Part 2. Full G_{p}-subfields over algebraic number fields.

The readers are suggested to recall the definitions of full G_{p}-subfield (§4) and quasiirreducibility (§16) of a G_{p}-field over \mathbf{C}. Throughout the following, an algebraic number field always means a finite algebraic extension of the field of rational numbers \mathbf{Q}.

Main results.

§18. Our main purpose in Part 2 of this chapter is to prove the following two theorems, Theorem 4 and Theorem 5. Later, we shall give some supplementary results (see $\S 32 \sim \S 36$).

Theorem 4. Every G_{p}-field over \mathbf{C} contains a full G_{p}-subfield over an algebraic number field.

If we impose quasi-irreducibility condition on a G_{p}-field over \mathbf{C}, then we get an essentially stronger result, as follows.

Theorem 5. Every quasi-irreducible G_{p}-field L over \mathbf{C} contains a unique full G_{p} subfield $L_{k_{0}}$ over an algebraic number field k_{0} satisfying the following properties; namely, if k is any subfield of \mathbf{C}, then there is a full G_{p}-subfield L_{k} over k if and only if k contains k_{0}, and moreover if k is such a field, then L_{k} is unique and is given by $L_{k}=L_{k_{0}} \cdot k$.

In short, every quasi-irreducible G_{p}-field over \mathbf{C} contains a smallest full G_{p}-subfield over an algebraic number field, and all other full G_{p}-subfields are its constant field extensions. This will be referred to as the existence and essential uniqueness of a full $G_{\mathfrak{p}}$ subfield over an algebraic number field of a quasi-irreducible G_{p}-field over C. Some variations of Theorem 5 will be given in §32, §33.

Although Theorem 5 is essentially stronger (and hence more noteworthy) than Theorem 4, it is almost a formal consequence of Theorem 4. Thus, our first task is to show this.

Reducing Theorem 5 to Theorem 4.

§19. In general, if $L \supset K_{1}, K_{2}$ are overfields of a field k such that $L=K_{1} K_{2}$ and that K_{1}, K_{2} are linearly disjoint over k, and if σ_{1}, σ_{2} are automorphisms of K_{1}, K_{2} respectively such that $\sigma_{1}\left|k=\sigma_{2}\right| k$, then there is a unique automorphism of L whose restrictions to K_{1}, K_{2} coincide with σ_{1}, σ_{2} respectively. This automorphism of L will be denoted by $\sigma_{1} \otimes \sigma_{2}$. The identity automorphism of a field K will be denoted by 1_{K}.

Lemma 2. Let L be a G_{p}-field over \mathbf{C}, and let L_{k} be a full G_{p}-subfield of L over a field k (C C). Then L_{k} is the fixed field of the group of all automorphisms of L of the form $1_{L_{k}} \otimes \sigma$ $\left(\sigma \in \mathrm{Aut}_{k} \mathbf{C}\right)$.

Proof. Put $G=\left\{1_{L_{k}} \otimes \sigma \mid \sigma \in \mathrm{Aut}_{k} \mathbf{C}\right\}$, and let L^{\prime} be the fixed field of \mathcal{G}. Then it is clear that $L^{\prime} \supset L_{k}$ and $L^{\prime} \cap \mathbf{C}=k$. Moreover, since L_{k} is G_{p}-invariant, elements $g_{\mathfrak{p}}$ of $G_{\mathfrak{p}}$ acting on L are of the form $\left.g_{p}\right|_{L_{k}} \otimes 1_{C}$. Therefore, elements of G commute with all elements of G_{p}. Therefore, L^{\prime} is $G_{p}-$ invariant. Hence by Proposition $2, L^{\prime}$ and \mathbf{C} are linearly disjoint over k. Therefore, L^{\prime} and $L_{k} \cdot \mathbf{C}$ must be linearly disjoint over L_{k}. But $L_{k} \cdot \mathbf{C}=L$. Therefore we get $L^{\prime}=$
 L_{k}.

Let L be a G_{p}-field over \mathbf{C}, and let σ be any automorphism of \mathbf{C}. An automorphism $\tilde{\sigma}$ of L will be called a G_{p}-extension of σ if $\left.\tilde{\sigma}\right|_{\mathbf{C}}=\sigma$ and if $\tilde{\sigma}$ commutes with the actions of all elements of G_{p}. We shall say that σ has a G_{p}-extension when such $\widetilde{\sigma}$ exists. In this case, all $G_{\mathfrak{p}}$-extensions of σ are given by $\widetilde{\sigma} \cdot z$ with $z \in 3$, where 3 is the centralizer of G_{p} in Aut ${ }_{\mathbf{C}} L$. Recall that 3 is always finite and $3=\{1\}$ if and only if L is quasi-irreducible (Corollary 3 of Theorem 3).

Now, let L be quasi-irreducible. Then if $\sigma \in$ Aut \mathbf{C} has a G_{p}-extension $\bar{\sigma}$, it is the unique G_{p}-extension of σ; hence $\bar{\sigma}$ always has a unique meaning. By this it is clear that if $\sigma, \tau \in$ Aut \mathbf{C} have G_{p}-extensions, then $\sigma \tau$ and σ^{-1} also have G_{p}-extensions given by

$$
\begin{equation*}
\widetilde{\sigma \tau}=\widetilde{\sigma \tau}, \quad \overline{\sigma^{-1}}=\tilde{\sigma}^{-1} \tag{41}
\end{equation*}
$$

Now let us look at Lemma 2 again, assuming now that L is quasi-irreducible. Then we see that for each $\sigma \in \operatorname{Aut}_{k} \mathbf{C}, 1_{L_{k}} \otimes \sigma$ gives the unique G_{p}-extension of σ. In fact, as has been shown before, $1_{L_{k}} \otimes \sigma$ commutes with all elements of G_{p}. Put, therefore, $\widetilde{\sigma}=1_{L_{k}} \otimes \sigma$ for each $\sigma \in \mathrm{Aut}_{k} \mathbf{C}$. Then by this lemma, L_{k} is the fixed field of the group of all $\widetilde{\sigma}$ with $\sigma \in \mathrm{Aut}_{k} \mathbf{C}$. But since the group of $\widetilde{\sigma}$ depends only on k and does not depend on L_{k}, we conclude that L_{k} is uniquely determined by k. We have therefore proved:

Proposition 5. Let L be a quasi-irreducible $G_{p}-$ field over \mathbf{C}, and let k be a subfield of C. If L contains a full G_{p}-subfield L_{k} over k, then it is unique; moreover, every $\sigma \in \operatorname{Aut}_{k} \mathbf{C}$ has a unique G_{p}-extension $\widetilde{\sigma}$, and L_{k} is the fixed field of the group of all $\widetilde{\sigma}$ with $\sigma \in \operatorname{Aut}_{k} \mathbf{C}$.
§20. Now we shall prove that Theorem 5 is reduced to Theorem 4. Let L be a quasi-irreducible G_{p}-field over \mathbf{C}, and assume that L contains a full G_{p}-subfield L_{k} over an algebraic number field k. Then every element of $\mathrm{Aut}_{k} \mathbf{C}$ has a unique G_{p}-extension. Therefore, if we denote by H the group ${ }^{9}$ of all $\sigma \in$ Aut \mathbf{C} which have G_{p}-extensions $\widetilde{\sigma}$, we have Aut $\mathbf{C} \supset H \supset \operatorname{Aut}_{k} \mathbf{C}$. But $[k: \mathbf{Q}]$ is finite, and hence H is of the form $H=\operatorname{Aut}_{k_{0}} \mathbf{C}$ with some intermediate field $k_{0} ; \mathbf{Q} \subset k_{0} \subset k$. Put

$$
\begin{equation*}
\mathcal{G}_{k_{0}}=\left\{\widetilde{\sigma} \mid \sigma \in \operatorname{Aut}_{k_{0}} \mathbf{C}\right\} \tag{42}
\end{equation*}
$$

[^0]and let $L_{k_{0}}$ be the fixed field of the group $\mathcal{G}_{k_{0}}$. We shall prove that $L_{k_{0}}$ is the desired smallest full G_{p}-subfield of L over k_{0}. First, it is clear that $L_{k_{0}}$ is G_{p}-invariant and that $L_{k_{0}} \cap \mathbf{C}=k_{0}$. Secondly, $\mathcal{G}_{k_{0}}$ contains
$$
\mathcal{G}_{k}=\left\{\widetilde{\sigma} \mid \sigma \in \operatorname{Aut}_{k} \mathbf{C}\right\}, \text { and }\left(\mathcal{G}_{k_{0}}: \mathcal{G}_{k}\right)=\left[k: k_{0}\right]<\infty .
$$

Moreover, L_{k} is the fixed field of \mathcal{G}_{k} (Proposition 5). Therefore, if we put

$$
\mathcal{G}_{k_{0}}=\sum_{i=1}^{d} \widetilde{\sigma}_{i} \mathcal{G}_{k} \quad\left(d=\left(\mathcal{G}_{k_{0}}: \mathcal{G}_{k}\right)=\left[k: k_{0}\right]\right)
$$

then for every $x \in L_{k}$, the elementary symmetric functions of $\widetilde{\sigma}_{1}(x), \cdots, \widetilde{\sigma}_{d}(x)$ are contained in $L_{k_{0}}$. Therefore we get $\left[L_{k_{0}}(x): L_{k_{0}}\right] \leq d$ for all $x \in L_{k}$, and hence [$L_{k}: L_{k_{0}}$] $\leq d$. But by Proposition 2, $L_{k_{0}}$ and \mathbf{C} are linearly disjoint over k_{0}; hence $\left[L_{k_{0}} \cdot k: L_{k_{0}}\right]=\left[k: k_{0}\right]=d$. Therefore, $L_{k_{0}} \cdot k=L_{k}$, and hence $L_{k_{0}} \cdot \mathbf{C}=L$. Therefore, $L_{k_{0}}$ is a full G_{p}-subfield of L over k_{0}. Now let $L_{k^{\prime}}$ be an arbitrary full G_{p}-subfield of L over a field $k^{\prime} \subset \mathbf{C}$. Then by Proposition 5, every element of Aut ${ }_{k^{\prime}} \mathbf{C}$ has a $G_{\mathfrak{p}}$-extension, and hence $k^{\prime} \supset k_{0}$. Moreover, by the same proposition, $L_{k^{\prime}}$ is unique, and hence it must coincide with $L_{k_{0}} \cdot k^{\prime}$. Conversely, if k^{\prime} is a subfield of \mathbf{C} containing k_{0}, then $L_{k_{0}} \cdot k^{\prime}$ gives the (unique) full G_{p}-subfield of L over k^{\prime}. Therefore, $L_{k_{0}}$ has all the properties stated in Theorem 5. That such $L_{k_{0}}$ is unique is obvious. So, Theorem 5 is reduced to Theorem 4.

Remark. Consider the group of all automorphisms of L that commute with the actions of all elements of G_{p}. Then since \mathbf{C} is the fixed field of G_{p}, such automorphisms leave \mathbf{C} invariant (as a whole). Therefore, by the definitions of k_{0} and $G_{k_{0}}$, this group coincides with $\mathcal{G}_{k_{0}}$. Therefore, $L_{k_{0}}$ is the fixed field of the centralizer of G_{p} in Aut L. (The centralizer of $G_{\mathfrak{p}}$ in Aut $t_{\mathbf{C}} L$ is trivial because of the quasi-irreducibility assumption on L.)

Preliminaries for the proof of Theorem 4.

§21. Before describing the method for the proof of Theorem 4, we need some definitions. Let L be a G_{p}-field over \mathbf{C}. Let V_{1}, \cdots, V_{n} be any finite set of open compact subgroups of $G_{\mathfrak{p}}$ which generate $G_{\mathfrak{p}}$. Put $V_{0}=\bigcap_{i=1}^{n} V_{i}$, and let $L_{i}(0 \leq i \leq n)$ be the fixed field of V_{i} in L. Then it is clear that L_{0} contains L_{1}, \cdots, L_{n} and is generated by them. Moreover,
(\#) L is the smallest algebraic extension of L_{0} that is normal over all $L_{i}(1 \leq i \leq n)$.
In fact, if M is any algebraic extension of L_{0} with this property, then $M \cap L$ also satisfies this property. But since $L \supset M \cap L \supset L_{0}, M \cap L$ corresponds to a compact subgroup Δ of V_{0}. Since $M \cap L / L_{i}$ are normal, Δ is a normal subgroup of V_{i} for all i. But $V_{i}(0 \leq i \leq n)$ generate $G_{\mathfrak{p}}$. Therefore, Δ is a normal subgroup of G_{p}. But Δ is compact and G_{p} is simple. Hence $\Delta=\{1\}$, so that $M \cap L=L$, hence $M \supset L$. Therefore, L is characterized as the smallest algebraic extension of L_{0} which is normal over all $L_{i}(0 \leq i \leq n)$. This characterization will be used later.

Let V_{i} and $L_{i}(0 \leq i \leq n)$ be as above, and let k be a subfield of \mathbf{C}. We shall call a system $\left\{L_{i}^{\prime} \mid 0 \leq i \leq n\right\}$ of subfields of L_{0} a k-form of $\left\{L_{i} \mid 0 \leq i \leq n\right\}$ if the following conditions are satisfied:
(i) $L_{i}^{\prime} \cdot \mathbf{C}=L_{i}, L_{i}^{\prime} \cap \mathbf{C}=k(0 \leq i \leq n)$
(ii) $L_{0}^{\prime} \supset L_{i}^{\prime}(1 \leq i \leq n)$
(iii) L_{0}^{\prime} and \mathbf{C} are linearly disjoint over k.

§22. Now our method for the proof of Theorem 4 is as follows. First, we shall prove that if k is a subfield of \mathbf{C} such that $\left\{L_{i} \mid 0 \leq i \leq n\right\}$ has a k-form, then L contains a full G_{p}-subfield over a finite extension of k. The method is algebraic, and is applicable to G_{p}-fields over any constant field. Secondly, we put

$$
n=2, \quad V_{1}=P S L_{2}\left(O_{p}\right), \quad V_{2}=\omega^{-1} V_{1} \omega \quad \text { where } \quad \omega=\left(\begin{array}{ll}
0 & 1 \\
\pi & 0
\end{array}\right)
$$

and π is a prime element of k_{p}, and prove that the corresponding $\left\{L_{i} \mid 0 \leq i \leq 2\right\}$ has a k-form for some algebraic number field k. Here, the method is analytic, i.e., it is based on the one-to-one correspondence between L and Γ (Theorem 1, §9). The reason for this particular choice of V_{1} and V_{2} is that G_{p} is a free product of V_{1} and V_{2} with amalgamated subgroup $V_{1} \cap V_{2}$ (see Lemma 7, §28). This fact is an essential point in our proof.
§23. Thus, our first step is to prove the following proposition.
Proposition 6. Let L be a G_{p}-field over \mathbf{C}, and let k be a subfield of \mathbf{C}. Let $V_{i}(1 \leq i \leq$ n) be a set of open compact subgroups of G_{p} which generate G_{p}, and put $V_{0}=\bigcap_{i=1}^{n} V_{i}$. Let $L_{i}(0 \leq i \leq n)$ be the fixed fields of V_{i} in L. Then if $\left\{L_{i} \mid 0 \leq i \leq n\right\}$ has a k-form, L contains a full G_{p}-subfield over a finite extension of k.

To prove this, we need several lemmas.

§24.

Lemma 3. Let V be an open compact subgroup of $G_{p}=P S L_{2}\left(k_{p}\right)$, and let \mathcal{V} be the set of all subgroups of G_{p} of the form $\bigcap_{i=1}^{n} x_{i}^{-1} V x_{i}$ with $n \geq 1$ and $x_{1}, \cdots, x_{n} \in G_{p}$. Then \mathcal{V} forms a basis of neighborhoods of the identity of G_{p}.

Proof. Let $y_{1}, y_{2}, \cdots, y_{n}, \cdots$ be a set of representatives of the coset space $V \backslash G_{p}$ (which is clearly countable). Put $V_{n}=\bigcap_{i=1}^{n} y_{i}^{-1} V y_{i}(n \geq 1)$. Then we get a descending sequence of open compact subgroups $V_{1} \supset V_{2} \supset \cdots$. Since $\bigcap_{n=1}^{\infty} V_{n}=\bigcap_{x \in G_{\mathrm{p}}} x^{-1} V x$ is a compact normal subgroup of G_{p} and since G_{p} is a simple group, we get $\bigcap_{n=1}^{\infty} V_{n}=\{1\}$. Since all V_{n} are compact, this implies that for any open subset U of G_{p} containing 1, there exists some n such that $V_{n} \subset U$.

Corollary. Let φ be an automorphism, as an abstract group, of G_{p}. If there is an open compact subgroup V of G_{p} such that $V^{\varphi}=V$, then φ is bicontinuous.

Proof. Let \mathcal{V} be as in Lemma 3. Then φ and φ^{-1} leave \mathcal{V} invariant.
Lemma 4. There exists a finite set of open compact subgroups V_{1}, \cdots, V_{n} of G_{p} such that V_{1}, \cdots, V_{n} generate G_{p} and that every automorphism φ of G_{p} satisfying $V_{i}^{\varphi}=V_{i}$ for all $i(1 \leq i \leq n)$ is an inner automorphism by some element of $\bigcap_{i=1}^{n} V_{i}$.

Proof. Let $\sigma \in$ Aut $_{\mathbf{Q}_{p}} k_{p}$. Then σ acts on $P L_{2}\left(k_{p}\right)$ in a natural manner, and leaves $G_{\mathfrak{p}}=P S L_{2}\left(k_{\mathfrak{p}}\right), U_{\mathfrak{p}}=P L_{2}\left(O_{\mathfrak{p}}\right)$ and $G_{\mathfrak{p}} \cap U_{\mathfrak{p}}=P S L_{2}\left(O_{\mathfrak{p}}\right)$ invariant. First, let us check:

$$
\bigcap_{x \in G_{p}} x^{-1} U_{p} x^{\sigma}= \begin{cases}\{1\} & \cdots \sigma=1, \tag{43}\\ \phi & \cdots \sigma \neq 1 .\end{cases}
$$

Let p be the characteristic of O_{p} / \mathfrak{p}, and put $z_{m}=\left(\begin{array}{cc}p^{m} & 0 \\ 0 & p^{-m}\end{array}\right)(m \in \mathbf{Z})$. So, $z_{m}^{\sigma}=z_{m}$, and

$$
z_{m}^{-1} U_{p} z_{m} \cap U_{p}=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in U_{p} \right\rvert\, b p^{2 m}, c p^{-2 m} \in O_{p}\right\} .
$$

Hence

$$
\bigcap_{m=-\infty}^{\infty} z_{m}^{-1} U_{p} z_{m}^{\sigma}=\bigcap_{m=-\infty}^{\infty} z_{m}^{-1} U_{\mathfrak{p}} z_{m}=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right) \in U_{p}\right\} .
$$

Let this last group be denoted by W, and put $y_{m}=\left(\begin{array}{cc}p^{-m} & p^{-m} \\ 0 & p^{m}\end{array}\right)$ for $m \geq 0$. Then

$$
W \cap \bigcap_{m=0}^{\infty} y_{m}^{-1} U_{p} y_{m}^{\sigma}=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right) \in U_{p}\right\}=\{1\} .
$$

Hence $\bigcap_{x \in G_{\mathfrak{p}}} x^{-1} U_{p} x^{\sigma}$ is either $\{1\}$ or ϕ. If $\sigma=1$, then 1 is contained in the intersection; hence $\bigcap_{x \in G_{p}} x^{-1} U_{p} x^{\sigma}=\{1\}$ for $\sigma=1$. If $\sigma \neq 1$, take $\alpha \in O_{p}$ such that $\alpha^{\sigma} \neq \alpha$. Then, there exists $m \geq 0$ such that $\alpha^{\sigma}-\alpha \not \equiv 0\left(\bmod p^{m}\right)$. Put $z=\left(\begin{array}{cc}p^{-m} & \alpha \\ 0 & p^{-m}\end{array}\right)$. Then
$z^{\sigma} \cdot z^{-1}=\left(\begin{array}{cc}1 & \frac{\alpha^{\sigma}-\alpha}{p^{m}} \\ 0 & 1\end{array}\right) \notin U_{\mathfrak{p}} ;$ hence $z^{-1} U_{\mathfrak{p}} z^{\sigma} \nexists 1$. Hence $\bigcap_{x \in G_{\mathfrak{p}}} x^{-1} U_{p} x^{\sigma}=\phi$ for $\sigma \neq 1$; which settles (43).

Now since $x^{-1} U_{\mathfrak{p}} x^{\sigma}$ are compact, and since Aut $_{Q_{p}} k_{\mathfrak{p}}$ is finite and $P S L_{2}\left(O_{\mathfrak{p}}\right)$ is an open set of $P L_{2}\left(k_{\mathrm{p}}\right)$ containing 1 , (43) implies that we can choose a finite set of elements $1=x_{1}, \cdots, x_{n}$ of G_{p} such that

$$
\left\{\begin{array}{l}
\bigcap_{i=1}^{n} x_{i}^{-1} U_{\mathrm{p}} x_{i}^{\sigma}=\phi \text { for all } \sigma \in \text { Aut }_{\mathbf{Q}_{p}} k_{\mathrm{p}} \text { with } \sigma \neq 1, \text { and } \tag{44}\\
\bigcap_{i=1}^{n} x_{i}^{-1} U_{\mathrm{p}} x_{i} \subset P S L_{2}\left(O_{p}\right) .
\end{array}\right.
$$

Put $V_{1}=P S L_{2}\left(O_{p}\right)=x_{1}^{-1} P S L_{2}\left(O_{p}\right) x_{1}$, and $V_{i}=x_{i}^{-1} P S L_{2}\left(O_{p}\right) x_{i}=x_{i}^{-1} V_{1} x_{i}(1 \leq i \leq$ n). They are open compact subgroups of G_{p}. Now let φ be an automorphism of G_{p} satisfying $V_{i}^{\varphi}=V_{i}$ for all $i(1 \leq i \leq n)$. By the Corollary of Lemma 3, φ is a topological automorphism of G_{p}; hence by Lemma 1 (ii) (iii), φ is of the form $\sigma \cdot \varphi_{x}=\varphi_{x} \circ \sigma$, with $\sigma \in \operatorname{Aut}_{\mathbf{Q}_{p}} k_{\mathrm{p}}, x \in P L_{2}\left(k_{\mathrm{p}}\right)$, where $\varphi_{x}(y)=x^{-1} y x$ for all $y \in G_{p}$. Since $V_{1}^{\sigma}=V_{1}$, and since the normalizer of $V_{1}=P S L_{2}\left(O_{p}\right)$ in $P L_{2}\left(k_{p}\right)$ is $U_{\mathfrak{p}}=P L_{2}\left(O_{\mathfrak{p}}\right)$ (as can be easily checked), $V_{1}^{\varphi}=V_{1}$ implies $x \in U_{\mathfrak{p}}$. Now since $V_{i}^{\varphi}=V_{i}$, we get $x^{-1}\left(x_{i}^{\sigma}\right)^{-1} V_{1} x_{i}^{\sigma} x=x_{i}^{-1} V_{1} x_{i}$; hence $x_{i} x^{-1}\left(x_{i}^{\sigma}\right)^{-1} \in U_{\mathfrak{p}}$; hence $x^{-1} \in x_{i}^{-1} U_{\mathfrak{p}} x_{i}^{\sigma}$ for all $i(1 \leq i \leq n)$. Therefore, by (44) we get $\sigma=1$ and $x \in \bigcap_{i=1}^{n} x_{i}^{-1} U_{p} x_{i} \subset V_{1}$. Since $V_{1} \cap x^{-1} U_{p} x \subset x^{-1} V_{1} x$ for any $x \in G_{p}$, we get $x \in \bigcap_{i=1}^{n} x_{i}^{-1} V_{1} x_{i}=\bigcap_{i=1}^{n} V_{i}$. Hence $\varphi=\varphi_{x}$ with $x \in \bigcap_{i=1}^{n} V_{i}$. Finally, it is clear by (44) that $x_{i} \notin U_{p}$ for some i; hence $V_{i} \neq V_{1}$ for some i. Hence the subgroup of G_{p} generated by V_{1}, \cdots, V_{n} contains $V_{1}=P S L_{2}\left(O_{p}\right)$ as a proper subgroup. But by Lemma 11 of Chapter $1, V_{1}$ is a maximal subgroup of G_{p}. Therefore, V_{1}, \cdots, V_{n} generate G_{p}; which completes the proof of Lemma 4.
§25. The following lemma gives a criterion for the existence of a full G_{p}-subfield (of a G_{p}-field) over a given field $k \subset \mathbf{C}$.

Lemma 5. Let V_{1}, \cdots, V_{n} be as in Lemma 4, and put $V_{0}=\bigcap_{i=1}^{n} V_{i}$. Let L be a G_{p}-field over \mathbf{C}, let $L_{i}(0 \leq i \leq n)$ be the fixed field of V_{i} in L, and let k be a subfield of C. Suppose that $\left\{L_{i} \mid 0 \leq i \leq n\right\}$ has a k-form $\left\{L_{i}^{\prime} \mid 0 \leq i \leq n\right\}$. Then L contains a full G_{p}-subfield L^{\prime} over k, satisfying $L^{\prime} \cap L_{i}=L_{i}^{\prime}$ for all $i(0 \leq i \leq n)$.

Proof. For each $\sigma \in$ Aut $_{k} \mathbf{C}$, put $\sigma_{0}=1_{L_{0}^{\prime}} \otimes \sigma$. Then σ_{0} is an automorphism of L_{0}, and we have $\sigma_{0}\left(L_{i}\right)=L_{i}$ for all $i(0 \leq i \leq n)$. Let $\widetilde{\sigma}_{0}$ be any extension of σ_{0} to an isomorphism of L. Then, since L is the smallest algebraic extension of L_{0} which is normal over L_{1}, \cdots, L_{n} (see $\S 21$), the field $\widetilde{\sigma}_{0}(L)$ is the smallest algebraic extension of $\sigma_{0}\left(L_{0}\right)=L_{0}$ which is normal over $\sigma_{0}\left(L_{i}\right)=L_{i}$ for all i. Therefore, we get $\widetilde{\sigma}_{0}(L)=L$; hence $\widetilde{\sigma}_{0}$ is an automorphism of L. Now $\widetilde{\sigma}_{0}$ defines an automorphism of the group Aut L by

$$
\begin{equation*}
\operatorname{Aut}_{\mathbf{C}} L \ni \tau \mapsto \widetilde{\sigma}_{0}^{-1} \tau \widetilde{\sigma}_{0} \in \operatorname{Aut}_{\mathbf{C}} L \tag{45}
\end{equation*}
$$

Since G_{p} is a characteristic subgroup of Aut L (Corollary 2 of Theorem 3), G_{p} is invariant by this action of $\widetilde{\sigma}_{0}$. Moreover, since $\sigma_{0}\left(L_{i}\right)=L_{i}$ holds for all i, we get $\widetilde{\sigma}_{0} V_{i} \widetilde{\sigma}_{0}^{-1}=V_{i}$ for all i (this also shows that G_{p} is $\widetilde{\sigma}_{0}$-invariant). Therefore, $\widetilde{\sigma}_{0}$ induces an automorphism φ of G_{p} which leaves all V_{i} invariant. Therefore, by Lemma 4, φ must be an inner automorphism by some element ρ of $V_{0}=\bigcap_{i=1}^{\infty} V_{i}$. Therefore, $\widetilde{\sigma}_{0}^{-1} \tau \widetilde{\sigma}_{0}=\rho^{-1} \tau \rho$ for all $\tau \in G_{p}$. Now put $\widetilde{\sigma}=\widetilde{\sigma}_{0} \rho^{-1}$. Then $\widetilde{\sigma}$ is an automorphism of L which commutes with all elements of G_{p} and whose restriction to L_{0} coincides with σ_{0}. Since the centralizer of G_{p} in $\operatorname{Aut}\left(L / L_{0}\right)=V_{0}$ is trivial, such $\widetilde{\sigma}$ is uniquely determined by σ_{0}, and hence also by σ (and $\left.L_{0}^{\prime}\right)$. Therefore, we have $\widetilde{\sigma \tau}=\widetilde{\sigma \tau}$ and $\widetilde{\sigma^{-1}}=\widetilde{\sigma}^{-1}$ for all $\sigma, \tau \in \operatorname{Aut}_{k} \mathbf{C}$. Let \mathcal{G} be the group of all $\widetilde{\sigma}\left(\sigma \in \mathrm{Aut}_{k} \mathbf{C}\right)$, and let L^{\prime} be the fixed field of \mathcal{G} in L;

$$
\left\{\begin{array}{l}
\mathcal{G}=\left\{\widetilde{\sigma} \mid \sigma \in \mathrm{Aut}_{k} \mathbf{C}\right\} \tag{46}\\
L^{\prime}=\{x \in L \mid \widetilde{\sigma}(x)=x, \forall \widetilde{\sigma} \in \mathcal{G}\}
\end{array}\right.
$$

Then (since $\widetilde{\sigma}$ commutes with all elements of G_{p}) it is clear that L^{\prime} is G_{p}-invariant, $L^{\prime} \cap \mathbf{C}=$ k, and that L^{\prime} contains all $L_{i}^{\prime}(0 \leq i \leq n)$. Put $M=L^{\prime} . \mathbf{C}$. Then M is G_{p}-invariant, and $M \supset L_{0}^{\prime} \cdot \mathbf{C}=L_{0}$. Therefore, M is the fixed field of some compact subgroup U of V_{0}. But since M is G_{p}-invariant, U must be a normal subgroup of G_{p}; hence $U=\{1\}$; hence $M=L$. Therefore, L^{\prime} is a full G_{p}-subfield of L over k.

Finally, since L^{\prime} contains L_{i}^{\prime}, the inclusion $L^{\prime} \cap L_{i} \supset L_{i}^{\prime}$ is obvious. But L^{\prime} and \mathbf{C} are linearly disjoint over k; hence $L^{\prime} \cap L_{i}$ and \mathbf{C} are also linearly disjoint over k. Therefore, by $L_{i}^{\prime} \cdot \mathbf{C}=L_{i}$, we get $L^{\prime} \cap L_{i}=L_{i}^{\prime}$; which completes the proof of Lemma 5 .

Remark. A full G_{p}-subfield L^{\prime} over k satisfying $L^{\prime} \cap L_{i}=L_{i}^{\prime}$ for all $i(0 \leq i \leq n)$ is moreover unique. In fact, if $L^{\prime \prime}$ is another such field, then it is the fixed field of the group of all $1_{L^{\prime \prime}} \otimes \sigma$ with $\sigma \in \operatorname{Aut}_{k} \mathbf{C}$ (Lemma 2). But since such $1_{L^{\prime \prime}} \otimes \sigma$ commute with all elements of G_{p}, and since the restriction to L_{0} of such $1_{L^{\prime \prime}} \otimes \sigma$ is obviously $1_{L_{0}^{\prime}} \otimes \sigma$, we get $\widetilde{\sigma}=1_{L^{\prime \prime}} \otimes \sigma, \widetilde{\sigma}$ being as in the proof of the above Lemma. Therefore, $L^{\prime \prime}$ must be the fixed field of \mathcal{G}; hence $L^{\prime \prime}=L^{\prime}$. Therefore, L^{\prime} is uniquely determined by $\left\{L_{i}^{\prime} \mid 0 \leq i \leq n\right\}$.

Conversely, if L^{\prime} is any full G_{p}-subfield of L over k, then by the Corollary of Proposition 2, it is clear that $\left\{L^{\prime} \cap L_{i} \mid 0 \leq i \leq n\right\}$ gives a k-form of $\left\{L_{i} \mid 0 \leq i \leq n\right\}$. Therefore, k-forms $\left\{L_{i}^{\prime} \mid 0 \leq i \leq n\right\}$ of $\left\{L_{i} \mid 0 \leq i \leq n\right\}$ and full $G_{\mathfrak{p}}$-subfields L^{\prime} of L over k correspond in a one-to-one manner by $L_{i}^{\prime}=L^{\prime} \cap L_{i}(0 \leq i \leq n)$. In particular, if L is quasi-irreducible, then L^{\prime} is unique (if exists at all) by Proposition 5; hence $\left\{L_{i}^{\prime} \mid 0 \leq i \leq n\right\}$ is also unique (if exists at all). Of course, we must not forget that these are under the assumption that the subgroups $V_{i}(1 \leq i \leq n)$ of G_{p} satisfy the properties stated in Lemma 4.

$\$ 26$.

Proof of Proposition 6. Now we shall prove Proposition 6 (§23). Let $L_{i}(0 \leq i \leq n)$ be as in Proposition 6, and let $\left\{L_{i}^{\prime} \mid 0 \leq i \leq n\right\}$ be a k-form of $\left\{L_{i} \mid 0 \leq i \leq n\right\}$. Let M be the algebraic closure of L_{0}^{\prime} in L. We shall show that M is a full G_{p}-subfield of L over the algebraic closure \bar{k} of k. First, let i be any index with $1 \leq i \leq n$, and let $x \in M$. Take any $v_{i} \in V_{i}$. Then since x is algebraic over $L_{i}^{\prime}, v_{i}(x)$ is also algebraic over $v_{i}\left(L_{i}^{\prime}\right)=L_{i}^{\prime}$. Therefore, M is invariant by V_{i}. But since G_{p} is generated by $V_{i}(1 \leq i \leq n), M$ is invariant by G_{p}. Secondly, since L_{0}^{\prime} and \mathbf{C} are linearly disjoint over k, we get $M \cap \mathbf{C}=\bar{k}$. Finally, $M \cdot \mathbf{C}$ is a G_{p}-subfield of L over \mathbf{C}, and $M \cdot \mathbf{C}$ contains L_{0}. Therefore, $M \cdot \mathbf{C}=L$; so that M is a full G_{p}-subfield of L over k.

Now take (a set of) open compact subgroups of G_{p} satisfying the properties stated in Lemma 4, and call them W_{1}, \cdots, W_{m}. Put $W_{0}=\bigcap_{j=1}^{m} W_{j}$, and let $M_{j}(0 \leq j \leq m)$ be the fixed field of W_{j} in M. Then by the Corollary of Proposition 2 (§3), $M_{j} \mathrm{C}$ is the fixed field of W_{j} in L, and $\left\{M_{j} \mid 0 \leq j \leq m\right\}$ is a \bar{k}-form of $\left\{M_{j} \mathbf{C} \mid 0 \leq j \leq m\right\}$. Now let C_{j} $(0 \leq j \leq m)$ be some affine models of M_{j} defined over \bar{k}, and let $f_{j}(1 \leq j \leq m)$ be the rational maps of C_{0} onto C_{j} defined by the inclusion $M_{0} \supset M_{j}$. Thus f_{j} are also defined over \bar{k}. Now, C_{j} and f_{j} are all defined over a subfield of \bar{k} which is finitely generated over Q, and therefore, they are defined over a finite extension k^{\prime} of k. Let $M_{j}^{\prime}(0 \leq j \leq m)$ be the field of k^{\prime}-rational functions on C_{j}. Then it is clear that $\left\{M_{j}^{\prime} \mid 0 \leq j \leq m\right\}$ is a k^{\prime}-form of $\left\{M_{j} \mathbf{C} \mid 0 \leq j \leq m\right\}$, and hence by Lemma 5 there is a full G_{p}-subfield of L over k^{\prime}. This proves Proposition 6.

More lemmas.

§27. Now by Proposition 6, Theorem 4 is reduced ${ }^{10}$ to the following:
Lemma 6 (Main lemma). Put $V_{1}=P S L_{2}\left(O_{p}\right), V_{2}=\omega^{-1} V_{1} \omega$ and $V_{0}=V_{1} \cap V_{2}$, where $\omega=\left(\begin{array}{ll}0 & 1 \\ \pi & 0\end{array}\right)$ and π is a prime element of k_{p}. Let L be a G_{p}-field over \mathbf{C}, and let L_{i} $(0 \leq i \leq 2)$ be the fixed field of V_{i}. Then $\left\{L_{i} \mid 0 \leq i \leq 2\right\}$ has a k-form for some algebraic number field k.

For the proof of this, the following two lemmas, Lemma 7 (§28) and Lemma 8 (§29), are basic.

§28.

Lemina 7. Let $V_{i}(0 \leq i \leq 2)$ be as in Lemma 6. Then G_{p} is the free product of V_{1} and V_{2} with amalgamated subgroup V_{0}.

[^1]Proof. Since V_{2} consists of all elements of $G_{\mathfrak{p}}$ that are contained in $\left(\begin{array}{cc}O_{\mathfrak{p}} & \mathfrak{p}^{-1} \\ \mathfrak{p} & O_{\mathfrak{p}}\end{array}\right)$, we have

$$
V_{0}=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in V_{1} \right\rvert\, c \equiv 0(\bmod \mathfrak{p})\right\} .
$$

Therefore, $\left(V_{1}: V_{0}\right)=\left(V_{2}: V_{0}\right)=q+1$ (note that $\omega^{-1} V_{2} \omega=V_{1}$, since $\omega^{2}=\left(\begin{array}{ll}\pi & 0 \\ 0 & \pi\end{array}\right)$. Put $X=P L_{2}\left(k_{\mathfrak{p}}\right), U_{\mathfrak{p}}=P L_{2}\left(O_{\mathfrak{p}}\right)$ and

$$
B_{\mathfrak{p}}=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in U_{\mathfrak{p}} \right\rvert\, c \equiv 0(\bmod \mathfrak{p})\right\} .
$$

Then $\left(U_{\mathfrak{p}}: B_{\mathfrak{p}}\right)=q+1$ and $B_{\mathfrak{p}} \cap V_{1}=V_{0}$, and hence we have $U_{\mathfrak{p}}=B_{\mathfrak{p}} V_{1}$. Therefore, if $M_{0}=$ $1, M_{1}, \cdots, M_{q}$ is a set of representatives of $V_{0} \backslash V_{1}$, then it is also a set of representatives of $B_{\mathfrak{p}} \backslash U_{\mathfrak{p}}$. But since $B_{\mathfrak{p}}=U_{\mathfrak{p}} \cap \omega^{-1} U_{\mathfrak{p}} \omega$, we see immediately that $\omega M_{0}=\omega, \omega M_{1}, \cdots, \omega M_{q}$ is a set of representatives of $U_{p} \backslash U_{p} \omega U_{p}$. Now for each $x \in X$, let $l(x)$ be the length of x (see Chapter $1, \S 15$), and let $X_{l}(l=0,1,2, \cdots)$ be the set of all elements of X with length l. Then $X_{0}=U_{p}, X_{1}=U_{p} \omega U_{p}$, and therefore, $\omega M_{0}=\omega, \omega M_{1}, \cdots, \omega M_{q}$ is a set of representatives of $X_{0} \backslash X_{1}$. Put $\pi_{i}=\omega M_{i}(0 \leq i \leq q)$, and look at Lemma 5 of Chapter 1, §16. Then since $\pi_{0} \pi_{i}=M_{i} \in U_{\mathfrak{p}}=X_{0}$ for all i, we see immediately by this Lemma that elements x of X are expressed uniquely in the form

$$
x=u_{p} \omega M_{i_{1}} \omega M_{i_{2}} \cdots \omega M_{i_{l}},
$$

with $u_{p} \in U_{p}$ and $i_{\nu} \neq 0$ for $v=1,2, \cdots, l-1$. But since $U_{p}=\sum_{i=0}^{q} B_{p} M_{i}$, this shows that every element x of X is expressed uniquely in the form :

$$
\begin{equation*}
x=b_{p} M_{i_{0}} \omega M_{i_{1}} \omega M_{i_{2}} \cdots \omega M_{i_{l}}, \quad b_{p} \in B_{p}, \quad i_{v} \neq 0(1 \leq v \leq l-1) \tag{47}
\end{equation*}
$$

In this situation, moreover, l is the length of x (see Lemma 5 of Chapter 1). It is clear that x is contained in $G_{\mathfrak{p}}=P S L_{2}\left(k_{\mathfrak{p}}\right)$ if and only if $l \equiv 0(\bmod 2)$ and $b_{\mathfrak{p}} \in V_{0}$.

Now let $G_{\mathfrak{p}}^{\prime}$ be the free product of V_{1} and V_{2} with amalgamated subgroup V_{0}. Then since $M_{0}=1, M_{1}, \cdots, M_{q}$ resp. $\omega^{-1} M_{0} \omega=1, \omega^{-1} M_{1} \omega, \cdots, \omega^{-1} M_{q} \omega$ are the sets of representatives of $V_{0} \backslash V_{1}$ resp. $V_{0} \backslash V_{2}$, every element x^{\prime} of $G_{\mathfrak{p}}^{\prime}$ is expressed uniquely in the form

$$
x^{\prime}=v_{0} M_{i_{0}}\left(\omega^{-1} M_{i_{1}} \omega\right) M_{i_{2}}\left(\omega^{-1} M_{i_{3}} \omega\right) M_{i_{4}} \cdots\left(\omega^{-1} M_{i_{l-1}} \omega\right) M_{i_{l}}
$$

with $v_{0} \in V_{0}$ and $i_{v} \neq 0$ for $v=1,2, \cdots, l-1{ }^{11}$ But since $\omega^{2}=1$ (when ω is considered as an element of X) and since the expression (47) of the element of X is unique, the natural homomorphism of $G_{\mathfrak{p}}^{\prime}$ onto $G_{\mathfrak{p}}$ is injective. Therefore, $G_{\mathfrak{p}}$ is the free product of V_{1} and V_{2} with amalgamated subgroup V_{0}.

Remark. In the same manner by using the uniqueness of the expression (47), we can prove that $X=P L_{2}\left(k_{\mathfrak{p}}\right)$ is the free product of $U_{\mathfrak{p}}$ and $B_{\mathfrak{p}} \cup B_{p} \omega$ with amalgamated subgroup B_{p}.
${ }^{11}$ Cf. Kurosh [22].

Corollary. Let Γ_{p} be a dense subgroup of G_{p} and put $\Gamma_{p}^{(i)}=V_{i} \cap \Gamma_{p}(i=0,1,2)$, where V_{i} are as in Lemmas 6, 7. Then Γ_{p} is the free product of $\Gamma_{p}^{(1)}$ and $\Gamma_{p}^{(2)}$ with amalgamated subgroup $\Gamma_{\mathfrak{p}}^{(0)}$.

Proof. Since Γ_{p} is dense in G_{p}, it is clear that $\Gamma_{p}^{(1)}$ and $\Gamma_{p}^{(2)}$ generate Γ_{p}. Let $M_{0}=$ $1, M_{1}, \cdots, M_{q}$ resp. $N_{0}=1, N_{1}, \cdots, N_{q}$ be sets of representatives of $\Gamma_{\mathfrak{p}}^{(0)} \backslash \Gamma_{\mathfrak{p}}^{(1)}$ resp. $\Gamma_{\mathfrak{p}}^{(0)} \backslash \Gamma_{\mathfrak{p}}^{(2)}$. Then they are at the same time sets of representatives of $V_{0} \backslash V_{1}$ resp. $V_{0} \backslash V_{2}$, and hence by Lemma 7, every element x of G_{p} is expressed uniquely in the form $x=$ $v_{0} M_{i_{0}} N_{i_{1}} M_{i_{2}} N_{i_{3}} \cdots N_{i_{1-1}} M_{i_{1}}$ with $v_{0} \in V_{0}$ and $i_{v} \neq 0$ for $v=1,2, \cdots, l-1$. It is clear that $x \in \Gamma_{\mathfrak{p}}$ if and only if $\nu_{0} \in \Gamma_{\mathfrak{p}}^{(0)}$. Therefore, $\Gamma_{\mathfrak{p}}$ is the free product of $\Gamma_{\mathfrak{p}}^{(1)}$ and $\Gamma_{\mathfrak{p}}^{(2)}$ with amalgamated subgroup $\Gamma_{p}^{(0)}$.
§29. This is the most crucial lemma in the proof of Theorem 4.
Lemma 8. ${ }^{12}$ Let Γ be a discrete subgroup of $G=G_{R} \times G_{p}$ whose quotient G / Γ is of finite invariant volume and whose projections $\Gamma_{\mathbf{R}}, \Gamma_{p}$ are dense in $G_{\mathbf{R}}, G_{p}$ respectively. Let φ be a homomorphism (as abstract groups) of $\Gamma_{\mathbf{R}}$ into $G_{\mathbf{R}}$ such that for some open compact subgroup V of $G_{p},\left.\varphi\right|_{\Gamma_{\mathbf{R}}^{V}}$ is injective, $\varphi\left(\Gamma_{\mathbf{R}}^{V}\right)$ is discrete in $G_{\mathbf{R}}$, and the quotient $G_{\mathbf{R}} / \varphi\left(\Gamma_{\mathbf{R}}^{V}\right)$ is of finite invariant volume. Then, there is an element $x \in G_{\mathbf{R}}^{\prime}=P L_{2}(\mathbf{R})$ such that $\varphi\left(\gamma_{\mathbf{R}}\right)=x^{-1} \gamma_{\mathbf{R}} x$ for all $\gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}}$.

Proof. The proof of Lemma 8 is divided into four steps, as follows.
(i) To prove that φ is injective, and that if we put

$$
\begin{equation*}
\Gamma^{\prime}=\left\{\varphi\left(\gamma_{\mathbf{R}}\right) \times \gamma_{\mathrm{p}} \in G \mid \gamma_{\mathbf{R}} \times \gamma_{\mathfrak{p}}=\gamma \in \Gamma\right\} \tag{48}
\end{equation*}
$$

then Γ^{\prime} is also a discrete subgroup of G satisfying the same conditions as Γ.
(ii) To prove that $\varphi\left(\gamma_{R}\right)$ is elliptic ${ }^{13}$ if and only if γ_{R} is elliptic.
(iii) To prove that if φ is any injective homomorphism (as abstract groups) of $\Gamma_{\mathbf{R}}$ into $G_{\mathbf{R}}$ satisfying the property (ii), then $\varphi: \Gamma_{R} \rightarrow \varphi\left(\Gamma_{R}\right)$ is bicontinuous.
(iv) To show that such φ as in (iii) are induced by some inner automorphisms of $G_{\mathbf{R}}^{\prime}=$ $P L_{2}(\mathbf{R})$.
Proof of (i). Let Δ_{R} be the kernel of φ. Then Δ_{R} is normal in Γ_{R}, and since $\left.\varphi\right|_{\Gamma_{R}^{\prime}}$ is injective, $\Delta_{\mathbf{R}} \cap \Gamma_{\mathbf{R}}^{V}=\{I\}$. Let $\Delta_{\mathfrak{p}}$ be the subgroup of $\Gamma_{\mathfrak{p}}$ corresponding to $\Delta_{\mathbf{R}}$ by the canonical identification $\Gamma_{\mathbf{R}} \cong \Gamma_{\mathfrak{p}}$. Then Δ_{p} is normal in Γ_{p} and $\Delta_{p} \cap V=\{I\}$; hence Δ_{p} is a discrete normal subgroup of the topological closure of Γ_{p}, i.e., G_{p}. But G_{p} is simple. Therefore, $\Delta_{p}=\{I\}$; hence $\Delta_{\mathbf{R}}=\{I\}$, so that φ is injective. Since $\left(\Gamma_{\mathbf{R}}: \Gamma_{\mathbf{R}}^{V}\right)=\left(G_{p}: V\right)=\infty$, we get $\left(\varphi\left(\Gamma_{\mathbf{R}}\right): \varphi\left(\Gamma_{\mathbf{R}}^{V}\right)\right)=\infty$; and since $\varphi\left(\Gamma_{\mathbf{R}}^{V}\right)$ is a discrete subgroup of $G_{\mathbf{R}}$ whose quotient has finite invariant volume, $\varphi\left(\Gamma_{R}\right)$ must be dense ${ }^{14}$ in G_{R}. Now (i) is a direct consequence of Proposition 2 (Chapter 1, §2).

Proof of (ii). This is a direct consequence of the following lemma.

[^2]Lemma 9. Let Γ be as in Lemma 8, and let $\gamma=\gamma_{\mathrm{R}} \times \gamma_{\mathrm{p}} \in \Gamma$. Then γ_{R} is elliptic if and only if the centralizer of γ_{p} in Γ_{p} is discrete in G_{p}.

It is clear that Lemma 9 implies (ii) at once. In fact, by applying Lemma 9 to Γ and Γ^{\prime}, we see immediately that $\gamma_{\mathbf{R}}$ or $\varphi\left(\gamma_{\mathbf{R}}\right)$ is elliptic if and only if the centralizer of γ_{p} in Γ_{p} is discrete in G_{p} (note that $\Gamma_{p}^{\prime}=\Gamma_{p}$). Therefore, $\varphi\left(\gamma_{\mathbf{R}}\right)$ is elliptic if and only if $\gamma_{\mathbf{R}}$ is so.

Proof of Lemma 9. In general, for any element x of any group X, we denote by X_{x} the centralizer of x in X. Let $\gamma^{\prime}=\gamma_{\mathbf{R}}^{\prime} \times \gamma_{p}^{\prime}$ be any element of Γ. Then since the projections $\Gamma \rightarrow$ Γ_{R} and $\Gamma \rightarrow \Gamma_{\mathrm{p}}$ are injective (Proposition 1 of Chapter 1, §2), we see that γ^{\prime} commutes with γ if and only if $\gamma_{\mathbf{R}}^{\prime}$ commutes with $\gamma_{\mathbf{R}}$, and if and only if γ_{p}^{\prime} commutes with γ_{p}. Hence we get

$$
\left(\Gamma_{\mathbf{R}}\right)_{\gamma_{\mathbf{R}}}=\left(\Gamma_{\gamma}\right)_{\mathbf{R}} \cong \Gamma_{\gamma} \cong\left(\Gamma_{\gamma}\right)_{\mathfrak{p}}=\left(\Gamma_{\mathfrak{p}}\right)_{\gamma_{\mathrm{p}}} \quad \text { (canonically). }
$$

Now let $\gamma_{\mathbf{R}}$ be elliptic. Then $\left(G_{\mathbf{R}}\right)_{\gamma_{\mathbf{R}}}$ is compact; hence $\left(\Gamma_{\gamma}\right)_{\mathbf{R}}$ is relatively compact in $G_{\mathbf{R}}$. Therefore, by the discreteness of Γ_{γ} in G, $\left(\Gamma_{\gamma}\right)_{p}$ must be discrete in G_{p}.

To prove the converse, we need the following assertion:
(b) If $\gamma \in \Gamma$, then $G_{\gamma} / \Gamma_{\gamma}$ has finite invariant volume. Moreover, if $\gamma \neq 1$, then $G_{\gamma} / \Gamma_{\gamma}$ is compact.

The second assertion follows immediately from the first because of the special simple structure of G_{γ}. The proof of (b) is simple if G / Γ is compact. In fact, put $G=K \cdot \Gamma$ with some compact subset K of G. Let $\gamma_{0} \in \Gamma$ and $g \in G_{\gamma_{0}}$. Put $g=k \cdot \gamma$ with $k \in K, \gamma \in \Gamma$. Then, by $g \gamma_{0}=\gamma_{0} g$ we get $k^{-1} \gamma_{0} k=\gamma \gamma_{0} \gamma^{-1} \in K^{-1} \gamma_{0} K$. Since $K^{-1} \gamma_{0} K$ is compact, the intersection $\Gamma \cap K^{-1} \gamma_{0} K$ is finite, and hence the intersection $\left\{\gamma_{0}\right\}_{\Gamma} \cap K^{-1} \gamma_{0} K$ is also finite. Put

$$
\left\{\gamma_{0}\right\}_{\Gamma} \cap K^{-1} \gamma_{0} K=\left\{\gamma_{i} \gamma_{0} \gamma_{i}^{-1} \mid \gamma_{i} \in \Gamma, i=1,2, \cdots, n\right\}
$$

Then $\gamma \gamma_{0} \gamma^{-1}=\gamma_{i} \gamma_{0} \gamma_{i}^{-1}$ for some $i(1 \leq i \leq n)$, and hence γ is contained in $\gamma_{i} \Gamma \gamma_{0}$. Therefore, $g \in K \gamma_{i} \Gamma \gamma_{0}$. Hence we get $G \gamma_{0} \subset \bigcup_{i=1}^{n} K \gamma_{i} \Gamma \gamma_{0}$; hence $G_{\gamma_{0}} / \Gamma_{\gamma_{0}}$ is compact. On the other hand, if G / Γ is non-compact, the proof of (b) is not so simple (but it is elementary, because we know much about discrete subgroups of $G_{\mathbf{R}}$ whose quotients are of finite invariant volume). This is left to the readers.

Now suppose that $\left(\Gamma_{\gamma}\right)_{\mathfrak{p}}$ is discrete in $G_{\mathfrak{p}}$. Then $\gamma \neq 1$, and hence $G_{\gamma} / \Gamma_{\gamma}$ is compact. Put, therefore, $G_{\gamma}=X \cdot \Gamma_{\gamma}$ with some compact subset X of G_{γ}. Take any $g_{\gamma, \mathbf{R}} \in\left(G_{\gamma}\right)_{\mathbf{R}}=$ $\left(G_{\mathbf{R}}\right)_{\gamma_{\mathbf{R}}}$, and put $g_{\gamma, \mathbf{R}} \times 1_{\mathfrak{p}}=x \cdot \delta$ with $x \in X$ and $\delta \in \Gamma_{\gamma}$, where 1_{p} is the identity element of G_{p}. Then we have $x_{p} \delta_{\mathfrak{p}}=1_{p}$, and hence $\delta_{\mathfrak{p}} \in X_{\mathfrak{p}}^{-1}$. But since $\left(\Gamma_{\gamma}\right)_{\mathfrak{p}}$ is discrete, the intersection $X_{\mathfrak{p}}^{-1} \cap\left(\Gamma_{\gamma}\right)_{\mathfrak{p}}$ must be finite, so that we can put

$$
X_{\mathfrak{p}}^{-1} \cap\left(\Gamma_{\gamma}\right)_{\mathfrak{p}}=\left\{\delta_{1 p}, \cdots, \delta_{n p}\right\}
$$

with some $\delta_{i} \in \Gamma_{\gamma}(1 \leq i \leq n)$. Then $g_{\gamma, \mathbf{R}}=x_{\mathbf{R}} \delta_{i \mathbf{R}}$ with some $i(1 \leq i \leq n)$, and hence $\left(G_{\gamma}\right)_{\mathbf{R}} \subset \bigcup_{i=1}^{n} X_{\mathbf{R}} \delta_{i \mathbf{R}}$. Therefore, $\left(G_{\gamma}\right)_{\mathbf{R}}$ is compact, and hence $\gamma_{\mathbf{R}}$ is elliptic.

Proof of (iii). This is a direct consequence of the following lemma.
Lemma 10. Let $\gamma_{1}, \gamma_{2}, \gamma_{3}, \cdots$ be any sequence in $\Gamma_{\mathbf{R}}$. Then, it converges to 1 if and only iffor any elliptic element $\delta \in \Gamma_{\mathbf{R}}, \gamma_{n} \cdot \delta$ are elliptic for all sufficiently large n.

It is clear that Lemma 10 implies (iii), since the convergence of sequence is characterized in terms of ellipticity of elements, which is invariant by φ.

Proof of Lemma 10. Since $g_{\mathbf{R}} \in G_{\mathbf{R}}$ is elliptic if and only if \mid tr $g_{\mathbf{R}} \mid<2$, the set of all elliptic elements of $G_{\mathbf{R}}$ forms an open set. Therefore, if $\delta \in \Gamma_{\mathbf{R}}$ is elliptic and if $\gamma_{1}, \gamma_{2}, \cdots$ converges to 1 , then $\gamma_{n} \delta$ are elliptic for all sufficiently large n. This proves that the condition is necessary.

To prove the sufficiency, we first remark that there exist $\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4} \in \Gamma_{\mathrm{R}}$ such that δ_{i} $(1 \leq i \leq 4)$ are elliptic and that they are additively linearly independent over \mathbf{R}. In fact, put

$$
g_{1}=\left(\begin{array}{cc}
0 & -1 \tag{49}\\
1 & 0
\end{array}\right), g_{2}=\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right), g_{3}=\left(\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right), g_{4}=\left(\begin{array}{cc}
0 & -2 \\
\frac{1}{2} & 0
\end{array}\right) .
$$

Then $g_{1}, g_{2}, g_{3}, g_{4} \in G_{\mathbf{R}}$ are elliptic and are linearly independent over \mathbf{R}. Since $\Gamma_{\mathbf{R}}$ is dense in G_{R}, we can take $\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4} \in \Gamma_{\mathbf{R}}$ sufficiently near $g_{1}, g_{2}, g_{3}, g_{4}$ respectively. Then, it is clear that $\delta_{i}(1 \leq i \leq 4)$ satisfy the desired conditions. Put

$$
\begin{equation*}
\Pi=\left\{x \in G_{\mathbf{R}}| | \operatorname{tr}\left(x \delta_{i}\right) \mid<2 \text { for } i=1,2,3,4\right\} . \tag{50}
\end{equation*}
$$

Then, since the map

$$
\begin{equation*}
M_{2}(\mathbf{R}) \ni x \mapsto\left(\operatorname{tr}\left(x \delta_{1}\right), \cdots, \operatorname{tr}\left(x \delta_{4}\right)\right) \in \mathbf{R}^{4} \tag{51}
\end{equation*}
$$

gives an isomorphism of the two vector spaces over \mathbf{R}, it is clear that Π is relatively compact in $G_{\mathbf{R}}$.

Now let $\gamma_{1}, \gamma_{2}, \cdots$ be a sequence in Γ_{R} such that for any elliptic element $\delta \in \Gamma_{\mathrm{R}}, \gamma_{n} \delta$ are elliptic for all sufficiently large n. Since $\delta_{i}(1 \leq i \leq 4)$ are elliptic, this implies that γ_{n} are contained in Π for all large n. Since the closure $\bar{\Pi}$ of Π in $G_{\mathbf{R}}$ is compact, the sequence $\gamma_{1}, \gamma_{2}, \cdots$ must have at least one accumulating point in $\bar{\Pi}$. Let $\xi \in G_{\mathrm{R}}$ be any accumulating point of $\gamma_{1}, \gamma_{2}, \cdots$. If we can show $\xi=1$, the proof will be completed. Let $\delta \in \Gamma_{\mathbf{R}}$ be any elliptic element. Then $\gamma_{n} \delta$ are elliptic for all large n, and $\xi \delta$ is an accumulating point of $\gamma_{1} \delta, \gamma_{2} \delta, \cdots$. Therefore we get $|\operatorname{tr}(\xi \delta)| \leq 2$. Since $\Gamma_{\mathbf{R}}$ is dense in G_{R}, this implies that $\left|\operatorname{tr}\left(\xi g_{\mathrm{R}}\right)\right| \leq 2$ for any elliptic element g_{R} of G_{R}. Put

$$
\xi=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), g_{\mathbf{R}}=\left(\begin{array}{cc}
0 & -y \\
\frac{1}{y} & 0
\end{array}\right) \text { with } y \in \mathbf{R}^{\times} .
$$

Then g_{R} is elliptic, and $\operatorname{tr}\left(\xi g_{\mathrm{R}}\right)=\frac{b}{y}-c y$. If $b \neq 0$, let $|y|$ be sufficiently small, and if $c \neq 0$, let $|y|$ be sufficiently large. Then in either case, we get a contradiction to $\left|\operatorname{tr}\left(\xi g_{\mathrm{R}}\right)\right| \leq 2$. Therefore $b=c=0$; hence $\xi=\left(\begin{array}{cc}a & 0 \\ 0 & a^{-1}\end{array}\right)$. Now, since $\left|\operatorname{tr}\left(\xi g_{\mathrm{R}}\right)\right| \leq 2$ holds for all elliptic elements g_{R} which are sufficiently near 1 , we get $\left|a+a^{-1}\right| \leq 2$. But this is impossible unless $a=a^{-1}= \pm 1$, since a, a^{-1} are real. Hence we get $\xi=1$ (as an element of G_{R}), which completes the proof of Lemma 10.

Proof of (iv). Now, φ is a bicontinuous map of Γ_{R} onto $\varphi\left(\Gamma_{R}\right)$. Therefore, φ can be extended to a bicontinuous $\operatorname{map} \bar{\varphi}$ of $\bar{\Gamma}_{\mathbf{R}}=G_{\mathbf{R}}$ onto $\overline{\varphi\left(\Gamma_{\mathbf{R}}\right)} \subset G_{\mathbf{R}}$. Since every homomorphism of a Lie group into another is analytic, so is $\bar{\varphi}$; and since $\bar{\varphi}$ has no kernel (since $G_{\mathbf{R}}$
is simple) and $G_{\mathbf{R}}$ is connected, $\bar{\varphi}$ must be surjective. Therefore, $\bar{\varphi}$ is an analytic automorphism of $G_{\mathbf{R}}$; hence it is an inner automorphism by some element of $G_{\mathbf{R}}^{\prime}=P L_{2}(\mathbf{R})$. This completes the proof of Lemma 8.
§30. We remark here that in the case where G / Γ is compact, Lemma 8 has a direct consequence, "the triviality of deformation of $\Gamma_{\mathbf{R}}$ in $G_{\mathbf{R}}$ ". This fact, however, is not necessary for our present purpose.

Corollary of Lemma 8 . Let Γ be as in Lemma 8, and assume moreover that the quotient G / Γ is compact. Then $\Gamma_{\mathbf{R}}$ has no non-trivial deformation in $G_{\mathbf{R}}$.

Here, by " $\Gamma_{\mathbf{R}}$ has no non-trivial deformation in $G_{\mathbf{R}}$ ", we mean the following. In general, let X be any topological group, and let Δ be a finitely generated subgroup of X with a set of generators $\delta_{1}, \cdots, \delta_{r}$. By "small deformation of Δ in X ", we mean any homomorphism φ of the abstract group Δ into X, such that $\varphi\left(\delta_{1}\right), \cdots, \varphi\left(\delta_{r}\right)$ are sufficiently near $\delta_{1}, \cdots, \delta_{r}$ respectively. We use this terminology only in the form: "if φ is a small deformation of Δ in X, then \cdots holds;" which implies that there exist some neighborhoods U_{1}, \cdots, U_{r} of $\delta_{1}, \cdots, \delta_{r}$ respectively such that if $\varphi\left(\delta_{i}\right) \in U_{i}(1 \leq i \leq r)$, then \cdots holds. It is clear that this definition is independent of the choice of the set of generators $\delta_{1}, \cdots, \delta_{r}$. We shall say that Δ has no non-trivial deformation in X if every small deformation φ of Δ in X is induced by some inner automorphism of X; i.e., if there exists some neighborhood U_{1}, \cdots, U_{r} of $\delta_{1}, \cdots, \delta_{r}$ respectively such that every homomorphism φ of the abstract group Δ into X satisfying $\varphi\left(\delta_{i}\right) \in U_{i}$ for all $i(1 \leq i \leq r)$ is given by $\varphi(\delta)=t_{\varphi}^{-1} \delta t_{\varphi}$ (for all $\delta \in \Delta)$ with some $t_{\varphi} \in X$.

We must check that $\Gamma_{\mathbf{R}}$ is finitely generated before we can speak of the deformation of $\Gamma_{\mathbf{R}}$. Put $\Gamma^{0}=\Gamma \cap\left(G_{\mathbf{R}} \times V_{1}\right)$, where $V_{1}=P S L_{2}\left(O_{\mathfrak{p}}\right)$. Then $\Gamma_{\mathbf{R}}^{0}$ is a discrete subgroup of $G_{\mathbf{R}}$ and the quotient $G_{\mathbf{R}} / \Gamma_{\mathbf{R}}^{0}$ has finite invariant volume; hence $\Gamma^{0} \cong \Gamma_{\mathbf{R}}^{0}$ is finitely generated. On the other hand, since Γ^{0} is maximal in Γ (Corollary of Lemma 11 in Chapter 1), Γ is generated by Γ^{0} and γ, where γ is any element of Γ not contained in Γ^{0}. Therefore, by the isomorphisms $\Gamma \cong \Gamma_{R}$ and $\Gamma^{0} \cong \Gamma_{R}^{0}$ (canonically), we get the finite generatedness of Γ_{R}.

Proof of the Corollary of Lemma 8. In general, it is known that if X is a connected real Lie group and Δ is a finitely generated discrete subgroup of X with compact quotient, and if φ is a small deformation of Δ in X, then φ is injective, $\varphi(\Delta)$ is discrete in X, and the quotient $X / \varphi(\Delta)$ is compact (cf. A. Weil [36]). Let Γ be as in Lemma 8, and apply this for $X=G_{\mathbf{R}}$ and $\Delta=\Gamma_{\mathbf{R}}^{V}$ (note that since G / Γ is compact, $G_{\mathbf{R}} / \Gamma_{\mathbf{R}}^{V}$ is also compact by Proposition 2 of Chapter 1), where V is any open compact subgroup of G_{p} and $\Gamma^{V}=\Gamma \cap\left(G_{\mathbf{R}} \times V\right)$. Let φ be any small deformation of $\Gamma_{\mathbf{R}}$ in $G_{\mathbf{R}}$. Then $\left.\varphi\right|_{\Gamma_{\mathbf{R}}^{V}}$ is also a small deformation of $\Gamma_{\mathbf{R}}^{V}$ in $G_{\mathbf{R}}$; hence $\left.\varphi\right|_{\Gamma_{\mathbf{R}}^{V}}$ is injective, $\varphi\left(\Gamma_{\mathbf{R}}^{V}\right)$ is discrete in $G_{\mathbf{R}}$, and the quotient $G_{\mathbf{R}} / \varphi\left(\Gamma_{\mathbf{R}}^{V}\right)$ is compact. Therefore, by Lemma 8 there exists $x \in G_{\mathbf{R}}^{\prime}$ such that $\varphi\left(\gamma_{\mathbf{R}}\right)=x^{-1} \gamma_{\mathbf{R}} x$ for all $\gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}}$. But since φ is a small deformation, x must be near 1 ; hence $x \in G_{\mathrm{R}}$, and hence φ is a trivial deformation.

Proof of Theorem 4 (Conclusion).

§31. Now we have come to the final stage of the proof of Theorem 4. It is enough to prove the Main lemma (§27). Let

$$
V_{1}=P S L_{2}\left(O_{p}\right), V_{2}=\omega^{-1} V_{1} \omega\left(\omega=\left(\begin{array}{ll}
0 & 1 \\
\pi & 0
\end{array}\right), O_{p} \pi=\mathfrak{p}\right),
$$

and put $V_{0}=V_{1} \cap V_{2}$. Let L be a G_{p}-field over \mathbf{C} and let $L_{i}(0 \leq i \leq 2)$ be the fixed field of V_{i} in L. Let $\Re_{i}(0 \leq i \leq 2)$ be a complete non-singular model of L_{i}, and let f_{i} $(i=1,2)$ be the rational map of \Re_{0} onto \Re_{i} defined by the inclusion $L_{0} \supset L_{i}$. Thus we get an algebraico-geometric object:

Let Γ be the discrete subgroup of $G=G_{\mathbf{R}} \times G_{\mathfrak{p}}$ which corresponds to L by Theorem 1 (§9). Put $\Gamma^{i}=\Gamma \cap\left(G_{\mathrm{R}} \times V_{i}\right)(0 \leq i \leq 2)$. Then for each i, \Re_{i} can be identified with the normalized and compactified quotient $\mathfrak{H} / \Gamma_{\mathbf{R}}^{i}$, where \mathfrak{S} is the complex upper half plane. To show the idea of proof in a primitive form, let us assume for the time being that $\Gamma_{\mathbf{R}}^{0}$ is torsion-free and $G_{\mathbf{R}} / \Gamma_{\mathbf{R}}^{0}$ (or equivalently G / Γ) is compact. So, the natural covering map $\mathfrak{G} \rightarrow \mathfrak{R}_{0}$ (with the covering group $\Gamma_{\mathbf{R}}^{0}$) is surjective and unramified.

Now let F be a field of definition for \Re, i.e., a common field of definition for all \Re_{i} and f_{i}. We can assume that F is finitely generated over \mathbf{Q}. Let k be the algebraic closure of \mathbf{Q} in F, so that k is an algebraic number field and F is a regular extension of k. Put $F=k((t))$ with $(t)=\left(t_{1}, \cdots, t_{r}\right)$, and let W be the locus of (t) over k, so that W is an irreducible affine algebraic variety in \mathbf{C}^{r}.

Let $\left(t^{\prime}\right)$ be a point on W which is sufficiently near (t). Then the following geometric intuition is in fact valid :
(দ) The specialization

of \Re over $(t) \mapsto\left(t^{\prime}\right) / k$ is well-defined, $\Re_{i}^{\prime}(0 \leq i \leq 2)$ are complete non-singular algebraic curves with the same genus as \Re_{i} (respectively), and the rational maps $f_{i}^{\prime}(1 \leq i \leq 2)$ have the same types of ramifications as f_{i} (respectively). Moreover, there exist topological isomorphisms φ_{01} and φ_{02} of \Re_{0} onto \Re_{0}^{\prime}, and φ_{1} resp. φ_{2} of \Re_{1} onto \Re_{1}^{\prime} resp. \Re_{2} onto \Re_{2}^{\prime} such that :
(i) the diagrams

$$
\begin{array}{ccccccc}
\Re_{0} & \xrightarrow{\varphi_{01}} & \Re_{0}^{\prime} & \Re_{0} & \xrightarrow{\varphi_{02}} & \Re_{0}^{\prime} \tag{53}\\
f_{1} \downarrow & & \downarrow f_{1}^{\prime} & , & f_{2} \downarrow & & \downarrow f_{2}^{\prime} \\
\Re_{1} & \xrightarrow{\varphi_{1}} & \Re_{1}^{\prime} & & \Re_{2} & \xrightarrow{\varphi_{2}} & \Re_{2}^{\prime}
\end{array}
$$

are commutative, and that
(ii) the topological automorphism $\varphi_{02} \circ \varphi_{01}^{-1}$ of \Re_{0}^{\prime} is "small", and hence is homotopic to the identity map.

Now let π be the natural covering map $\mathfrak{G} \rightarrow \mathfrak{R}_{0}$ defined before, and let $\pi^{\prime}: \mathfrak{H} \rightarrow \mathfrak{R}_{0}^{\prime}$ be the universal covering map. Moreover, call $\Delta_{\mathbf{R}}^{0}$ the covering group of π^{\prime}, and call $\Delta_{\mathbf{R}}^{i}$ $(i=1,2)$ the covering group of $f_{i}^{\prime} \circ \pi^{\prime}$. Thus we have $\Delta_{\mathbf{R}}^{0} \subset \Delta_{\mathbf{R}}^{i} \subset G_{\mathbf{R}}=\operatorname{Aut} \mathfrak{H}$. Let $\Delta_{\mathbf{R}}$ be the subgroup of G_{R} generated by Δ_{R}^{1} and $\Delta_{\mathbf{R}}^{2}$.

Now, extend the topological isomorphisms $\varphi_{0 i}(i=1,2)$ of \Re_{0} onto \Re_{0}^{\prime} to topological automorphisms $\Phi_{i}(i=1,2)$ of $\mathfrak{5}$ so that the diagrams

$$
\begin{array}{cccc}
\mathfrak{H} & \xrightarrow{\Phi_{i}} & \mathfrak{H} & \tag{55}\\
\pi \downarrow & & \downarrow \pi^{\prime} & (i=1,2) \\
\mathfrak{R}_{0} & \xrightarrow{\varphi_{0} i} & \mathfrak{R}_{0}^{\prime} &
\end{array}
$$

are commutative. Since $\varphi_{02} \circ \varphi_{01}^{-1}$ is homotope 0 , we can take Φ_{1} and Φ_{2} such that $\Phi_{2} \circ \Phi_{1}^{-1}$ commutes with the actions of $\Delta_{\mathbf{R}}^{0}$. By (53), Φ_{i} defines an isomorphism ρ_{i} of $\Gamma_{\mathbf{R}}^{i}$ onto $\Delta_{\mathbf{R}}^{i}$, and by the above remark ρ_{1} and ρ_{2} coincide on $\Gamma_{\mathbf{R}}^{0}$, and $\rho_{1}\left(\Gamma_{\mathbf{R}}^{0}\right)=\rho_{2}\left(\Gamma_{\mathbf{R}}^{0}\right)=\Delta_{\mathbf{R}}^{0}$. But by the canonical identification of Γ_{R} with $\Gamma_{\mathrm{p}}, \Gamma_{\mathrm{R}}^{i}(0 \leq i \leq 2)$ are identified with Γ_{p}^{i} respectively, and hence by the Corollary of Lemma $7(\S 28), \Gamma_{\mathbf{R}}$ is the free product of $\Gamma_{\mathbf{R}}^{1}$ and $\Gamma_{\mathbf{R}}^{2}$ with amalgamated subgroup $\Gamma_{\mathbf{R}}^{0}$. Therefore, there is a homomorphism ρ of $\Gamma_{\mathbf{R}}$ onto $\Delta_{\mathbf{R}}$ such that $\left.\rho\right|_{\Gamma_{\mathbf{R}}^{i}}=\rho_{i}(i=1,2)$. But $\rho\left(\Gamma_{\mathbf{R}}^{0}\right)=\Delta_{\mathbf{R}}^{0}$ is discrete in $G_{\mathbf{R}}$, and the quotient $G_{\mathbf{R}} / \Delta_{\mathbf{R}}^{0}$ is compact. Moreover, $\left.\rho\right|_{\Gamma_{R}^{0}}=\left.\rho_{1}\right|_{\Gamma_{R}^{0}}$ is injective. Therefore by Lemma 8 (§29), there is an element $x \in G_{\mathbf{R}}^{\prime}=P L_{2}(\mathbf{R})$ such that $\rho\left(\gamma_{\mathbf{R}}\right)=x^{-1} \gamma_{\mathbf{R}} x$ for all $\gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}}$. In particular, we get $\Delta_{\mathbf{R}}^{i}=x^{-1} \Gamma_{\mathbf{R}}^{i} x$ for $0 \leq i \leq 2$. Therefore, if $x \in G_{\mathbf{R}}=P S L_{2}(\mathbf{R})$, then \Re and \Re^{\prime} are isomorphic analytically (and hence algebraically); i.e., there are analytic (and hence
algebraic) isomorphisms ψ_{i} of \Re_{i} onto $\Re_{i}^{\prime}(0 \leq i \leq 2)$ such that the diagram:

is commutative. On the other hand, if $x \notin G_{R}$, then \mathfrak{R} and \bar{R}^{\prime} are isomorphic analytically, where $\overline{\mathfrak{R}}^{\prime}$ is the complex conjugation of \Re^{\prime}. But this is impossible (unless $\overline{\Re^{\prime}} \cong \mathfrak{R}^{\prime}$), since $\left(t^{\prime}\right)$ is sufficiently near (t). Therefore, \Re and \Re^{\prime} are isomorphic algebraically. Now since W is defined over k, algebraic points are dense on W, and hence we can choose (t^{\prime}) to be algebraic over k (and hence over \mathbf{Q}). Then \Re^{\prime} is defined over an algebraic number field k^{\prime}. Now, by the isomorphism $\Re^{\prime} \cong \Re$, we identify L_{i} with the field of \mathbf{C}-rational functions on $\Re_{i}^{\prime}(0 \leq i \leq 2)$. Now let L_{i}^{\prime} be the field of k^{\prime}-rational functions on $\Re_{i}^{\prime}(0 \leq i \leq 2)$. Then it is clear that $\left\{L_{i}^{\prime} \mid 0 \leq i \leq 2\right\}$ is a k^{\prime}-form of $\left\{L_{i} \mid 0 \leq i \leq 2\right\}$. But since k^{\prime} is an algebraic number field, this proves the Main lemma (§27) (and hence Theorem 4), in the case where Γ_{R}^{0} is torsion-free and G_{R} / Γ_{R}^{0} is compact.

In the general case, we need a slight modification. Let $P_{j}(1 \leq j \leq m)$ be the points on \Re_{0} that are ramified in the covering $\pi: \mathfrak{G} \rightarrow \Re_{0}$, and let $e_{j}\left(1 \leq j \leq m ; 1 \leq e_{j} \leq \infty\right)$ be the ramification index of P_{j} in this covering. Take F large enough so that all P_{j} are rational over F. Then if $\left(t^{\prime}\right)$ is sufficiently near (t), we can check without any difficulty that in addition to the assertions (q), the specialization P_{j}^{\prime} of P_{j} over $(t) \mapsto\left(t^{\prime}\right) / k$ is defined for each j, and that we can take φ_{01} and φ_{02} such that $\varphi_{01}\left(P_{j}\right)=\varphi_{02}\left(P_{j}\right)=P_{j}^{\prime}$ for all j. Now define $\pi^{\prime}: \mathfrak{G} \rightarrow \mathfrak{R}_{0}^{\prime}$ to be the maximal covering of $\mathfrak{R}_{0}^{\prime}$ with the ramifications e_{j} at P_{j}^{\prime} for all j (and unramified everywhere else). Then with these definitions, we can prove the general case exactly in the same manner as in the special case. Thus the proof of the Main lemma, and hence also the proof of Theorem 4, is completed.

Variations of Theorems 4, 5.

$\$ 32$.
Corollary of Theorem 5 . Notations and assumptions being as in Theorem 5, $L_{k_{0}}$ is the fixed field of the group of all automorphisms of L which commute with the actions of all elements of G_{p}. If $\sigma \in$ Aut \mathbf{C}, then σ has $a G_{p}$-extension if and only if $\left.\sigma\right|_{k_{0}}=1$.

Proof. This follows immediately from Theorem 5 and $\S 20$.
Now let L be any G_{p}-field over \mathbf{C}, and let G_{p}^{\prime} be any subgroup of Aut L containing G_{p}. By a full G_{p}^{\prime}-subfield of L over a field $k^{\prime}(\subset \mathbf{C})$, we mean a G_{p}^{\prime}-invariant subfield L^{\prime} of L satisfying $L^{\prime} \cdot \mathbf{C}=L$ and $L^{\prime} \cap \mathbf{C}=k^{\prime}$. Thus, if $G_{\mathfrak{p}}^{\prime}=G_{p}$, this definition agrees with the previous one; and it is also clear that full G_{p}^{\prime}-subfields are a priori full G_{p}-subfields.

Theorem 6. Let L be a G_{p}-field over \mathbf{C}, and let G_{p}^{\prime} be any group with $G_{p} \subset G_{p}^{\prime} \subset$ Aut $_{\mathbf{C}} L$. Then L contains a full G_{p}^{\prime}-subfield over an algebraic number field. Moreover, if the centralizer of G_{p}^{\prime} in Aut $_{\mathrm{C}} L$ is trivial, then full G_{p}^{\prime}-subfields of L are essentially unique, in the sense that among them there is a smallest one over an algebraic number field playing the role completely parallel to that of $L_{k_{0}}$ in Theorem 5. Finally, if L is quasi-irreducible, all full G_{p}-subfields of L are full Aut L-subfields.

Proof. Let L_{k} be a full G_{p}-subfield of L over an algebraic number field k. Let 3 be the centralizer of G_{p} in Aut L, so that $\mathfrak{3}$ is finite ($\S 15$, Corollary 3 of Theorem 3). Let M be the fixed field of 3 in L. For each $\sigma \in \operatorname{Aut}_{k} \mathbf{C}$, let $\widetilde{\sigma}$ be the automorphism of L which is trivial on L_{k} and which coincides with σ on \mathbf{C}. Put $\mathcal{G}=\left\{\widetilde{\sigma} \mid \sigma \in \operatorname{Aut}_{k} \mathbf{C}\right\}$. Then by Lemma $2(\S 19), L_{k}$ is the fixed field of \mathcal{G}. Let $\widetilde{\mathcal{G}}$ be the group of all automorphisms of L which are trivial on k and which commute with all elements of G_{p}. Then $\widetilde{\mathcal{G}}=\mathcal{G} \cdot \mathcal{Z}, \widetilde{\mathcal{G}} \cap \mathcal{Z}=\{1\}$, and $M_{k}=M \cap L_{k}$ is the fixed field of \widetilde{G}. Therefore, M_{k} depends only on k and does not depend on the choice of L_{k}; and since $(\widetilde{\mathcal{G}}: \mathcal{G})=(\mathcal{Z}: 1)<\infty$, we get $\left[L_{k}: M_{k}\right]<\infty$.

Now let $\rho \in$ Aut $_{\mathbf{c}} L$. Then since G_{p} is a characteristic subgroup of Aut ${ }_{\mathbf{C}} L$ (Corollary 2 of Theorem 3, §15), $\rho\left(L_{k}\right)$ is also G_{p}-invariant; hence it is a full G_{p}-subfield over k (hence if L is quasi-irreducible, then we get $\rho\left(L_{k}\right)=L_{k}$; which settles the last point of the Theorem). Therefore, by the above remark on M_{k}, we get $\rho\left(L_{k}\right) \cap M=M_{k}$ and $\left[\rho\left(L_{k}\right): M_{k}\right]<\infty$.

Since moreover (Aut $L: G_{\mathfrak{p}}$) $<\infty$, the composite $L_{k^{\prime}}$ of all $\rho\left(L_{k}\right)\left(\rho \in \mathrm{Aut}_{\mathbf{C}} L\right)$ is a finite extension of L_{k}; hence $L_{k^{\prime}} \cdot \mathbf{C} \supset L_{k} \cdot \mathbf{C}=L, L_{k^{\prime}} \cap \mathbf{C}=k^{\prime}$ is a finite extension of k, and $L_{k^{\prime}}$ is obviously Aut L-invariant. Therefore, $L_{k^{\prime}}$ is a full $\mathrm{Aut}_{\mathbf{c}} L$-subfield of L over k^{\prime}; which settles the first point of the Theorem.

The proof of the second part is completely parallel to the argument given in $\S 19, \S 20$; and hence is omitted. The proof of the last point was given above.

Corollary. If the center of Aut $_{\mathbf{C}} L$ is trivial, then full Aut $_{\mathbf{c}} L$-subfields of L are essentially unique.
§33. Full G_{p}-subfields over $\overline{\mathbf{Q}}$. Let L be an arbitrary G_{p}-field over \mathbf{C}. Then, by Theorem 6, L contains a full Autc L-subfield L_{k} over an algebraic number field k. Let $\overline{\mathbf{Q}}$ be the algebraic closure of \mathbf{Q}, considered as a subfield of \mathbf{C}. Then, $L_{k} \cdot \overline{\mathbf{Q}}$ is a full Autc L-subfield of L over $\overline{\mathbf{Q}}$; hence L contains a full Aut ${ }_{\mathbf{C}} L$-subfield over $\overline{\mathbf{Q}}$. We shall prove that full G_{p}-subfield of L over $\overline{\mathbf{Q}}$ is unique. Then, it is clear that the unique full G_{p}-subfield over $\overline{\mathbf{Q}}$ is also a full Aut L-subfield over $\overline{\mathbf{Q}}$. For that purpose, let \wp be the set of all non-trivial (non-equivalent) discrete valuations v_{P} of L over \mathbf{C} whose stabilizers in G_{p} are infinite;

$$
\begin{equation*}
\wp=\left\{v_{P} \in \Sigma \mid \text { the group } g_{\mathfrak{p}} \in G_{\mathfrak{p}}, g_{\mathfrak{p}}\left(v_{P}\right)=v_{P} \text { is infinite }\right\} . \tag{57}
\end{equation*}
$$

We denote by P the place of L over \mathbf{C} defined by v_{P}, and put

$$
\begin{equation*}
L^{\prime}=\left\{f \in L \mid P\{f\} \in \overline{\mathbf{Q}} \cup\{\infty\}, \forall v_{P} \in \wp\right\} \tag{58}
\end{equation*}
$$

On the other hand, let Γ be the discrete subgroup of G which corresponds to L, and consider $L=\bigcup_{V} L_{V}$ as the union of the fields L_{V} of automorphic functions $f(z)$ with respect to $\Gamma_{\mathbf{R}}^{V}=\left[\Gamma \cap\left(G_{\mathbf{R}} \times V\right)\right]_{\mathbf{R}}$. Let $L^{\prime \prime}$ be the subset of L formed of all $f(z) \in L$ whose values at $\Gamma_{\mathbf{R}}$-fixed points ${ }^{15}$ are all contained in $\overline{\mathbf{Q}} \cup\{\infty\}$;

$$
\begin{equation*}
L^{\prime \prime}=\left\{f(z) \in L \mid f\left(\forall \Gamma_{\mathbf{R}} \text {-fixed points }\right) \in \overline{\mathbf{Q}} \cup\{\infty\}\right\} \tag{59}
\end{equation*}
$$

Finally, let $L^{\prime \prime \prime}$ be an arbitrary full G_{p}-subfield of L over $\overline{\mathbf{Q}}$. We shall prove that $L^{\prime}=L^{\prime \prime}=$ $L^{\prime \prime \prime}$ holds; which, in particular, would prove the uniqueness of $L^{\prime \prime \prime}$.

First, to prove $L^{\prime} \subset L^{\prime \prime}$, note that each point $z_{0} \in \mathfrak{S}$ defines $v_{P}=v_{P_{P_{0}}} \in \Sigma$, and that, in this manner, \mathfrak{y} can be considered as a connected component of Σ (see $\S 5-\S 10$). Moreover, if $f=f(z) \in L$, then $P_{z_{0}}\{f\}=f\left(z_{0}\right)$. Since Γ_{p} is the stabilizer of the connected component $\mathfrak{5}$ in G_{p}, it is clear that $v_{P_{z_{0}}}$ is contained in \wp if and only if z_{0} is a $\Gamma_{\mathbf{R}}$-fixed point. This proves $L^{\prime} \subset L^{\prime \prime}$.

Secondly, we shall prove $L^{\prime \prime \prime} \subset L^{\prime}$. Let $v_{P} \in \wp$, and let $g_{p} \in G_{p}, g_{p} \neq 1$ with $g_{\mathrm{p}}\left(v_{P}\right)=v_{\mathrm{P}}$. Take $f \in L^{\prime \prime \prime}$ such that $g_{\mathrm{p}}(f) \neq f$. If f is not v_{P}-integral, we replace f by f^{-1}, and assume from the beginning that f is v_{P}-integral. Since P is invariant by g_{p}, we get $P\{f\}=P\left\{g_{\mathrm{p}}(f)\right\}$; hence $P\left\{f-g_{\mathrm{p}}(f)\right\}=0$; hence P is non-trivial on $L^{\prime \prime \prime}$. Hence $\left.v_{P}\right|_{L^{\prime \prime \prime}}$ gives a non-trivial discrete valuation of $L^{\prime \prime \prime}$ over $\overline{\mathbf{Q}}$; and since $\operatorname{dim}_{\overline{\mathbf{Q}}} L^{\prime \prime \prime}=1$ and $\overline{\mathbf{Q}}$ is algebraically closed, we get $P\left\{f_{1}\right\} \in \overline{\mathbf{Q}} \cup\{\infty\}$ for all $f_{1} \in L^{\prime \prime \prime}$; which proves $L^{\prime \prime \prime} \subset L^{\prime}$.

Finally, we shall prove $L^{\prime \prime} \subset L^{\prime \prime \prime}$. Let $f(z)$ be any element of $L^{\prime \prime}$. Since $L=L^{\prime \prime \prime} \cdot \mathbf{C}$, we can put

$$
f(z)=\sum_{i=1}^{n} \lambda_{i} f_{i}(z) / \sum_{i=1}^{n} \lambda_{i} f_{i}^{\prime}(z)
$$

where $f_{i}(z), f_{i}^{\prime}(z) \in L^{\prime \prime \prime}(1 \leq i \leq n)$, and $\lambda_{1}, \cdots, \lambda_{n} \in \mathbf{C}$ are linearly independent over $\overline{\mathbf{Q}}$. Take $i=i_{0}$ such that $f_{i_{0}}^{\prime}(z) \neq 0$. We shall show that $f_{i_{0}}(z)=f(z) f_{i_{0}}^{\prime}(z)$. Suppose, on the contrary, that we have $f_{i_{0}}(z) \neq f(z) f_{i_{0}}^{\prime}(z)$. Since Γ_{R}-fixed points are dense on \mathfrak{H} (see

[^3]Chapter 1, §3), there exists a Γ_{R}-fixed point z_{0} such that all $f\left(z_{0}\right), f_{i}\left(z_{0}\right), f_{i}^{\prime}\left(z_{0}\right)(1 \leq i \leq n)$ are finite and $f_{i_{0}}\left(z_{0}\right) \neq f\left(z_{0}\right) f_{i_{0}}^{\prime}\left(z_{0}\right)$. Therefore, we get

$$
\sum_{i=1}^{n} c_{i} \lambda_{i}=0 \quad \text { with } c_{i}=f_{i}\left(z_{0}\right)-f\left(z_{0}\right) f_{i}^{\prime}\left(z_{0}\right)
$$

Since $f(z), f_{i}(z), f_{i}^{\prime}(z)$ are in $L^{\prime \prime}$, we have $c_{i} \in \overline{\mathbf{Q}}(1 \leq i \leq n)$, and by our choice of z_{0}, we also have $c_{i_{0}} \neq 0$. But this is a contradiction to linear independence of c_{1}, \cdots, c_{n} over $\overline{\mathbf{Q}}$. Therefore, $f_{i_{0}}(z)=f(z) f_{i_{0}}^{\prime}(z)$, and hence $f(z) \in L^{\prime \prime \prime}$, which proves $L^{\prime \prime} \subset L^{\prime \prime \prime}$.

Therefore, we have proved $L^{\prime}=L^{\prime \prime}=L^{\prime \prime \prime}$.
Theorem 7. Let L be a G_{p}-field over \mathbf{C}. Then L contains a unique full G_{p}-subfield $L_{\mathbf{Q}}$ over $\overline{\mathbf{Q}}$, which is given by (58) and also by (59). Moreover, $L_{\bar{Q}}$ is invariant by Aut $_{\mathbf{C}} L$.

§34.

Example.16 Let $G_{\mathbf{R}}=P S L_{2}(\mathbf{R}), G_{p}=P S L_{2}\left(\mathbf{Q}_{p}\right)$, and let $\Gamma=P S L_{2}\left(\mathbf{Z}^{(p)}\right)$ be considered as a discrete subgroup of $G=G_{\mathbf{R}} \times G_{p}$. Let L be the G_{p}-field over \mathbf{C} which corresponds to Γ. So, if we denote as

$$
\left\{\begin{array}{l}
U_{p}^{(n)}=\left\{x \in S L_{2}\left(\mathbf{Z}_{p}\right) \mid x \equiv \pm 1\left(\bmod p^{n}\right)\right\} / \pm 1 \tag{61}\\
\Gamma^{(n)}=\Gamma \cap\left(G_{\mathbf{R}} \times U_{p}^{(n)}\right)=\left\{x \in S L_{2}(\mathbf{Z}) \mid x \equiv \pm 1\left(\bmod p^{n}\right)\right\} / \pm 1,
\end{array}(n=0,1,2, \cdots)\right.
$$

then L is nothing but the union $\bigcup_{n=0}^{\infty} L_{n}$ of the field L_{n} of automorphic functions with respect to $\Gamma_{\mathbf{R}}^{(n)}$ (see Example in §2). We have shown (§17) that L is irreducible; hence there is a unique full G_{p}-subfield $L_{k_{0}}$ over k_{0} enjoying the property stated in Theorem 5. Let us find out k_{0} and $L_{k_{0}}$ for this L.

Put

$$
\left\{\begin{array}{l}
G_{p}^{*}=\left\{x \in G L_{2}\left(\mathbf{Q}_{p}\right) \mid \operatorname{det} x=p \text {-powers }\right\} / \pm\{p \text {-powers }\} \tag{62}\\
\Gamma^{*}=\left\{x \in G L_{2}\left(\mathbf{Z}^{(p)}\right) \mid \operatorname{det} x=p \text {-powers }\right\} / \pm\{p \text {-powers }\}
\end{array}\right.
$$

$$
\begin{equation*}
\operatorname{Aut}_{\mathbf{C}} L=G_{p}^{*}(\text { see } \S 17) \tag{63}
\end{equation*}
$$

$$
G_{p} \cap \Gamma^{*}=\Gamma
$$

Let $J(z)$ be the elliptic modular function; so that $L_{0}=\mathbf{C}(J(z))$, and $J(\sqrt{-1})=12^{3}$, $J\left(\frac{1}{2}(-1+\sqrt{-3})\right)=0, J(i \infty)=\infty$. Put ${ }^{17}$

$$
\begin{equation*}
L^{\prime}=\mathbf{Q}\left(J\left(\gamma_{\mathbf{R}}^{*} z\right) \mid \gamma^{*} \in \Gamma^{*}\right) \tag{64}
\end{equation*}
$$

Then L^{\prime} is obviously Γ^{*}-invariant, and since the action of G_{p}^{*} on L is continuous and Γ^{*} is dense in G_{p}^{*}, L^{\prime} is also G_{p}^{*}-invariant; hence a priori G_{p}-invariant. Therefore, $L^{\prime} \cdot \mathbf{C}$ is

[^4]also G_{p}-invariant; but since L is irreducible, we get $L^{\prime} \cdot \mathbf{C}=L$. Therefore, L^{\prime} is a full $G_{p^{-}}$ subfield of L over $k^{\prime}=L^{\prime} \cap \mathbf{C}$. We shall prove, by using known results on elliptic modular functions, that $L_{k_{0}}=L^{\prime}, k_{0}=k^{\prime}=\mathbf{Q}(\sqrt{ \pm p})(p \neq 2, \pm p \equiv 1(\bmod 4)),=\mathbf{Q}(\sqrt{-1}, \sqrt{2})$ ($p=2$).

For this purpose, we refer to G. Shimura [30]. Let E be the elliptic curve defined over $K_{1}=\mathbf{Q}(J(z))$ given by the equation

$$
\begin{equation*}
Y^{2}=4 X^{3}-t X-t, \quad t=\frac{27 J(z)}{J(z)-12^{3}} . \tag{65}
\end{equation*}
$$

For each positive integer N, let K_{N} be the Galois extension of K_{1} generated over K_{1} by X coordinates of all N-th division points of E. Then by G. Shimura [30] ($\S 2, \S 4$), the Galois group of K_{N} / K_{1} is (in some way) isomorphic to $G_{N}=G L_{2}(\mathbf{Z} / N \mathbf{Z}) / \pm 1$, the algebraic closure of \mathbf{Q} in K_{N} is the field $\mathbf{Q}\left(\zeta_{N}\right)$ of primitive N-th root of unity ζ_{N}, the action of $\sigma \in G_{N}$ on $K_{1}\left(\zeta_{N}\right)$ is $\zeta_{N} \mapsto \zeta_{N}^{\text {det } \sigma}$, and finally, ${ }^{18}$ if we put

$$
K_{N}^{*}=K_{1}\left(J\left(\frac{a z+b}{c z+d}\right) \left\lvert\, \forall\left(\begin{array}{ll}
a & b \tag{66}\\
c & d
\end{array}\right) \in M_{2}(\mathbf{Z})\right., a d-b c=N\right),
$$

then K_{N}^{*} is a subfield of K_{N} corresponding to the center of G_{N} :

Therefore, the algebraic closure of \mathbf{Q} in K_{N}^{*} is the maximum $(2, \cdots, 2)$ type extension of \mathbf{Q} in $\mathbf{Q}\left(\zeta_{N}\right)$.

Now we have $L^{\prime}=\bigcup_{n=0}^{\infty} K_{p^{n}}^{*}$. Since $\operatorname{dim}_{\mathbf{Q}} K_{N}^{*}=\operatorname{dim}_{\mathbf{Q}} K_{1}=1$, we get $\operatorname{dim}_{\mathbf{Q}} L^{\prime}=1$. On the other hand, since L^{\prime} is a full G_{p}-subfield over $k^{\prime}, \operatorname{dim}_{k^{\prime}} L^{\prime}=1$. Therefore $\operatorname{dim}_{Q} k^{\prime}=0$; hence $k^{\prime} \subset \overline{\mathbf{Q}}$; hence $k^{\prime}=L^{\prime} \cap \overline{\mathbf{Q}}$. Therefore, k^{\prime} is the maximum $(2, \cdots, 2)$ type extension of \mathbf{Q} in $\mathbf{Q}\left(\zeta_{p^{n}} \mid n=0,1,2, \cdots\right)$; hence

$$
k^{\prime}= \begin{cases}\mathbf{Q}(\sqrt{p}) & (p \equiv 1(\bmod 4)) \\ \mathbf{Q}(\sqrt{-p}) & (p \equiv-1(\bmod 4)) \\ \mathbf{Q}(\sqrt{-1}, \sqrt{2}) & (p=2)\end{cases}
$$

[^5]Now since L^{\prime} is a full G_{p}-subfield of L over k^{\prime}, we get $\mathbf{Q} \subseteq k_{0} \subseteq k^{\prime}$ and $L^{\prime}=k^{\prime} \cdot L_{k_{0}}$. To prove that $k_{0}=k^{\prime}$, we note that (by the above quoted results) $L^{\prime} / \mathbf{Q}(J(z))$ is a Galois extension, its Galois group is $P L_{2}\left(\mathbf{Z}_{p}\right)$, and by $P L_{2}\left(\mathbf{Z}_{p}\right) \ni \sigma \mapsto \operatorname{det} \sigma \in U_{p} / U_{p}^{2} \cong G\left(k^{\prime} / \mathbf{Q}\right)$ (where U_{p} is the p-adic unit group), all automorphisms of k^{\prime} / \mathbf{Q} are induced from $P L_{2}\left(\mathbf{Z}_{p}\right)$. Therefore, together with $\mathrm{Aut}_{k^{\prime}} L^{\prime}=\operatorname{Aut}_{\mathbf{C}} L=G_{p}^{*}$ ($\S 17$ and $\S 32$ Theorem 7 (the last assertion)), we see immediately that

$$
\begin{equation*}
\operatorname{Aut}_{\mathbf{Q}} L^{\prime}=P L_{2}\left(\mathbf{Q}_{p}\right) . \tag{68}
\end{equation*}
$$

Since $\mathbf{Q} \subseteq k_{0} \subseteq k^{\prime}$ and since k^{\prime} is as given above, k^{\prime} / k_{0} is abelian, and hence $L^{\prime} / L_{k_{0}}=$ $L_{k_{0}} \cdot k^{\prime} / L_{k_{0}}$ is also abelian; hence, a priori, normal. Let 3 be the Galois group of $L^{\prime} / L_{k_{0}}$. Then, 3 centralizes $\mathrm{Aut}_{k^{\prime}} L^{\prime}=G_{p}^{*}$, hence also $G_{p}=P S L_{2}\left(\mathbf{Q}_{p}\right)$. But it is clear that the centralizer of $P S L_{2}\left(\mathbf{Q}_{p}\right)$ in $P L_{2}\left(\mathbf{Q}_{p}\right)$ is trivial. Therefore $3=\{1\}$; hence we finally get:

$$
\begin{align*}
& L_{k_{0}}=L^{\prime}=\mathbf{Q}\left(J\left(\gamma_{\mathbf{R}}^{*} z\right) \mid \gamma^{*} \in \Gamma^{*}\right)=\mathbf{Q}\left(J\left(\gamma_{\mathbf{R}} z\right) \mid \gamma \in \Gamma\right), \tag{69}\\
& k_{0}=\left\{\begin{array}{l}
\mathbf{Q}(\sqrt{ \pm p}) \cdots \cdots \quad \pm p \equiv 1(\bmod 4), \\
\mathbf{Q}(\sqrt{-1}, \sqrt{2}) \cdots \quad p=2 .
\end{array}\right. \tag{70}\\
& L^{\prime}=L_{k_{0}} \cdot k^{\prime}
\end{align*}
$$

The second formula for L^{\prime} is clear by $L^{\prime}=$ $\bigcup_{n=0}^{\infty} K_{p^{n}}^{*}=\bigcup_{n=0}^{\infty} K_{p^{2 n}}^{*}$.

The fields k_{0} and $F=\mathbf{Q}\left(\left(\operatorname{tr} \gamma_{\mathbf{R}}\right)^{2} \gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}}\right)$.
§35. By Theorem 5, if L is a quasi-irreducible G_{p}-field over \mathbf{C}, then L contains the smallest full G_{p}-subfield $L_{k_{0}}$ over k_{0}. It is an important problem to determine this more explicitly. We particularly want to know the relation between k_{0} and k_{p}. As a first step to this, we shall show that under a certain condition on Γ which is satisfied by all examples of Γ that we know at present (i.e., those Γ given in Chapter 4), the field k_{0} contains $F=\mathbf{Q}\left(\left(\operatorname{tr} \gamma_{\mathbf{R}}\right)^{2} \mid \gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}}\right)$.

Let $g_{\mathbf{R}}$ be an elliptic element of $G_{\mathbf{R}}$. Then there is an element $t \in G_{\mathbf{R}}$ such that $t^{-1} g_{\mathbf{R}} t$ is of the form $\pm\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$, and $\operatorname{such} \theta$ is determined uniquely modulo π. Put $e^{i \theta}= \pm \lambda$. Then, up to the sign, λ is an eigenvalue of g_{R}, which will be called the first eigenvalue of $g_{\mathbf{R}}$, while λ^{-1} will be called the second eigenvalue of $g_{\mathbf{R}}$. It is easy to check that 2θ is the argument of the rotation induced by g_{R} at its fixed point on $\mathfrak{5}$.

Lemma 11. Let L be a G_{p}-field over \mathbf{C} with a fixed connected component Σ_{0} of Σ and a fixed isomorphism $\Sigma_{0} \cong \mathfrak{F}$, and let Γ be the corresponding discrete subgroup of $G=G_{\mathbf{R}} \times G_{\mathfrak{p}}\left(\right.$ see §9). Let $\gamma=\gamma_{\mathbf{R}} \times \gamma_{p} \in \Gamma$ be such that $\gamma_{\mathbf{R}}$ is elliptic, and let $P_{0} \in \Sigma_{0}$ be the fixed element of γ_{p}. Then for any prime element $x_{0} \in L$ of P_{0}, we have

$$
\begin{equation*}
\gamma_{p}^{-1}\left(x_{0}\right) / x_{0} \equiv \lambda^{2} \quad\left(\bmod P_{0}\right), \tag{71}
\end{equation*}
$$

where $\pm \lambda$ is the first eigenvalue of $\gamma_{\mathbf{R}}$.

Proor. Let z_{0} be the point on \mathfrak{y} corresponding to P_{0} by the isomorphism $\Sigma_{0} \cong \mathfrak{y}$. Then z_{0} is the fixed point of γ_{R} on \mathfrak{H}. For each $z \in \mathfrak{H}$, let $P=P_{z}$ be the corresponding element of Σ_{0}, and let $f(z) \in \mathbf{C} \cup\{\infty\}$ be the residue class of x_{0} at P;

$$
\begin{equation*}
x_{0} \equiv f(z) \quad \bmod P ; \quad \operatorname{ord}_{z_{0}} f(z)=1 \tag{72}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\gamma_{p}^{-1}\left(x_{0}\right) \equiv f\left(\gamma_{R} \cdot z\right) \quad(\bmod P) \tag{73}
\end{equation*}
$$

Therefore, the residue class of $\gamma_{\mathrm{p}}^{-1}\left(x_{0}\right) / x_{0}$ at $P=P_{0}$ is the value of $f\left(\gamma_{\mathrm{R}} \cdot z\right) / f(z)$ at $z=z_{0}$; hence is equal to $e^{2 \theta i}$, where 2θ is the rotation argument of γ_{R} at $z=z_{0}$. Therefore, by the previous remark, it is equal to λ^{2}.

§36.

Lemma 12. The notations being as in Lemma 11, assume now that Γ satisfies the following condition; if $\gamma^{\prime}, \gamma^{\prime \prime} \in \Gamma$ are such that γ_{p}^{\prime} and $\gamma_{p}^{\prime \prime}$ are conjugate in G_{p}, then γ_{R}^{\prime} and $\gamma_{\mathbf{R}}^{\prime \prime}$ are conjugate in $G_{\mathbf{R}}^{\prime}=P L_{2}(\mathbf{R})$. Then, for every $P \in \Sigma$ which is fixed by γ_{p}, we have

$$
\begin{equation*}
\gamma_{p}^{-1}(x) / x \equiv \lambda^{ \pm 2} \quad(\bmod P), \tag{74}
\end{equation*}
$$

where x is any prime element of P.
Remark. Here, P need not be an element of Σ_{0}.
Proof. Let g_{p} be an element of G_{p} such that $g_{p} \cdot P$ is contained in Σ_{0}. Put $P_{0}^{\prime}=g_{p} \cdot P$, and $\gamma_{p}^{\prime}=g_{p} \gamma_{p} g_{p}^{-1}$. Then γ_{p}^{\prime} fixes P_{0}^{\prime}; hence $\gamma_{p}^{\prime} \cdot \Sigma_{0}=\Sigma_{0}$; hence $\gamma_{p}^{\prime} \in \Gamma_{p}$, and the element $\gamma_{\mathbf{R}}^{\prime} \in \Gamma_{\mathbf{R}}$ corresponding to γ_{p}^{\prime} is elliptic. Let $\pm \lambda^{\prime}$ be the first eigenvalue of $\gamma_{\mathbf{R}}^{\prime}$. Then, since $x_{0}^{\prime}=g_{p}(x)$ is a prime element of $P_{0}^{\prime}=g_{p} P$, we get (by Lemma 11)

$$
\begin{equation*}
\gamma_{p}^{\prime-1}\left(x_{0}^{\prime}\right) / x_{0}^{\prime} \equiv \lambda^{\prime 2} \quad\left(\bmod P_{0}^{\prime}\right) . \tag{75}
\end{equation*}
$$

But since γ_{p}^{\prime} and γ_{p} are conjugate in $G_{p}, \gamma_{\mathbf{R}}^{\prime}$ and $\gamma_{\mathbf{R}}$ must be conjugate in $G_{\mathbf{R}}^{\prime}=P L_{2}(\mathbf{R})$ by our assumption on Γ. Therefore, we have $\pm \lambda^{\prime}= \pm \lambda^{ \pm 1}$. Therefore, by (75) we get

$$
\gamma_{p}^{\prime-1}\left(x_{0}^{\prime}\right) / x_{0}^{\prime} \equiv \lambda^{ \pm 2} \quad\left(\bmod P_{0}^{\prime}\right) ;
$$

hence

$$
g_{\mathrm{p}} \gamma_{\mathrm{p}}^{-1}(x) / g_{\mathfrak{p}}(x) \equiv \lambda^{ \pm 2} \quad\left(\bmod g_{\mathfrak{p}} P\right) .
$$

Therefore $\gamma_{\mathrm{p}}^{-1}(x) / x \equiv \lambda^{ \pm 2}(\bmod P)$, which proves our lemma.
Now, it is easy to prove:
Lemma 13. Let L, Γ be as in Lemma 11, and assume that Γ satisfies the condition given in Lemma 12. Then, for every elliptic element $\gamma_{R} \in \Gamma_{R}$ and for every automorphism σ of L which commutes with all elements of G_{p}, we have $\sigma\left(\left(\operatorname{tr} \gamma_{R}\right)^{2}\right)=\left(\operatorname{tr} \gamma_{R}\right)^{2}$.

Proof. Let γ_{p} be the element of Γ_{p} corresponding to γ_{R}, and let $P_{0}, x_{0}, \pm \lambda$ be as in Lemma 11. Thus, we have

$$
\gamma_{p}^{-1}\left(x_{0}\right) / x_{0} \equiv \lambda^{2} \quad\left(\bmod P_{0}\right) .
$$

But since σ commutes with all elements of $G_{\mathfrak{p}}$ and hence in particular with $\gamma_{\mathfrak{p}}$, we get,

$$
\gamma_{\mathrm{p}}^{-1} \sigma\left(x_{0}\right) / \sigma\left(x_{0}\right) \equiv \sigma(\lambda)^{2} \quad\left(\bmod \sigma P_{0}\right)
$$

Now, σP_{0} may not lie on Σ_{0}, but it is an element of Σ which is fixed by γ_{p}. Moreover, it is clear that $\sigma\left(x_{0}\right)$ is a prime element of σP_{0}. Therefore by Lemma 12, we get

$$
\gamma_{\mathfrak{p}}^{-1} \sigma\left(x_{0}\right) / \sigma\left(x_{0}\right) \equiv \lambda^{ \pm 2} \quad\left(\bmod \sigma P_{0}\right)
$$

Therefore, $\sigma(\lambda)^{2}=\lambda^{ \pm 2}$; hence $\lambda^{2}+\lambda^{-2}=\left(\operatorname{tr} \gamma_{R}\right)^{2}-2$ is invariant by σ. Therefore, $\left(\operatorname{tr} \gamma_{\mathrm{R}}\right)^{2}$ is also invariant by σ.

Theorem 8. Let L be a G_{p}-field over \mathbf{C} such that the corresponding discrete subgroup Γ satisfies the condition given in Lemma 12. Let k be a subfield of \mathbf{C} such that there exists a full G_{p}-subfield of L over k. Then k contains the field $F=\mathbf{Q}\left(\left(\operatorname{tr} \gamma_{\mathbf{R}}\right)^{2} \mid \gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}}\right)$. In particular, if L is moreover quasi-irreducible, then the field k_{0} (defined by Theorem 5) contains F.

Proof. Let L_{k} be a full G_{p}-subfield of L over k, and for each $\sigma \in$ Aut $_{k} \mathbf{C}$, let $\widetilde{\sigma}$ be the automorphism of L which is trivial on L_{k} and which coincides with σ on \mathbf{C}. Then $\widetilde{\sigma}$ commutes with all elements of G_{p}. Therefore by Lemma 13, we have

$$
\sigma\left(\left(\operatorname{tr} \gamma_{\mathbf{R}}\right)^{2}\right)=\widetilde{\sigma}\left(\left(\operatorname{tr} \gamma_{\mathbf{R}}\right)^{2}\right)=\left(\operatorname{tr} \gamma_{\mathbf{R}}\right)^{2}
$$

for all $\sigma \in$ Aut $_{k} \mathbf{C}$ and for all elliptic elements $\gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}}$. Therefore, k contains ($\left.\operatorname{tr} \gamma_{\mathbf{R}}\right)^{2}$ for any elliptic element $\gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}}$. But by the Corollary of Proposition 4 (Chapter 3, §11) and by the Remark (Chapter 3, §14), F is generated over \mathbf{Q} by $\left(\operatorname{tr} \gamma_{R}\right)^{2}$ of all elliptic elements $\gamma_{R} \in \Gamma_{R}$.

Therefore k contains F.

[^0]: ${ }^{9}$ See (41).

[^1]: ${ }^{10}$ It is clear that V_{1} and V_{2} generate G_{p}, since V_{1} is a maximal subgroup of G_{p} (see Chapter 1 , Lemma 11).

[^2]: ${ }^{12}$ As is shown later ($\S 30$), if the quotient G / Γ is compact, then all small deformations φ of $\Gamma_{\mathbf{R}}$ in $G_{\mathbf{R}}$ satisfy the conditions given in the lemma.
 ${ }^{13}$ As in Chapter 1, an element g_{R} of G_{R} is called elliptic if \mid tr $g_{R} \mid<2$.
 ${ }^{14}$ See Supplement § 1 .

[^3]: ${ }^{15}$ As in Chapter 1, a point $z \in \mathfrak{S}$ is called a Γ_{R}-fixed point (or Γ-fixed point) if its stabilizer in Γ_{R} is infinite.

[^4]: ${ }^{16}$ See also §2 and §17.
 ${ }^{17}$ Here, $\Gamma^{*} \ni \gamma^{*} \mapsto \gamma_{\mathbf{R}}^{*}$ denotes the projection of Γ^{*} into $\left\{x \in G L_{2}(\mathbf{R}) \mid \operatorname{det} x>0\right\} / \mathbf{R}^{\times} \cong G_{\mathbf{R}}$.

[^5]: ${ }^{18}$ This part is not explicitly stated in G. Shimura [30], but it follows directly from the results stated explicitly.

