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Part 2. Full $G_{\mathfrak{p}}$-subfields over algebraic number fields.

The readers are suggested to recall the definitions of full $G_{\mathfrak{p}}$-subfield (\S 4) and quasi-
irreducibility (\S 16) of a $G_{\mathfrak{p}}$-field over C. Throughout the following, an algebraic number
field always means a finite algebraic extension ofthe field ofrational numbers $Q.$

Main results.

\S 18. Our main purpose in Part 2 of this chapter is to prove the following two theo-
rems, Theorem 4 and Theorem 5. Later, we shall give some supplementary results (see

\S 32 $\sim$ \S 36).

THEOREM 4. Every $G_{\mathfrak{p}}$-field over $C$ contains afull $G_{\mathfrak{p}}$-subfield over an algebraic num-
berfield

If we impose quasi-irreducibility condition on a $G_{\mathfrak{p}}$-field over $C$ , then we get an es-
sentially stronger result, as follows.

THEOREM 5. Every quasi-irreducible $G_{\mathfrak{p}}$-field $L$ over $C$ contains a unique full $G_{\mathfrak{p}}$-

subfield $L_{k_{0}}$ over an algebraic numberfield $k_{0}$ satisfying thefollowingproperties; namely,

if $k$ is any subfield of $C$, then there is afull $G_{p}$-subfield $L_{k}$ over $k$ ifand only if $k$ contains
$k_{0}$ , and moreover if $k$ is such afield, then $L_{k}$ is unique and is given by $L_{k}=L_{k_{0}}\cdot k.$

In short, every quasi-irreducible $G_{\mathfrak{p}}$-field over $C$ contains a smallest full $G_{\mathfrak{p}}$-subfield
over an algebraic number field, and all other full $G_{\mathfrak{p}}$-subfields are its constant field ex-
tensions. This will be referred to as the existence and essential uniqueness of a full $G_{\mathfrak{p}}$ -

subfield over an algebraic number field of a quasi-irreducible $G_{\mathfrak{p}}$-field over C. Some
variations ofTheorem 5 will be given in \S 32, \S 33.

Although Theorem 5 is essentially stronger (and hence more noteworthy) than The-
orem 4, it is almost a formal consequence of Theorem 4. Thus, our first task is to show
this.

Reducing Theorem 5 to Theorem 4.

\S 19. In general, if $L\supset K_{1},K_{2}$ are overfields of a field $k$ such that $L=K_{1}K_{2}$ and that
$K_{1},K_{2}$ are linearly disjoint over $k$, and if $\sigma_{1},\sigma_{2}$ are automorphisms of $K_{1},K_{2}$ respectively
such that $\sigma_{1}|k=\sigma_{2}|k$, then there is a unique automorphism of $L$ whose restrictions to
$K_{1},K_{2}$ coincide with $\sigma_{1},\sigma_{2}$ respectively. This automorphism of $L$ will be denoted by
$\sigma_{1}\otimes\sigma_{2}$ . The identity automorphism of a field $K$ will be denoted by $1_{K}.$
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LEMMA 2. Let $L$ be a $G_{\mathfrak{p}}$-field over $C$, and let $L_{k}$ be afull $G_{\mathfrak{p}}$-subfield $ofL$ over afield $k$

$(\subset C)$. Then $L_{k}$ is thefixedfieldofthe group ofall automorphisms $ofL$ oftheform $ 1_{L_{k}}\otimes\sigma$

$(\sigma\in Aut_{k}C)$ .

PROOR Put $\mathcal{G}=\{1_{L_{k}}\otimes\sigma|\sigma\in Aut_{k}C\}$ , and let $L’$ be the
fixed field of $\mathcal{G}$ . Then it is clear that $L’\supset L_{k}$ and $L’\cap C=k$

Moreover, since $L_{k}$ is $G_{\mathfrak{p}}$-invariant, elements $g_{\mathfrak{p}}$ of $G_{\mathfrak{p}}$ acting
on $L$ are of the form $g_{\mathfrak{p}}|_{L_{k}}\otimes 1_{C}$ . Therefore, elements of
$\mathcal{G}$ commute with all elements of $G_{\mathfrak{p}}$ . Therefore, $L’$ is $G_{p^{-}}$

invariant. Hence by Proposition 2, $L’$ and $C$ are linearly
disjoint over $k$ . Therefore, $L’$ and $L_{k}\cdot C$ must be linearly
disjoint over $L_{k}$ . But $L_{k}\cdot C=L$ . Therefore we get $L’=$

$L_{k}.$ $\square $

Let $L$ be a $G_{\mathfrak{p}}$-field over $C$ , and let $\sigma$ be any automorphism of C. An automorphism
$\overline{\sigma}$ of $L$ will be called a $G_{\mathfrak{p}}$ -extension of $\sigma$ if $\overline{\sigma}|_{C}=\sigma$ and if $\overline{\sigma}$ commutes with the actions
of all elements of $G_{\mathfrak{p}}$ . We shall say that $\sigma$ has a $G_{\mathfrak{p}}$-extension when such a exists. In this
case, all $G_{\mathfrak{p}}$-extensions of $\sigma$ are given by $\overline{\sigma}\cdot z$ with $z\in \mathfrak{Z}$ , where $\mathfrak{Z}$ is the centralizer of $G_{\mathfrak{p}}$

in $AukL$ . Recall that $\mathfrak{Z}$ is always finite and $\mathfrak{Z}=\{1\}$ if and only if $L$ is quasi-irreducible
(Corollary 3 ofTheorem 3).

Now, let $L$ be quasi-irreducible. Then if $\sigma\in AutC$ has a $G_{\mathfrak{p}}$ -extension $\overline{\sigma}$, it is $tbe$

unique $G_{\mathfrak{p}}$ -extension of $\sigma$; hence $\overline{\sigma}$ always has a unique meaning. By this it is clear that
if $\sigma,$ $\tau\in$ Aut $C$ have $G_{\mathfrak{p}}$-extensions, then $\sigma\tau$ and $\sigma^{-1}$ also have $G_{\mathfrak{p}}$-extensions given by

(41) $\tilde{\sigma\tau}=\tilde{\sigma}\tilde{\tau}, \tilde{\sigma^{-1}}=\tilde{\sigma}^{-1}$

Now let us look at Lemma 2 again, assuming now that $L$ is quasi-irreducible. Then we
see that for each $\sigma\in Aut_{k}C,$ $ 1_{L_{k}}\otimes\sigma$ gives the unique $G_{\mathfrak{p}}$-extension of $\sigma$ . In fact, as has
been shown before, $ 1_{L_{k}}\otimes\sigma$ commutes wiffi all elements of $G_{\mathfrak{p}}$ . Put, therefore, $\tilde{\sigma}=1_{L_{k}}\otimes\sigma$

for each $\sigma\in Aut_{k}$ C. Then by this lemma, $L_{k}$ is the fixed field of the group of all $\tilde{\sigma}$ with
$\sigma\in Aut_{k}$ C. But since the group of $\tilde{\sigma}$ depends only on $k$ and does not depend on $L_{k}$, we
conclude that $L_{k}$ is uniquely detemined by $k$ We have therefore proved:

PROPOSITION 5. Let $L$ be a quasi-irreducible $G_{\mathfrak{p}}$-field over $C$, and let $k$ be a subfield of
C. If$L$ contains afiull $G_{\mathfrak{p}}$-subfield $L_{k}$ over $k$ then it is unique; moreover, every $\sigma\in Aut_{k}C$

has a unique $G_{\mathfrak{p}}$-extension $\tilde{\sigma},$ and $L_{k}$ is thefixedfieldofthe group ofall $\tilde{\sigma}$ with $\sigma\in Aut_{k}C.$

\S 20. Now we shall prove that Theorem 5 is reduced to Theorem 4. Let $L$ be a
quasi-irreducible $G_{\mathfrak{p}}$-field over $C$ , and assume that $L$ contains a full $G_{\mathfrak{p}}$-subfield $L_{k}$ over
an algebraic number field $k$. Then every element of $Aut_{k}C$ has a unique $G_{\mathfrak{p}}$-extension.
Therefore, if we denote by $H$ the group 9 of all $\sigma\in$ Aut $C$ which have $G_{\mathfrak{p}}$-extensions
$\overline{\sigma}$, we have $AutC\supset H\supset Aut_{k}$ C. But $[k:Q]$ is fimite, and hence $H$ is of the fonn
$H=Aut_{k}C$ with some intermediate field $k0;Q\subset h\subset k$ Put

(42) $\mathcal{G}_{k_{0}}=\{\tilde{\sigma}|\sigma\in Aut_{k}C\},$

9See(41).
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and let $L_{k}$ be the fixed field of the group $\mathcal{G}_{k}$ . We shall prove that $L_{h}$ is the desired
smallest full $G_{\mathfrak{p}}$-subfield of $L$ over $h$ . First, it is clear that $L_{b}$ is $G_{\mathfrak{p}}$-invariant and that
$L_{k_{0}}\cap C=h$ . Secondly, $\mathcal{G}_{k_{0}}$ contains

$\mathcal{G}_{k}=\{\overline{\sigma}|\sigma\in Aut_{k}C\}$ , and $(\mathcal{G}_{k_{0}} : \mathcal{G}_{k})=[k:h]<\infty.$

Moreover, $L_{k}$ is the fixed field of $\mathcal{G}_{k}$ (Proposition 5). Therefore, ifwe put

$\mathcal{G}_{k_{0}}=\sum_{i=1}^{d}\overline{\sigma}_{i}\mathcal{G}_{k} (d=(\mathcal{G}_{k_{0}}:\mathcal{G}_{k})=[k:k_{0}])$ ,

then for every $x\in L_{k}$, the elementary symnetric functions of $\tilde{\sigma}_{1}(x),$ $\cdots,\tilde{\sigma}_{d}(x)$ are
contained in $L_{k_{0}}$ . Therefore we get $[L_{k_{\theta}}(x) : L_{k_{0}}]\leq d$ for all $x\in L_{k}$ , and hence
$[L_{k}:L_{h}]\leq d$. But by Proposition 2, $L_{k_{0}}$ and $C$ are linearly disjoint over $h$ ; hence
$[L_{k_{0}}\cdot k:L_{h}]=[k:h]=d$. Therefore, $L_{k}\cdot k=L_{k}$ , and hence $L_{h}\cdot C=L$ . There-
fore, $L_{k_{0}}$ is a full $G_{\mathfrak{p}}$-subfield of $L$ over $h$ . Now let $L_{k’}$ be an arbitrary full $G_{\mathfrak{p}}$-subfield of $L$

over a field $ k’\subset$ C. Then by Proposition 5, every element $ofAut_{k’}C$ has a $G_{\mathfrak{p}}$-extension,

and hence $k’\supset h$ . Moreover, by the same proposition, $L_{k’}$ is unique, and hence it must
coincide with $L_{k_{0}}\cdot k’$ . Conversely, if $k’$ is a subfield of $C$ containing $h$ , then $L_{k0}\cdot k’$ gives
the (unique) full $G_{\mathfrak{p}}$-subfield of $L$ over $k’$ . Therefore, $L_{k_{0}}$ has all the properties stated in
Theorem 5. That such $L_{k_{0}}$ is unique is obvious. $So$, Theorem 5 is reduced to Theorem 4.

REMARK. Consider the group ofall automorphisms of $L$ that commute with the actions
of all elements of $G_{\mathfrak{p}}$ . Then since $C$ is the fixed field of $G_{\mathfrak{p}}$ , such automorphisms leave $C$

invariant (as a whole). Therefore, by the definitions of $h$ and $\mathcal{G}_{k_{0}}$ , this group coincides
with $\mathcal{G}_{k_{0}}$ . Therefore, $L_{k_{0}}$ is the fixed field ofthe centralizer of $G_{\mathfrak{p}}$ in AutL. (The centralizer
of $G_{\mathfrak{p}}$ in $Aut_{C}L$ is trivial because ofthe quasi-irreducibility assumption on $L.$)

Preliminaries for the proof of Theorem 4.

\S 21. Before describing the method for the proof of Theorem 4, we need some def-
initions. Let $L$ be a $G_{p}$-field over C. Let $V_{1},$

$\cdots,$
$V_{n}$ be any finite set of open compact

subgroups of $G_{\mathfrak{p}}$ which generate $G_{\mathfrak{p}}$ . Put $V_{0}=\bigcap_{i=1}^{n}V_{i}$ , and let $L_{i}(0\leq i\leq n)$ be the fixed
field of $V_{i}$ in $L$ . Then it is clear that $L_{0}$ contains $L_{1},$ $\cdots,L_{n}$ and is generated by them.
Moreover,

$(\#)L$ is the smallest algebraic extension of$L_{0}$ that is normal over all
$L_{i}(1\leq i\leq n)$ .

In fact, if $M$ is any algebraic extension of $L_{0}$ with this property, then $M\cap L$ also satisfies
this property. But since $L\supset M\cap L\supset L_{0},$ $M\cap L$ corresponds to a compact subgroup $\Delta$ of
$V_{0}$ . Since $M\cap L/L_{i}$ are normal, $\Delta$ is a normal subgroup of $V_{i}$ for all $i$ . But $V_{i}(0\leq i\leq n)$

generate $G_{\mathfrak{p}}$ . Therefore, $\Delta$ is a normal subgroup of $G_{\mathfrak{p}}$ . But $\Delta$ is compact and $G_{\mathfrak{p}}$ is
simple. Hence $\Delta=\{1\}$ , so that $M\cap L=L$ , hence $M\supset L$ . Therefore, $L$ is characterized
as the smallest algebraic extension of $L_{0}$ which is normal over all $L_{i}(0\leq i\leq n)$ . This
characterization will be used later.
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Let $V_{i}$ and $L_{i}(0\leq i\leq n)$ be as above, and let $k$ be a subfield of C. We shall call
a system $\{L_{i}’|0\leq i\leq n\}$ of subfields of $L_{0}$ a $k$-form of $\{L_{i}|0\leq i\leq n\}$ if the following
condffions are satisfied:

(i) $L_{i}’\cdot C=L_{i},$ $L_{i}’\cap C=k(0\leq i\leq n)$

(ii) $L_{\acute{0}}\supset L_{i}’(1\leq i\leq n)$

(iii) $L_{\acute{0}}$ and $C$ are linearly disjoint over $k$

\S 22. Now our method for the proofofTheorem 4 is as follows. First, we shall prove
that if $k$ is a subfield of $C$ such that $\{L_{i}|0\leq i\leq n\}$ has a $k$-fonn, then $L$ contains a full
$G_{\mathfrak{p}}$-subfield over a finite extension of $k$ The method is algebraic, and is applicable to
$G_{\mathfrak{p}}$-fields over any constant field. Secondly, we put

$n=2,$ $V_{1}=PSL_{2}(O_{\mathfrak{p}})$ , $ V_{2}=\omega^{-1}V_{1}\omega$ where $\omega=\left(\begin{array}{ll}0 & 1\\\pi & 0\end{array}\right)$

and $\pi$ is a prime element of $k_{\mathfrak{p}}$ , and prove that the corresponding $\{L_{i}|0\leq i\leq 2\}$ has a
$k$-fonn for some algebraic number field $k$ . Here, the method is analytic, i.e., it is based
on the one-to-one correspondence between $L$ and $\Gamma$

$($Theorem $1, \S 9)_{a}$ The reason for this
particular choice of $V_{1}$ and $V_{2}$ is that $G_{\mathfrak{p}}$ is a free product of $V_{1}$ and $V_{2}$ with amalgamated
subgroup $V_{1}\cap V_{2}$ (see Lemma 7, \S 28). This fact is an essential point in our proof.

\S 23. Thus, our first step is to prove the following proposition.

PROPOSITION 6. Let $L$ be a $G_{\mathfrak{p}}$-field over $C$, and let $k$ be a subfield of$C$ . Let $ V_{i}(1\leq i\leq$

n$)$ be a set ofopen compact subgroups of $G_{\mathfrak{p}}$ which generate $G_{\mathfrak{p}}$, andput $V_{0}=\bigcap_{i=1}^{n}V_{i}.$

Let $L_{i}(0\leq i\leq n)$ be thefixedfields of $V_{i}$ in L. Then if $\{L_{i}|0\leq i\leq n\}$ has a $k$-fom, $L$

contains afiull $G_{\mathfrak{p}}$-subfield over afinite extension of$k$

To prove this, we need several lemmas.
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\S 24.

LEMMA 3. Let $V$ be an open compact subgmup of $G_{\mathfrak{p}}=PSL_{2}(k_{\mathfrak{p}})$, and let $\gamma$ be the set

ofall subgroups of $G_{\mathfrak{p}}$ ofthefom $\bigcap_{i=1}^{n}x_{i}^{-1}Vx_{i}$ with $n\geq 1$ and $x_{1},$ $\cdots,x_{n}\in G_{\mathfrak{p}}$ . Then $\gamma$

foms a basis ofneighborhoods ofthe identity of $G_{\mathfrak{p}}.$

PROOR Let $y_{1},$ $y_{2},$
$\cdots$ , $y_{n},$

$\cdots$ be a set of representatives of the coset space $V\backslash G_{\mathfrak{p}}$

(which is clearly countable). Put $V_{n}=\bigcap_{i=1}^{n}y_{i}^{-1}Vy_{i}(n\geq 1)$ . Then we get a descend-
ing sequence of open compact subgroups $ V_{1}\supset V_{2}\supset\cdots$ . Since $\bigcap_{n=1}^{\infty}V_{n}=\bigcap_{x\epsilon G_{p}}x^{-1}Vx$ is
a compact normal subgroup of $G_{\mathfrak{p}}$ and since $G_{\mathfrak{p}}$ is a simple group, we get $\bigcap_{n=1}^{\infty}V_{n}=\{1\}.$

Since all $V_{n}$ are compact, this implies that for any open subset $U$ of $G_{\mathfrak{p}}$ containing 1, there
exists some $n$ such that $V_{n}\subset U.$ $\square $

COROLLARY. Let $\varphi$ be an automorphism, as an abstract group, of $G_{\mathfrak{p}}$ . If there is an
open compact subgroup $V$ of $G_{\mathfrak{p}}$ such that $V^{\varphi}=V$, then $\varphi$ is bicontinuous.

PROOR Let $\gamma$ be as in Lemma 3. Then $\varphi$ and $\varphi^{-1}$ leave $\prime V$ invariant. $\square $

LEMMA 4. There exists afinite set ofopen compact subgroups $V_{1},$
$\cdots,$

$V_{n}$ of $G_{\mathfrak{p}}$ such
that $V_{1},$

$\cdots,$
$V_{n}$ generate $G_{\mathfrak{p}}$ and that every automorphism $\varphi$ of $G_{\mathfrak{p}}$ satisfying $V_{\iota}^{\varphi}=V_{i}$ for

all $i(1\leq i\leq n)$ is an inner automorphism by some element of $\bigcap_{i=1}^{n}V_{i}.$

PROOR Let $\sigma\in Aut_{Q_{p}}k_{\mathfrak{p}}$ . Then $\sigma$ acts on $PL_{2}(k_{\mathfrak{p}})$ in a natural manner, and leaves
$G_{\mathfrak{p}}=PSL_{2}(k_{\mathfrak{p}}),$ $U_{\mathfrak{p}}=PL_{2}(O_{\mathfrak{p}})$ and $G_{\mathfrak{p}}\cap U_{\mathfrak{p}}=PSL_{2}(O_{\mathfrak{p}})$ invariant. First, let us check:

(43) $\bigcap_{x\in G_{\mathfrak{p}}}x^{-1}U_{\mathfrak{p}}x^{\sigma}=\left\{\begin{array}{ll}\{1\} & \cdots \sigma=1,\\\phi & \cdots \sigma\neq 1.\end{array}\right.$

Let $p$ be the characteristic of $0_{p}/\mathfrak{p}$ , and put $z_{m}=\left(\begin{array}{ll}p^{m} & 0\\0 & p^{-m}\end{array}\right)(m\in Z)$ . So, $z_{m}^{\sigma}=z_{m}$ , and

$z_{m}^{-1}U_{\mathfrak{p}}z_{m}\cap U_{\mathfrak{p}}=\{\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in U_{\mathfrak{p}}|bp^{2m},cp^{-2m}\in O_{\mathfrak{p}}\}.$

Hence

$\bigcap_{m-=\infty}^{\infty}z_{m}^{-1}U_{\mathfrak{p}}z_{m}^{\sigma}=\bigcap_{m=-\infty}^{\infty}z_{m}^{-1}U_{\mathfrak{p}}z_{m}=\{\left(\begin{array}{ll}a & 0\\0 & d\end{array}\right)\in U_{\mathfrak{p}}\}.$

Let this last group be denoted by $W$, and put $y_{m}=\left(\begin{array}{ll}p^{-m} & p^{-m}\\0 & p^{m}\end{array}\right)$ for $m\geq 0$ . Then

$W\cap\bigcap_{m=0}^{\infty}y_{m}^{-1}U_{\mathfrak{p}}y_{m}^{\sigma}=\{\left(\begin{array}{ll}a & 0\\0 & a\end{array}\right)\in U_{\mathfrak{p}}\}=\{1\}.$

Hence $\bigcap_{x\epsilon G_{\nu}}x^{-1}U_{\mathfrak{p}}x^{\sigma}$ is either {1} or $\phi$ . If $\sigma=1$ , then 1 is contained in the intersection;

hence $\bigcap_{x\epsilon G_{\mathfrak{p}}}x^{-1}U_{\mathfrak{p}}x^{\sigma}=\{1\}$ for $\sigma=1$ . If $\sigma\neq 1$ , take $\alpha\in O_{\mathfrak{p}}$ such that $\alpha^{\sigma}\neq\alpha.$

Then, there exists $m\geq 0$ such that $\alpha^{\sigma}-\alpha\not\equiv 0(mod p^{m})$ . Put $z=\left(\begin{array}{ll}p^{-m} & \alpha\\ 0 & p^{-m}\end{array}\right)$ . Then
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$z^{\sigma}\cdot z^{-1}=(_{0}^{1}$ $\frac{F-\alpha}{p^{n}1})\not\in U_{\mathfrak{p}}$ ; hence $z^{-1}U_{\mathfrak{p}}F\not\supset 1$ . Hence $\bigcap_{x\in G},$
$ x^{-1}U_{\mathfrak{p}}x^{\sigma}=\phi$ for $\sigma\neq 1$ ;

which settles (43).
Now since $x^{-1}U_{\mathfrak{p}}F$ are compact, and since $Aut_{Q_{p}}k_{\mathfrak{p}}$ is finite and $PSL_{2}(O_{\mathfrak{p}})$ is an

open set of $PL_{2}(k_{\mathfrak{p}})$ containing 1, (43) implies that we can choose a finite set of elements
$1=x_{1},$ $\cdots,x_{n}$ of $G_{\mathfrak{p}}$ such that

(44) $\left\{\begin{array}{l}\bigcap_{i\underline{-}1}^{n}x_{i}^{-1}U_{\mathfrak{p}}x_{i}^{\sigma}=\phi for all \sigma\in Aut_{Q_{p}}k_{\mathfrak{p}} with \sigma\neq 1, and\\\bigcap_{i=1}^{n}x_{i}^{-1}U_{\mathfrak{p}}x_{i}\subset PSL_{2}(O_{\mathfrak{p}}) .\end{array}\right.$

Put $V_{1}=PSL_{2}(O_{\mathfrak{p}})=x_{1}^{-1}PSL_{2}(O_{\mathfrak{p}})x_{1}$ , and $ V_{i}=x_{i}^{-1}PSL_{2}(O_{\mathfrak{p}})x_{i}=x_{i}^{-1}V_{1}x_{i}(1\leq i\leq$

$n)$ . They are open compact subgroups of $G_{\mathfrak{p}}$ . Now let $\varphi$ be an automorphism of $G_{\mathfrak{p}}$

satisfying $V_{i}’=V_{i}$ for all $i(1\leq i\leq n)$ . By the Corollary of Lemma 3, $\varphi$ is a topological
automorphism of $G_{\mathfrak{p}}$ ; hence by Lemma 1 (ii) (iii), $\varphi$ is of the form $\sigma\cdot\varphi_{x}=\varphi_{x}\circ\sigma$, with
$\sigma\in Aut_{Q_{p}}k_{\mathfrak{p}},$ $x\in PL_{2}(k_{\mathfrak{p}})$ , where $\varphi_{x}(y)=x^{-1}yx$ for all $y\in G_{\mathfrak{p}}$ . Since $V_{1}^{\sigma}=V_{1}$ , and since
the normalizer of $V_{1}=PSL_{2}(O_{\mathfrak{p}})$ in $PL_{2}(k_{\mathfrak{p}})$ is $U_{p}=PL_{2}(O_{\mathfrak{p}})$ (as can be easily checked),

$V_{1}^{\varphi}=V_{1}$ implies $x\in U_{\mathfrak{p}}$ . Now since $V_{i}^{\varphi}=V_{i}$ , we get $x^{-1}(x_{i}^{\sigma})^{-1}V_{1}x_{i}^{\sigma}x=x_{i}^{-1}V_{1}x_{i}$ ; hence
$x_{i}x^{-1}(x_{i}^{\sigma})^{-1}\in U_{\mathfrak{p}}$ ; hence $x^{-1}\in x_{i}^{-1}U_{\mathfrak{p}}x_{i}^{\sigma}$ for all $i(1\leq i\leq n)$ . Therefore, by (44) we get
$\sigma=1$ and $x\in\bigcap_{i=1}^{n}x_{i}^{-1}U_{\mathfrak{p}}x_{i}\subset V_{1}$ . Since $V_{1}\cap x^{-1}U_{\mathfrak{p}}x\subset x^{-1}V_{1}x$ for any $x\in G_{\mathfrak{p}}$ , we get
$x\in\bigcap_{i=1}^{n}x_{i}^{-1}V_{1}x_{i}=\bigcap_{i=1}^{n}V_{i}$ . Hence $\varphi=\varphi_{X}$ with $x\in\bigcap_{i=1}^{n}V_{i}.$ Finally, it is clear by (44)

that $x_{i}\not\in U_{\mathfrak{p}}$ for some $i$ ; hence $V_{i}\neq V_{1}$ for some $i$ . Hence the subgroup of $G_{\mathfrak{p}}$ generated by
$V_{1},$ $\cdots$ , $V_{n}$ contains $V_{1}=PSL_{2}(O_{\mathfrak{p}})$ as a proper subgroup. But by Lemma 11 of Chapter
1, $V_{1}$ is a maximal subgroup of $G_{\mathfrak{p}}$ . Therefore, $V_{1},$

$\cdots,$
$V_{n}$ generate $G_{\mathfrak{p}}$ ; which completes

the proof ofLemma 4. $\square $

\S 25. The following lemma gives a criterion for the existence of a ffil $G_{\mathfrak{p}}$-subfield
(of a $G_{\mathfrak{p}}$-field) over a given field $k\subset C.$

LEMMA 5. Let $V_{1},$ $\cdots$ , $V_{n}$ be as in Lemma 4, andput $V_{0}=\bigcap_{i=1}^{n}V_{i}.$ $LetL$ be a $G_{\mathfrak{p}}$-field
over $C$, let $L_{i}(0\leq i\leq n)$ be thefixedfieldof $V_{i}$ in $L$, and let $k$ be a subfield of$C$ . Suppose

that $\{L_{i}|0\leq i\leq n\}$ has a k-fom $\{L_{i}’|0\leq i\leq n\}$ . Then $L$ contains afull $G_{\mathfrak{p}}$-subfield $L’$ over
$k$, satisfying $L’\cap L_{i}=L_{i}’$ for all $i(0\leq i\leq n)$.
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PROOR For each $\sigma\in Aut_{k}C$ , put $\sigma_{0}=1_{L_{0}’}\otimes\sigma$ . Then $\sigma_{0}$ is an automorphism of
$L_{0}$ , and we have $\sigma_{0}(L_{f})=L_{i}$ for all $i(0\leq i\leq n)$ . Let $\tilde{\sigma}_{0}$ be any extension of $\sigma_{0}$ to

an isomorphism of $L$ . Then, since $L$ is the smallest algebraic extension of $L_{0}$ which is

normal over $L_{1},$ $\cdots,L_{n}$ (see \S 21), the field $\overline{\sigma}_{0}(L)$ is the smallest algebraic extension of
$\sigma_{0}(L_{0})=L_{0}$ which is normal over $\sigma_{0}(L_{i})=L_{j}$ for all $i$ . Therefore, we get $\overline{\sigma}_{0}(L)=L$ ;

hence $\overline{\sigma}_{0}$ is an automorphism of $L$ . Now $\overline{\sigma}_{0}$ defines an automorphism ofthe group $AukL$

by

(45) $AukL\ni\tau\mapsto\overline{\sigma}_{0}^{-1}\tau\overline{\sigma}_{0}\in AukL.$

Since $G_{\mathfrak{p}}$ is a characteristic subgroup of $AukL$ (Corollary 2 of Theorem 3), $G_{\mathfrak{p}}$ is invari-
ant by this action of $\overline{\sigma}_{0}$ . Moreover, since $\sigma_{0}(L_{i})=L_{i}$ holds for all $i$, we get $\overline{\sigma}_{0}V_{i}\overline{\sigma}_{0}^{-1}=V_{i}$

for all $i$ (this also shows that $G_{\mathfrak{p}}$ is $\overline{\sigma}_{0}$-invariant). Therefore, $\overline{\sigma}_{0}$ induces an automorphism
$\varphi$ of $G_{\mathfrak{p}}$ which leaves all $V_{i}$ invariant. Therefore, by Lemma 4, $\varphi$ must be an ner auto-

morphism by some element $\rho$ of $V_{0}=\bigcap_{i=1}^{\infty}V_{i}$ . Therefore, $\overline{\sigma}_{0}^{-1}\tau\overline{\sigma}_{0}=\rho^{-1}\tau\rho$ for all $\tau\in G_{p}.$

Now put $\overline{\sigma}=\overline{\sigma}_{0}\rho^{-1}$ . Then $\overline{\sigma}$ is an automorphism of $L$ which commutes with all ele-

ments of $G_{\mathfrak{p}}$ and whose restriction to $L_{0}$ coincides with $\sigma_{0}$ . Since the centralizer of $G_{\mathfrak{p}}$ in
$Aut(L/L_{0})=V_{0}$ is trivial, such $\overline{\sigma}$ is uniquely determined by $\sigma_{0}$ , and hence also by $\sigma$ (and

$L_{0}’)$ . Therefore, we have $\overline{\sigma\tau}=\overline{\sigma\tau}$ and $\sigma^{-1}=\overline{\sigma}^{-1}$ for $al1\sigma,\tau\in Aut_{k}$ C. Let $\mathcal{G}$ be ffie group
of all $\overline{\sigma}(\sigma\in Aut_{k}C)$ , and let $L’$ be the fixed field of $\mathcal{G}$ in $L$ ;

(46) $\left\{\begin{array}{l}\mathcal{G}=\{\overline{\sigma}|\sigma\in Aut_{k}C\}\\L’=\{x\in L|\overline{\sigma}(x)=x, \forall\overline{\sigma}\in \mathcal{G}\}.\end{array}\right.$

Then (since $\overline{\sigma}$ commutes with all elements of $G_{\mathfrak{p}}$) it is clear that $L’$ is $G_{\mathfrak{p}}$-invariant, $L’\cap C=$

$k$, and that $L’$ contains all $L_{i}’(0\leq i\leq n)$ . Put $M=L’$ . C. Then $M$ is $G_{\mathfrak{p}}$ -invariant, and
$M\supset L_{\acute{0}}\cdot C=L_{0}$ . Therefore, $M$ is the fixed field of some compact subgroup $U$ of $V_{0}.$

But since $M$ is $G_{\mathfrak{p}}$ -invariant, $U$ must be a normal subgroup of $G_{\mathfrak{p}}$ ; hence $U=\{1\}$ ; hence
$M=L$ . Therefore, $L’$ is a full $G_{\mathfrak{p}}$-subfield of $L$ over $k.$

Finally, since $L’$ contains $L_{i}’$ , the inclusion $L’\cap L_{i}\supset L_{i}’$ is obvious. But $L’$ and $C$ are
linearly disjoint over $k$; hence $L’\cap L_{t}$ and $C$ are also linearly disjoint over $k$ Therefore,

by $L_{i}’\cdot C=L_{i}$ , we get $L’\cap L_{i}=L_{i}’$ ; which completes the proof ofLemma 5. $\square $

REMARK. $A$ full $G_{\mathfrak{p}}$-subfield $L’$ over $k$ satisfying $L’\cap L_{i}=L_{i}’$ for all $i(0\leq i\leq n)$ is

moreover unique. In fact, if $L’’$ is another such field, then it is the fixed field ofthe group
of all $ 1_{L’’}\otimes\sigma$ with $\sigma\in Aut_{k}C$ (Lemma 2). But since such $ 1_{L’’}\otimes\sigma$ commute with all

elements of $G_{\mathfrak{p}}$ , and since the restriction to $L_{0}$ of such $ 1_{L’’}\otimes\sigma$ is obviously $ 1_{L_{0}’}\otimes\sigma$, we
get $\overline{\sigma}=1_{L’’}\otimes\sigma,\overline{\sigma}$ being as in the proof of the above Lemma. Therefore, $L’’$ must be the

fixed field of $\mathcal{G}$; hence $L’’=L’$ . Therefore, $L’$ is uniquely determined by $\{L_{i}’|0\leq i\leq n\}.$

Conversely, if $L’$ is any full $G_{\mathfrak{p}}$-subfield of $L$ over $k$, then by the Corollary of Propo-

sition 2, it is clear that $\{L’\cap L_{i}|0\leq i\leq n\}$ gives a $k$-fom of $\{L_{i}|0\leq i\leq n\}$ . Therefore,
$k$-forms $\{L_{i}’|0\leq i\leq n\}$ of $\{L_{i}|0\leq i\leq n\}$ and $R\iota llG_{\mathfrak{p}}$ -subfields $L’ofL$ over $k$ correspond in

a one-to-one mamer by $L_{i}’=L’\cap L_{i}(0\leq i\leq n)$ . In particular, if $L$ is quasi-irreducible,
then $L’$ is unique (if exists at all) by Proposition 5; hence $\{L_{i}’|0\leq i\leq n\}$ is also unique (if

exists at all). Of course, we must not forget that these are under the assumption that the

subgroups $V_{i}(1\leq i\leq n)$ of $G_{\mathfrak{p}}$ satisfy the properties stated in Lemma 4.
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\S 26.

PROOF OF PROPOSITION 6. Now we shall prove Proposition 6 (\S 23). Let $L_{i}(0\leq i\leq n)$

be as in Proposition 6, and let $\{L_{i}’|0\leq i\leq n\}$ be a $k$-form of $\{L_{i}|0\leq i\leq n\}$ . Let $M$ be
the algebraic closure of $L_{\acute{0}}$ in $L$ . We shall show that $M$ is a full $G_{\mathfrak{p}}$-subfield of $L$ over
the algebraic closure $\overline{k}$ of $k$ First, let $i$ be any index with $1\leq i\leq n$ , and let $x\in M.$

Take any $v_{i}\in V_{i}$ . Then since $x$ is algebraic over $L_{i}’,$ $v_{i}(x)$ is also algebraic over $v_{i}(L_{i}’)=L_{i}’.$

Therefore, $M$ is invariant by $V_{i}$ . But since $G_{\mathfrak{p}}$ is generated by $V_{i}(1\leq i\leq n),$ $M$ is invariant
by $G_{\mathfrak{p}}$ . Secondly, since $L_{0}’$ and $C$ are linearly disjoint over $k$, we get $M\cap C=k$ Finally,
$M\cdot C$ is a $G_{\mathfrak{p}}$-subfield of $L$ over $\underline{C}$, and $M\cdot C$ contains $L_{0}$ . Therefore, $M\cdot C=L$ ; so that
$M$ is a full $G_{\mathfrak{p}}$-subfield of $L$ over $k.$

Now take (a set of) open compact subgroups of $G_{\mathfrak{p}}$ satisfying the properties stated in
Lemma 4, and call them $W_{1},$

$\cdots,$
$W_{m}$ . Put $W_{0}=\bigcap_{j=1}^{m}W_{j}$ , and let $M_{j}(0\leq j\leq m)$ be

the fixed field of $W_{\dot{j}}$ in $M$. Then by the Corollary ofProposition 2 (\S 3), $M_{j}C$ is the fixed
field of $W_{j}$ in $L$ , and $\{M_{j}|0\leq j\leq m\}$ is a $k$-fom of $\{M_{j}C-|0\leq j\leq m\}$ . Now let $C_{j}$

$(0\leq j\leq m)$ be some affine models of $M_{\dot{j}}$ defined over $k$, and let $f_{j}(1\leq j\leq m)$ be the
ratio $\underline{n}al$ maps of $C_{0}$ onto $C_{j}$ defined by the inclusion $M_{\underline{0}}\supset M_{j}$ . Thus $f_{j}$ are also defined
over $k$ . Now, $C_{j}$ and $f_{j}$ are all defined over a subfield of $k$ which is finitely generated over
$Q$ , and therefore, they are defined over a finite extension $k’$ of $k$ Let $M_{j}(0\leq j\leq m)$ be
the field of $k’$ -rational functions on $C_{j}$ . Then it is clear that $\{M_{j}|0\leq j\leq m\}$ is a $k’$-fonn
of $\{M_{j}C|0\leq j\leq m\}$ , and hence by Lemma 5 there is a ffill $G_{p}$-subfieId of $L$ over $k$ . This
proves Proposition 6. $\square $

More lemmas.

\S 27. Now by Proposition 6, Theorem 4 is reduced 10 to the following:

LEMMA 6 (Main lemma). Put $V_{1}=PSL_{2}(O_{\mathfrak{p}}),$ $ V_{2}=\omega^{-1}V_{1}\omega$ and $V_{0}=V_{1}\cap V_{2},$

where $\omega=(_{\pi}^{0}01\rangle$ and $\pi$ is a prime element of $k_{\mathfrak{p}}$ . Let $L$ be a $G_{\mathfrak{p}}$-field over $C$, and let $L_{i}$

$(0\leq i\leq 2)$ be thefixedfield of V. Then $\{L_{i}|0\leq i\leq 2\}$ has a k-fomfor some algebraic
numberfield $k$

For the proof ofthis, the following two lemmas, Lemma 7 (\S 28) and Lemma 8 (\S 29),

are basic.

\S 28.

LEMMA 7. Let $V_{f}(0\leq i\leq 2)$ be as in Lemma 6. Then $G_{\mathfrak{p}}$ is thefreeproduct of $V_{1}$ and
$V_{2}$ with amalgamated subgroup $V_{0}.$

$\iota _{It}$ is clear that $V_{1}$ and $V_{2}$ generate $G_{\mathfrak{p}}$ , since $V_{1}$ is a maximal subgroup of $G_{\mathfrak{p}}$ (see Chapter 1, Lemma
11).
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PROOR Since $V_{2}$ consists of all elements of $G_{\mathfrak{p}}$ that are contained in $\left(\begin{array}{ll}O_{\mathfrak{p}} & \mathfrak{p}^{-1}\\\mathfrak{p} & O_{\mathfrak{p}}\end{array}\right)$ , we

have

$V_{0}=\{(_{c}^{a}db\rangle\in V_{1}|c\equiv 0(mod \mathfrak{p})\}.$

Therefore, $(V_{1} : V_{0})=(V_{2} : V_{0})=q+1$ $(note that \omega^{-1}V_{2}\omega=V_{1},$ since $\omega^{2}=(_{0}^{\pi}\pi 0\rangle)$ . Put
$X=PL_{2}(k_{\mathfrak{p}}),$ $U_{\mathfrak{p}}=PL_{2}(O_{\mathfrak{p}})$ and

$B_{\mathfrak{p}}=\{(_{c}^{a}db\rangle\in U_{\mathfrak{p}}|c\equiv 0(mod \mathfrak{p})\}.$

Then $(U_{\mathfrak{p}} : B_{\mathfrak{p}})=q+1$ and $B_{\mathfrak{p}}\cap V_{1}=V_{0}$ , and hence we have $U_{\mathfrak{p}}=B_{\mathfrak{p}}V_{1}$ . Therefore, if $M_{0}=$

$1,$ $M_{1},$
$\cdots,$ $M_{q}$ is a set ofrepresentatives of $V_{0}\backslash V_{1}$ , then it is also a set of representatives of

$B_{\mathfrak{p}}\backslash U_{\mathfrak{p}}$ . But since $ B_{\mathfrak{p}}=U_{\mathfrak{p}}\cap\omega^{-1}U_{\mathfrak{p}}\omega$ , we see immediately that $\omega M_{0}=\omega,$ $\omega M_{1},$
$\cdots,$ $\omega M_{q}$

is a set of representatives of $U_{\mathfrak{p}}\backslash U_{\mathfrak{p}}\omega U_{\mathfrak{p}}$ . Now for each $x\in X$, let $l(x)$ be the length of
$x$ (see Chapter 1, \S 15), and let $X_{l}(l=0,1,2, \cdots)$ be the set of all elements of $X$ with
length $l$ . Then $X_{0}=U_{p},$ $X_{1}=U_{\mathfrak{p}}\omega U_{\mathfrak{p}}$ , and therefore, $\omega M_{0}=\omega,\omega M_{1},$

$\cdots,$
$\omega M_{q}$ is a set of

representatives of $X_{0}\backslash X_{1}$ . Put $\pi_{i}=\omega M_{t}(0\leq i\leq q)$ , and look at Lemma 5 of Chapter 1,

\S 16. Then since $\pi_{0}\pi_{i}=M_{i}\in U_{\mathfrak{p}}=X_{0}$ for all $i$, we see immediately by this Lemma that
elements $x$ of $X$ are expressed uniquely in the form

$x=u_{\mathfrak{p}}\omega M_{i_{1}}\omega M_{i_{2}}\cdots\omega M_{i_{l}},$

with $u_{p}\in U_{p}$ and $i_{v}\neq 0$ for $v=1,2,$ $\cdots,$
$l-1$ . But since $U_{\mathfrak{p}}=\sum_{i=0}^{q}B_{\mathfrak{p}}M_{i}$ , this shows that

every elementx of$X$ is expressed uniquely in the form:

(47) $x=b_{\mathfrak{p}}M_{i_{0}}\omega M_{i_{1}}\omega M_{i_{2}}\cdots\omega M_{i_{l}}, b_{\mathfrak{p}}\in B_{\mathfrak{p}}, i_{v}\neq 0(1\leq v\leq l-1)$ .

In this situation, moreover, $l$ is the length of $x$ (see Lemma 5 ofChapter 1). It is clear that
$x$ is contained in $G_{\mathfrak{p}}=PSL_{2}(k_{\mathfrak{p}})$ if and only if $l\equiv 0(mod 2)$ and $b_{\mathfrak{p}}\in V_{0}.$

Now let $G_{p}’$ be the free product of $V_{1}$ and $V_{2}$ with amalgamated subgroup $V_{0}$ . Then
since $M_{0}=1,$ $M_{1},$ $\cdots$ , $M_{q}$ resp. $\omega^{-1}M_{0}\omega=1,$ $\omega^{-1}M_{1}\omega,$ $\cdots$ , $\omega^{-1}M_{q}\omega$ are the sets of
representatives of $V_{0}\backslash V_{1}$ resp. $V_{0}\backslash V_{2}$ , every element $x’$ of $G_{p}’$ is expressed uniquely in the
form

$x’=v_{0}M_{i_{0}}(\omega^{-1}M_{i_{1}}\omega)M_{i_{2}}(\omega^{-1}M_{i_{3}}\omega)M_{i_{4}}\cdots(\omega^{-1}M_{i_{l-1}}\omega)M_{i_{l}},$

with $v_{0}\in V_{0}$ and $i_{v}\neq 0$ for $v=1,2,$ $\cdots$ , $l-1^{11}$ But since $\omega^{2}=1$ (when $\omega$ is considered as
an element of $X$) and since the expression (47) of the element of$X$ is unique, the natural
homomorphism of $G_{\mathfrak{p}}’$ onto $G_{\mathfrak{p}}$ is injective. Therefore, $G_{\mathfrak{p}}$ is the free product of $V_{1}$ and $V_{2}$

with amalgamated subgroup $V_{0}.$ $\square $

REMARK. In the same mamer by using the uniqueness ofthe expression (47), we can
prove that $X=PL_{2}(k_{\mathfrak{p}})$ is the free product of $U_{\mathfrak{p}}$ and $ B_{\mathfrak{p}}\cup B_{\mathfrak{p}}\omega$ with amalgamated subgroup
$B_{\mathfrak{p}}.$

llCf. Kurosh [22].
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COROILARY. Let $\Gamma_{p}$ be a dense subgroup $ofG_{p}$ andput $\Gamma_{\mathfrak{p}}^{\langle i)}=V_{i}\cap\Gamma_{\mathfrak{p}}(i=0,1,2)$, where
$V_{i}$ are as in Lemmas 6, 7. Then $\Gamma_{\mathfrak{p}}$ is thefree product of $\Gamma_{p}^{(1)}$ and $\Gamma_{\mathfrak{p}}^{(2)}$ with amalgamated
subgroup $\Gamma_{\mathfrak{p}}^{(0)}.$

PROOR Since $\Gamma_{\mathfrak{p}}$ is dense in $G_{\mathfrak{p}}$ , it is clear that $\Gamma_{\mathfrak{p}}^{(1)}$ and $I_{\mathfrak{p}}^{\prec 2)}$ generate $\Gamma_{\mathfrak{p}}$ . Let $M_{0}=$

$1,$ $M_{1},$
$\cdots,$ $M_{q}$ resp. $N_{0}=1,$ $N_{1},$ $\cdots$ , $N_{q}$ be sets of representatives of $\Gamma_{\mathfrak{p}}^{t^{0)}}\backslash I_{\mathfrak{p}}^{\prec 1)}$ resp.

$\Gamma_{\mathfrak{p}}^{(0)}\backslash \Gamma_{\mathfrak{p}}^{(2)}$ . Then they are at the same time sets of representatives of $V_{0}\backslash V_{1}$ resp. $V_{0}\backslash V_{2},$

and hence by Lemma 7, every element $x$ of $G_{\mathfrak{p}}$ is expressed uniquely in the form $x=$

$v_{0}M_{i_{0}}N_{i_{1}}M_{i_{2}}N_{i_{3}}\cdots N_{i_{l-1}}M_{i_{l}}$ with $v_{0}\in V_{0}$ and $i_{v}\neq 0$ for $v=1,2,$ $\cdots,l-1$ . It is clear ffiat
$x\in\Gamma_{\mathfrak{p}}$ if and only if $v_{0}\in I_{\mathfrak{p}}^{\prec 0)}$ . Therefore, $\Gamma_{\mathfrak{p}}$ is the free product of $\Gamma_{\mathfrak{p}}^{(1)}$ and $\Gamma_{\mathfrak{p}}^{(2)}$ with
amalgamated subgroup $\Gamma_{\mathfrak{p}}^{(0)}.$ $\square $

\S 29. This is the most crucial lemma in the proof ofTheorem 4.

LEMMA 8 Let $\Gamma$ be a discrete subgroup of $G=G_{R}\times G_{\mathfrak{p}}$ whose quotient $ G/\Gamma$ is of
finite invariant volume and whose projections $\Gamma_{R},$ $\Gamma_{\mathfrak{p}}$ are dense in $G_{R},$ $G_{\mathfrak{p}}$ respectively.

Let $\varphi$ be a homomorphism (as abstract groups) of $\Gamma_{R}$ into $G_{R}$ such thatfor some open
compact subgroup $V$ of $G_{\mathfrak{p}},$

$\varphi|_{\Gamma_{R}^{V}}$ is injective, $\varphi(\Gamma_{R}^{V})$ is discrete in $G_{R}$, and the quotient
$G_{R}/\varphi(\Gamma_{R}^{V})$ is offinite invariant volume. Then, there is an element $x\in G_{R}’=PL_{2}(R)$ such
that $\varphi(\gamma_{R})=x^{-1}\gamma_{R}x$for all $\gamma_{R}\in\Gamma_{R}.$

PROOR The proof ofLemma 8 is divided into four steps, as follows.

(i) To prove that $\varphi$ is injective, and that ifwe put

(48) $\Gamma’=\{\varphi(\gamma_{R})\times\gamma_{\mathfrak{p}}\in G|\gamma_{R}\times\gamma_{\mathfrak{p}}=\gamma\in\Gamma\},$

then $\Gamma’$ is also a discrete subgroup of $G$ satisfying the same conditions as $\Gamma.$

(ii) To prove that $\varphi(\gamma_{R})$ is elliptic 13 if and only if $\gamma_{R}$ is elliptic.
(iii) To prove that if $\varphi$ is any injective homomorphism (as abstract groups) of $\Gamma_{R}$ into $G_{R}$

satisfying the property (ii), then $\varphi:\Gamma_{R}\rightarrow\varphi(\Gamma_{R})$ is bicontinuous.
(iv) To show that such $\varphi$ as in (iii) are induced by some inner automorphisms of $G_{R}’=$

$PL_{2}(R)$ .

Proof of (i). Let $\Delta_{R}$ be the kemel of $\varphi$ . Then $\Delta_{R}$ is normal in $\Gamma_{R}$ , and since $\varphi|_{\Gamma_{R}^{\gamma}}$ is

injective, $\Delta_{R}\cap\Gamma_{R}^{V}=\{I\}$ . Let $\Delta_{p}$ be the subgroup of $\Gamma_{\mathfrak{p}}$ corresponding to $\Delta_{R}$ by the canonical
identification $\Gamma_{R}\cong\Gamma_{\mathfrak{p}}$ . Then $\Delta_{\mathfrak{p}}$ is nomal in $\Gamma_{\mathfrak{p}}$ and $\Delta_{\mathfrak{p}}\cap V=\{I\}$ ; hence $\Delta_{\mathfrak{p}}$ is a discrete

nomal subgroup of the topological closure of $\Gamma_{\mathfrak{p}}$ , i.e., $G_{\mathfrak{p}}$ . But $G_{\mathfrak{p}}$ is simple. Therefore,
$\Delta_{\mathfrak{p}}=\{I\}$ ; hence $\Delta_{R}=\{I\}$ , so that $\varphi$ is injective. Since $(\Gamma_{R} : \Gamma_{R}^{V})=(G_{\mathfrak{p}} : V)=\infty$ , we get
$(\varphi(\Gamma_{R}) : \varphi(\Gamma_{R}^{V}))=\infty$ ; and since $\varphi(\Gamma_{R}^{V})$ is a discrete subgroup of $G_{R}$ whose quotient has
fimite invariant volume, $\varphi(\Gamma_{R})$ must be dense 14 in $G_{R}$ . Now (i) is a direct consequence of
Proposition 2 (Chapter 1, \S 2).

Proof of (ii). This is a direct consequence of the following lemma.
12As is shown later (\S 30), if the quotient $ G/\Gamma$ is compact, then all small deformations $\varphi$ of $\Gamma_{R}$ in $G_{R}$

satisfy the conditions given in the lemma.
13As in Chapter 1, an element $g_{R}$ of $G_{R}$ is called elliptic if $|trg_{R}|<2.$

14See Supplement \S 1.
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LEMMA 9. Let $\Gamma$ be as in Lemma 8, and let $\gamma=\gamma_{R}\times\gamma_{\mathfrak{p}}\in\Gamma$. Then $\gamma_{R}$ is elliptic ifand
only ifthe centralizer of $\gamma_{\mathfrak{p}}$ in $\Gamma_{\mathfrak{p}}$ is discrete in $G_{\mathfrak{p}}.$

It is clear that Lemma 9 implies (ii) at once. In fact, by applyin$g$ Lemma 9 to $\Gamma$ and
$\Gamma’$ , we see immediately that $\gamma_{R}$ or $\varphi(\gamma_{R})$ is elliptic if and only if the centralizer of $\gamma_{\mathfrak{p}}$ in $\Gamma_{\mathfrak{p}}$

is discrete in $G_{\mathfrak{p}}$ (note that $\Gamma_{\mathfrak{p}}’=\Gamma_{\mathfrak{p}}$). Therefore, $\varphi(\gamma_{R})$ is elliptic if and only if $\gamma_{R}$ is so.

PROOF OF LEMMA 9. In general, for any element $x$ of any group $X$, we denote by $X_{x}$ the

cenffalizer ofx in $X$. Let $\gamma’=\gamma_{R}’\times\gamma_{\mathfrak{p}}’$ be any element of $\Gamma$ . Then since ffie projections $\Gamma\rightarrow$

$\Gamma_{R}$ and $\Gamma\rightarrow\Gamma_{\mathfrak{p}}$ are injective (Proposition 1 of Chapter 1, \S 2), we see that $\gamma$ commutes

with $\gamma$ if and only if $\gamma_{R}’$ commutes with $\gamma_{R}$ , and if and only if $V_{\mathfrak{p}}$ commutes with $\gamma_{\mathfrak{p}}$ . Hence

we get
$(\Gamma_{R})_{\gamma R}=(\Gamma_{\gamma})_{R}\cong\Gamma_{\gamma}\cong(\Gamma_{\gamma})_{\mathfrak{p}}=(\Gamma_{\mathfrak{p}})_{\gamma_{\mathfrak{p}}}$ (canonically).

Now let $\gamma_{R}$ be elliptic. Then $(G_{R})_{\gamma R}$ is compact; hence $(\Gamma_{\gamma})_{R}$ is relatively compact in $G_{R}.$

Therefore, by the discreteness of $\Gamma_{\gamma}$ in $G,$ $(\Gamma_{\gamma})_{\mathfrak{p}}$ must be discrete in $G_{\mathfrak{p}}.$

To prove the converse, we need the following assertion:
(b) If $\gamma\in\Gamma$, then $G_{\gamma}/\Gamma_{\gamma}$ has finite invariant volume. Moreover, if $\gamma\neq 1$ , then $G_{\gamma}/\Gamma_{\gamma}$ is
compact.

The second assertion follows immediately from the first because ofthe special simple
structure of $G_{\gamma}$ . The proof of (b) is simple if $ G/\Gamma$ is compact. In fact, put $ G=K\cdot\Gamma$ with

some compact subset $K$ of $G$ . Let $\gamma_{0}\in\Gamma$ and $g\in G_{\gamma_{0}}$ . Put $ g=k\cdot\gamma$ with $k\in K,$ $\gamma\in\Gamma.$

Then, by $g\gamma_{0}=\gamma_{0}g$ we get $k^{-1}\gamma_{0}k=\gamma\gamma_{0}\gamma^{-1}\in K^{-1}\gamma_{0}K$ . Since $K^{-1}\gamma_{0}K$ is compact, the
intersection $\Gamma\cap K^{-1}\gamma_{0}K$ is finite, and hence the intersection $\{\gamma_{0}\}_{\Gamma}\cap K^{-1}\gamma_{0}K$ is also finite.
Put

$\{\gamma_{0}\}_{\Gamma}\cap K^{-1}\gamma_{0}K=\{\gamma_{i}\gamma_{0}\gamma_{i}^{-1}|\gamma_{i}\in\Gamma, i=1,2, \cdots , n\}.$

Then $\gamma\gamma_{0}\gamma^{-1}=\gamma_{i}\gamma_{0}\gamma_{i}^{-1}$ for some $i(1\leq i\leq n)$ , and hence $\gamma$ is contained in $\gamma_{i}\Gamma\gamma_{0}.$

Therefore, $g\in K\gamma_{i}\Gamma\gamma_{0}$ . Hence we get $G\gamma_{0}\subset\bigcup_{i=1}^{n}K\gamma_{i}\Gamma\gamma_{0}$ ; hence $G_{\gamma_{0}}/\Gamma_{\gamma 0}$ is compact.

On the other hand, if $ G/\Gamma$ is non-compact, the proof of (b) is not so simple (but it is
elementary, because we know much about discrete subgroups of $G_{R}$ whose quotients are
offinite invariant volume). This is left to the readers.

Now suppose that $(\Gamma_{\gamma})_{\mathfrak{p}}$ is discrete in $G_{\mathfrak{p}}$ . Then $\gamma\neq 1$ , and hence $G_{\gamma}/\Gamma_{\gamma}$ is compact.
Put, therefore, $G_{\gamma}=X\cdot\Gamma_{\gamma}$ with some compact subset $X$ of $G_{\gamma}$ . Take any $g_{\gamma,R}\in(G_{\gamma})_{R}=$

$(G_{R})_{\gamma_{R}}$ , and put $ g_{\gamma,R}\times 1_{\mathfrak{p}}=x\cdot\delta$ with $x\in X$ and $\delta\in\Gamma_{\gamma}$ , where $1_{\mathfrak{p}}$ is the identity element
of $G_{\mathfrak{p}}$ . Then we have $x_{\mathfrak{p}}\delta_{\mathfrak{p}}=1_{\mathfrak{p}}$ , and hence $\delta_{\mathfrak{p}}\in X_{\mathfrak{p}}^{-1}$ But since $(\Gamma_{\gamma})_{\mathfrak{p}}$ is discrete, the
intersection $X_{\mathfrak{p}}^{-1}\cap(\Gamma_{\gamma})_{p}$ must be finite, so that we can put

$X_{\mathfrak{p}}^{-1}\cap(\Gamma_{\gamma})_{\mathfrak{p}}=\{\delta_{1\mathfrak{p}}, \cdots,\delta_{n\mathfrak{p}}\}$

with some $\delta_{i}\in\Gamma_{\gamma}(1\leq i\leq n)$ . Then $g_{\gamma,R}=x_{R}\delta_{\iota R}$ with some $i(1\leq i\leq n)$ , and hence
$(G_{\gamma})_{R}\subset\bigcup_{i=1}^{n}X_{R}\delta_{\iota R}$ . Therefore, $(G_{\gamma})_{R}$ is compact, and hence $\gamma_{R}$ is elliptic. $\square $

Proof of (iii). This is a direct consequence of the following lemma.

LEMMA 10. Let $\gamma_{1},\gamma_{2},$ $\gamma_{3},$
$\cdots$ be any sequence in $\Gamma_{R}$ . Then, it converges to 1 if and

only iffor any elliptic element $\delta\in\Gamma_{R},$ $\gamma_{n}\cdot\delta$ are ellipticfor all sufficiently large $n.$
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It is clear that Lemma 10 implies (iii), since the convergence ofsequence is charac-
terized in terms ofellipticity ofelements, which is invariant by $\varphi.$

PROOF OF LEMMA 10. Since $g_{R}\in G_{R}$ is elliptic if and only if $|\theta g_{R}|<2$ , the set of
all elliptic elements of $G_{R}$ foms an open set. Therefore, if $\delta\in\Gamma_{R}$ is elliptic and if
$\gamma_{1},\gamma_{2},$

$\cdots$ converges to 1, then $\gamma_{n}\delta$ are elliptic for all sufficiently large $n$ . This proves that
the condition is necessary.

To prove the sufficiency, we first remark that there exist $\delta_{1},\delta_{2},\delta_{3},\delta_{4}\in\Gamma_{R}$ such that $\delta_{i}$

$(1\leq i\leq 4)$ are elliptic and that they are additively linearly independent over R. In fact,
put

(49) $g_{1}=\left(\begin{array}{l}0-1\\1 0\end{array}\right),g_{2}=\left(\begin{array}{l}1 -1\\1 0\end{array}\right),g_{3}=\left(\begin{array}{l}0-1\\1 1\end{array}\right),g_{4}=\left(\begin{array}{l}0-2\\\frac{1}{2} 0\end{array}\right).$

Then $g_{1},g_{2},g_{3},g_{4}\in G_{R}$ are elliptic and are linearly independent over R. Since $\Gamma_{R}$ is dense
in $G_{R}$ , we can take $\delta_{1},\delta_{2},\delta_{3},\delta_{4}\in\Gamma_{R}$ sufficimtly near $g_{1},g_{2},g_{3},g_{4}$ respectively. Then, it is
clear that $\delta_{i}(1\leq i\leq 4)$ satisfy the desired conditions. Put

(50) $\Pi=\{x\in G_{R}||tr(x\delta_{i})|<2$ for $i=1,2,3,4\}.$

Then, since the map

(51) $M_{2}(R)\ni x\mapsto(tr(x\delta_{1}), \cdots,\theta(x\delta_{4}))\in R^{4}$

gives an isomorphism of the two vector spaces over $R$, it is clear that $\Pi$ is relatively
compact in $G_{R}.$

Now let $\gamma_{1},\gamma_{2},$ $\cdots$ be a sequence in $\Gamma_{R}$ such that for any elliptic element $\delta\in\Gamma_{R},$ $\gamma_{n}\delta$

are elliptic for all sufficiently large $n$ . Since $\delta_{i}(1\leq i\leq 4\underline{)}$ are elliptic, this implies that
$\gamma_{n}$ are contained in $\Pi$ for all large $n$ . Since the closure $\Pi$ of $\Pi$ in $G_{R}$ is compact, the
sequence $\gamma_{1},\gamma_{2},$

$\cdots$ must have at least one accumulating point in $\overline{\Pi}$ . Let $\xi\in G_{R}$ be any
accumulating point of $\gamma_{1},\gamma_{2},$

$\cdots$ . If we can show $\xi=1$ , the proof will be completed.
Let $\delta\in\Gamma_{R}$ be any elliptic element. Then $\gamma_{n}\delta$ are elliptic for all large $n$, and $\xi\delta$ is an
accumulating point of $\gamma_{1}\delta,\gamma_{2}\delta,$ $\cdots$ . Therefore we get $|tr(\xi\delta)|\leq 2$ . Since $\Gamma_{R}$ is dense in
$G_{R}$ , this implies that $|\theta(\xi g_{R})|\leq 2$ for any elliptic element $g_{R}$ of $G_{R}$ . Put

$\xi=(_{c}^{a}db),$ $g_{R}=\left(\begin{array}{ll}0 & -y\\\underline{l} & 0\\y & \end{array}\right)$ with $y\in R^{\times}.$

Then $g_{R}$ is elliptic, and $ff(\xi g_{R})=\frac{b}{y}-cy$ . If $b\neq 0$ , let $|y|$ be sufhciently small, and if $c\neq 0,$

let $|y|$ be sufhciently large. Then in either case, we get a contradiction to $|k(\xi g_{R})|\leq 2.$

Therefore $b=c=0$ ; hence $\xi=(_{0}^{a}a^{-\iota}0). $Now, since $|tr(\xi g_{R})|\leq 2$ holds for all elliptic

elements $g_{R}$ which are sufhciently near 1, we get $|a+a^{-1}|\leq 2$ . But this is impossible
unless $a=a^{-1}=\pm 1$ , since $a,a^{-1}$ are real. Hence we get $\xi=1$ (as an element of $G_{R}$),

which completes the proof ofLemma 10. $\square $

Proof of (iv). Now, $\varphi$ is a bicontinuous map of $\Gamma_{R}$ onto $\varphi(\Gamma_{R})$ . Therefore, $\varphi$ can be
extended to a bicontinuous map \varphi of $\Gamma_{R}=G_{R}$ onto $\varphi(\Gamma_{R})\subset G_{R}$ . Since every homomor-
phism ofa Lie group into another is analytic, so is $\tilde{\varphi}$; and since $\tilde{\varphi}$ has no kemel (since $G_{R}$
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is simple) and $G_{R}$ is connected, $\overline{\varphi}$ must be surjective. Therefore, $\overline{\varphi}$ is an analytic automor-

phism of $G_{R}$ ; hence it is an inner automorphism by some element of $G_{R}’=PL_{2}(R)$ . This
completes the proof of Lemma 8. $\square $

\S 30. We remark here that in the case where $ G/\Gamma$ is compact, Lemma 8 has a di-
rect consequence, “the triviality of deformation of $\Gamma_{R}$ in $G_{R}$”. This fact, however, is not
necessary for our present purpose.

COROLLARY OF LEMMA 8 Let $\Gamma$ be as in Lemma 8, and assume moreover that the

quotient $ G/\Gamma$ is compact. Then $\Gamma_{R}$ has no non-trivial deformation in $G_{R}.$

Here, by” $\Gamma_{R}$ has no non-trivial deformation in $G_{R}$”, we mean the following. In gen-
eral, let $X$ be any topological group, and let $\Delta$ be a finitely generated subgroup of $X$with
a set of generators $\delta_{1},$ $\cdots$ , $\delta_{r}$ . By ”small deformation of $\Delta$ in $X’$ , we mean any homomor-
phism $\varphi$ of the abstract group $\Delta$ into $X$, such that $\varphi(\delta_{1}),$

$\cdots,$
$\varphi(\delta_{r})$ are sufficiently near

$\delta_{1},$

$\cdots,$
$\delta_{r}$ respectively. We use this terminology only in the form: “if $\varphi$ is a small de-

formation of $\Delta$ in $X$, then. .. holds;” which implies that there exist some neighborhoods
$U_{1},$

$\cdots,$
$U_{r}$ of $\delta_{1},$

$\cdots,$
$\delta_{r}$ respectively such that if $\varphi(\delta_{i})\in U_{i}(1\leq i\leq r),$ then $\cdots$ holds. It

is clear that this definition is independent ofthe choice ofthe set of generators $\delta_{1},$ $\cdots$ , $\delta_{r}.$

We shall say that $\Delta$ has no non-trivial deformation in $X$ if every small deformation $\varphi$ of $\Delta$

in $X$ is induced by some inner automorphism of $X$; i.e., if there exists some neighborhood
$U_{1},$ $\cdots$ , $U_{r}$ of $\delta_{1},$

$\cdots,$
$\delta_{r}$ respectively such that every homomorphism $\varphi$ of the abstract

group $\Delta$ into $X$ satisfying $\varphi(\delta_{j})\in U_{i}$ for all $i(1\leq i\leq r)$ is given by $\varphi(\delta)=t_{\varphi}^{-1}\delta t_{\varphi}$ (for all
$\delta\in\Delta)$ with some $t_{\varphi}\in X.$

We must check that $\Gamma_{R}$ is finitely generated before we can speak ofthe deformation of
$\Gamma_{R}$ . Put $\Gamma^{0}=\Gamma\cap(G_{R}\times V_{1})$ , where $V_{1}=PSL_{2}(O_{\mathfrak{p}})$ . Then $\Gamma_{R}^{0}$ is a discrete subgroup of $G_{R}$

and the quotient $G_{R}/\Gamma_{R}^{0}$ has finite invariant volume; hence $\Gamma^{0}\cong\Gamma_{R}^{0}$ is finitely generated.

On the other hand, since $\Gamma^{0}$ is maximal in $\Gamma$ (Corollary of Lemma 11 in Chapter 1), $\Gamma$ is
generated by $\Gamma^{0}$ and $\gamma$, where $\gamma$ is any element of $\Gamma$ not contained in $\Gamma^{0}$ . Therefore, by the
isomorphisms $\Gamma\cong\Gamma_{R}$ and $\Gamma^{0}\cong\Gamma_{R}^{0}$ (canonically), we get the finite generatedness of $\Gamma_{R}.$

PROOF OF THE COROLLARY OF LEMMA 8. In general, it is known that if $X$ is a connected
real Lie group and $\Delta$ is a finitely generated discrete subgroup of $X$with compact quotient,

and if $\varphi$ is a small deformation of $\Delta$ in $X$, then $\varphi$ is injective, $\varphi(\Delta)$ is discrete in $X,$

and the quotient $X/\varphi(\Delta)$ is compact (cf. A. Weil [36]). Let $\Gamma$ be as in Lemma 8, and

apply this for $X=G_{R}$ and $\Delta=\Gamma_{R}^{V}$ (note that since $ G/\Gamma$ is compact, $G_{R}/\Gamma_{R}^{V}$ is also
compact by Proposition 2 of Chapter 1), where $V$ is any open compact subgroup of $G_{\mathfrak{p}}$

and $\Gamma^{V}=\Gamma\cap(G_{R}\times V)$ . Let $\varphi$ be any small deformation of $\Gamma_{R}$ in $G_{R}$ . Then $\varphi|_{\Gamma_{R}^{V}}$ is also

a small deformation of $\Gamma_{R}^{V}$ in $G_{R}$ ; hence $\varphi|_{\Gamma_{R}^{V}}$ is injective, $\varphi(\Gamma_{R}^{V})$ is discrete in $G_{R}$ , and the

quotient $G_{R}/\varphi(\Gamma_{R}^{V})$ is compact. Therefore, by Lemma 8 there exists $x\in G_{R}’$ such that
$\varphi(\gamma_{R})=x^{-1}\gamma_{R}x$ for all $\gamma_{R}\in\Gamma_{R}$ . But since $\varphi$ is a small deformation, $x$ must be near 1;

hence $x\in G_{R}$ , and hence $\varphi$ is a trivial deformation. $\square $



96

Proof of Theorem 4 (Conclusion).

\S 31. Now we have come to the final stage of the proof of Theorem 4. It is enough
to prove the Main lemma (\S 27). Let

$V_{1}=PSL_{2}(O_{\mathfrak{p}}), V_{2}=\omega^{-1}V_{1}\omega(\omega=(_{\pi}^{0}01),O_{p}\pi=\mathfrak{p})$ ,

and put $V_{0}=V_{1}\cap V_{2}$ . Let $L$ be a $G_{p}$-field over $C$ and let $L_{i}(0\leq i\leq 2)$ be the fixed
field of $V_{i}$ in $L$ . Let $\Re_{i}(0\leq j\leq 2)$ be a complete non-singular model of $L_{i}$ , and let
$(i=1,2)$ be the rational map of $\Re_{0}$ onto $\Re_{i}$ defined by the inclusion $L_{0}\supset L_{i}$ . Thus we get

an algebraico-geometric object:

(52)

Let $\Gamma$ be the discrete subgroup of $G=G_{R}\times G_{\mathfrak{p}}$ which corresponds to $L$ by Theorem
1 (\S 9). Put $\Gamma^{i}=\Gamma\cap(G_{R}\times V_{i})(0\leq i\leq 2)$ . Then for each $i,$ $\Re_{f}$ can be idenbfied with
the normalized and compactified quotient $\mathfrak{H}/\Gamma_{R}^{i}$ , where $\mathfrak{H}$ is the complex upper halfplane.
To show the idea ofproof in a primitive fom, let us assume for the time being that $I_{R}^{\triangleleft}$ is
torsion-free and $G_{R}/I_{R}^{\triangleleft}$ (or equivalently $ G/\Gamma$) is compact. So, the natural covering map
$\mathfrak{H}\rightarrow\Re_{0}$ (with the covein$g$ group [ is surjective and unramified.

Now let $F$ be a field of definition for $\Re$ , i.e., a common field of definition for all $\Re_{i}$

and $f$ . We can assume that $F$ is finitely generated over Q. Let $k$ be the algebraic closure
of $Q$ in $F$, so that $k$ is an algebraic number field and $F$ is a regular extension of $k$ Put
$F=k((t))$ with $(t)=(t_{1}, \cdots,t_{r})$ , and let $W$ be the locus of $(t)$ over $k$, so ffiat $W$ is an
irreducible affine algebraic variety in $C^{r}.$

Let $(l)$ be a point on $W$ which is sufficiently near $(t)$ . Then the following geometric
intuition is in fact valid:

$(\natural)$ The specialization

(52’)

of$\Re$ over $(t)\mapsto(l)/k$ is well-deBned, $\Re_{i}’(0\leq i\leq 2)$ are complete non-singular algebraic
curves witb $tbe$ same genus as $\Re_{f}$ (respectively), and the rational maps $f_{i}’(1\leq i\leq 2)$ have
the same types of ramifications as $f$ (respectively). Moreover, there exist topological
isomorphisms $\varphi_{01}$ and $\varphi_{02}$ of $\Re_{0}$ onto $\Re_{\acute{0}}$ , and $\varphi_{1}$ resp. $\varphi_{2}$ of $\Re_{1}$ onto $\Re_{1}’$ resp. $\Re_{2}$ onto $\Re_{2}’$

such that:
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(i) the diagrams

(53)

are commutative, and that
(ii) the topological automorphism $\varphi_{02}\circ\varphi_{01}^{-1}of\Re_{\acute{0}}$ is “small”, and hence is homotopic to

the identity map.

Now let $\pi$ be the natural covering map $\mathfrak{H}\rightarrow\Re_{0}$ defined before, and let $t$ : $\mathfrak{H}\rightarrow\Re_{\acute{0}}$

be the universal covering map. Moreover, call $\Delta_{R}^{0}$ the coverin$g$ group of $t$ , and call $\Delta_{R}^{i}$

$(i=1,2)$ the covering group of $ f_{i}’\circ\#$ . Thus we have $\Delta_{R}^{0}\subset\Delta_{R}^{i}\subset G_{R}=$ Aut $\mathfrak{H}$ . Let $A_{R}$ be

the subgroup of $G_{R}$ generated by $\Delta_{R}^{1}$ and $\Delta_{R}^{2}.$

(54)

Now, extend the topological isomorphisms $\varphi_{0i}(i=1,2)$ of $\Re_{0}$ onto $\Re_{0}’$ to topological

automorphisms $\Phi_{i}(i=1,2)$ of $\mathfrak{H}$ so that the diagrams

(55)

are commutative. Since $\varphi_{02}\circ\varphi_{01}^{-1}$ is homotope $0$ , we can take $\Phi_{1}$ and $\Phi_{2}$ such that $\Phi_{2}\circ\Phi_{1}^{-1}$

commutes with the actions of $\Delta_{R}^{0}$ . By (53), $\Phi_{i}$ defines an isomorphism $\rho_{i}$ of $\Gamma_{R}^{i}$ onto $\Delta_{R}^{i},$

and by the above remark $\rho_{1}$ and $\rho_{2}$ coincide on $\Gamma_{R}^{0}$ , and $\rho_{1}(\Gamma_{R}^{0})=\rho_{2}\Psi_{R})=\Delta_{R}^{0}$ . But by the

canonical identffication of $\Gamma_{R}$ with $\Gamma_{p},$ $\Gamma_{R}^{i}(0\leq i\leq 2)$ are identffied with $\Gamma_{\mathfrak{p}}^{i}$ respectively,

and hence by the Corollary of Lemma 7 (\S 28), $\Gamma_{R}$ is th $e$ free product of $\Gamma_{R}^{1}$ and $\Gamma_{R}^{2}$ with

amalgamated subgroup $\Gamma_{R}^{0}$ . Therefore, there is a homomorphism $\rho$ of $\Gamma_{R}$ onto $\Delta_{R}$ such

that $\rho|_{\Gamma_{R}^{j}}=\rho_{i}(i=1,2)$ . But $\rho(\Gamma_{R}^{0})=\Delta_{R}^{0}$ is discrete in $G_{R}$ , and the quotient $G_{R}/\Delta_{R}^{0}$

is compact. Moreover, $\rho|_{I_{R}^{4}}=\rho_{1}|_{\Gamma_{R}^{0}}$ is injective. Therefore by Lemma 8 (\S 29), there is

an element $x\in G_{R}’=PL_{2}(R)$ such that $\rho(\gamma_{R})=x^{-1}\gamma_{R}x$ for all $\gamma_{R}\in\Gamma_{R}$ . In particular,

we get $\Delta_{R}^{i}=x^{-1}\Gamma_{R}^{i}x$ for $0\leq i\leq 2$ . Therefore, if $x\in G_{R}=PSL_{2}(R)$ , then $\Re$ and $\Re’$

are isomorphic analytically (and hence algebraically); i.e., there are analytic (and hence
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algebraic) isomorphisms $\psi_{i}$ of $\Re_{i}$ onto $\Re_{i}’(0\leq i\leq 2)$ such that the diagram:

(56)

is commutative. On the other hand, if $x\not\in G_{R}$ , then $\Re$ and $\Re’-$ are isomorphic analytically,
where $\Re’-$ is the complex conjugation of $\Re’$ . But this is impossible (unless $\Re’-\cong\Re’$), since
$(r)$ is sufficiently near $(t)$ . Therefore, $\Re$ and $\Re’$ are isomorphic algebraically. Now since
$W$ is defined over $k$, algebraic points are dense on $W$, and hence we can choose $(l)$ to be
algebraic over $k$ (and hence over $Q$). Then $\Re’$ is defined over an algebraic number field
$k’$ . Now, by the isomorphism $\Re’\cong\Re$ , we identify $L_{i}$ with the field of $C$-rational fimctions
on $\Re_{i}’(0\leq i\leq 2)$ . Now let $L_{i}’$ be the field of $k’$-rational functions on $\Re_{i}’(0\leq i\leq 2)$ . Then
it is clear that $\{L_{i}’|0\leq i\leq 2\}$ is a $k’$-fom of $\{L_{i}|0\leq i\leq 2\}$ . But since $k’$ is an algebraic
number field, this proves the Main lemma (\S 27) (and hence Theorem 4), in the case where
$\Gamma_{R}^{0}$ is torsion-ffee and $G_{R}/\Gamma_{R}^{0}$ is compact.

In the general case, we need a slight modffication. Let $P_{j}(1\leq j\leq m)$ be the points
on $\Re_{0}$ that are ramified in the covering $\pi$ : $\mathfrak{H}\rightarrow\Re_{0}$ , and let $e_{j}(1\leq j\leq m;1\leq e_{j}\leq\infty)$

be the ramification index of $P_{j}$ in this covering. Take $F$ large enoug so that all $P_{j}$ are
rational over $F$ . Then if $(l)$ is sufficiently near $(t)$ , we can check without any difficulty
that in addition to the assertions $(\natural)$ , the specialization $P_{j}$ of $P_{j}$ over $(t)\mapsto(l)/k$ is defined
for each $j$, and that we can take $\varphi_{01}$ and $\varphi_{02}$ such that $\varphi_{01}(P_{j})=\varphi_{02}(P_{j})=P_{j}$ for all $j.$

Now define $t$ : $\mathfrak{H}\rightarrow\Re_{0}’$ to be the maximal covering of $\Re_{0}’$ with the ramffications $e_{j}$ at
$P_{j}$ for all $j$ (and unramified everywhere else). Then with these definitions, we can prove
the general case exactly in the sme manner as in the special case. Thus the proof of the
Main lemma, and hence also the proof ofTheorem 4, is completed. $\square $

Variations of Theorems 4, 5.

\S 32.

COROLLARY OF THEOREM 5. Notations and assumptions being as in Theorem 5, $L_{k_{\theta}}$ is
thefxedfield ofthe group ofall automorphisms of $L$ which commute with the actions of
all elements of $G_{\mathfrak{p}}.$ If$\sigma\in AutC$, then $\sigma$ has a $G_{\mathfrak{p}}$-extension ifand only if$\sigma|_{h}=1.$

PROOR This follows immediately from Theorem 5 and \S 20. $\square $

Now let $L$ be any $G_{\mathfrak{p}}$-field over $C$ , and let $G_{\mathfrak{p}}’$ be any subgroup of $Aut_{C}L$ containing
$G_{\mathfrak{p}}$ . By a full $G_{\mathfrak{p}}’$ -subBeld $ofL$ over a field $k’(\subset C)$, we mean a $G_{\mathfrak{p}}’$-invariant subfield $L’$ of
$L$ satisfying $L’\cdot C=L$ and $L’\cap C=k’$ . Thus, if $G_{\mathfrak{p}}’=G_{\mathfrak{p}}$ , this definition agrees with the
previous one; and it is also clear that ful1 $G_{\mathfrak{p}}’$-subfields are a priori full $G_{p}$-subulelds.
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THEOREM 6. Let $L$ be a $G_{\mathfrak{p}}$-field over $C$, and let $G_{\mathfrak{p}}’$ be any group with $ G_{\mathfrak{p}}\subset G_{\mathfrak{p}}’\subset$

$Aut_{C}$ L. Then $L$ contains a full $G_{\mathfrak{p}}’$-subfield over an algebraic numberfield Moreover,

if the centralizer of $G_{\mathfrak{p}}’$ in $Aut_{C}L$ is trivial, then full $G_{\mathfrak{p}}’$-subfields of $L$ are essentially
unique, in the sense that among them there is a smallest one over an algebraic number

field playing the role completely parallel to that of $L_{k_{0}}$ in theorem 5. Finally, if $L$ is

quasi-irreducible, allfull $G_{\mathfrak{p}}$-subfields of$L$ arefull $Aut_{C}$ $L$-subfields.

PROOR Let $L_{k}$ be a full $G_{\mathfrak{p}}$-subfield of $L$ over an algebraic number field $k$ . Let $\mathfrak{Z}$ be the
centralizer of $G_{\mathfrak{p}}$ in $AukL$ , so that $\mathfrak{Z}$ is finite (\S 15, Corollary 3 of Theorem 3). Let $M$be
the fixed field of $\mathfrak{Z}$ in $L$ . For each $\sigma\in Aut_{k}C$ , let $\overline{\sigma}$ be the automorphism of $L$ which is
trivial on $L_{k}$ and which coincides with $\sigma$ on C. Put $\mathcal{G}=\{\overline{\sigma}|\sigma\in Aut_{k}C\}$ . Then by Lemma
2 (\S 19), $L_{k}$ is the fixed field of $\mathcal{G}$ . Let $\overline{\mathcal{G}}$ be the group of all automorphisms of $L$ which are
trivial on $k$ and which commute with all elements of $G_{\mathfrak{p}}$ . Then $\mathcal{G}=\mathcal{G}\cdot Z,\overline{\mathcal{G}}\cap Z=\{1\},$

and $M_{k}=M\cap L_{k}$ is the fixed field of $\overline{\mathcal{G}}$. Therefore, $M_{k}$ depends only on $k$ and does not
depend on the choice of $L_{k}$; and since $(\mathcal{G}:\mathcal{G})=(Z;1)<\infty$ , we get $[L_{k} : M_{k}]<\infty.$

Now let $\rho\in AukL$ . Then since $G_{\mathfrak{p}}$ is a characteristic subgroup ofAuk $L$ (Corollary

2 of Theorem 3, \S 15), $\rho(L_{k})$ is also $G_{\mathfrak{p}}$ -invariant; hence it is a full $G_{\mathfrak{p}}$-subfield over $k$

$($hence if$ L is $quasi-irreducible, then we get$ \rho(L_{k})=L_{k}$ ; which settles the last point of
the Theorem). Therefore, by the above remark on $M_{k}$ , we get $\rho(L_{k})\cap M=M_{k}$ and
$[p(L_{k}):M_{k}]<\infty.$

Since moreover $(AukL : G_{\mathfrak{p}})<\infty$ , the composite
$L_{k’}$ ofa11 $\rho(L_{k})(\rho\in Aut_{C}L)$ is a finite extension of $L_{k}$ ;
hence $L_{k’}\cdot C\supset L_{k}\cdot C=L,$ $L_{k’}\cap C=k’$ is a finite
extension of $k$, and $L_{k’}$ is obviously $AukL$-invariant.
Therefore, $L_{k’}$ is a full $Aut_{C}L$-subfield of $L$ over $lt$ ;

The proof of the second part is completely paral-
which settles the first point of the Theorem.

lel to the argument given in \S 19, \S 20; and hence is
omitted. The proof of the last point was given above.

COROLLARY. If the center of$ Aut_{C}L$ is trivial, then full $Aut_{C}L$-subfields of $L$ are es-
sentially unique.

\S 33. Full $G_{\mathfrak{p}}$-subfields over Q. Let $L$ be an arbitrary $G_{\mathfrak{p}}$-field over C. Then, by

Theorem 6, $L$ contains a full $Auk$ $L$-subfield $L_{k}$ over an algebraic number field $k$ Let
$-$

$Q$ be the algebraic closure$-ofQ$ , considered as a subfield of C. Then, $L_{k_{-}}\cdot Q$ is a full
$Auk$ $L$-subfield of $L$ over $Q$ ; hence $L$ contains a full $Aut_{C}$ $L$-subfield over Q. We shall
prove that full $G_{\mathfrak{p}}-$-subfield of $L$ over $Q$ is unique. $T\underline{h}en$, it is clear that the unique full
$G_{\mathfrak{p}}$-subfield over $Q$ is also a ffill $Auk$ $L$-subfield over Q. For that purpose, let $\wp$ be the set

of all non-trivial (non-equivalent) discrete valuations $v_{P}$ of $L$ over $C$ whose stabilizers in
$G_{\mathfrak{p}}$ are infinite;

(57) $\wp=$ { $v_{P}\in\Sigma|$ the group $g_{\mathfrak{p}}\in G_{\mathfrak{p}},$ $g_{p}(v_{P})=v_{P}$ is infinite}.
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We denote by $P$ the place of $L$ over $C$ defined by $v_{P}$, and put

(58) $L’=\{f\in L|P\{f\}\in\overline{Q}\cup\{\infty\}, \forall v_{P}\in\wp\}.$

On the other hand, let $\Gamma$ be the discrete subgroup of $G$ which corresponds to $L$ , and
consider $L=\bigcup_{V}L_{V}$ as the union of the fields $L_{V}$ of automorphic fimctions $f(z)$ with
respect to $\Gamma_{R}^{V}=[\Gamma\cap(G_{R}\times V)]_{R}$ . Let $L’’$ be the subset of $L$ formed of all $f(z)\in L$ whose

values at $\Gamma_{R}$-fixed points 15 are all contained in $Q\cup\{\infty\}$ ;

(59) $L’’=\{f(z)\in L|f(\forall\Gamma_{R}-$fixed points) $\in Q\cup\{\infty\}\}.$

Finally, let $L’’’$ be an arbitrary ffil $G_{\mathfrak{p}}$-subfield of $L$ over Q. We shall prove that $L’=L’’=$
$L’’’$ holds; which, in particular, would prove the uniqueness of $L’’’.$

First, to prove $L’\subset L’’$ , note that each point $z_{0}\in \mathfrak{H}$ defines $ v_{P}=v_{P_{z_{0}}}\in\Sigma$, and that, in
this mamer, $\mathfrak{H}$ can be considered as a comected component of $\Sigma$ (see \S 5-\S 10). Moreover,

if$f=f(z)\in L$, then $P_{z0}\{f\}=f(z_{0})$ . Since $\Gamma_{\mathfrak{p}}$ is the stabilizer ofthe connected component
$\mathfrak{H}$ in $G_{\mathfrak{p}}$ , it is clear that $v_{P_{z_{0}}}$ is contained in $\wp$ if and only if $z_{0}$ is a $\Gamma_{R}$-fixed point. This
proves $L’\subset L’’.$

Secondly, we shall prove $L’’’\subset L’$ . Let $ v_{P}\in\wp$ , and let $g_{\mathfrak{p}}\in G_{\mathfrak{p}},$ $g_{\mathfrak{p}}\neq 1$ with
$g_{\mathfrak{p}}(v_{P})=v_{P}$ . Take $f\in L’’’$ such that $g_{\mathfrak{p}}(f)\neq f$. If $f$ is not $v_{P}$-integral, we replace $f$

by $f^{-1}$ , and assume from the beginning that $f$ is $v_{P}$-integral. Since $P$ is invariant by $g_{p},$

we get $P\{f\}=P\{g_{\mathfrak{p}}(/)\}$ ; hence $P\{f-g_{\mathfrak{p}}(/)\}=0;hen\underline{ce}P$ is non-trivial on $L’’’.$ $Henc\underline{e}$

$v_{P}|_{L’’’}$ gives a non-trivial discrete $valuat\underline{i}on$ of $L’’’$ over $Q$ ; and since $\dim_{\overline{Q}}L’’’=1$ and $Q$

is algebraically closed, we get $P\{f_{1}\}\in Q\cup\{\infty I$ for all $f_{1}\in L’’’$ ; which proves $L’’’\subset L’.$

(60)

Finally, we shall prove $L’’\subset L’’’$ . Let $f(z)$ be any element of $L’’$ . Since $L=L’’’\cdot C,$

we can put

$f(z)=\sum^{n}\lambda_{i}f_{i}(z)/\sum_{-}^{n}\lambda_{i}f_{i}(z)i--1i-1$

$\underline{w}heref(z),$ $f_{i}’(z)\in L’’’(1\leq i\leq n)$ , and $\lambda_{1},$

$\cdots,$
$\lambda_{n}\in C$ are linearly independent over

Q. Take $i=i_{0}$ such that $f_{i_{0}}’(z)\not\equiv 0$ . We shall show that $f_{0}(z)=f(z)f_{i_{0}}’(z)$ . Suppose, on
the contrary, that we have $f_{0}(z)\neq f(z)f_{i_{0}}(z)$ . Since $\Gamma_{R}$-fixed points are dense on $\mathfrak{H}$ (see

15As in Chapter 1, a point $z\in \mathfrak{H}$ is called a $\Gamma_{R}$-fixed point (or $\Gamma$-fixed point) if its stabilizer in $\Gamma_{R}$ is
infinite.
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Chapter 1, \S 3), there exists a $\Gamma_{R}$-fixed point $z_{0}$ such that all $f(z_{0}),$ $f(z_{0}),$ $f_{i}(z_{0})(1\leq i\leq n)$

are finite and $f_{0}(z_{0})\neq f(z_{0})f_{i_{0}}(z_{0})$ . Therefore, we get

$\sum_{i\underline{-}1}^{n}c_{i}\lambda_{i}=0$ with $c_{i}=f(z_{0})-f(z_{0})f_{i}(z_{0})$ .

Since $f(z),$ $f(z),$ $f_{i}(z)$ are in $L’’$ , we have $c_{i}\in\overline{Q}(1\leq i\leq n)$ , md by our choice $ofz_{0},\underline{w}e$

also have $c_{i_{0}}\neq 0$ . But this is a contradiction to linear independence of $c_{1},$ $\cdots$ , $c_{n}$ over $Q.$

Therefore, $f_{0}(z)=f(z)f_{i_{0}}(z)$ , and hence $f(z)\in L’’’$ , which proves $L’’\subset L’’’.$

Therefore, we have proved $L’=L’’=L’’’.$

THEOREM 7. Let $L$ be a $G_{p}$-field over C. Then $L$ contains a uniquefull $G_{p}$-subfield $L_{\overline{Q}}$

over $Q$, which is given by (58) and also by (59). Moreover, $L_{\overline{Q}}$ is invariant by $Aut_{C}L.$

\S 34.

EXAMPLE.16 Let $G_{R}=PSL_{2}(R),$ $G_{p}=PSL_{2}(Q_{p})$ , and let $\Gamma=PSL_{2}(Z^{(p)})$ be con-
sidered as a discrete subgroup of $G=G_{R}\times G_{p}$ . Let $L$ be the $G_{p}$-field over $C$ which

corresponds to $\Gamma$ . So, ifwe denote as

(61) $\left\{\begin{array}{l}U_{p}^{(n)}=\{x\in SL_{2}(Z_{p})|x\equiv\pm 1(mod p^{n})\}/\pm 1\\(n=0,1,2, \cdots)\\\Gamma^{(n)}=\Gamma\cap(G_{R}\times U_{p}^{\langle n)})=\{x\in SL_{2}(Z)|x\equiv\pm 1(mod p^{n})\}/\pm 1,\end{array}\right.$

then $L$ is nothing but the union $\bigcup_{n=0}^{\infty}L_{n}$ of the field $L_{n}$ of automorphic fimctions with
respect to $\Gamma_{R}^{(n)}$ (see Example in \S 2). We have shown (\S 17) that $L$ is irreducible; hence

there is a unique full $G_{p}$-subfield $L_{k_{0}}$ over $h$ enjoying the property stated in Theorem 5.
Let us find out $h$ and $L_{k_{0}}$ for this $L.$

Put

(62) $\left\{\begin{array}{l}G_{p}^{*}=\{x\in GL_{2}(Q_{p})|\det x=p-powers\}/\pm\{p- powers\}\\\Gamma^{*}=\{x\in GL_{2}(Z^{(p)}) I\det x=p-powers\}/\pm\{p- powers\},\end{array}\right.$

(63)
, $Aut_{C}L=G_{p}^{*}$ (see \S 17).

Let $J(z)$ be the elliptic modular fimction; so that $L_{0}=C(J(z))$ , and $J(\sqrt{-1})=12^{3},$

$J(\frac{1}{2}(-1+\sqrt{-3}))=0,$ $ J(i\infty)=\infty$ . Put 17

(64) $L’=Q(J(\gamma_{R}^{*}z)|\gamma^{*}\in\Gamma^{*})$ .

Then $L’$ is obviously $\Gamma^{*}$ -invariant, and since the action of $G_{p}^{*}$ on $L$ is continuous and $\Gamma^{*}$

is dense in $G_{p}^{*},$
$L’$ is also $G_{p}^{*}$-invariant; hence a priori $G_{p}$ -invariant. Therefore, $L’\cdot C$ is

16See also \S 2 and \S 17.
17Here, $\Gamma^{\cdot}\ni\gamma\mapsto\gamma_{R}$ denotes the projection of $\Gamma^{\cdot}$ into $\{x\in GL_{2}(R)|\det x\succ O\}/R^{\times}\cong G_{R}.$
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also $G_{p}$-invariant; but since $L$ is irreducible, we get $L’\cdot C=L$ . Therefore, $L’$ is a full $G_{p^{-}}$

subfield of $L$ over $ k=L’\cap$ C. We shall prove, by using known results on elliptic modular
fimctions, that $L_{h}=L’,$ $h=k’=Q(\cap\pm p(p\neq 2, \pm p\equiv 1(mod 4)),$ $=Q(\sqrt{-1}, \sqrt{2})$

$(p=2)$ .
For this purpose, we refer to G. Shimura [30]. Let $E$ be the elliptic curve defined over

$K_{1}=Q(J(z))$ given by the equation

(65) $Y^{2}=4X^{3}-tX-t, t=\frac{27J(z)}{J(z)-12^{3}}.$

For each positive integer $N$, let $K_{N}$ be the Galois extension of $K_{1}$ generated over $K_{1}$ byX-
coordinates of all $N$-th division points of $E$ . Then by G. Shimura [30] (\S 2,\S 4), the Galois
group of $K_{N}/K_{1}$ is (in some way) isomorphic to $G_{N}=GL_{2}(Z/NZ)/\pm 1$ , the algebraic
closure of $Q$ in $K_{N}$ is the field $Q(\zeta_{N})$ of primitive $N$-th root of unity $\zeta_{N}$, the action of
$\sigma\in G_{N}$ on $K_{1}(\zeta_{N})$ is $\zeta_{N}\mapsto\zeta_{N}^{\det\sigma}$ , and finallyl8 ifwe put

(66) $K_{N}^{*}=K_{1}(J(\frac{az+b}{cz+d})|\forall(_{c}^{a}db\rangle\in M_{2}(Z), ad-bc=N)$ ,

then $K_{N}$ is a subfield of $K_{N}$ corresponding to the center of $G_{N}$ :

(67)

Therefore, the algebraic closure of $Q$ in $K_{N}^{*}$ is the maximum $(2, \cdots , 2)$ type extension of
$Q$ in $Q(\zeta_{N})$ .

Now we have $L’=\bigcup_{n=0}^{\infty}K_{p^{n}}^{*}$ . Since $d\dot{m}_{Q}K_{N}^{*}=d\dot{m}_{Q}K_{1}=1$ , we get $\dim_{Q}L’=1$ . On
the other hand, since $L’$ is a full $G_{\mathfrak{p}}$-subueld over $k’,$ $\dim_{k}L’=1$ . Therefore $dim_{Q}k’=0$ ;
hence $k’\subset Q$ ; hence $ k’=L’\cap$ Q. Therefore, $k’$ is fue maximum $(2, \cdots , 2)$ type extension
of $Q$ in $Q(\zeta_{p}|n=0,1,2, \cdots)$ ; hence

$k’=\left\{\begin{array}{ll}Q(rp) & (p\equiv 1(mod 4)) ,\\Q(\Gamma-p) & (p\equiv-1(mod 4)) ,\\Q(\sqrt{-1}, \sqrt{2}) & (\backslash p=2) .\end{array}\right.$

18This part is not explicitly stated in G. Shimura [30], but it follows directly from the results stated
explicitly.
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Now since $L’$ is a full $G_{\mathfrak{p}}$-subfield of $L$ over $k’$ , we get $Q\subseteq h\subseteq k’$ and $L’=k’\cdot L_{h}.$

To prove that $h=k’$ , we note that (by the above quoted results) $L’/Q(J(z))$ is a Galois
extension, its Galois group is $PL_{2}(Z_{p})$ , and by $PL_{2}(Z_{p})\ni\sigma\mapsto\det\sigma\in U_{p}/U_{p}^{2}\cong G(k’/Q)$

(where $U_{p}$ is the $p$-adic unit group), all automorphisms of $k’/Q$ are induced from $PL_{2}(Z_{p})$ .
Therefore, together with $Aut_{k’}L’=AukL=G_{p}^{*}$ (\S 17 and \S 32 Theorem 7 (the last
assertion) $)$ , we see immediately that

(68) $Aut_{Q}L’=PL_{2}(Q_{p})$ .

Since $Q\subseteq h\subseteq k’$ and since $k’$ is as given above, $k’/h$ is abelian, and hence $L’/L_{k_{0}}=$

$L_{b}\cdot k’/L_{k_{0}}$ is also abelian; hence, a priori, normal. Let $\mathfrak{Z}$ be the Galois group of $L’/L_{k_{0}}.$

Then, $\mathfrak{Z}$ centralizes $Aut_{k’}L’=G_{p}^{*}$ , hence also $G_{p}=PSL_{2}(Q_{p})$ . But it is clear that the
centralizer of $PSL_{2}(Q_{p})$ in $PL_{2}(Q_{p})$ is trivial. Therefore $\mathfrak{Z}=\{1\}$ ; hence we finally get:

(69) $L_{k_{0}}=L’=Q(J(\gamma_{R}^{*}z)|\gamma^{*}\in\Gamma^{*})=Q(J(\gamma_{R}z)|\gamma\in\Gamma)$ ,

(70) $h=\begin{array}{l}Q(\mapsto\pm p\cdots\cdots \pm p\equiv 1 (mod4),\\Q(\sqrt{-1}, \sqrt{2}) \cdots p=2.\end{array}$

The second formula for $L’$ is clear by $L’$ $=$

$\bigcup_{n=0}^{\infty}K_{p^{n}}^{*}=\bigcup_{n=0}^{\infty}K_{p^{2n}}^{*}.$

The fields $h$ and $F=Q((ff\gamma_{R})^{2}|\gamma_{R}\in\Gamma_{R})$ .

\S 35. By Theorem 5, if $L$ is a quasi-irreducible $G_{\mathfrak{p}}$-field over $C$ , then $L$ contains
the smallest full $G_{\mathfrak{p}}$-subfield $L_{k_{0}}$ over $h$ . It is an important problem to determine this
more explicitly. We particularly want to know the relation between $h$ and $k_{\mathfrak{p}}$ . As a first
step to this, we shall show that under a certain condition on $\Gamma$ which is satisfied by all
examples of $\Gamma$ that we know at present $(i.e.,$ those $\Gamma$ given $in$ Chapter $4)$ , the fi$eldh$
contains $F=Q((tr\gamma_{R})^{2}|\gamma_{R}\in\Gamma_{R})$ .

Let $g_{R}$ be an elliptic element of $G_{R}$ . Then there is an element $t\in G_{R}$ such that $t^{-1}g_{R}t$ is

ofthe form $\pm\begin{array}{ll}cos\theta & sin\theta\\-sin\theta & cos\theta\end{array}$ , and such $\theta$ is determined uniquely modulo $\pi$ . Put $e^{i\theta}=\pm\lambda.$

Then, up to the $sign,$ $\lambda$ is an eigenvalue of $g_{R}$ , which will be called the first eigenval$ue$ of
$g_{R}$ , while $\lambda^{-1}$ will be called the second eigenvalue of $g_{R}$ . It is easy to check that $ 2\theta$ is the
argument ofthe rotation induced by $g_{R}$ at its fixed point on $\mathfrak{H}.$

LEMMA 11. Let $L$ be a $G_{\mathfrak{p}}$-field over $C$ with a fixed connected component $\Sigma_{0}$ of $\Sigma$

and afixed isomorphism $\Sigma_{0}\cong \mathfrak{H}$, and let $\Gamma$ be the corresponding discrete subgroup of
$G=G_{R}\times G_{\mathfrak{p}}$ (see \S 9). Let $\gamma=\gamma_{R}\times\gamma_{\mathfrak{p}}\in\Gamma$ be such that $\gamma_{R}$ is elliptic, and let $P_{0}\in\Sigma_{0}$ be

thefixed element of $\gamma_{\mathfrak{p}}$ . Thenfor anyprime element $x_{0}\in L$ of $P_{0}$, we have

(71) $\gamma_{\mathfrak{p}}^{-1}(x_{0})/x_{0}\equiv\lambda^{2} (mod P_{0})$ ,

where $\pm\lambda$ is thefirst eigenvalue of $\gamma_{R}.$
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PROOP. Let $z_{0}$ be the point on $\mathfrak{H}$ corresponding to $P_{0}$ byffie isomophism $\Sigma_{0}\cong \mathfrak{H}$ . Then
$z_{0}$ is the fixed point of $\gamma_{R}$ on $\mathfrak{H}$ . For each $z\in \mathfrak{H}$ , let $P=P_{z}$ be the corresponding element
of $\Sigma_{0}$ , and let $f(z)\in C\cup\{\infty\}$ be ffie residue class $ofx_{0}$ at $P$;

(72) $x_{0}\equiv f(z)$ $mod P$; $ord_{\triangleleft}f(z)=1.$

Hence

(73) $\gamma_{\mathfrak{p}}^{-1}(x_{0})\equiv f(\gamma_{R}\cdot z) (mod P)$ .

Therefore, the residue class of $\gamma_{\mathfrak{p}}^{-1}(x_{0})/x_{0}$ at $P=P_{0}$ is the value of $f(\gamma_{R}\cdot z)/f(z)$ at $z=z_{0}$ ;

hence is equal to $d^{\theta i}$ , where $ 2\theta$ is the rotation argument of $\gamma_{R}$ at $z=z_{0}$ . Therefore, by the
previous remark, it is equal to $\lambda^{2}.$

$\square $

\S 36.

LEMMA 12. The notations being as in Lemma 11, assume now that $\Gamma$ satisfies the
following condition; if $V,$ $\gamma’’\in\Gamma$ are such that $\gamma_{\mathfrak{p}}’$ and $\gamma_{\mathfrak{p}}’$ are conjugate in $G_{\mathfrak{p}}$, then $\prime_{R}$

and $\gamma_{R}’’$ are conjugate in $G_{R}’=PL_{2}(R)$. Then, for every $ P\in\Sigma$ which isfixed by $\gamma_{p}$, we
have

(74) $\gamma_{\mathfrak{p}}^{-1}(x)/x\equiv\lambda^{\pm 2} (mod P)$ ,

where $x$ is anyprime element of$P.$

REMARK. Here, $P$ need not be an element of $\Sigma_{\eta}.$

PROOR Let $g_{\mathfrak{p}}$ be an element of $G_{\mathfrak{p}}$ such that $g_{p}\cdot P$ is contained in $\Sigma_{0}$ . Put $P_{0}=g_{\mathfrak{p}}\cdot P,$

and $\gamma_{\mathfrak{p}}=g_{\mathfrak{p}}\gamma_{\mathfrak{p}}g_{\mathfrak{p}}^{-1}$ . Then $f_{\mathfrak{p}}$ fixes $P_{0}$ ; hence $f_{\mathfrak{p}}\cdot\Sigma_{\eta}=\Sigma_{0}$ ; hence $\gamma_{\mathfrak{p}}\in\Gamma_{\mathfrak{p}}$ , and the element
$V_{R}\in\Gamma_{R}$ corresponding to $V_{\mathfrak{p}}$ is elliptic. Let $\pm\lambda’$ be the first eigenvalue of $\gamma_{R}’$ . Then, since
$x_{\acute{0}}=g_{\mathfrak{p}}(x)$ is a prin$e$ element of $P_{0}=g_{\mathfrak{p}}P$, we get (by Lemma 11)

(75) $\gamma_{\mathfrak{p}}^{\prime-1}(x_{\acute{0}})/x_{\acute{0}}\equiv\lambda^{\prime 2} (mod P_{0})$ .

But since $f_{\mathfrak{p}}$ and $\gamma_{\mathfrak{p}}$ are conjugate in $c_{\mathfrak{p}},$ $\gamma_{R}$ and $\gamma_{R}$ must be conjugate in $G_{R}’=PL_{2}(R)$ by

our assumption on $\Gamma$ . Therefore, we have $\pm\lambda’=\pm\lambda^{\pm 1}$ . Therefore, by (75) we get

$\gamma_{\mathfrak{p}}^{\prime-1}(x_{0}’)/x_{\acute{0}}\equiv\lambda^{\pm 2} (mod P_{0})$ ;

hence
$g_{\mathfrak{p}}\gamma_{\mathfrak{p}}^{-1}(x)/g_{\mathfrak{p}}(x)\equiv\lambda^{\pm 2} (mod g_{\mathfrak{p}}P)$ .

Therefore $\gamma_{\mathfrak{p}}^{-1}(x)/x\equiv\lambda^{\pm 2}(mod P)$ , which proves our lemma. $\square $

Now, it is easy to prove:

LEMMA 13. Let $L,$ $\Gamma$ be as in Lemma 11, and assume that $\Gamma$ satisfies the condition
given in Lemma 12. Then, for every ellipnc element $\gamma_{R}\in\Gamma_{R}$ andfor every automolphism
$\sigma$ of$L$ which commutes with all elements of $G_{\mathfrak{p}}$, we have $\sigma((tr\gamma_{R})^{2})=(\theta\gamma_{R})^{2}.$
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PROOR Let $\gamma_{\mathfrak{p}}$ be the element of $\Gamma_{\mathfrak{p}}$ corresponding to $\gamma_{R}$ , and let $P_{0},$ $x_{0},$
$\pm\lambda$ be as in

Lemma 11. Thus, we have

$\gamma_{\mathfrak{p}}^{-1}(x_{0})/x_{0}\equiv\lambda^{2} (mod P_{0})$ .

But since $\sigma$ commutes with all elements of $G_{\mathfrak{p}}$ and hence in particular with $\gamma_{\mathfrak{p}}$ , we get,

$\gamma_{\mathfrak{p}}^{-1}\sigma(x_{0})/\sigma(x_{0})\equiv\sigma(\lambda)^{2} (mod \sigma P_{0})$ .

Now, $\sigma P_{0}$ may not lie on $\Sigma_{0}$ , but it is an element of $\Sigma$ which is fixed by $\gamma_{\mathfrak{p}}$ . Moreover, it
is clear that $\sigma(x_{0})$ is a prime element of $\sigma P_{0}$ . Therefore by Lemma 12, we get

$\gamma_{\mathfrak{p}}^{-1}\sigma(x_{0})/\sigma(x_{0})\equiv\lambda^{\pm 2} (mod \sigma P_{0})$ .

Therefore, $\sigma(\lambda)^{2}=\lambda^{\pm 2}$ ; hence $\lambda^{2}+\lambda^{-2}=(try_{R})^{2}-2$ is invarimt by $\sigma$ . Therefore,
$(\theta)k)^{2}\square $

is also invariant by $\sigma.$

THEOREM 8. Let $L$ be a $G_{\mathfrak{p}}$-field over $C$ such that the corresponding discrete subgroup
$\Gamma$ satisfies the condition given in Lemma 12. Let $k$ be a subfield of $C$ such that there

exists a full $G_{\mathfrak{p}}$-subfield of $L$ over $k$ Then $k$ contains thefield $F=Q((tr\gamma_{R})^{2}|\gamma_{R}\in\Gamma_{R})$ .
In particular, $ifL$ is moreover quasi-irreducible, then thefield $h$ (defined by Theorem 5)

contains $F.$

PROOR Let $L_{k}$ be a full $G_{\mathfrak{p}}$-subfield of $L$ over $k$, and for each $\sigma\in Aut_{k}C$ , let $\tilde{\sigma}$ be

the automorphism of $L$ which is trivial on $L_{k}$ and which coincides with $\sigma$ on C. Then $\tilde{\sigma}$

commutes with all elements of $G_{\mathfrak{p}}$ . Therefore by Lemma 13, we have
$\sigma((tr\gamma_{R})^{2})=\overline{\sigma}((tr\gamma_{R})^{2})=(tr\gamma_{R})^{2}$

for all $\sigma\in Aut_{k}C$ and for all elliptic elements $\gamma_{R}\in\Gamma_{R}$ . Therefore, $k$ contains $(tr\gamma_{R})^{2}$ for
any elliptic element $\gamma_{R}\in\Gamma_{R}$ . But by the Corollary ofProposition 4 (Chapter 3, \S 11) and
by the Remark (Chapter 3, \S 14), $F$ is generated over $Q$ by $(tr\gamma_{R})^{2}$ of all elliptic elements
$\gamma_{R}\in\Gamma_{R}.$

Therefore $k$ contains $F.$ $\square $
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