
representation of $G_{\mathbb{C}}$ in $\mathfrak{g}_{\mathbb{C}}$ . Denote its restriction to $\Gamma_{R}$ also by $Ad_{\mathbb{C}}$ . Then it follows
immediately from the equahty $H^{1}(\Gamma_{R}, Ad)$ $=\{0\}$ that

(21) $H^{I}(\Gamma_{R},Ad_{C})=\{0\}.$

Now, by A. Weil (A. Weil [37]), we have the following:

3By Chapter 1, Theorem 2, we have $\pi_{i},\pi_{i}’\neq 1.$
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LEMMA 2 (A. Weil). Let $X$ be a real Lie gvoup, let $\Delta$ be afinitely generated subgroup
of $X$, and let Ad be the adjoint representation of $X$ (or its restriction to $\Delta$). Then, if
$H^{1}(\Delta, Ad)$ $=\{0\},$ $\Delta$ has no non-trivial deformation in $X$

By applying this to $X=G_{\mathbb{C}}$ and $\Delta=\Gamma_{R}$, we get the following theorem by (21):

THEOREM 3. Let $\Gamma$ be as in Theorem 2 (but not necessarily torsion-fiee). Then $\Gamma_{R}$ has
no non-trivial defomation in $G_{\mathbb{C}}=PSL_{2}(C).$

REMARK 1. Since we used only Theorem 1 $($for $n=1)$ and Lemma 2 to get Theorem
3, it is clear that the triviality of deformation of $\Gamma_{R}$ in $G_{C}$ is valid for any subgroup $\Gamma_{R}$ of
$G_{R}$ satisfying the following three conditions.

(i) $\Gamma_{R}$ contains a discrete subgroup $\Gamma_{R}^{0}$ of $G_{R}$ wiffi compact quotient $G_{R}/\Gamma_{R}^{0}$, and $\Gamma_{R}^{0},$

$\gamma_{R}^{-1}\Gamma_{R}^{0}\gamma_{R}$ are commensurable with each other for every $\gamma_{R}\in\Gamma_{R}.$

(ii)4 $\Gamma_{R}$ is dense in $G_{R}.$

(iii) $\Gamma_{R}$ is finitely generated.

REMARK 2. Theorem 3 is slightly stronger than the Corollary of Lemma 8 in Chapter
2, which asserts the triviality ofdeformation of $\Gamma_{R}$ in $G_{R}$ only. While the proofofLemma
8 and its corollary (Chapter 2) is quite elementary with the elliptic elements of $\Gamma_{R}$ playing
the main role, the proofofTheorem 3 is slightly more sophisticated, based on the inequal-
ity (89) (Kuga) ofChapter 1 for automorphic forms ofweight 4, Borel’s density theorem
for fuchsian groups, Eichler-Shimura’s isomorphism (10), and Weil’s Lemma 2. While
Lemma 8 was necessary and sufficient for our purpose in Chapter 2, what we now need is
our Theorem 3, the triviality of deformation of $\Gamma_{R}$ in $G_{C}.$

Applications of Theorem 3 ; the deformation variety.

\S 8. As before and throughout the following, let $\Gamma$ be a discrete subgroup of $G=$
$G_{R}\times G_{\mathfrak{p}}$ with compact quotient and with dense images of projections $\Gamma_{R},\Gamma_{\mathfrak{p}}$ in $G_{R},G,$

respectively. Let $\gamma_{1},$ $\cdots,\gamma_{n}$ be a set of generators of $\Gamma$, and let $R_{\lambda}(\gamma_{1}, \cdots,\gamma_{n})=I(\lambda\in A)$

be a system of fundamental relations between $\gamma_{1},$
$\cdots$ , $\gamma_{n}$ . Let $G_{C}=PL_{2}(C)$ be identified

with a Zariski open subspace

$\{(x^{11} : x^{12} : ^{1} : x^{22})|x^{11}x^{22}-x^{12}x^{21}\neq 0\}$

of the projective space $P^{3}$ . Put $G_{c}^{n}=G_{\mathbb{C}}\times\cdots\times G_{\mathbb{C}}$ ($n$-copies), and let $V=V_{\Gamma}$ be an
algebraic subset of $G_{c}^{n}$ fomed ofall points $(x_{1}, \cdots , x_{n})\in G_{c}^{n}$ satisfying $R_{\lambda}(x_{1}, \cdots , x_{n})=1$

for all $\lambda\in\Lambda$ . Then it is clear that for any homomorphism (as abstract groups) $\varphi$ of $\Gamma$ into
$G_{\mathbb{C}},$ $(\varphi(\gamma_{1}), \cdots,\varphi(\gamma_{n}))$ lies on $V$; and conversely, if $(x_{1}, \cdots,x_{n})$ is on $V$, then by putting
$\varphi(\gamma_{1})=x_{1},$ $\cdots,\varphi(\gamma_{n})=x_{n}$ , we get a homomorphism $\varphi$ of $\Gamma$ into $G_{\mathbb{C}}$ . In this manner,
points on $V$ are in one-to-one correspondence with homomorphisms (as abstract groups)

4This is equivalent to $(\Gamma_{R} : \Gamma_{R}^{0})=\infty$ (see Supplement \S 1).
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of $\Gamma$ into $G_{C}$ . Therefore, we shall identify them and call $V$ the deformation variety of $\Gamma$ in
$G_{\mathbb{C}}.$

For any element $x\in G_{C}$ , we put $x=((x^{ij}))(1\leq i,j\leq 2)$ with projective coor-
dinates $x^{ij}$ . Then for each $\lambda\in\Lambda,$ $((R_{\lambda}(x_{1}, \cdots , x_{n})^{ij}))\in G_{C}\subset P^{3}$ is well-defined, and
$R_{\lambda}(x_{1}, \cdots , x_{n})^{ij}$ are (multi-homogeneous) polynomials of $x_{k}^{ij}$ with rational integral coeffi-

cients. Therefore, $V$ is a bunch of algebraic varieties in $G_{C}^{n}$ and it is normally algebraic

over Q. Let $\varphi_{R}$ be the projection $5\Gamma\rightarrow\Gamma_{R}\subset G_{R}\subset G_{\mathbb{C}}$ , and let $V_{0}$ be an irreducible

component of $V$ containing $\varphi_{R}$ . Then, since $V$ is normally algebraic over $Q,$ $V_{0}$ is defined

over $\overline{Q}$ , i.e., the algebraic closure of Q. On the other hand, $G_{C}$ acts on $V$ as

(22) $G_{C}\ni t;V\ni\varphi\mapsto Int(t)\circ\varphi\in V,$

where $\varphi$ is a homomorphism of $\Gamma$ into $G_{C}$ considered as a point on $V$, and Int$(t)$ denotes

the inner automorphism $x\mapsto t^{-1}xt$ of $G_{\mathbb{C}}$ . Since $\varphi_{R}(\Gamma)=\Gamma_{R}$ is dense in $G_{R}$ , its centralizer

in $G_{\mathbb{C}}$ is {1}; hence the stabilizer of $\varphi_{R}\in V_{0}$ in $G_{\mathbb{C}}$ is trivial. Now, by Theorem 3, there

exists a neighborhood $U$ of $\varphi_{R}$ in $G_{c}^{n}$ such that $U\cap V$ is contained in the $G_{C}$ -orbit of $\varphi_{R}.$

Therefore, $V_{\acute{0}}$ denoting the $G_{C}$ -orbit of $\varphi_{R},$
$V_{\acute{0}}$ is obviously irreducible, $\dim V_{\acute{0}}=3$ , and

$U\cap V=U\cap V_{\acute{0}}$ . Therefore $V_{0}$ is the unique irreducible component of $V$ containing $\varphi_{R},$

$\dim V_{0}=3$ , and $V_{0}’$ is a Zariski dense algebraic subset of $V_{0}$ . Before going into a detailed

study of $V_{0}$ , we shall give some simple application of this to the structure of $\Gamma.$

\S 9. Subgroups of $\Gamma$ with finite indices. In general, an abstract group $\Delta$ is called

residuallyfinite ifthe intersection of all subgroups of $\Delta$ with finite indices is {1}, or equiv-
alently, if the intersection of all normal subgroups of $\Delta$ with finite indices is {1}.

THEOREM 4. Let $\Gamma$ be a discrete subgroup of $G=G_{R}\times G_{\mathfrak{p}}$ with compact quotient and

with dense images ofprojections in $G_{R}$ and $G_{\mathfrak{p}}$ . Then

(i) $\Gamma$ is residuallyfinite.
(ii) $\Gamma$ contains a subgroup withfinite index which has no elements $\neq 1$ offinite order.

PROOF. Since $V_{\acute{0}}$ is Zariski dense in $V_{0}$ and since $V_{0}$ is defined over $\overline{Q}$ , there are in-

finitely many $\overline{Q}$-rational points on $V_{\acute{0}}$ . Let $(a_{1}, \cdots , a_{n})$ be such a point, and let $K$ be an
algebraic number field such that all $a_{i}(1\leq i\leq n)$ are $K$-rational. Let $\varphi$ be the homomor-

phism of $\Gamma$ into $G_{C}$ defined by $\varphi(\gamma_{i})=a_{i}(1\leq i\leq n)$ . Then, since $(a_{1}, \cdots , a_{n})$ hes on $V_{0}’,$

$\varphi$ is ofthe form $\varphi=Int(t)\circ\varphi_{R}$ with some $t\in G_{C}$ . In particular, $\varphi$ is injective. Therefore,
$\Gamma$ is isomorphic to a subgroup $\varphi(\Gamma)$ of $PL_{2}(K)$ . Put $a_{k}=((a_{k}^{ij}))$ with $a_{k}^{ij}\in K(\forall i,j,k)$, and

let I be a prime ideal of $K$ such that all $a_{k}^{ij}$ and all $(a_{k}^{11}a_{k}^{22}-a_{k}^{12}a_{k}^{21})^{-1}$ are I-integral. Now

denote by $O_{I}$ the I-adic completion of the ring of integers of $K$ . Then, since $a_{1},$ $\cdots$ , $a_{n}$

generate $\varphi(\Gamma)$ , this shows that $\varphi(\Gamma)$ can be considered as a subgroup of $PL_{2}(O_{I})$ ; therefore,

(23) $\Gamma\cong$ a subgroup of $PL_{2}(O_{I})$ .

Now the residual finiteness of $\Gamma$ follows immediately from that of $PL_{2}(O_{I})$ (take congm-

ence subgroups!). This settles (i). Finally, it is well-known (and easy to prove) that $O_{I}$

$5_{\varphi_{R}}$ is injective (see Chapter 1, \S 2, Proposition 1),
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being the ring of I-adic integers of any I-adic number field, there exists some $n$ such that
the congruence subgroup

$\{x\in SL_{2}(a)|x\equiv\pm 1$ (mod $I^{n})\}/\pm 1$

is torsion-free. This settles (ii). $\square $

REMARK. In the proof of Theorem 4, we only used the fact that small deformation
of $\Gamma_{R}$ in $G_{\mathbb{C}}$ is injective. This is, of course, a consequence of Theorem 3, but it is much
weaker than Theorem 3 and can be proved much more easily.

Study of $V_{0}$ ; the field $F=Q((tr\gamma_{R})^{2}|\gamma_{R}\in\Gamma_{R})$.

\S 10.

PROPOSITION 2. The notations being as in \S 8, we have $V_{0}=V_{\acute{0}}.$

PROOR We have shown in \S 8 that $V_{\acute{0}}$ is Zariski dense in $V_{0}$ . Therefore, it is enough to
prove that $V_{0}’$ is closed in $G_{C}^{n}$ . For each $t\epsilon G_{C}$ , put

(24) $\cdot$

$x_{t}=(t^{-1}\gamma_{1,R}t, \cdots, t^{-1}\gamma_{n.R}t)\in G_{c}^{n}.$

Then $V_{0}’$ is the set of all $x_{t}$ with $t\in G_{C}$ , and the map $t\mapsto x_{t}$ is one-to-one (see \S 8).
Now let $C[\Gamma_{R}]$ be the subalgebra of $M_{2}(C)$ generated by $\gamma_{1,R},$ $\cdots,\gamma_{n,R}$ over C. Then
$C[\Gamma_{R}]\supset\pm\Gamma_{R}$ ; hence $C[\Gamma_{R}]\supset SL_{2}(R)$ ; hence we get $C[\Gamma_{R}]=M_{2}(C)$ . In particular,

$(_{0}^{0}01\rangle$ and $(_{1}^{0}00\rangle$ are contained in $C[\Gamma_{R}]$ . Put $t=((t_{ij}))\in PSL_{2}(C)\cong G_{C}$ , and suppose

that $t^{-1}\gamma_{1,R}t,$
$\cdots,$

$t^{-1}\gamma_{n,R}t$ are contained in a given compact subset of $G_{\mathbb{C}}$ . Then

$t^{-1}(_{0}^{0}01)t=(_{-P_{21}}*$ $t_{22}^{2}*)$ and $t^{-1}\left(\begin{array}{ll}0 & 0\\1 & 0\end{array}\right)t=(_{t_{11}^{2}}^{*}$ $-t_{12}^{2}*)$

must also be contained in some compact subset of $M_{2}(C)$ ; hence all $t_{ij}(1\leq i,j\leq 2)$ must
be contained in some compact subset of C. Therefore, the intersection of $V_{\acute{0}}$ with any
given compact subset of $G_{c}^{n}$ is contained in the image $(by t\mapsto x_{t})$ ofsome compact subset
of $G_{\mathbb{C}}$ . But this implies that $V_{0}’$ is closed in $G_{c}^{n}$ , since the map $t\mapsto x_{t}$ is continuous and
$G_{c}^{n}$ is locally compact. $\square $

COROLLARY. $V_{0}$ is the connected component of $V$ containing $\varphi_{R}.$

PROOF. Since $V_{0}$ is irreducible, it is connected. Therefore, it is enough to show that if
$V_{1}$ is any irreducible component of $V$ with $ V_{0}\cap V_{1}\neq\phi$, then $V_{1}=V_{0}$ . Let $V_{1}$ be such
an irreducible component, and let $\varphi\in V_{0}\cap V_{1}$ . Then since $V_{0}=V_{0}’$ , there is an element
$t\in G_{C}$ , such that $\varphi_{R}=Int(t)\circ\varphi$ . But then, $\varphi_{R}$ is contained in Int$(t)\circ V_{1}$ , which is also an
irreducible component of $V$. But we know that $V_{0}$ is the unique irreducible component of
$V$ containing $\varphi_{R}$ . Therefore, Int$(t)\circ V_{1}=V_{0}$ ; hence $V_{1}=Int(t^{-1})V_{0}=V_{0}.$ $\square $
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\S 11. A field of definition of $V_{0}$ . Let $\Gamma_{R}^{(e)}$ be the set of all elements $\gamma_{R}\in\Gamma_{R}$ which are
elliptic $(i.e., | tr\gamma_{R}|<2)$ and of infinite order. Put

(25) $F=Q((tr\gamma_{R})^{2}|\gamma_{R}\in\Gamma_{R})\supset F_{0}=Q((tr\gamma_{R})^{2}|\gamma_{R}\in\Gamma_{R}^{(e)})$ .

PROPOSm$ON$ 3. Let $k(\subset C)$ be afield ofdefinition of $V_{0}$ . Then $F\subset k$

PROOR Let $\sigma$ be any automorphism of $C$ which is trivial $mk$. Then $V_{0}^{\sigma}=V_{0}$ . There-
fore, the homomorphism $\Gamma\ni\gamma\mapsto\gamma_{R}^{\sigma}\in G_{C}$ is conjugate (in $G_{C}$ ) to $\varphi_{R}$ . Hence there exists
$t\in G_{C}$ such that $\gamma_{R}^{\sigma}=t^{-1}\gamma_{R}t$ for all $\gamma_{R}\in\Gamma_{R}$ . By taking traces of both sides, which are
well-defined up to the signs, we get $\pm tr(\gamma_{R}^{\sigma})=\pm$ tr $\gamma_{R}$ ; hence $\pm tr(\gamma_{R})^{\sigma}=\pm$ tr $\gamma_{R}$ for all
$\gamma_{R}\in\Gamma_{R}$ . Therefore, $($tr $\gamma_{R})^{2}$ is $\sigma$-invariant for any $\sigma\in Aut_{k}(C)$ . Therefore, $($tr $\gamma_{R})^{2}\in k$

for any $\gamma_{R}\in\Gamma_{R}$ , which implies $F\subset k.$ $\square $

COROLLARY. Thefields $F,F_{0}$ are algebraic numberfields.

PROOF Since $V_{0}$ is defined over $\overline{Q}$ (see \S 8), we can take $k$ to be an algebraic number
field. $\square $

PROPOSITION 4. $V_{0}$ is defined over $F_{0}.$

PROOF To begin with, we shall prove that $\Gamma_{R}^{(e)}$ generates $\Gamma_{R}$ . By a remark given in
Chapter 1 (\S 3), the set

$S=$ {tr $\gamma_{R}|\gamma_{R}$ : of finite order}

is finite. Therefore, ifwe put

$X=\{x\in G_{R}||\alpha x|<2, tr x\not\in S\},$

then $X$ is an open subset of $G_{R}$ satisfying $X^{-1}=X$ and $\Gamma_{R}\cap X=\Gamma_{R}^{(e)}$ . Moreover, since
$G_{R}$ is connected, $X$ generates $G_{R}$ (as abstract group). Now let $\gamma_{R}$ be an arbitrary element
of $\Gamma_{R}$ , and put $\gamma_{R}=x_{1}\cdots x_{n}$ with $x_{i}\in X(1\leq j\leq n)$ . For each $i(1\leq i\leq n-1)$ , let
$\gamma_{R}^{(\iota)}\in\Gamma_{R}$ be sufficiently near $x_{i}$ . Then $\gamma_{R}^{(\iota)}\in\Gamma_{R}\cap X=\Gamma_{R}^{(e)}$ for $1\leq i\leq n-1$ , and moreover
$(\gamma_{R}^{(1)}\cdots\gamma_{R}^{(n-1)})^{-1}\gamma_{R}\in\Gamma_{R}$ is sufficiently near $x_{n}$ ; hence it is contained in $\Gamma_{R}\cap X=\Gamma_{R}^{(e)}.$

Therefore, we have $\gamma_{R}=\gamma_{R}^{(1)}\cdots\gamma_{R}^{(n)}$ with $\gamma_{R}^{(i)}\in\Gamma_{R}^{(e)}$ for all $i(1\leq i\leq n)$ . Hence $\Gamma_{R}^{(e)}$

generates $\Gamma_{R}.$

Now, let $\sigma$ be an automorphism of $C$ which is trivial on $F_{0}$ . Since $V_{0}$ can be considered
as the set of all homomorphisms $\varphi_{t}$ of $\Gamma_{R}$ into $G_{C}$ given by $\varphi_{t}(\gamma_{R})=t^{-1}\gamma_{R}t$ (with $t\in G_{C}$ ),

it is clear that $V_{0}^{\sigma}$ can be considered as the set of all homomorphisms $\varphi_{t}^{\sigma}$ of $\Gamma_{R}$ into $G_{C}$

given by $\varphi_{t}^{\sigma}(\gamma_{R})=\varphi_{t}(\gamma_{R})^{\sigma}=(f)^{-1}\gamma_{R}^{\sigma}t^{\sigma}.$

Let $\varphi$ and $\varphi’$ be, at the moment, arbitrary elements of $V_{0}$ and $V_{0}^{\sigma}$ respectively, and
identify $G_{\mathbb{C}}=PL_{2}(C)$ with $PSL_{2}(C)$ . Then tr $\varphi(\gamma_{R})$ , tr $\varphi’(\gamma_{R})\in R$ are well-defined up to
the signs, and since $\sigma$ is trivial $mF_{0}$ , we have

$|tr(\gamma_{R}^{\sigma})|=|(tr\gamma_{R})^{\sigma}|=|tr\gamma_{R}|$ for any $\gamma_{R}\in\Gamma_{R}^{(e)}.$

Therefore, we have $|\theta\varphi’(\gamma_{R})|=|$ tr $\varphi(\gamma_{R})|$ for any $\gamma_{R}\in\Gamma_{R}^{(e)}$ . Now, fix any $\delta_{R}\in\Gamma_{R}^{(e)},$

and let $\pm(\epsilon, \epsilon^{-1})$ be the eigenvalues of $\delta_{R}$ . Then, since $\delta_{R}^{\sigma}$ and $\delta_{R}$ have the same traces,
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$\pm(\epsilon,\epsilon^{-1})$ are also the eigenvalues of $\delta_{R}^{\sigma}$ . Therefore, there exist $t,$ $1\in G_{C}$ such that

$t^{-1}\delta_{R}t=l^{-1}\delta_{R}^{\sigma}t=\pm(_{0}^{\epsilon}\epsilon^{-1\rangle}0.$

Therefore, by putting $\varphi=\varphi_{t}\in V_{0}$ and $\varphi’=\varphi_{t^{\sigma^{-1}}}^{\sigma}\in V_{0}^{\sigma}$ , we get $\varphi(\delta_{R})=\varphi’(\delta_{R})=$

$\pm(_{0}^{\epsilon}\epsilon^{-1\rangle}0$ . Now, let $\gamma_{R}$ be any element of $\Gamma_{R}^{(e)}$ , and put

$\varphi(\gamma_{R})=\pm(_{z}^{x}wy\rangle,\varphi’(\gamma_{R})=\pm(_{z’}^{x’}w^{\prime\rangle}y’$

with $x+w=x’+w’$ . Take an integer $n\neq 0$ such that $\theta$ is sufficiently near 1. Then $\delta_{R}^{n}$

is sufficiently near 1; hence $\gamma_{R}\cdot\delta_{R}^{n}$ is also contained in $\Gamma_{R}^{(e)}$ (since $\Gamma_{R}^{(e)}=\Gamma_{R}\cap X$ and $X$

is open). Therefore, $|$ tr $\varphi(\gamma_{R}\delta_{R}^{n})|=|P\varphi’(\gamma_{R}\delta_{R}^{n})|$ ; hence $x\epsilon^{n}+w\epsilon^{-n}=\pm(x’\epsilon^{n}+w’\epsilon^{-n})$ . If
$x+w=x’+w’\neq 0$ and if $\epsilon^{n}$ is still nearer 1, then $x\epsilon^{n}+w\epsilon^{-n},$ $x’\epsilon^{n}+w’\epsilon^{-n}$ are sufficiently
near $x+w=x’+w’\neq 0$ ; therefore, we have $x\epsilon^{n}+w\epsilon^{-n}=x’\epsilon^{n}+w’\epsilon^{-n}$ . If on the other

hand, $x+w=x’+w’=0$ , then we can replace $\left(\begin{array}{ll}x & y\\z & w\end{array}\right)by-(_{z}^{x}wy)$ if necessary and

assume that $x\epsilon^{n}+w\epsilon^{-n}=x’\epsilon^{n}+w’\epsilon^{-n}$ . Now, by the two equations $x+w=x’+w’$ and
$x\epsilon^{n}+w\epsilon^{-n}=x’\epsilon^{n}+w’\epsilon^{-n}$ , we get $x=x’$ and $w=w’$ . Therefore, if $\gamma_{R}\in\Gamma_{R}^{(e)}$, we canput

$\varphi(\gamma_{R})=\pm(_{z}^{x}wy\rangle,\varphi’(\gamma_{R})=\pm\left(\begin{array}{ll}x & y’\\z’ & w\end{array}\right).$

Now fix another element $\delta_{R}’\in\Gamma_{R}^{(e)}$ such that

$\varphi(\delta_{R}’)=\pm\left(\begin{array}{ll}a & b\\c & d\end{array}\right)$ , and $\varphi’(\delta_{R}’)=\pm(_{c}^{a},$ $ b’d\rangle$ with $ad\neq 1.$

It is clear that such $\delta_{R}’$ exists, since $\Gamma_{R}^{(e)}=\Gamma_{R}\cap X$ and $X$ is open in $G_{R}$ . Since their

determinants are 1, we have $bc,b’c’\neq 0$ . Hence we have $\left(\begin{array}{ll}a & b\\c & d\end{array}\right)=\rho^{-1}(_{c}^{a},$ $ b’d)\rho$, with

$\rho=\left(\begin{array}{ll}b’ & 0\\0 & b\end{array}\right)$ ; hence ifwe put $\varphi’’=Int(\rho)\circ\varphi’\in V_{0}^{\sigma}$ , we get

$\varphi(\delta_{R})=\varphi’’(\delta_{R})=$ $\pm\left(\begin{array}{ll}\epsilon & 0\\0 & \epsilon^{-l}\end{array}\right)$ and
(26)

$\varphi(\delta_{R}’)=\varphi’’(\delta_{R}’)= \pm\left(\begin{array}{ll}a & b\\c & d\end{array}\right), ad\neq 1.$

(Note that $\rho$ commutes with $\left(\begin{array}{ll}\epsilon & 0\\0 & \epsilon^{-1}\end{array}\right).$) Now we shall prove that $\varphi=\varphi’’$ . First, let $\gamma_{R}\in$

$l_{R}^{\prec e)}$ , and put

$\varphi(\gamma_{R})=\pm\left(\begin{array}{ll}x & y\\z & w\end{array}\right), \varphi’’(\gamma_{R})=\pm\left(\begin{array}{ll}x & y’\\t & w\end{array}\right).$
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For each integer $n\neq 0$ , put $\left(\begin{array}{ll}a & b\\c & d\end{array}\right)=\left(\begin{array}{ll}a_{n} & b_{n}\\c_{n} & d_{n}\end{array}\right)$ , and take $n$ such that this matrix is suffi-

ciently near 1 (recall ffiat $\delta_{R}’$ is in $\Gamma_{R}^{(e)}$ and hence this is possible). Then $\delta_{R}^{\prime n}\cdot\gamma_{R}$ is contained
in $\Gamma_{R}^{(e)}$ . Therefore, if the signs ofmatrices are suitably chosen, the two maffices $\varphi(\delta_{R}^{\prime n}\gamma_{R})$

and $\varphi’(\delta_{R}^{\prime n}\gamma_{R})$ must have the commm diagonal components. Thus, by applying the sim-

ilar arguments as before on the signs ofmatrices (and by changing the $sign$ of $\left(\begin{array}{ll}x & y’\\z’ & w\end{array}\right)$ if

$x=w=0$ and if necessary), we get $a_{n}x+b_{n}z=a_{n}x+b_{n}z’$ and $c_{n}y+d_{n}w=c_{n}y’+d_{n}w$;

hence

(27) $b_{n}(z-z’)=c_{n}(y-y’)=0.$

But we have $b_{n}c_{n}\neq 0$ . In fact, since the centralizer of $\delta_{R}’$ in $G_{R}$ is isomorphic to $R/Z$, it is
topologically generated by any one power $\delta_{R}^{;n}(n\neq 0)$ of $\delta_{R}’$ . Moreover, $\varphi$ is induced by

an inner automorphism of $G_{\mathbb{C}}$ and hence is continuous. Therefore, if $n\neq 0$, then $(_{c}^{a}db\rangle$

can be approximated by the powers of $\left(\begin{array}{ll}a_{n} & b_{n}\\c_{n} & d_{n}\end{array}\right)$ . Therefore, $b_{n}=0(n\neq 0)$ implies $b=0,$

which is a contradiction to $ad\neq 1$ . Therefore, we get $b_{n}\neq 0$ , and in the same manner we
get $c_{n}\neq 0$ . Therefore by (27), we get $z=z’$ and $y=y’$ . Therefore, $\varphi(\gamma_{R})=\varphi’’(\gamma_{R})$ holds
for all $\gamma_{R}\in\Gamma_{R}^{(e)}$ . But since $\Gamma_{R}^{(e)}$ generates $\Gamma_{R},$ $\varphi(\gamma_{R})=\varphi’’(\gamma_{R})$ holds for all $\gamma_{R}\in\Gamma_{R}$ ; hence

we get $\varphi=\varphi’’$ . Since $\varphi\in V_{0}$ and $\varphi’’\in V_{0}^{\sigma}$ , this implies $ V_{0}\cap V_{0}^{\sigma}\neq\phi$ . But $V_{0},$ $V_{0}^{\sigma}$ are
$G_{C}$ -orbits of any one element of each. Therefore $V_{0}^{\sigma}=V_{0}$ . Therefore, $V_{0}^{\sigma}=V_{0}$ holds for
all $\sigma\in Aut(C)$ which are trivial $mF_{0}$ . Hence $V_{0}$ is defined over $F_{0}.$ $\square $

COROLLARY. We have $F=F_{0}$ ; and it is the smallestfield ofdefinition of $V_{0}.$

PROOF Since $V_{0}$ is defined over $F_{0}$ (Proposition4), Proposition 3 shows $F_{0}\supset F$ . But
$F_{0}\subset F$ . Therefore, $F_{0}=F$ . By Proposition 3, if $k$ is a field of definition of $V_{0}$ , then
$k\supset F=F_{0}$ . Therefore, $F_{0}$ is the smallest field of definition of $V_{0}.$ $\square $

\S 12. $V_{0}$ as a principal homogeneous space. Let $k$ be a field of definition of $V_{0}.$

Then, since $G_{C}=PL_{2}(C)$ acts $mV_{0}$ in a simply transitive mamer and since its actim is
defined over $k$, we can regard $V_{0}$ as a principal homogeneous space of $PL_{2}$ defined over $k$

Let $A_{k}$ be the quatemion algebra over $k$ which corresponds to this principal homogeneous

space.6 Then, for any field $K\supset k,$ $V_{0}$ has a $K$-rational point if and only if $A_{k}\otimes_{k}K\cong M_{2}(K)$ .
In particular, let $k=F(=F_{0})$ , and put $A=A_{F}$ . Then $A$ is a quatemion algebra over $F,$

and $A_{k}=A\otimes_{F}k$ holds for any field of definition $k$ for $V_{0}$ $(i.e., for any k\supset F)$ . We shall

call this A the quaternion algebm attached to $\Gamma$. Note that if $K$ is a subfield of $C$ such that
$V_{0}$ has a $K$-rational point, then $K$ contains $F$ . In fact, that implies $t^{-1}\Gamma_{R}t\subset PL_{2}(K)$ for

some $t\in G_{C}$ . Therefore, if $\gamma_{R}\in\Gamma_{R}$ , we can put $t^{-1}\gamma_{R}t=\rho\cdot((a_{ij}))$ with $\rho\in C^{\times},$ $\forall a_{ij}\in K.$

6 Cf e.g. [34] for the one-to-one correspondence; principal homogeneous space of $PL_{n}$ over $ k\Leftrightarrow$ central

simple algebra of degree $n^{2}$ over $k.$
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Taking $($trace) $/$determinant ofboth sides, we get

$(tr\gamma_{R})^{2}=(\theta((a_{lj})))^{2}/\det((a_{lj}))\in K.$

Therefore, $($tr $h)^{2}\in K$ holds for all $\gamma_{R}\in\Gamma_{R}$ ; hence $F\subset K$. Therefore, for any subfield $K$

of $C,$ $V_{0}$ has a $K$-rational point ifand only if $K\supset F$ and $A\otimes_{F}K\cong M_{2}(K)$ . By sunmarizing
our results in \S 8, \S 10 $\sim$ \S 12, we get ffie following Theorem.

THEOREM 5. Let $\Gamma$ be a discrete subgroup of $G=G_{R}\times G_{\mathfrak{p}}$ with compact quotient
andwith denseprojection images $\Gamma_{R},\Gamma_{\mathfrak{p}}$ in $G_{R},$ $G_{\mathfrak{p}}$ respectively. Let $V$ be the deformation
variety of $\Gamma$ in $G_{\mathbb{C}}=PL_{2}(C)$ (see \S 8), and let $V_{0}$ be an irreducible component of $V,$

containing the projection map $\varphi_{R}$ : $\Gamma\rightarrow\Gamma_{R}$. Then $V_{0}$ is unique and coincides with
the $G_{\mathbb{C}}$-orbit of $\varphi_{R}$ . Moreover, ifweput $F=Q((ff\gamma_{R})^{2}|\gamma_{R}\in\Gamma_{R})$, then $F$ is an algebraic
numberfield, and it is the smallestfieldofdefinition of $V_{0}$ . Finally, let $A$ be the quatemion
algebm over $F$ attached to $\Gamma$ (see \S 12). Thenfor any subfield $K$ of$C,$ $V_{0}$ has $K$-rational
point (i.e.,$ \Gamma_{R} $can be realized in$ PL_{2}(K)$) ifand only if$K\supset F$ and $A\otimes_{F}K\cong M_{2}(K)$.

Examples will be given in Chapter 4, Part 1.

\S 13. More about $F$ and $A$ . Througout the followin$g$, we shall denote by $\Gamma^{*}$ the
intersection of all normal subgroups $\Gamma’$ of $\Gamma$ whose quotients $\Gamma/\Gamma’$ are finite and of type
$(2, 2, \cdots,2)$ . Then $\Gamma^{*}$ contains the commutator subgroup $[\Gamma,\Gamma]$ of $\Gamma$, and by Theorem 2,
$[\Gamma,\Gamma]$ is of finite index in $\Gamma$ . Therefore, $\Gamma^{*}$ is also of fimite index in $\Gamma.$

PROPOSITION 5. Let $\Gamma$ be as in Theorem 5, and let $\Gamma’$ be a subgroup of $\Gamma$ offinite index.
Put $F=Q((tr\gamma_{R})^{2}|\gamma_{R}\in\Gamma_{R}),$ $F’=Q((tr\gamma_{R})^{2}|V_{R}\in\Gamma_{R}’)$, and let $A,$ $A’$ be the quatemion
algebras attached to $\Gamma,$ $\Gamma’$ respectively. Then $F=F’,$ and $A$ is isomorphic to $A’$ over $F.$

Moreover, $\Gamma^{*}$ being as above, we have $F=Q(tr\gamma_{R}’|V_{R}\in\Gamma_{R}’)$for all subgroups $\Gamma’$ of $\Gamma^{*}$

offinite indices.

PROOR It is clear that $F’\subset F$ . Let $V_{0}$ (resp. $V_{0}’$) be the comected component of the
deformatim variety of $\Gamma$ (resp. $\Gamma’$) in $G_{\mathbb{C}}$ containing the projectim map $\varphi_{R}$ : $\Gamma\rightarrow\Gamma_{R}$

$($resp. $\varphi_{R}’$ : $\Gamma’\rightarrow\Gamma_{R}’)$ . We shall show that if $K$ is a subfield of $C$ , then $V_{0}$ has a $K$-rational
point if and only if $V_{\acute{0}}$ has a $K$-rabonal point. The “only if’ part is trivial. To show
the if’ part, suppose that $V_{0}’$ has a $K$-rational point. Then there exists $t\in G_{\mathbb{C}}$ such that
$t^{-1}\Gamma_{R}’t\subset PL_{2}(K)$ . But since $\Gamma’$ is finitely generated, the intersection $t^{-1}\Gamma_{R}’t\cap PSL_{2}(K)$ is
of finite index in $t^{-1}\Gamma_{R}’t$; hence there is a nomal subgroup $\hat{\Gamma}_{R}$ of $\Gamma_{R}$ of finite index such
that $t^{-1}\hat{\Gamma}_{R}t\subset PSL_{2}(K)$ . Put $\Delta_{R}=-t^{-1}\Gamma_{R}\underline{t,}\hat{\Delta}_{R}=t^{-1}\hat{\Gamma}_{R}t.$ Since $\overline{\Gamma}_{R}$ is dense in $G_{R},\overline{\Gamma}_{R}$ spans
$M_{2}(C)$ over $C$ ; hence so does $\Delta_{R}$ . But $\Delta_{R}\subset-PSL_{2}(K)$ . Therefore $\overline{\Delta}_{R}$ spans $M_{2}(K)$ over
$K$. Now let $\delta_{R}\in\Delta_{R}$ . Then $\delta_{R}^{-1}\overline{\Delta}_{R}\delta_{R}=\Delta_{R}$ ; hence $\delta_{R}^{-1}M_{2}(K)\delta_{R}=M_{2}(K)$ . Therefore,
$\delta_{R}\in PL_{2}(K7$ ; hence $\Delta_{R}\subset PL_{2}(K)$ ; hence $V_{0}$ has a $K$-rational point. Therefore, $V_{0}$ has a
$K$-rabonal point if and only if $V_{\acute{0}}$ has a $K$-rational point; hence

(28) $K\supset F, A\otimes_{F}K\cong M_{2}(K)\Leftrightarrow K\supset F’, A’\otimes_{F’}K\cong M_{2}(K)$ .

But in general, if $B$ is a quatemion algebra over an algebraic number field $k$, then there are
finitely many quadratic extensions $l$ of $k$ which split $B$ ; i.e., $B\otimes_{k}l=M_{2}(l)$ . Moreover,
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if $B’$ is another quatemion algebra over $k$ which is not isomorphic to $B$ over $k$, then there
exists $l$ which splits one of$B$ or $B’$ but not the other (however, there may not exist $l$ which
splits the given $B$ and which does not split $B’$). Now, these show that $F=F’$ and that
$A\cong A’$ over $F$ . In fact, by our first remark, the intersection of all $K$ containing $F$ (resp.

$F’)$ and splitting $A$ (resp. $A’$) is $F$ (resp. $F$’). Therefore, (28) implies $F=F’$ . Also, by our
second remark, we see immediately that (28) implies $A\cong A’$ over $F.$

Finally, let $K_{1},K_{2}$ be two distinct quadratic extensions of $F$ which split $A$ , so that $V_{0}$

has $K_{i}$-rational points $(i=1,2)$ . Take $t_{1},$ $t_{2}\in G_{C}$ such that $t_{i}^{-1}\Gamma_{R}t_{i}\subset PL_{2}(K_{i})(i=1,2)$ .
Then, since $\Gamma_{R}\cap t_{i}PSL_{2}(K_{i})t_{i}^{-1}$ are normal subgroups of $\Gamma_{R}$ whose quotients are finite and
of $(2, 2, \cdots , 2)$ type, they contain $\Gamma_{R}^{*}$ . Hence $t_{i}^{-1}\Gamma_{R}^{*}t_{i}\subset PSL_{2}(K_{i})(i=1,2)$ . Therefore,

if $\gamma_{R}^{*}\in\Gamma_{R}^{*}$ , then we have $ff\gamma_{R}^{*}\in K_{1}\cap K_{2}=F$ . Therefore, if $\Gamma_{R}’$ is a subgroup of
$\Gamma_{R}^{*}$ of finite index, then on one hand, we have $Q(tr\gamma_{R}’|\gamma_{R}’\in\Gamma_{R}’)\subset F$ , and on the other
hand (by what we have shown already), $Q((tr\gamma_{R})^{2}|V_{R}\in\Gamma_{R}’)=F$ . Therefore, we

$get\square $

$Q(trV_{R}|\gamma_{R}\in\Gamma_{R}’)=F$ for all such $\Gamma’.$

REMARK 1. The field $Q(tr\gamma_{R}|\gamma_{R}\in\Gamma_{R})$ is a finite $(2, \cdots,2)$ type extension of $F$, and in
general, it does not coincide with $F.$

PROPOSITION 6. Let $\Gamma$ be as in Theorem 5, and let $\Gamma^{*}be$ the subgroup of $\Gamma$ defined at the
beginningofthis section. $LetA^{*}=Q[\Gamma_{R}^{*}]$ be the subalgebm of$M_{2}(R)$ generatedover $Q$ by
$\Gamma_{R}^{*}$ . Then its center consists ofall scalar matrices $a\cdot I$ with $a\in F=Q((tr\gamma_{R})^{2}|\gamma_{R}\in\Gamma_{R}),$

and $A^{*}$ is isomorphic over $F$ to the quatemion algebm $A$ attached to $\Gamma$. Moreover, if
$(A^{*})^{\times}/F^{\times}is$ considered as a subgroup of$PL_{2}(R)$, then $\Gamma_{R}$ is contained in $(A^{*})^{\times}/F^{\times}.$

PROOF Remark that, by Proposition 5, we have $F=Q(tr\gamma_{R}^{*}|\gamma_{R}^{*}\in\Gamma_{R}^{*})$ . Let $F^{*}$ be the
center of $A^{*}$ . Then, since

$A^{*}\ni\gamma_{R}^{*}+\gamma_{R}^{*-1}=(tr\gamma_{R}^{*})\cdot I$

for all $\gamma_{R}^{*}\in\Gamma_{R}^{*},$
$F^{*}$ contains all scalar matrices $ a\cdot$

$I$ with $a\in F$ . On the other hand, since
$\Gamma_{R}^{*}$ is dense in $G_{R}$ , elements of $F^{*}$ must be scalar matrices. So, let $a^{*}\cdot I\in p*$ . Then it is
a linear combination over $Q$ of elements of $\Gamma_{R}^{*}$ . Therefore, its trace $2a^{*}$ is contained in $F$;

hence $a^{*}\in F$ . Therefore $F^{*}=\{a\cdot I|a\in F\}$ . Now let $\gamma_{R}\in\Gamma_{R}$ . Then $\gamma_{R}^{2}\in\Gamma_{R}^{*}$ ; hence

(tr $\gamma_{R}$)$\gamma_{R}=f_{R}+1\in Q[\Gamma_{R}^{*}]=A^{*}$

Therefore if tr $\gamma_{R}\neq 0$ , then $\gamma_{R}$ is contained in the subgroup $(A^{*})^{\times}/F^{\times}of$ $PL_{2}(R)$ (this

does not mean that $\gamma_{R}$ is contained in $(A^{*})^{\times}/F^{\times}\subset GL_{2}(R)/F^{\times})$ . But since $\Gamma_{R}$ is dense

in $G_{R}$ and the set $\{g_{R}\in G_{R}| trg_{R}\neq 0\}$ is open in $G_{R}$ , it is clear that $\Gamma_{R}$ is generated by

elements with non-vanishing traces. Therefore we get $\Gamma_{R}\subset(A^{*})^{\times}/F^{\times}\subset PL_{2}(R)$ .
Finally, we shall show that $A^{*}$ is isomorphic to $A$ over $F$ . For this purpose, let $K$

be any field with $K\supset F$ and $A\otimes_{F}K\cong M_{2}(K)$ . Then there exists $t\in G_{C}$ such that
$t^{-1}\Gamma_{R}t\subset PL_{2}(K)$ . Since $\Gamma_{R}\cap lPSL_{2}(K)t^{-1}$ is a normal subgroup of $\Gamma_{R}$ with finite $(2, \cdots,2)$

type quotient, it contains $\Gamma_{R}^{*}$ ; hence $t^{-1}\Gamma_{R}^{*}t\subset PSL_{2}(K)$ . Therefore, $x\mapsto t^{-1}xt$ gives an
isomorphism over $F$ of $A^{*}$ into $M_{2}(K)$ . Now $\Gamma_{R}^{*}$ contains four elements that are linearly

independent over $R$, and since $\Gamma_{R}^{*}\subset PSL_{2}(R)$ , they are also linearly independent over C.
Therefore, $t^{-1}\Gamma_{R}^{*}t$ contains four elements which are linearly independent over $K$. There-
fore, $t^{-1}A^{*}t\otimes_{F}K=M_{2}(K)$ ; hence $A^{*}\otimes_{F}K\cong M_{2}(K)$ over $F$ . In particular, $A^{*}$ is a
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quatemion algebra over $F$ . Conversely, if $K$ is a field with $K\supset F$ and $A^{\cdot}\otimes_{F}K\cong M_{2}(K)$ ,

then there is an isomorphism $\varphi$ of $A^{*}$ into $M_{2}(K)$ over $F$; and since $\varphi$ is trivial on the center
$F$, it is induced by some inner automorphism Int$(t)$ of $G_{C}$ ; hence $t^{-1}A^{*}t\subset M_{2}(K)$ . Now
since $\Gamma_{R}\subset(A^{*})^{\times}/F^{\times}\subset PL_{2}(R)$ , we get $t^{-1}\Gamma_{R}t\subset PL_{2}(K)$ ; hence $K$ splits $A$ . Therefore, $A^{*}$

is isomorphic to $A$ over $F.$ $\square $

$\Gamma$

REMARK 2. In general, $Q[\Gamma_{R}]$ will not give $A$ . It gives
$A\otimes_{F}Q(ff\gamma_{R}|\gamma_{R}\in\Gamma_{R})$ .

COROLLARY. The notations being as in Proposition 6,

let $\Gamma’$ be a subgroup of $\Gamma$ offinite index. Then $Q[\Gamma_{R}’*]=$

$Q[\Gamma_{R}^{*}]$ . Moreover, $Q[\Gamma_{R}^{*}]=Q[\Gamma_{R}’’]$ holds for all sub-
groups $\Gamma’’$ of $\Gamma^{*}$ offinite indices.

PROOF Since $\Gamma’/\Gamma’\cap\Gamma^{*}$ is oftype $(2, \cdots,2),$ $r’*$ is contained in $\Gamma’\cap\Gamma^{*}$ ; hence in $\Gamma^{\cdot}.$

Therefore, $Q[\Gamma_{R}’*]\subset Q[\Gamma_{R}^{*}]$ . But their centers are $Q((trV_{R})^{2}|\gamma_{R}\in\Gamma_{R}’)$ and $Q((tr\gamma_{R})^{2}|\gamma_{R}\in$

$\Gamma_{R})$ respectively, and they are equal by Proposition 5. Hence if we denote the common
center by $F$, we have

$F\subset Q[\Gamma_{R}’*]\subset Q[\Gamma_{R}^{*}]$ and $[Q[\Gamma_{R}^{*}] : F]=[Q[\Gamma_{R}^{\prime*}] : F]=4.$

Therefore, $Q[\Gamma_{R}^{*}]=Q[\Gamma_{R}^{\prime*}].$

Now, we have $Q[\Gamma_{R}’’]\subset Q[\Gamma_{R}’’]\subset Q[\Gamma_{R}^{*}]$ , and $Q[\Gamma_{R}^{\prime\prime*}]=Q[\Gamma_{R}]$ ; hence $Q[\Gamma_{R}’’]=$

$Q[\Gamma_{R}^{*}].$ $\square $

\S 14. $A$ remark on $F$. The following simple remark is needed in Chapter 2, \S 36.
Let $F,$ $F_{0}$ be as in \S 11. We have shown that $F=F_{0}$ and that it is an algebraic number
field. Here, we note that $F=F_{0}$ holds without the compactness assumption for the
quotient $ G/\Gamma$ . (We do not even need the finiteness of volume of $G/\Gamma.$) In fact, in our
proof of Proposition 4, we have proved that if $\sigma\in Aut_{F_{0}}C$, then the homomorphism
$\Gamma_{R}\ni\gamma_{R}\mapsto\gamma_{R}^{\sigma}\in G_{C}$ is induced by an inner automorphism of $G_{C}$; and the only properties
of $\Gamma_{R}$ we used in the proof 7 of this assertion are

(i) $\Gamma_{R}$ is dense in $G_{R}$ , and
(ii) the set $S=$ {$tr\gamma_{R}|\gamma_{R}$ is of finite order} is finite.

Since on one hand, these properties are satisfied by the projection $\Gamma_{R}$ (to $G_{R}$) of any
discrete subgroup $\Gamma$ of $G=G_{R}\times G_{\mathfrak{p}}$ having a dense image ofprojection in each component
of $G$ (see Chapter 1, \S 3 for the property (ii)), and on the other hand, the above italicized
assertion implies $F=F_{0}$ at once, it follows that:

If$\Gamma$ is a discrete subgroup of$G=G_{R}\times G_{\mathfrak{p}}$ having a dense image ofprojection in each
component of$G$, then $F=F_{0}$ holdsfor such a $\Gamma.$

However, we do not know at present whether $F=F_{0}$ is an algebraic number field in
such a general case.

7We made use ofthe language of deformation varieties, but as can be immediately seen, it has nothing
to do with the proof.
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