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ABSTRACT. We give a review ofthe current status ofthe $X=M$ conjecture. Here $X$ stands for the
one-dimensional configuration sum and $M$ for the corresl onding fermionic formula. There are three
main versions of ihis conjecture. the unrestricted, the classically restricted and the level-restricted
version. We discuss all three versions and illustrate the methods of proof with many examples for
type $A_{n-1}^{(1)}$ In particular. the combinatorial approach via crystal bases and rigged configurations is
discussed. Each section ends with a conglomeration of open problems.
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1. INTRODUCTION

The $X=M$ Conjecture asserts the equality between the generating function of highest weigt
tensor product crystal elements graded by the energy function and the fermionic formula [14, 15,

28]. This article concems the $X=M$ Theorem, or more precisely, those cases in which the
$X=M$ Conjecture has been proven. We describe the method of proof which uses the combi-

natorics of crystal bases and rigged configurations. We mostly focus on type $A_{n-1}^{1)}$ , but many of
the constructions have analogues for other affine Kac-Moody algebras $\mathfrak{g}$ . Instead of providing
all details of the proofs, we illustrate the main concepts via examples. Each section ends with a
conglomeration of open problems.

Thefermionicformula is a $q$-analogue ofthe tensor product multiplicity $\otimes_{j}W_{s_{j}}^{(r_{j})},$ $V_{\lambda}$], where
$W_{s}^{(r)}$ is a $U_{q}(\mathfrak{g})$ Kirillov-Reshetikhin module indexed by a Dynkin node $r$ and $s\in ko$ , and
$V_{\lambda}$ is the irreducible highest weight $U_{q}(\overline{\mathfrak{g}})$-module with highest weight $\lambda.$ Here $\overline{\mathfrak{g}}$ is the finite-
dimensional classical algebra inside the affine Kac-Moody algebra $\mathfrak{g}$ . Altematively, since the
procedure oftaking the clystal limit does not change tensor product multiplicities, we can view the
fermionic formula as a $q$-analogue of $[\otimes_{j}B^{r_{j},s_{j}}, B(\lambda)]$ , where $B^{r,s}$ is the Kirillov-Reshetikhin

crystal and $B(\lambda)$ is the finite-dimensional highest weight crystal indexed by the dominant weight
$\lambda$ . Instead of labeling the fermionic formula by $B=\otimes_{j}B^{r_{j},s_{j}}$ and $B(\lambda)$ , we use the multiplicity

array $L=(L_{s}^{(r)})$ and $\lambda$ , where $L_{s}^{(r)}$ denotes the number oftensor factors $B^{r,s}$ in $B$ . For type $A_{n-1}^{(1)}$

the fermionic formula is then given by

(1.1) $\overline{M}(L, \lambda;q)=\sum_{\nu\in\overline{C}(L,\lambda)}q^{cc(\nu)}\prod_{(a,i)\in \mathcal{H}}\left\{\begin{array}{ll}p_{i}^{(a)}+ & m_{i}^{(a)}\\m_{i}^{(a)} & \end{array}\right\}.$

Here $\overline{C}(L, \lambda)$ is the set of admissible $(L, \lambda)$-configurations, $\mathcal{H}=I\times 40$ with $I=\{1,2,$ $\ldots,n-$

$1\},$ $m_{i}^{(a)}$ is the particle number and $p_{i}^{(a)}$ is the vacancy number. The precise definition ofthe various
quantities is given in section 4.1. The $q$-binomial coefficient is defined as

$\left\{\begin{array}{l}p+m\\m\end{array}\right\}=\frac{(q)_{p+m}}{(q)_{p}(q)_{m}}$

for $p,m\in \mathbb{Z}_{\geq 0}$ and zero otherwise, where $(q)_{m}=(1-q)(1-q^{2})\cdots(1-q^{m})$ .
The $q$-binomial coefficient $\left\{\begin{array}{l}p+m\\m\end{array}\right\}$ is the generating function ofpartitions in a box ofsize $p\times m.$

Using this interpretation, equation (1.1) can be rewritten in solely combinatorial terms as

$\overline{M}(L, \lambda;q)=\sum_{(\nu,J)\epsilon\overline{RC}(L,\lambda)}q^{cc(\nu,J)},$

where $\overline{RC}(L, \lambda)$ is the set of rigged configurations as defined in section 4.1. The one-dimensional
configuration sum $X(B, \lambda;q)$ is the generating function ofhighest weight paths$\overline{\mathcal{P}}(B, \lambda)$ ofweight
$\lambda$ weighted by the energy function $D$

$\overline{X}(B, \lambda;q)=\sum_{b\in\overline{\mathcal{P}}(B,\lambda)}q^{D(b)}.$

The $X=M$ conjecture [14, 15] asserts that

(1.2) $\overline{X}(B, \lambda;q)=\overline{M}(L, \lambda;q)$

for all affine Kac-Moody algebras $\mathfrak{g}.$

The $X=M$ conjecture can be proved by establishing a statistics preserving bijection $\overline{\Phi}$ :
$\overline{\mathcal{P}}(B, \lambda)\rightarrow\overline{RC}(L, \lambda)$ between the set ofpaths and the set ofrigged configurations. More precisely,
$\overline{\Phi}$ should have the property that $D(b)=ccC\Phi(b))$ for all $b\in\overline{\mathcal{P}}(B, \lambda)$ . For $B=\otimes_{j}B^{1,\mu_{j}}$ oftype
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$A_{n-1}^{(1)}$ such a bijection was given by Kerov, Kirillov and Reshetikhin [22, 23]. In fact, in this case
the set of $paths\overline{\mathcal{P}}(B, \lambda)$ is in bijection with the set of semi-standard Young tableaux SSYT $(\lambda, \mu)$

of shape $\lambda$ and content $\mu=(\mu_{1}, \mu_{2}, \ldots)$ , and the energy function corresponds to the cocharge of
Lascoux and Sch\"utzenberger [27]. The bijection of Kerov, Kirillov and Reshetikhin [22, 23] is a
bijection between semi-standard Young tableaux and rigged configurations and yields a fermionic
formula for the Kostka-Foulkes polynomials. In [25], this bijection was generalized to $B=$

$\otimes_{j}B^{r_{j},s_{j}}$ of type $A_{n-1}^{(1)}$ . In this case the set of paths $\overline{\mathcal{P}}(B, \lambda)$ is in bijection with Littlewood-
Richardson tableaux and the bijection was in fact formulated as a bijection between Littlewood-
Richardson tableaux and rigged configurations. For other types such bijections have also been
given in special cases. In summary to date the following cases have been proven:

$\bullet$ $B=\otimes_{j}B^{r_{j},s_{j}}$ oftype $A_{n-1}^{(1)}$ [25];

$\bullet$ $B=\otimes_{j}B^{1,s_{j}}$ ofall nonexceptional types [29, 38];

$\bullet$ $B=\otimes_{j}B^{r_{j},1}$ for type $D_{n}^{(1)}$ [34].

An important technique in studying fermionic formulas ofnonsimply-laced types are virtual clys-
tals and virtual rigged configuration [30, 31].

In this paper we provide a review of the bijective approach to the $X=M$ conjecture. We

will mostly restrict our attention to type $A_{n-1}^{(1)}$ and set up the bijection between crystals and rigged
configurations (rather than tableaux and rigged configurations).

The correspondence between the two combinatorial sets can be understood in terms of two
approaches to solvable lattice models and their associated spin chain systems: the Bethe Ansatz [7]
and the corner transfer matrix method [6].

In his 1931 paper [7], Bethe solved the Heisenberg spin chain based on the string hypothesis
which asserts that the eigenvalues ofthe Hamiltonian form certain strings in the complex plane as
the size ofthe system tends to infinity. The Bethe Ansatz has been applied to many further models
proving completeness of the Bethe vectors. The eigenvalues and eigenvectors of the Hamiltonian
are indexed by rigged configuration. However, numerical studies indicate that the string hypothesis
is not always tme [5]. The comer transfer matrix (CTM) method was introduced by Baxter and
labels the eigenvectors by one-dimensional lattice paths. It tums out that these lattice paths have
a natural interpretation in terms of Kashiwara’s crystal base theory [18], namely as highest weight
crystal elements in a tensor product offinite-dimensional clystals.

Even though neither the Bethe Ansatz nor the comer transfer matrix method are mathematically
rigorous, they suggest that there should be a bijection between the two index sets, namely rigged
configurations on the one hand and highest weight crystal elements on the other hand. This is
schematically indicated in Figure 1. As explained above, the generating function ofrigged config-
urations leads fermionic formulas. Fermionic formulas can be interpreted as explicit expressions
for the partition function ofthe underlying physical models which reflect the particle structure. For
more details regarding the physical background of fermionic formulas see [20, 21, 14].

The $X=M$ conjecture can be generalized in two different ways: to the level-restricted and the

unrestricted case. Both ofthese cases wil} also be reviewed in this paper in the case oftype $A_{-1}^{1)}.$

The set of paths $\overline{\mathcal{P}}(B, \lambda)$ is defined as the set of all $b\in B$ of weight $\lambda$ that are highest weight
with respect to the classical crystal operators. The Kirillov-Reshetikhin crystals are affine crystals
and have the additional crystal operators $\Phi$ and $f_{0}$ , which can be used to define level-restricted
paths. Hence it is natural to consider the generating functions of level-restricted paths, giving rise
to a level-restricted version of $X$ . The corresponding set of level-restricted rigged configurations
was considered in [37]. The notion of level-restriction is also very important in the context of
restricted-solid-on-solid (RSOS) models in statistical mechanics [6] and fusion models in confor-
mal field theory [44]. The one-dimensional configuration sums of RSOS models are generating
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FIGURE 1. Bethe Ansatz versus comer transfer matrix method (CTM)

functions of level-restricted paths (see for example [3, 8, 16]). The structure constants of the
fusion algebras of Wess Zumino-Witten conformal field theories are exactly the level-restricted
analogues of the tensor product multiplicities $X(B, \lambda;1)$ or Littlewood-Richardson coefficients
as shown by Kac [17, Exercise 13.35] and Walton [45, 46]. $q$-Analogues ofthese level-restricted
Littlewood-Richardson coefficients in terms of ribbon tableaux were proposed in ref. [12].

Rigged configurations corresponding to highest weight crystal paths are only the tip of an ice-
berg. In [35] the definition of rigged configurations was extended to all crystal elements in types
$ADE$ by the explicit construction of a clystal structure on the set of unrestricted rigged configura-
tions. The equivalence ofthe crystal structures on rigged configurations and crystal paths together
with the correspondence for highest weight vectors yields the equality of generating functions in
analogy to (1.2). Denote the unrestricted set of paths and rigged configurations by $\mathcal{P}(B, \lambda)$ and
$RC(L, \lambda)$ , respectively. The corresponding generating functions are unrestricted one-dimensional
configuration sums or $q$-supemomial coefficients. $A$ direct bijection $\Phi$ : $\mathcal{P}(B, \lambda)\rightarrow RC(L, \lambda)$ for
type $A_{n-1}^{(1)}$ along the lines of [25] is constructed in [9, 10].

The paper is organized as follows. In section 2 we present the Bethe Ansatz for the spin 1/2
XXX Heisenberg chain which first gave rise to rigged configurations. In section 3 we review the
one-dimensional configuration sums and set the notation used in this article. The corresponding
fermionic formulas for the classically restricted, unrestricted and level-restricted cases are subject
of sections 4, 5 and 6, respectively. In particular for the $X$ $=\overline{M}$ case, we introduce rigged
configurations and fermionic formulas in section 4.1, define certain splitting operations on crystals
and rigged configurations in sections 4.2 and4.3, which are necessary for the bijection $\overline{\Phi}$ between
paths and rigged configurations of section 4.4. Section 4.5 features many ofthe properties of$\overline{\Phi}.$

For the unrestricted version of the $X=M$ theorem, we define the clystal structure on rigged
configurations in section 5.1. $A$ characterization of unrestricted rigged configurations is given in
section 5.2 which is used in section 5.3 to derive the fermionic formula. The affine crystal operators
on rigged configurations are given in section 5.4. Section 6 deals with the level-restricted version
ofthe $X^{\ell}=M^{\ell}$ theorem. Level-restricted rigged configurations are introduced in section 6.1 and
the corresponding fermionic formula is derived in section 6.2. Each section ends with some open
problems.

Acknowledgments. $I$ would like to thank Atsuo Kuniba and Masato Okado for organizing the
workshop”Combinatorial Aspect ofIntegrable Systems” at the Research Institute for Mathematical
Sciences in Kyoto in July 2004 for which this review was written.
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2. BETHE ANSATZ AND RIGGED CONFIGURATIONS

In this section we discuss the algebraic Bethe Ansatz for the example of the spin 1/2 XXX
Heisenberg chain and show how rigged configurations arise. Further details can be found in [11,
33].

The spin 1/2 XXX Heisenberg chain is a one-dimensional quantum spin chain on $N$ sites with
periodic boundary conditions. It is defined on the Hilbert space $\mathcal{H}v=\otimes_{n=1}^{N}h_{n}$ where in this
case $h_{m}=\mathbb{C}^{2}$ for all $n$ . Associated to each site is a local spin variable $\vec{s}=\frac{1}{2}\vec{\sigma}$ where

$\vec{\sigma}=(\sigma^{1}, \sigma^{2}, \sigma^{3})=(\left(\begin{array}{ll}0 & 1\\1 & 0\end{array}\right), \left(\begin{array}{l}0 -i\\0i\end{array}\right), \left(\begin{array}{ll}1 & 0\\0 -1 & \end{array}\right))$

are the Pauli matrices. The spin variable acting on the n-th site is given by

$\tilde{s}_{n}=I\otimes\cdots\otimes I\otimes s^{\rightarrow}\otimes I\otimes\cdots\otimes I$

where $I$ is the identity operator and $s^{\rightarrow}$ is in the n-th tensor factor. We impose periodic boundary
conditions $\vec{s}_{n}=\vec{s}_{n+N}.$

The Hamiltonian ofthe spin 1/2 XXX model is

$H_{N}=J\sum_{n=1}^{N}(\vec{s}_{n}\cdot s_{n+1}^{\rightarrow}-\frac{1}{4})$ .

Our goal is to determine the eigenvectors and eigenvalues of $H_{N}$ in the antiferromagnetic regime
$J>0$ in the limit when $N\rightarrow\infty.$

The main tool is the Lax operator $I_{\triangleleft 0,a}(\lambda)$ , also called the local transition matrix. It acts on
$h_{n}\otimes \mathbb{C}^{2}$ where $\mathbb{C}^{2}$ is an auxiliary space and is defined as

$L_{n,a}(\lambda)=\lambda I_{n}\otimes I_{a}+is_{n}^{\rightarrow}\otimes\vec{\sigma}_{a}.$

Here $I_{n}$ and $I_{a}$ are unit operators acting on $h_{m}$ and the auxiliary space $\mathbb{C}^{2}$ , respectively; $\lambda$ is a
complex parameter, called the spectral parameter. Writing the action on the auxiliary space as a
$2\times 2$ matrix, we have

(2.1) $L_{n}(\lambda)=(\lambda+is_{n}^{3}is_{n}^{+} \lambda-is_{n}^{3}is_{\overline{n}})$

where $s_{n}^{\pm}=s_{n}^{1}\pm is_{n}^{2}.$

The cmcial fact is that the Lax operator satisfies commutation relations in the auxilialy space
$V=\mathbb{C}^{2}$ . Altogether there are 16 relations which can be written compactly in tensor notation.
Given two Lax operators $L_{n,a_{1}}(\lambda)$ and $L_{n,a2}(\mu)$ defined in the same quantum space $h_{n}$ , but differ-
ent auxiliary spaces $V_{1}$ and $V_{2}$ , the products $L_{n,a_{1}}(\lambda)L_{n,a2}(\mu)$ and $L_{n,a2}(\mu)L_{n,a_{1}}(\lambda)$ are defined
on the triple tensor product $h_{m}\otimes V_{1}\otimes V_{2}$ . There exists an operator $R_{1a2}(\lambda-\mu)$ defined on $V_{1}\otimes V_{2}$

such that

(2.2) $R_{a_{1},a2}(\lambda-\mu)L_{n,a_{1}}(\lambda)L_{n,a2}(\mu)=L_{n,a2}(\mu)L_{n,a_{1}}(\lambda)R_{a_{1},a2}(\lambda-\mu)$ .

Explicitly, the $R$-matrix $R_{1},a_{2}(\lambda)$ is given by

$R_{a_{1},a}2(\lambda)=(\lambda+\frac{i}{2})I_{a_{1}}\otimes I_{a2}+\frac{i}{2}\vec{\sigma}_{a_{1}}\otimes\vec{\sigma}_{a}2^{\cdot}$

Geometrically, the Lax operator $L_{m,a}(\lambda)$ can be interpreted as the transpolt between sites $n$ and
$n+1$ ofthe quantum spin chain. Hence

$T_{N,a}(\lambda)=L_{N,a}(\lambda)\cdots L_{1,a}(\lambda)$
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is the monodromy around the circle (recall that we assume periodic boundary conditions). $\ln$ the

auxilialy space write

$T_{N}(\lambda)=(C(\lambda)A(\lambda) D(\lambda)B(\lambda))$

with entries in the full Hilbert space $\mathcal{H}_{N}$ . From (2.2) it is clear that the monodromy matrix

satisfies the following commutation relation

(2.3) $R_{1,a2}(\lambda-\mu)T_{N,a1}(\lambda)T_{N,a2}(\mu)=T_{N,a_{2}}(\mu)T_{N,a_{1}}(\lambda)R_{a1,a_{2}}(\lambda-\mu)$ .

Let $\omega_{n}=\left(\begin{array}{l}1\\0\end{array}\right)$ . In the auxiliary space the Lax operator is triangular on $\omega h$

$L_{n}(\lambda)\omega_{n}=(\lambda+\frac{i}{2}0 \lambda-\frac{i}{2}*)\omega_{n}$

$where*$ stands for an for us irrelevant quantity. This follows directly from (2.1). On the Hilbert
space $\mathcal{H}_{N}$ we define $\Omega=\otimes_{n}\omega_{n}$ so that

$ T_{N}(\lambda)\Omega=(\alpha^{N}(\lambda)0 \delta^{N}(\lambda)*)\Omega$

where $\alpha(\lambda)=\lambda+\frac{i}{2}$ and $\delta(\lambda)=\lambda-\frac{i}{2}$ . Equivalently this means that

$C(\lambda)\Omega = 0$

$ A(\lambda)\Omega = \alpha^{N}(\lambda)\Omega$

$ D(\lambda)\Omega = \delta^{N}(\lambda)\Omega$

so that $\Omega$ is an eigenstate of $A(\lambda)$ and $D(\lambda)$ and hence also of $t_{N}(\lambda)=A(\lambda)+D(\lambda)$ .
The claim is that the other eigenvectors of $t_{N}(\lambda)$ are ofthe form

$\Phi(\lambda, \Lambda)=B(\lambda_{1})\cdots B(\lambda_{n})\Omega.$

The lambdas $\Lambda=\{\lambda_{1}, \ldots, \lambda_{n}\}$ satisfy a set of algebraic relations, called the Bethe equations,

which can be derived from (2.3)

(2.4) $(\frac{\lambda+\frac{i}{2}}{\lambda-\frac{i}{2}})^{N}=\lambda’\neq\lambda\prod_{\lambda’\epsilon\Lambda}\frac{\lambda-\lambda’+i}{\lambda-\lambda-i}$

where $\lambda\in\Lambda=\{\lambda_{1}, \ldots, \lambda_{n}\}.$

Suggested by numerical analysis, it is assumed that in the limit $ N\rightarrow\infty$ the $\lambda$ ’s form strings.

This hypothesis is called the string hypothesis. $A$ string of length $\ell=2M+1$ , where $M$ is an
integer or half-integer depending on the parity of $P$, is a set of $\lambda$ ’s of the form

$\lambda_{jm}^{M}=\lambda_{j}^{M}+im$

where $\lambda_{j}^{M}\in \mathbb{R}$ and $-M\leq m\leq M$ is integer or half-integer depending on $M$ . The index
$j$ satisfies $1\leq j\leq m_{\ell}$ where $m_{\ell}$ is the number of strings of length $\ell.$ $A$ decomposition of
$\{\lambda_{1}, \ldots, \lambda_{n}\}$ into snings is called a configuration. Each configuration is parametrized by $\{\eta\}.$

It follows that

$\sum_{\ell}\ell m_{t}=n.$
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Now take (2.4) and multiply over a string

$\prod_{m=-M}^{M} (\frac{\lambda_{j}^{M}+i(m+\frac{1}{2})}{\lambda_{j}^{M}+i(m-\frac{1}{2})})^{N}$

(2.5)
$= m=-M_{(M^{l},j’,m)\neq(M,j,m)}\prod_{M’,}^{M}\prod_{j’,m’}\frac{\lambda_{j}^{M}-\lambda_{j}^{M’}+i(m-m’+1)}{\lambda_{j}^{M}-\lambda_{j’}^{M’}+i(m-m’-1)}.$

Many ofthe terms on the left and right cancel so that this equation can be rewritten as

(2.6)
$e^{iNp_{M}(\lambda_{j}^{M})}=(M’’ j’)\neq(M,j)\prod_{M,j},e^{iS_{MM^{l}}(\lambda_{j}^{M}-\lambda_{j}^{M’})},$

in terms ofthe momentum and scattering matrix

$e^{ipu(\lambda)} = \frac{\lambda+i(M+\frac{1}{2})}{\lambda-i(M+\frac{1}{2})}$

$e^{iS_{MM’}(\lambda)} = \prod_{m=|M-M’|}^{M+M’}\frac{\lambda+im}{\lambda-im}\cdot\frac{\lambda+i(m+1)}{\lambda-i(m+1)}.$

Taking the logarithm of (2.6) using the branch cut

$\frac{1}{i}\ln\frac{\lambda+ia}{\lambda-ia}=\pi-2\arctan\frac{\lambda}{a}$

we obtain

(2.7) $2N$ arctan
$\frac{\lambda_{j}^{M}}{M+\frac{1}{2}}=2\pi Q_{j}^{M}+(M’’ j’)\neq(M,j)\sum_{M,j^{l}}\Phi_{MM’}(\lambda_{j}^{M}-\lambda_{j’}^{M^{l}})$

,

where

$\Phi_{MM’}(\lambda)=2\sum_{m=|M-M|}^{M+M’},(\arctan\frac{\lambda}{m}+\arctan\frac{\lambda}{m+1})$ .

The first term on the right is absent for $m=0$ . Here $Q_{j}^{M}$ is an integer or half-integer depending
on the configuration.

In addition to the string hypothesis, we assume that the $\phi_{j}$ classify the $\lambda$ ’s uniquely: $\wedge^{M}$

increases if $Q_{j}^{M}$ increases and in a given string no $Q_{j}^{M}$ coincide. As we will see shortly with this
assumption one obtains the correct number of solutions to the Bethe equations (2.4).

Using arctan $\pm\infty=\pm\frac{\pi}{2}$ we obtain ffom (2.7) putting $\lambda_{j}^{M}=\infty$

$Q_{\infty}^{M}=\frac{N}{2}-(2M+\frac{1}{2})(m_{2M+1}-1)-\sum_{M\neq M}(2\min(M, M’)+1)m_{2M’+1}.$

Since there are $2M+1$ strings in a given string of length $2M+1$ , the maximal admissible $\mathfrak{U}_{\infty \mathfrak{c}}$

is
$Q_{\max}^{M}=Q_{\infty}^{M}-(2M+1)$

where we assume that if $Q_{j}^{M}$ is bigger than $Q_{\max}^{M}$ then at least one root in the string is infinite and

hence all are infinite which would imply $Q_{j}^{M}=Q_{\infty}^{M}.$
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With the already mentioned assumption that each admissible set of quantum number $\varphi$ cor-
responds uniquely to a solution of the Bethe equations we may now count the number of Bethe
vectors. Since arctan is an odd function and by the assumption about the monotonicity we have

$-Q_{m\infty}^{M}\leq Q_{1}^{M}<\cdots<Q_{m_{2M+1}}^{M}\leq Q_{\max}^{M}.$

Hence defining $p_{\ell}$ as
$p_{\ell}=N-2\sum_{\ell}\min(\ell,\ell’)m_{\ell’}$

so that
$pp+m_{\ell}=2Q_{\max}^{M}+1$ with $\ell=2M+1.$

With this the number ofBethe vectors with configuration $\{m_{\ell}\}$ is given by

$Z(N,n|\{m_{\ell}\})=\prod_{\ell\geq 1}\left(\begin{array}{l}p_{l}+m_{\ell}\\m_{\ell}\end{array}\right)$

where $\left(\begin{array}{l}p+m\\m\end{array}\right)=(p+m)!/p!m!$ is the binomial coefficient. The total number ofBethe vectors

is

(2.8)
$ Z(N,n)=\Sigma\ell m\ell=n\sum_{\{m_{\ell}\}}\prod_{\ell\geq 1}\left(\begin{array}{l}p_{\ell}+m_{\ell}\\m_{l}\end{array}\right)\cdot$

lt should be emphasized that the derivation of (2.8) given here is not mathematically rigorous.
Besides the various assumptions that were made we also did not worry about possible singularities
of (2.5). However, (2.8) indeed yields the correct number of Bethe vectors.

To interpret (2.8) combinatorially let us view the set $tm$ } as a partition $\nu.$ $A$ partition is a set of
numbers $\nu=(\nu_{1}, v_{2}, \ldots)$ such that $\nu_{i}\geq v_{i+1}$ and only finitely many $v_{i}$ are nonzero. The partition
has part $i$ if $v_{k}=i$ for some $k$ . The size ofpartition $v$ is $|v|$ $:=\nu_{1}+v_{2}+\cdots$ . In the correspondence
between $\{m_{\ell}\}$ and $\nu,$ $m_{\ell}$ specifies the number of parts of size $\ell$ in $\nu$ . For example, if $m=1,$
$m_{2}=3,$ $m_{4}=1$ and all other $m_{\ell}=0$ then $v=(4,2,2,2,1)$ .

It is well-known (see e.g. [1]) that $\left(\begin{array}{l}p+m\\m\end{array}\right)$ is the number ofpartitions in a box ofsize $p\times m,$

meaning, that the partition cannot have more than $m$ parts and no part exceeds $p.$ $Let\overline{RC}(N,n)$ be
the set ofall rigged configurations $(v, J)$ defined as follows. $\nu$ is a partition ofsize $|\nu|=n$ and $J$

is a set ofpartition where $J_{\ell}$ is a partition in a box ofsize $p_{l}\times m_{\ell}$ . Then (2.8) can be rewritten as

(2.9) $Z(N,n)= \sum 1$ .
$(\nu,J)\in\overline{RC}(N,n)$

Example 2.1. Let $N=5$ and $n=2$ . Then the following is the set ofrigged configuration $\overline{RC}(5,2)$

The underlying partition on the left is (2) and on the right (1,1). The partitions $f$ attached to part
length $\ell$ is specified by the first number next to each part. For example, the partition $J$ for the top
rigged configuration on the rigt is (1,1) whereae for the one in the middle and bottom is $J=(1)$

and $ J_{1}=\emptyset$ , respectively. The numbers to the right ofpart $\ell$ is $n.$
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The rigged configurations introduced in this section correspond to the algebra 4. In section 4.1,
we introduce rigged configurations for the type $A_{n-1}$ algebras and also define a statistics cc which
tums (2.9) into a polynomial in $q.$

3. ONE-DIMENSIONAL CONFIGURATION SUMS AND CRYSTALS

One-dimensional configuration sums are generating functions ofclystal elements. $A$ detailed ac-
count on crystals can for example be found in [14, 15, 18, 28]. Here we review the main definitions
to fix our notation. We restrict ourselves to crystals associated to $\mathfrak{g}$ oftype $4_{-1}^{1)}.$

A clystal path is an element in the tensor product of crystals $ B=H^{k^{S}k}\otimes B^{r_{k-1},s_{k-1}}\otimes\cdots\otimes$

$B^{r_{1},s_{1}}$ , where $B^{r,s}$ is the Kirillov-Reshetikhin crystal labeled by $r\in I=\{1,2, \ldots, n-1\}$ and
$s\in \mathbb{Z}_{>0}$ . As a set the crystal $B^{r,s}$ of type $A_{n-1}^{(1)}$ is the set of all column-strict Young tableaux of
shape $(s^{r})$ over the alphabet $\{$ 1, 2, $\ldots,$

$n\}$ . Kashiwara [18] introduced the notion of crystals and
crystal graphs as a combinatorial means to study representations ofquantum algebras. In particular,
there are Kashiwara operators $q,$ $f_{i}$ defined on the elements in $B^{r,s}$ for $0\leq i<n.$

We first focus on $q,$ $f_{i}$ when $i\in I$ . Let $ b=b_{k}\otimes b_{k-1}\otimes\cdots\otimes b_{1}\in B^{r_{k},s_{k}}\otimes B^{r_{k-1}},s_{k-1}\otimes$

$\otimes B^{r_{1},s_{1}}$ . Let row $(b)=$ row $(b_{k})$row $(b_{k-1})$
$\ldots$ row $(b_{1})$ be the concatenation ofthe row reading

words of $b$ . For a fixed $i$ , consider the subword of row $(b)$ consisting of $i$ ’s and $(i+1)$ ’s only.
Successively bracket all pairs $i+1i$ . What is left is a subword ofthe form $P(i+1)^{b}$ . Define

$e_{i}(i^{a}(i+1)^{b})=\left\{\begin{array}{ll}i^{a+1}(i+1)^{b-1} & if b>0\\0 & otherwise\end{array}\right.$

$f_{i}(i^{a}(i+1)^{b})=\left\{\begin{array}{ll}i^{a-1}(i+1)^{b+1} & if a>0\\0 & otherwise.\end{array}\right.$

There are several sets ofpaths that will play an important role in the following. For a composi-
tion ofnonnegative integers $\lambda$ , the set of unrestricted paths is defined as

$\mathcal{P}(B, \lambda)=\{b\in B|wt(b)=\lambda\}.$

Here wt $(b)=(w_{1}, \ldots, w_{n})$ is the weight of $b$ where counts the number of letters $i$ in $b$ . For a
partition $\lambda=(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n})$ , the set of classically restricted paths is defined as

$\overline{\mathcal{P}}(B, \lambda)=\{b\in B|wt(b)=\lambda,$ $e_{i}(b)=0$ for alll $\leq i<n\}.$

Example 3.2. For $B=B^{1,1}\otimes B^{2,2}\otimes B^{3,1}$ oftype $A_{3}^{(1)}$ and $\lambda=(3,3,1,1)$ the path

is in $\overline{\mathcal{P}}(B, \lambda)$ .

There is a third set of level-restricted paths. The definition of these paths requires the affine
Kashiwara crystal operators $e_{0}$ and $f_{0}$ . The affine Dynkin diagram of type $A_{n-1}^{(1)}$ has a circular
symmetry, which looks like a cycle with vertices labeled by $\mathbb{Z}/n\mathbb{Z}$ (see Figure 2). The affine
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FIGURE 2. Dynkin diagram for $A_{n-1}^{(1)}$

crystal $B^{r,s}$ also has such a symmetry, where the map $i\mapsto i+1(mod n)$ on the vertices ofthe
Dynkin diagram corresponds to the promotion operator $pr$ . Then the action of $\Phi$ and $f_{0}$ is given
by

$e_{0}=pr^{-1}oe_{1}\circ pr,$

(3.1)
$f_{0}=pr^{-1}\circ f_{1}opr.$

The promotion operator is a bijection $pr:B\rightarrow B$ such that the following diagram commutes for
all $i\in\hat{I}=\{0,1, \ldots, n-1\}$

$B\rightarrow^{pr}B$

(3.2) $f_{i}\downarrow \downarrow f_{i+1}$

$B\rightarrow^{pr}B$

and such that for evely $b\in B$ the weight is rotated

(3.3) $\langle h_{i+1}, wt(pr(b))\rangle=\langle h_{i}, wt(b)\rangle.$

Here subscripts are taken modulo $n.$

The promotion operator can be defined combinatorially using jeu de taquin [39]. Let $t\in H^{s}$

be a rectangular tableau of shape (Si). Delete all letters $n$ from $t$ and use jeu de taquin to slide the
boxes into the empty spaces until the shape of the new tableau is of skew shape $(g)/(\mu_{n})$ where
$\mu_{n}$ is the number of $n$ in $t$ . Add one to all letters and fill the empty spaces by ls. The result is
$pr(t)$ .

Example 3.3. Suppose $n=5$ and let

$1$ $2$ $3$

$2$ $3$ $4$

$4$ $5$ $5$

$t=$

Then removing the letters 5 and performingjeu de taquin, we obtain

$2$

$1$ $3$ $3$

$2$ $4$ $4$

Hence

Example 3.4. Take $t$ from the previous $exa$mple. Then

$f_{0}(t)=pr^{-1}\circ fi\circ pr(t)=$

$1$ $1$ $2$

$2$ $3$ $3$

$4$ $4$ $5$
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The set of level- $\ell$ restricted paths is now defined as

$\mathcal{P}^{\ell}(B, \lambda)=\{b\in B|wt(b)=\lambda,$ $e_{i}(b)=0$ for alll $\leq i<n,$ $e_{0}^{\ell+1}(b)=0\}.$

There exists a crystal isomorphism $R:B^{r,s}\otimes B^{r’,s’}\rightarrow B^{r’,s’}\otimes B^{r,s}$ , called the combinatorial
$R$-matrix. Combinatorially it is given as follows. Let $b\in F^{s}$ and $b’\in B^{r^{l},\epsilon’}$ . The product $b\cdot y$

of two tableaux is defined as the Schensted insertion of $b$ into $b$ . Then $R(b\otimes b’)=\tilde{b}’\otimes\tilde{b}$ is the
unique pair oftableaux such that $b\cdot\theta=\tilde{b}’\cdot\tilde{b}.$

The loca $I$ energy function $H:B^{r,\epsilon}\otimes B^{r’,s’}\rightarrow \mathbb{Z}$ is defined as follows. For $b\otimes \mathcal{U}\in B^{r,s}\otimes B^{r’,s’},$

$H(b\otimes b’)$ is the number ofboxes ofthe shape of $ b\cdot\theta$ outside the shape obtained by concatenating
$(s^{r})$ and $(s^{\prime r’})$ .

Example 3.5. For

we have

so that

Now let $B=B^{r_{k},s_{k}}\otimes\cdots\otimes B^{r_{1)}s_{1}}$ be a $k$-fold tensor product of clystals. The tail energy
function $D$ : $B\rightarrow \mathbb{Z}$ is given by

$D=\sum_{1\leq i<j\leq k}H_{j-1}R_{j-2}\cdots R_{+1}\hslash,$

where $H_{i}$ (resp. $R$) is the local energy function (resp. combinatorial $R$-matrix) acting on the i-th
and $(i+1)$ -th tensor factors.

Definition 3.6. The one-dimensional configuration sum is the generating function of the corre-
sponding set of paths graded by the tail energy function

$X(B, \lambda;q)=\sum_{b\in \mathcal{P}(B,\lambda)}q^{D(b)},$

$\overline{X}(B, \lambda;q)=\sum_{b\in\overline{\mathcal{P}}(B,\lambda)}q^{D(b)},$

$X^{\ell}(B, \lambda;q)=\sum_{b\in \mathcal{P}^{p}(B,\lambda)}q^{D(b)}.$

The generating functions are called unrestricted, classically restricted and level-restricted one-
dimensional configuration sums or generalized Kostka polynomials, respectively.
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3. 1. Open Problems.

$\bullet$ For types other than $A_{\mathfrak{n}-1}^{(1)}$ , the existence ofthe Kirillov-Reshetikhin crystals $F^{s}$ has been
conjectured in [14, 15]. The existence of $F^{s}$ , their combinatorial structure and properties
are not yet well-understood in general. For the nonsimply-laced cases, the theory ofvirtual
crystals [30, 31] can be employed to obtain the combinatorial structure ofthese crystal in
terms ofthe simply-laced cases.

$\bullet$ For types other than $A_{-1}^{(1)}$ , a combinatorial construction of $R$ and $D$ needs to be given.

4. $\overline{X}=\overline{M}$

In this section we consider $the\overline{X}=\overline{M}$ theorem for type $A_{-1}^{(1)}$ , which was proven in [25]. We

begin by defining the fermionic formula $\overline{M}(L, \lambda;q)$ in section 4.1 and then describe the bijection
$\overline{\Phi}$ : $\overline{\mathcal{P}}(B, \lambda)\rightarrow RC(L, \lambda)$ and its properties in sections 4.4 and 4.5.

4.1. Fermionic formuIas and rigged configurations. As before let $\lambda$ be a partition and $B=$

$B^{r_{k},s_{k}}\otimes\cdots\otimes B^{r}1,s_{1}$ . Define the multiplicity array $L=(L_{1}^{(a)}|(a, i)\in \mathcal{H})$ where $L_{i}^{(a)}$ denotes
the number of factors $B^{a,i}$ in $B,$ $\mathcal{H}=I\times \mathbb{Z}_{>0}$ and $I=\{1,2, \ldots, n-1\}$ . The sequenoe of
partitions $\nu=\{\nu^{(a)}|a\in I\}$ is an $(L, \lambda)$-configuration if

(4.1)
$\sum_{(a,i)\in \mathcal{H}}im_{i}^{(a)}\alpha_{a}=\sum_{(a,i)\in \mathcal{H}}iL_{i}^{(a)}\Lambda_{a}-\lambda,$

where $m_{i}^{(a)}$ is the number of parts of length $i$ in partition $\iota\lambda^{a}$), $\Lambda_{a}=\epsilon_{1}+\epsilon_{2}+\cdots+\epsilon_{a}$ are the
fundamental weights and $oe=\epsilon_{a}-\epsilon_{a+1}$ are the simple roots of type $A_{n-1}$ . Here $\epsilon_{i}$ is the i-th
canonical unit vector of $\Psi$ . The constraint (4.1) is equivalent to the condition

(4.2) $|\nu^{(k)}|=\sum_{j>k}\lambda_{j}-\sum_{a=1}^{L}s_{a}\max(r_{a}-k,0)$

on the size of $\nu^{(k)}.$

The vacancy numbers for the $(L, \lambda)$ -configuration $\nu$ are defined as

$p_{i}^{(a)}=\sum_{j\geq 1}\min(i,j)L_{j}^{(a)}-\sum_{(b,j)\epsilon \mathcal{H}}(\alpha_{a}|\alpha_{b})\min(i,j)m_{j}^{(b)},$

where $(\cdot|\cdot)$ is the normalized invariant form on the weight lattice $P$ such that $(\alpha|\alpha_{b})$ is the

Cartan matrix. The $(L, \lambda)$-configuration $\nu$ is admissible if $p_{i}^{(a)}\geq 0$ for all $(i, a)\in \mathcal{H}$ , and the set
of admissible $(L, \lambda)$-configurations is denoted by $\overline{C}(L, \lambda)$ . It was proven in [24, Lemma 10] that
$p_{i}^{(a)}\geq 0$ for all existing parts $i$ implies that $p_{i}^{(a)}\geq 0$ for all $i.$

Set

$cc(\nu)=\frac{1}{2}\sum_{a,b\epsilon I}\sum_{j,k\geq 1}(\alpha_{a}|\alpha_{b})\min(j, k)m_{j}^{(a)}m_{k}^{(b)}.$

With this notation we define the following fermionic formula. It was first conjectured in [24,

40] that it is an explicit expression for the generalized Kostka polynomials, stemming from the
analogous expression ofKirillov and Reshetikhin [23] for the Kostka polynomial. This conjecture
was proved in [25, Theorem 2.10].
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Definition 4.1 (Fermionic formula). For a multiplicity array $L$ and a partition $\lambda$ such that $|\lambda|=$

$\sum_{(a,i)\in \mathcal{H}}aiL_{i}^{(a)}$ define

(4.3) $\overline{M}(L, \lambda;q)=\sum_{\nu\in\overline{C}(L,\lambda)}q^{cc(\nu)}\prod_{(a,i)\in \mathcal{H}}\left\{\begin{array}{ll}p_{i}^{(a)}+ & m_{i}^{(a)}\\m_{i}^{(a)} & \end{array}\right\}.$

Expression (4.3) can be reformulated as the generating function over rigged configurations. To
this end we need to define certain labelings of the rows of the partitions in a configuration. For
this purpose one should view a partition as a multiset ofpositive integers. $A$ rigged partition is by
definition a finite multiset ofpairs $(i,x)$ where $i$ is a positive integer and $x$ is a nonnegative integer.
The pairs $(i, x)$ are referred to as strings; $i$ is referred to as the length or size ofthe string and $x$ as
the label or quantum number ofthe string. $A$ rigged partition is said to be a rigging ofthe partition
$\rho$ if the multiset, consisting of the sizes of the strings, is the partition $\rho$. So a rigging of $\rho$ is a
labeling ofthe parts of $\rho$ by nonnegative integers, where one identifies labelings that differ only by
permuting labels among equal sized parts of $\rho.$

A rigging $J$ of the $(L, \lambda)$ -configuration $v$ is a sequence of riggings of the partitions $ll^{a)}$ such
that every label $x$ ofa part of $v^{(a)}$ of size $i$ satisfies the inequalities

(4.4) $0\leq x\leq p_{i}^{(a)}.$

Altematively, a rigging of a configuration $v$ may be viewed as a double-sequence of partitions
$J=(J^{(a,i)}|(a, i)\in \mathcal{H})$ where $J^{(a,i)}$ is a partition that has at most $m_{i}^{(a)}$ parts each not exceeding
$p_{i}^{(a)}$ . The pair $(\nu, J)$ is called a rigged configuration. The set of riggings of admissible $(L, \lambda)-$

configurations is denoted by $\overline{RC}(L, \lambda)$ . Let $(\nu, J)^{(a)}$ be the a-th rigged partition of $(v, J)$ . $A$ string
$(i, x)\in(\nu, J)^{(a)}$ is said to be singulal ifx $=p_{i}^{(a)}$ , that is, its label takes on the maximum value.

ExampIe 4.2. Let $L$ be the multiplicity array of $B=(B^{1,1})^{\otimes 2}\otimes B^{1,4}\otimes B^{2,1}\otimes B^{2,3}$ and $\lambda=$

$(6,4,3,1)$ . Then

where the first number next to each part is the rigging and the second one is the vacancy number
for the corresponding part.

The set ofrigged configurations is endowed with a natural statistic cc defined by

(4.5)
$cc(\nu, J)=cc(\nu)+\sum_{(a,i)\in \mathcal{H}}|J^{(a,i)}|$

for $(v, J)\in\overline{RC}(L, \lambda)$ , where $|J^{(a,i)}|$ is the size of partition $J^{(a,i)}$ . Since the $q$-binomial $\left\{\begin{array}{l}p+m\\m\end{array}\right\}$

is the generating function of partitions with at most $m$ parts each not exceeding $p,$ $(4.3)$ can be
rewritten as

(4.6) $\overline{M}(L, \lambda;q)= \sum q^{cc(\nu,J)}.$

$(\nu,J)\in\overline{RC}(L,\lambda)$

The $\overline{X}=\overline{M}$ conjecture asserts that $\overline{M}(L, \lambda;q)=\overline{X}(B, \lambda;q)$ where $L$ is the multiplicity array
of $B$ . For type $A$ this was proven in [25] by showing that there is a bijection $\overline{\Phi}$ : $\overline{\mathcal{P}}(B, \lambda)\rightarrow$

$\overline{RC}(L, \lambda)$ which preserves the statisitics.

Theorem 4.3. [25, Theorem 2.12] For $\lambda$ apartition, $B^{r_{k},s_{k}}\otimes B^{r}k-1,sk-1\otimes\cdots\otimes B^{r_{1},s_{1}}$ and $L$ the
corresponding multiplicity array such that $|\lambda|=\sum_{j}r_{j}s_{j}$ we have $\overline{M}(L, \lambda;q)=\overline{X}(B, \lambda;q)$ .
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4.2. Operations on crystals. To define the bijection $\overline{\Phi}$ we first need to define certain maps on
paths and rigged configurations. These maps correspond to the following operations on crystals:

(1) If $B=B^{1,1}\otimes B’$ , let lh$(B)=B’$ . This operation is called left-hat.
(2) If $B=B^{r,s}\otimes B’$ with $s\geq 2$, let ls $(B)=B^{r,1}\otimes B^{r,s-1}\otimes B’$ . This operation is called

left-split.
(3) lf $B=B^{r,1}\otimes B’$ with $r\geq 2$ , let lb$(B)=B^{1,1}\otimes B^{r-1,1}\otimes B’$ . This operation is called

box-split.

ln analogy we define lh $(L)$ (resp. ls$(L)$ , lb $(L)$ ) to be the multiplicity array of lh $(B)$ (resp. $k(B)$ ,

lb $(B))$, if $L$ is the multiplicity array of $B$ . The corresponding maps on crystal elements are given
by:

(1) Let $b=c\otimes b’\in B^{1,1}\otimes B’$ . Then lh$(b)=b’.$

(2) Let $b=c\otimes b’\in B^{r,s}\otimes B’$ , where $c=c_{1}c_{2}\cdots c_{s}$ and denotes the i-th column of $c.$

Then ls $(b)=c_{1}\otimes c_{2}\cdots c_{s}\otimes b’.$

$b_{1}$

:
$b_{r-1}$

$\otimes$
$\otimes b’.$

ln the next subsection we define the corresponding maps on rigged configurations, and give the
bijection in subsection 4.4.

4.3. Operations on rigged configurations. Suppose $L_{1}^{(1)}>0$ . The main algorithm on rigged
configurations as defined in [23, 25] for admissible rigged configurations is called $\delta$ . For a partition
$\lambda=(\lambda_{1}, \ldots, \lambda_{n})$ , let $\lambda^{-}$ be the set ofall nonnegative tuples $\mu=(\mu_{1}, \ldots, \mu_{n})$ such that $\lambda-\mu=\epsilon_{r}$

for some $1\leq r\leq n$ . Define $\delta$ : $\overline{RC}(L, \lambda)\rightarrow\bigcup_{\mu\in\lambda^{-}}\overline{RC}(1h(L), \mu)$ by the following algorithm.

Let $(\nu, J)\in\overline{RC}(L, \lambda)$ . Set $\ell^{(0)}=1$ and repeat the following process for $a=1,2,$ $\ldots,n-1$ or
until stopped. Find the smallest index $i\geq l^{a-1)}$ such that $J^{(a,i)}$ is singular. lfno such $i$ exists, set

rk$(v, J)=a$ and stop. Otherwise set $l^{a)}=i$ and continue with $a+1$ . Set all undefined $l^{a)}$ to $\infty.$

The new rigged configuration $(\tilde{\nu},\tilde{J})=\delta(\nu, J)$ is obtained by removing a box ffom the selected
strings and making the new strings singular again. Explicitly

$m_{i}^{(a)}(\tilde{\nu})=m_{i}^{(a)}(\nu)+\left\{\begin{array}{ll}1 & ifi =\ell^{(a)}-1\\-1 & ifi =\ell^{(a)}\\0 & otherwise.\end{array}\right.$

The partition $\tilde{J}^{(a,i)}$ is obtained from $J^{(a,i)}$ by removing a part of size $p_{i}^{(a)}(v)$ for $i=\ell^{(a)}$ , adding

a part of size $p_{i}^{(a)}(\tilde{\nu})$ for $i=\ell^{(a)}-1$ , and leaving it unchanged otherwise. Then $\delta(\nu, J)\in$

$\overline{RC}($lh $(L),$ $\mu)$ where $\mu=\lambda-\epsilon_{rk(\nu,J)}.$

Example 4.4. Let $(\nu, J)$ be the rigged configuration ofExample 4.2. Hence $4^{1)}=1,$ $\ell^{(2)}=3$ and
$\ell^{(3)}=\infty$ , so that $rk(\nu, J)=3$ and

$\delta(\nu, J)= 0,0 $$1,1 $
Also cc $(\nu, J)=8.$

Let $s\geq 2$ . Suppose $B=B^{r,s}\otimes B’$ and $L$ the corresponding multiplicity array. Note that
$\overline{C}(L, \lambda)\subset\overline{C}(1s(L), \lambda)$ . Under this inclusion map, the vacancy number $p_{i}^{(a)}$ for $\nu$ increases by
$\delta_{a,r}\chi(i<s)$ . Hence there is a well-defined injective map $i:\overline{RC}(L, \lambda)\rightarrow\overline{RC}($ ls $(L),$ $\lambda)$ given by
$i(\nu, J)=(\nu, J)$ .
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Suppose $r\geq 2$ and $B=B^{r,1}\otimes B’$ with multiplicity array $L$ . Then there is an injection
$j$ : $\overline{RC}(L, \lambda)\rightarrow\overline{RC}(lb(L),$ $\lambda)$ defined by adding singular strings of length 1 to $(\nu,$ $J)^{(a)}$ for
$1\leq a<r$ . Moreover the vacancy numbers stay the same.

4.4. Bijection. The map $\overline{\Phi}$ : $\overline{\mathcal{P}}(B, \lambda)\rightarrow\overline{RC}(L, \lambda)$ is defined by various commutative diagrams.
Note that it is possible to go ffom $B=B^{r_{k},s_{k}}\otimes B^{r_{k-1},s_{k-1}}\otimes\cdots\otimes B^{r_{1},s_{1}}$ to the empty crystal via
successive application of lh, ls and lb.

Definition 4.5. Define that map $\overline{\Phi}$ : $\overline{\mathcal{P}}(B, \lambda)\rightarrow\overline{RC}(L, \lambda)$ such that the empty path maps to the
empty rigged configuration, and:

(1) Suppose $B=B^{1,1}\otimes B’$ . Then the diagram

commutes.
(2) Suppose $B=B^{r,s}\otimes B’$ with $s\geq 2$ . Then the following diagram commutes:

(3) Suppose $B=B^{r,1}\otimes B’$ with $r\geq 2$ . Then the following diagram commutes:

Theorem 4.6. [25] The map $\overline{\Phi}$ : $\overline{\mathcal{P}}(B, \lambda)\rightarrow\overline{RC}(L, \lambda)$ is a bijection andpreserves the statistics,
that is, $D(b)=cc(\overline{\Phi}(b))$ for all $b\in\overline{\mathcal{P}}(B, \lambda)$ .

Note that Theorem 4.6 immediately implies Theorem 4.3.

Example 4.7. The path which corresponds to $(\nu, J)$ ofExample 4.2 $under\overline{\Phi}$ is

We have $D(b)=$ cc$(v, J)=8$ . The steps ofDefinition 4.5 are summarized in Table 1.

4.5. Properties. As we have already seen in Section 4.4, the bijection $\overline{\Phi}$ preserves the statistics.
In addition to this it satisfies a couple ofother amazing properties, one ofthem being the evacuation
theorem. The Dynkin diagram of type $A_{n-1}$ has the symmetry $\tau$ which interchanges $i$ and $n-i.$

There is a corresponding map $*$ on crystals which satisfies

$wt(b^{*})=w_{0}wt(b)$

(4.7) $e_{i}(b^{*})=f_{\tau(i)}(b)^{*}$

$f_{i}(b^{*})=e_{\tau(i)}(b)^{*}$
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TABLE 1. Explicit steps for Example4.7

for all $i\in I$ where $w_{0}$ is the longest permutation of the symmetric group $a_{-1}$ . Explicitly an
element $i\in B^{1,1}$ is mapped to $n+1-i$ . For $b\in B^{r,s},$ $b^{*}$ is the tableau obtained by replacing
evely entry $c$ of $b$ by $c^{*}$ and then rotating by 180 degrees. The resulting tableau is sometimes called
the antitableau of $b$ . For $b=b_{k}\otimes b_{k-1}\otimes\cdots\otimes b_{1}\in B^{r_{k},s_{k}}\otimes B^{r_{k-1}},s_{k-1}\otimes\cdots\otimes B^{r_{1},s_{1}}$ define
$b^{*}=bi\otimes b_{2}^{*}\otimes\cdots\otimes b_{k}^{*}.$

Example 4.8. For type $A_{4}^{(1)}$

By (4.7) the map $*$ maps classical components to classical components. By weight considera-
tions, these components have to be of the same classical highest weight. Let ev $(b)$ be the highest
weight vector in the same classical component as $U.$

Example 4.9. Let $b$ be the path ofExample 4.7. Then
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and

On rigged configurations define $\theta$ to be the complementation of quantum numbers. More pre-
cisely, if $(i, x)$ is a string in $(\nu.J)^{(k)}$ , replace this string by $(i,p_{i}^{(k)}-x)$ . The Evacuation Theo-
rem [25, Theorem 5.6] asserts that ev and $\theta$ correspond under the bijection $\overline{\Phi}.$

Example 4.10. For $(\nu, J)$ of Example 4.2 we have

and it is easy to check that $\theta(\overline{\Phi}(b))=\overline{\Phi}$ (ev $(b)$ ) with $b$ as in Example 4.7.

The combinatorial $R$ matrix on crystals is the identity on rigged configurations under the bijec-
tion $\overline{\Phi}$ . See for example [25, Lemma 8.5] or [38, Theorem 8.6]. This shows in particular that the
polynomial $X(B, \lambda;q)$ does not depend on the order ofthe tensor factors in $B.$

Example 4.11. Take $b$ from Example 4.7. Then $R_{1}$ is the combinatorial $R$-matrix applied to the
first two tensor factors and

It can be checked $that\overline{\Phi}(b)=\overline{\Phi}(R_{1}(b))=(v, J)$ is the rigged configuration of Example 4.2.

The bijection $\overline{\Phi}$ is also well-behaved with respect to transpose duality. Define

$trp;B=B^{r_{k},s_{k}}\otimes B^{r_{k-1},s_{k-1}}\otimes\cdots\otimes B^{r_{1},s_{1}}\rightarrow B^{s_{k},r_{k}}\otimes B^{s_{k-1},r_{k-1}}\otimes\cdots\otimes B^{s_{1},r_{1}}=:B^{t}$

as follows. For $b=b_{k}\otimes\cdots\otimes b_{1}\in B^{r_{k},s_{k}}\otimes\cdots\otimes B^{r_{1},s_{1}}$ rotate each rectangular tableau $b_{f}$ by
$90^{o}$ clockwise to obtain $\tilde{b}_{i}$ . Suppose the letter $a$ occurs in cell $c$ of $\tilde{b}_{i}$ . Then replace letter $a$ in cell
$c$ by aahere $\tilde{a}$ is chosen such that the letter $a$ in cell $c$ is the a-th letter $a$ in row $(b)$ reading from
right to left. Since heighest-weight clystal elements are mapped to heighest-weight elements this
induces a map

$tr_{\mathcal{P}}:\overline{\mathcal{P}}(B, \lambda)\rightarrow\overline{\mathcal{P}}(B^{t}, \lambda^{t})$ .
It should be noted that we are assuming here that $n$ is big enough so that both $H^{i},s_{i}$ and $B^{s_{i},r_{i}}$ are
$A_{n-1}^{(1)}$ crystals.

The analogous map on rigged configurations is

$tr_{RC}$ : $\overline{RC}(L, \lambda)\rightarrow\overline{RC}(L^{t}, \lambda^{t})$ ,

where $L^{t}$ is the multiplicity array of $B^{t}$ . Let $(\nu, J)\in\overline{RC}(L, \lambda)$ and let $v$ have the associated
matrix $m$ with entries $m_{ai}$ as in [24, (9.2)]

$m_{ai}=\sum_{i\leq j}m_{j}^{(a-1)}-m_{j}^{(a)}.$

Note that $\sum_{i\leq j}m_{j}^{(a)}$ is the size of the i-th column ofthe partition $\iota\lambda^{a)}$ . Here $m_{j}^{(0)}$ is defined to be
zero. The configuration $ l\nearrow$ in $(v^{t}, J^{t})=tr_{RC}(\nu, J)$ is defined by its associated matrix $m^{t}$ given by

$m_{ai}^{t}=-m_{ia}+\chi((i, a)\in\lambda)-\sum_{j=1}^{k}\chi((i,a)\in(s_{j}^{r_{j}}))$ .

Here $(i, a)\in\lambda$ means that the cell $(i, a)$ is in the Ferrers diagram ofthe partition $\lambda$ with $i$ specifying
the row and $a$ the column.
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Recall that the riggings $J$ can be viewed as a double sequenoe of partitions $J=(J^{a,i)})$ where
$J^{(a,i)}$ is a partition inside the rectangle of height $\eta^{(a)}$ and width $p_{i}^{(a)}$ . The partition $J^{t(i,a)}$ corre-
sponding to $(v^{t}, J^{t})=trRC(\nu, J)$ is defined as the transpose of the complementary paltition to
$J^{(a,i)}$ in the rectangle ofheight $\mathfrak{R}^{(a)}$ and width $p_{i}^{(a)}.$

The Transpose Theorem [25, Theorem 7.1] asserts that $\overline{\Phi}(tr_{P}(b))=tr_{RC}(\overline{\Phi}(b))$ for all $ b\in$

$\overline{\mathcal{P}}(B, \lambda)$ . This implies in palticular the transpose symmetry [40, Theorem 7.1] [24, Conjecture 3]

$\overline{X}(B, \lambda;q)=\tilde{\overline{X}}(B^{t}, \lambda^{t};q)$

and similarly for $\overline{M},$
$where\tilde{\overline{X}}(B, \lambda_{iq)}=q^{n(B)}\overline{X}(B, \lambda;q^{-1})$ and

$n(B)=\sum_{\iota\leq i<j\leq k}\min(s_{i}, s_{j})\min(r_{i},r_{j})$
.

Example 4.12. As usual let $b$ be the path of Example 4.7. Then

$trp(b)$

Similarly, let $(\nu, J)$ be the rigged configuration of Example 4.2. Then the matrix $m$ and are

$m=\left(\begin{array}{ll}2 -1 -1 & \cdots\\ 0 00 & \cdots\\ 1 11 & \cdots\\ 0 01 & \cdots\\| | | & \end{array}\right)$

$m^{t}=\left(\begin{array}{ll}-2 -1 & \cdots\\ 0 0 & \cdots\\ 0 0 & \cdots\\ 0 1 & \cdots\\ 01 & \cdots\\ 01 & \cdots\\\vdots & \end{array}\right)$

so that

$tr_{RC}(\nu, J)=$
lt can be checked explicitly in this example that $\overline{\Phi}(t\iota p(b))=tr_{RC}(\overline{\Phi}(b))$ .

Finally let us mention the contragredient duality which is of great importance for the notion
ofvirtual crystals [30, 31]. On clystals define the map

$\vee:B^{r,s}\rightarrow B^{n-r,s}$

where each column $c=c_{1}\ldots c_{\tau}$ of $b\in B^{r,s}$ is replaced by column $(n+1-\phi_{\pi-r})\ldots(n+1-d_{1})$

where $\{d_{1}<d_{2}<\cdots<d_{\tau n-r}\}$ is the complement of $\{c_{1}<c_{2}<\ldots<c_{r}\}$ in $\{$ 1, 2, $\ldots,n\}.$

Note that $e_{i}(b)^{\vee}=f_{n-i}(b^{\vee})$ .

Example 4.13. The contragredient dual of $b=\frac{12}{\frac{23}{}}-$ for $n=4$ is $b^{\vee}=^{1}2ffl^{1}4^{\cdot}$
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The map $\vee$ can be extended to a map on paths

$\vee:\overline{\mathcal{P}}(B, \lambda)\rightarrow\overline{\mathcal{P}}(B^{\vee}, \lambda^{\vee})$ ,

where $B^{\vee}=B^{n-r_{k},s_{k}}\otimes\cdots\otimes B^{n-r_{1},s_{1}},$ $\lambda^{\vee}=$ $(N-\lambda_{n}, N-\lambda_{n-1}, \ldots , N-\lambda_{1})$ and $N=$

$s_{1}+\cdots+s_{k}$ , by mapping $b=b_{k}\otimes\cdots\otimes b_{1}$ to $b^{\vee}=b_{k}^{\vee}\otimes\cdots\otimes b_{1}^{\vee}.$

For given $n$, define

rev : $\overline{RC}(L, \lambda)\rightarrow\overline{RC}(L^{\vee}, \lambda^{\vee})$

such that for $(v^{\vee}, J^{\vee})=$ rev $(v, J)$ we have $(v^{\vee}, J^{\vee})^{(a)}=(v, J)^{(n-a)}$ . Then we have [30, Theo-
rem 5.7] that $\overline{\Phi}(b^{\vee})=$ rev $(\overline{\Phi}(6))$ for all $b\in\overline{\mathcal{P}}(B, \lambda)$ . This implies the contragredient symmetry

$\overline{X}(B^{\vee}, \lambda^{\vee};q)=\overline{X}(B, \lambda;q)$

and similarly for $M.$

Example 4.14. Employing one last time $b$ ofExample 4.7 we obtain

and for $(v, J)$ of Example 4.2

which is also $\overline{\Phi}(b^{\vee})$ .

The bijection $\overline{\Phi}$ has further properties. For example it is well-behaved under certain embeddings.
We refer the interested reader to the literature [25, 40, 24, 38].

4.6. Open Problems.
$\bullet$ For nonexceptional types, the bijection $\overline{\Phi}$ was given in [29, 38] for the cases $ B=B^{s_{k}}\otimes$

. . . $\otimes B^{1,s_{1}}$ and for type $D_{n}^{(1)}$ in the case $B=B^{r_{k},1}\otimes\cdots\otimes B^{r_{1},1}[34]$ . For all other cases,
it is still an outstanding problem to prove $that\overline{\Phi}$ exists. In particular, the analogues ofthe
splitting maps need to be found.

$\bullet$ It would be vely nice to have a more conceptual definition ofthe bijection $\overline{\Phi}$ rather than the
recursive definition in terms ofthe splitting and hatting maps. $A$ possible avenue would be
to give a definition $of\overline{\Phi}$ in terms ofthe affine crystal structure on rigged configurations. In

section 5 we provide such a crystal structure for $F^{s}$ oftype $A_{n-1}^{(1)}$ . To obtain $\overline{\Phi}$, one would
need the affine crystal structure on tensor products $B=F^{k},s_{k}\otimes\cdots\otimes B^{r_{1},s_{1}}$ . Compare
with section 5.5.

5. $X=M$

In this section we deal with the unrestricted version ofthe $X=M$ conjecture for type $4_{-1}^{1)}$ . In
palticular it is our aim to find a fermionic formula for the unrestricted configuration sum $X(B, \lambda;q)$

of Definition 3.6. This has recently been achieved in [35] by extending the set of rigged configu-
rations to the set of unrestricted rigged configurations by imposing a crystal structure in this set.
A direct bijection between unrestricted paths and unrestricted rigged configurations along the lines
ofDefinition 4.5 was given in [10]. Here we mostly follow [35] and derive the fermionic formula
$M(B, \lambda;q)$ from the crystal structure on rigged configurations.
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5.1. Crystal structure on rigged configurations. The set of unrestricted rigged configurations
$RC(L)$ can be introduced by defining a crystal structure generated from highest weight vectors
given by elements in $\overline{RC}(L)=\bigcup_{\lambda}\overline{RC}(L, \lambda)$ by the Kashiwara operators $*,$ $f_{a}.$

Definition 5.1. Let $L$ be a multiplicity array. Define the set ofunrestricted rigged configurations
$RC(L)$ as the set generated from the elements in $\overline{RC}(L)$ by the application ofthe operators $A,$ $e_{a}$

for $a\in I$ defined as follows:
(1) Define $e_{a}(\nu, J)$ by removing a box from a string oflength $k$ in $(\nu, J)^{(a)}$ leaving all colabels

fixed and increasing the new label by one. Here $k$ is the length of the string with the
smallest negative rigging of smallest length. Ifno such string exists, $q(\nu, J)$ is undefined.

(2) Define $f_{a}(\nu, J)$ by adding a box to a string oflength $k$ in $(\nu, J)^{(a)}$ leaving all colabels fixed
and decreasing the new label by one. Here $k$ is the length of the string with the smallest
nonpositive rigging of largest length. If no such string exists, add a new string of length
one and label-l. If the result is not a valid unrestricted rigged configuration $t(\nu, J)$ is
undefined.

Let $(\nu, J)\in$ $RC(L)$ . If $f_{a}$ adds a box to a string of length $k$ in $(v, J)^{(a)}$ , then the vacancy
numbers change according to

(5.1) $p_{i}^{(b)}\mapsto p_{i}^{(b)}-(\alpha_{a}|\alpha_{b})\chi(i>k)$ ,

where $\chi(S)=1$ ifthe statement $S$ is tme and $\chi(S)=0$ if $S$ is false. Similarly, if% adds a box of
length $k$ to $(\nu, J)^{(a)}$ , then the vacancy numbers change as

$p_{i}^{(b)}\mapsto p_{i}^{(b)}+(\alpha_{a}|\alpha_{b})\chi(i\geq k)$ .

We may define a weight function wt : $RC(L)\rightarrow P$ as

(5.2) wt
$(\nu, J)=\sum_{(a,i)\in \mathcal{H}}i(L_{i}^{(a)}\Lambda_{a}-m_{i}^{(a)}\alpha_{a})$

for $(\nu, J)\in RC(L)$ . It is clear ffom the definition that $wt(f_{a}(\nu, J))=$ wt $(\nu, J)-\alpha_{a}$ . Define

$RC(L, \lambda)=\{(\nu, J)\in RC(L)|wt(\nu, J)=\lambda\}.$

Example 5.2. Let $\mathfrak{g}$ be of type $A_{2}^{(1)}$ . Let $\lambda=(3,2,3),$ $L_{1}^{(1)}=L_{3}^{(1)}=L_{2}^{(2)}=1$ and all other
$L_{i}^{(a)}=0$ . Then

$(\nu, J)= \overline{H_{-1}^{\lrcorner_{-1}}} -2$

is in $RC(L, \lambda)$ , where the palts of the rigging $J^{(a,i)}$ are written next to the parts of length $i$ in
partition $\nu^{(a)}$ . We have

$-1$ and $e_{1}(\nu, J)=$
$1$ $-3.$

Example 5.3. Let $\mathfrak{g}$ be oftype $A_{2}^{(1)}$ . Let $\lambda=(4,5,6),$ $L_{1}^{(1\rangle}=15$ and all other $L_{i}^{(a)}=0$ . Then

$(\nu, J)=$
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is in $RC(L, \lambda)$ . We have

and

The following Theorem was proven in [35] for all simply-laced algebras.

Theorem 5.4. [35, Theorem 3.7] The graph generatedfrom $(\overline{\nu},\overline{J})\in\overline{RC}(L, \lambda)$ and the crystal
operators $e_{a},$

$f_{a}$ ofDefinition 5.1 is isomorphic to the crystal graph $B(\lambda)$ ofhighest weight $\lambda.$

Theorem 5.6. [35, Theorem 3.9] The cocharge cc as defined in (4.5) is constant on connected
crystal components.

Example 5.7. The cocharge ofthe connected component in Example 5.5 is 1.

Combining the various results yields a generalization ofTheorem 4.6.

Theorem 5.8. [35, Theoren 3.10] Let $\lambda$ be a composition, $B$ be as in Theorem 4.6 and $L$ the
corresponding multiplicity array. Then there is a bijection $\Phi$ : $\mathcal{P}(B, \lambda)\rightarrow$ $RC(L, \lambda)$ which
preserves the statistics, that is, $D(b)=$ c,c $(\Phi(b))$ for all $b\in \mathcal{P}(B, \lambda)$ .

Proof. By Theorem 4.6 there is such a bijection for the maximal elements $b\in\overline{\mathcal{P}}(B)$ . By Theo-
rems 5.4 and 5.6 this extends to all of $\mathcal{P}(B, \lambda)$ . $\square $

Extending the definition of(4.6) to

(5.3)
$M(L, \lambda;q)=\sum_{(\nu,J)\in RC(L,\lambda)}q^{cc(\nu,J)},$

we obtain the corollary:

Corollary 5.9. [35, Corollary 3.10] With all hypotheses of Theorem 5.8, we have $X(B, \lambda;q)=$

$M(L, \lambda;q)$ .
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Example 5.10. Let $n=4,$ $B=B^{2,2}\otimes B^{2,1}$ and $\lambda=(2,2,1,1)$ . Then the multiplicity array

is $L_{1}^{(2)}=1,$ $L_{2}^{(2)}=1$ and $L_{i}^{(a)}=0$ for all other $(a,i)$ . There are 7 possible unrestricted paths
in $\mathcal{P}(B, \lambda)$ . For each path $b\in \mathcal{P}(B, \lambda)$ the corresponding rigged configuration $(\nu, J)=\Phi(b)$

together with the tail energy and cocharge is summarized below.

The unrestricted Kostka polynomial in this case is $M(L, \lambda;q)=2+4q+\phi=X(B, \lambda;q)$ .

5.2. Characterization of unrestricted rigged configurations. $\ln$ this section we give an explicit

description of the elements in $RC(L, \lambda)$ for type $A_{n-1}^{(1)}$ . Generally speaking, the elements are
rigged configurations where the labels lie between the vacancy number and certain lower bounds
defined explicitly. This characterization will be used in the next section to write down an explicit
fermionic formula $M(L, \lambda;q)$ for the unrestricted configuration sum $X(B, \lambda;q)$ .

Let $L=(L_{i}^{(a)}|(a,i)\in \mathcal{H})$ be a multiplicity array and $\lambda=(\lambda_{1}, \ldots, \lambda_{n})$ be the $n$-tuple
of nonnegative integers. The set of $(L, \lambda)$-configurations $C(L, \lambda)$ is the set of all sequences of
partitions $\nu=(v^{(a)}|a\in I)$ such that (4.1) holds. As discussed in Section 4.1, in the usual
setting a rigged configuration $(v, J)\in\overline{RC}(L, \lambda)$ consists ofa configuration $\nu\in\overline{C}(L, \lambda)$ together
with a double sequence of partitions $J=\{J^{(a,i)}|(a,i)\in \mathcal{H}\}$ such that the partition $J^{(a,i)}$ is

contained in a $m_{i}^{(a)}\times p_{i}^{(a)}$ rectangle. In particular this requires that $d^{a)}\geq 0$ . The unrestricted
rigged configurations $(\nu, J)\in$ $RC(L, \lambda)$ can contain labels that are negative, that is, the lower
bound on the parts in $J^{(a,i)}$ can be less than zero.

To define the lower bounds we need the following notation. Let $\lambda’=(c_{1},c_{2}, \ldots,c_{n-1})^{t}$ , where
$c_{k}=\lambda_{k+1}+\lambda_{k+2}+\cdots+\lambda_{n}$ is the length of the k-th column of $\lambda^{l}$ , and let $\mathcal{A}(\lambda’)$ be the set of
tableaux of shape $\lambda’$ such that the entries are strictly decreasing along columns, and the letters in
column $k$ are from the set $\{$ 1, 2, $\ldots,$

$\alpha_{-1}\}$ with $c_{0}=c_{1}.$

Example 5.11. For $n=4$ and $\lambda=(0,1,1,1)$ , the set $\mathcal{A}(\lambda’)$ consists ofthe following tableaux

Remark5.12. Denote by $t_{j,k}$ the entry of $t\in \mathcal{A}(\lambda’)$ in row $j$ and column $k$ . Note that $q-j+$
$1\leq t_{j,k}\leq c_{k-1}-j+1$ since the entries in column $k$ are strictly decreasing and lie in the set
$\{$ 1, 2, $\ldots,$

$c_{k-1}\}$ . This implies $t_{j,k}\leq c_{k-1}-j+1\leq t_{j,k-1}$ , so that the rows of $t$ aoe weakly
decreasing.
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Given $t\in \mathcal{A}(\lambda’)$ , we define the lower bound as

$M_{i}^{(a)}(t)=-\sum_{j=1}^{c_{a}}\chi(i\geq t_{j,a})+\sum_{j=1}^{c_{a+1}}\chi(i\geq t_{j,a+1})$ ,

where recall that $\chi(S)=1$ ifthe the statement $S$ is tme and $\chi(S)=0$ otherwise.
Let $M,p,$ $m\in \mathbb{Z}$ such that $m\geq 0.$ $A(M,p, m)$ -quasipartition $\mu$ is a tuple of integers $\mu=$

$(\mu_{1}, \mu_{2}, \ldots , \mu_{m})$ such that $M\leq\mu_{m}\leq\mu_{m-1}\leq\cdots\leq\mu_{1}\leq p$ . Each $\mu_{i}$ is called a part of $\mu$ . Note
that for $M=0$ this would be a partition with at most $m$ parts each not exceeding $p.$

The following theorem shows that the set ofunrestricted rigged configurations can be character-
ized via the lower bounds.

Theorem 5.13. [35, Theorem 4.6] Let $(v, J)\in$ $RC(L, \lambda)$ . Then $v\in C(L, \lambda)$ and $J^{(a,i)}$ is a
$(M_{i}^{(a)}(t),p_{i}^{(a)}, m_{i}^{(a)})$ -quasipartition for some $t\in \mathcal{A}(\lambda’)$ . Conversely, every $(\nu, J)$ such that $ v\in$

$C(L, \lambda)$ and $J^{(a,i)}$ is $a(M_{i}^{(a)}(t),p_{i}^{(a)}, m_{i}^{(a)})$ -quasipartition for some $t\in \mathcal{A}(\lambda’)$ is in $RC(L, \lambda)$ .

Example 5.14. Let $n=4,$ $\lambda=(2,2,1,1),$ $L_{1}^{(1)}=6$ and all other $L_{i}^{(a)}=0$ . Then

is an unrestricted rigged configuration in $RC(L, \lambda)$ , where we have written the palts of $Ja,i$ ) next
to the parts of length $i$ in partition $lI^{a)}$ . To see that the riggings form quasipaltitions, let us write
the vacancy numbers $p_{i}^{(a)}$ next to the parts oflength $i$ in partition $\iota^{Xa)}$ :

This shows that the labels are indeed all weakly below the vacancy numbers. For

we get the lower bounds

which are less or equal to the riggings in $(\nu, J)$ .

For type $A_{1}$ we have $\lambda=(\lambda_{1}, \lambda_{2})$ so that $\mathcal{A}=\{t\}$ contains just the single tableau

In this case $M_{i}(t)=-\sum_{j=1}^{\lambda_{2}}\chi(i\geq t_{j,1})=-i$ . This agrees with the findings of [42].
As we will see in section 6 the characterization of unrestricted rigged configurations is similar

to the characterization of level-restricted rigged configurations [37, Definition 5.5]. Whereas the
unrestricted rigged configurations are characterized in terms of lower bounds, for level-restricted
rigged configurations the vacancy number has to be modified according to tableaux in a certain set.
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5.3. Fermionic formula. With the explicit characterization of the unresmcted rigged configu-
rations of Section 5.2, it is possible to derive an explicit formula for the polynomials $M(L, \lambda)$

of (5.3).
Let $S\mathcal{A}(\lambda’)$ be the set of all nonempty subsets of $\mathcal{A}(\lambda’)$ and set

$M_{i}^{(a)}(S)=\max\{M_{i}^{(a)}(t)|t\in S\}$ for $S\in \mathcal{S}\mathcal{A}(\lambda^{l})$ .

By inclusion-exclusion the set ofall allowed riggings for a given $\nu\in C(L,\lambda)$ is

$\bigcup_{S\in SA(\lambda)},(-1)^{|S|+1}$
{ $J|J^{(a,i)}$ is $a(M_{i}^{(a)}(S),p_{i}^{(a)},m_{i}^{(a)})$ -quasipartition}.

The $q$-binomial coefficient $\left\{\begin{array}{l}m+p\\m\end{array}\right\}$ , defined as

$\left\{\begin{array}{l}m+p\\m\end{array}\right\}=\frac{(q)_{m+p}}{(q)_{m}(q)_{p}},$

where $(q)_{n}=(1-q)(1-q^{2})\cdots(1-q^{n})$ , is the generating ffinction ofpartitions with at most $m$

parts each not exceeding $p$ . Hence the polynomial $M(L, \lambda)$ may be rewritten as

(5.4) $M(L, \lambda;q)=\sum_{S\in SA(\lambda’)}(-1)^{|S|+1}\sum_{\nu\in C(L,\lambda)}q^{cc(\nu)+\Sigma_{(a,i)\epsilon n^{m}}!^{a)}M^{(a)}(S)}$

$\times \prod \left\{\begin{array}{l}m_{i}^{(a)}+p_{i}^{(a)}-M_{i}^{(a)}(S)\\m_{i}^{(a)}\end{array}\right\}$

$(a,i)\in \mathcal{H}$

called fermionic formula. By Corollary 5.9this is also a formula for the unrestricted configuration
sum $X(B, \lambda;q)$ . This formula is different from the fermionic formulas of [13, 19] which exist in the
special case when $L$ is the multiplicity array of $B=B^{1,s_{k}}\otimes\cdots\otimes B^{1,s_{1}}$ or $B=B^{r_{k},1}\otimes\cdots\otimes B^{r_{1\prime}1}.$

5.4. The Kashiwara operators $e_{0}$ and $f_{0}$ . The Kirillov-Reshetikhin crystals $F^{s}$ are affine crys-
tals and admit the Kashiwara operators $\Phi$ and $f_{0}$ . As we have seen in (3.1) they can be defined in
terms ofthe promotion operator $pr$ as

$e_{0}=pr^{-1}\circ e_{1}\circ pr$ and $f_{0}=pr^{-1}\circ f_{1}\circ pr.$

We are now going to define the promotion operator on unrestricted rigged configurations.

Definition 5.15. Let $(\nu, J)\in RC(L, \lambda)$ . Then $pr(\nu, J)$ is obtained as follows:

(1) Set $(\nu’, J’)=f_{1}^{\lambda_{1}}f_{2}^{\lambda_{2}}\cdots f_{n}^{\lambda_{n}}(\nu, J)$ where $f_{n}$ acts on $(\nu, J)^{(n)}=\emptyset.$

(2) Apply the following algorithm $\rho$ to $(\sqrt{}, J’)\lambda_{n}$ times: Find the smallest singular string in
$(\nu’, J’)^{(n)}$ . Let the length be $\emptyset^{n)}$ . Repeatedly find the smallest singular string in $(\iota \text{ノ}, J’)^{(k)}$

of length $\ell^{(k)}\geq\ell^{(k+1)}$ for all $1\leq k<n$ . Shorten the selected strings by one and make
them singular again.

Example 5.16. Let $B=B^{2,2},$ $L$ the corresponding multiplicity array and $\lambda=(1,0,1,2)$ . Then

corresponds to the tableau $b=EU$ iii $\in \mathcal{P}(B, \lambda)$ . Afler step (1) ofDefinition 5.15 we have
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Then applying step (2) yields

which corresponds to the tableau $pr(b)=\frac{11}{}\frac{24}{}-.$

Lemma 5.17. [35, Lemma4.10] The map $pr$ ofDefinition 5.15 is well-defined and satisfies (3.2)

for $1\leq a\leq n-2$ and (3.3)for $0\leq a\leq n-1.$

Lemma 7 of [39] states that for a single Kirillov-Reshetikhin clystal $B=H^{s}$ the promotion
operator $pr$ is uniquely determined by (3.2) for $1\leq a\leq n-2$ and (3.3) for $0\leq a\leq n-1$ . Hence
by Lemma 5.17 $pr$ on $RC(L)$ is indeed the correct promotion operator when $L$ is the multiplicity
array of $B=B^{r,s}.$

Theorem 5.18. [35, Theorem 4.11] Let $L$ be the multiplicity array of $B=H^{s}$ . Then $pr$ :
$RC(L)\rightarrow RC(L)$ ofDefinition 5. $i5$ is the promotion operator on rigged configurations.

Conjecture 5.19. [35, Conjecture $4.$ ] $2]$ Theorem 5.18 is truefor any $B=H^{k}s_{k}\otimes\cdots\otimes B^{r_{1},s_{1}}.$

Unfortunately, the characterization [39, Lemma 7] does not suffice to define $pr$ uniquely on
tensor products $B=B^{r_{k},s_{k}}\otimes\cdots\otimes B^{r_{1},s_{1}}.$

5.5. Open ProbIems.
$\bullet$ In [10] a bijection $\Phi$ : $\mathcal{P}(B, \lambda)\rightarrow RC(L, \lambda)$ is defined via a direct algorithm. lt is expected

that Conjecture 5.19 can be proven by showing that the following diagram commutes:

Altematively, an independent characterization of $pr$ on tensor factors would give a new,
more conceptual way of defining the bijection $\Phi$ between paths and (unrestricted) rigged
configurations. $A$ proof that the clystal operators $f_{a}$ and $e_{a}$ commute with $\Phi$ for $a=$
$1,2,$

$\ldots,$
$n-1$ is given in [10].

$\bullet$ Stembridge’s local characterization of simply-laced crystals [41] was used in [35] to show
that $f_{a}$ and $e_{a}$ of Definition 5.1 are in fact clystal operators. For nonsimply-laced types
a local characterization of crystals is not known yet. It can be shown via virtual clystals
what the crystal operators are in this case. See for example [30, 31, 36]

$\circ$ Hatayama et al. [13] derived a different fermionic formula $M(L, \lambda;q)$ for the cases $B=$
$B^{1,s_{k}}\otimes\cdots\otimes B^{1,s_{1}}$ and $B=B^{r_{k},1}\otimes\cdots\otimes B^{r_{1},1}$ . In [32] this formula was interpreted
in terms of ribbon” rigged configurations. It would be very interesting to relate the two
fermionic formulas, in particular the two different rigged configurations. As the fermionic
formula of [13] is a special case of the Lascoux-Leclerc Thibon (LLT) spin generating
function [26], this would yield a proof of a conjecture by Kirillov and Shimozono [24,
Conjecture 5] that the LLT spin generating function labeled by a partition whose $k$-quotient
is a sequence ofrectangles is the same as the unrestricted generalized Kostka polynomial
$X(B, \lambda;q)$ .

$\bullet$ The unrestricted rigged configurations for the $A_{1}$ case also appeared in a paper by Tak-
agi [42] in the study of box-ball systems. $A$ similar link should be given for the general
$A_{n-1}$ case.



100 A. SCHILLING

$\bullet$ Bailey’s lemma is a powerful tool to prove Rogers-Ramanujan-type identities. Andrews [2]
showed that Bailey’s lemma has an iterative stmcture which relies on a transformation
property of the $q$-binomial coefficients. This iterative structure allows to derive infinite
families ofRogers-Ramanujan identities from a single seed identity. Since the unrestricted
configuration sums $X$ yield a generalization of the $q$-binomial coefficients, it is expected
that they also satisfy certain transformation properties which would give rise to a Bailey
lemma. For type $A_{2}$ this has been achieved in [4]. The explicit formula $M$ for the unre-
stricted configuration sum might trigger further progress on generalizations of the Bailey

lemma to higher rank and other types.
$\bullet$ For type $D_{n}^{(1)}$ , a simple characterization in terms oflower bounds for the parts ofa config-

uration $\nu\in C(L)$ does not seem to exist. For example take $B=ff^{1}$ oftype $D_{4}^{(1)}$ so that
$L_{1}^{(2)}=1$ and all other $L_{i}^{(a)}=0$ . Then the unrestricted rigged configurations

which correspond to the crystal elements $H_{1}^{1}$ and $H_{3}^{3}$ respectively, occur in $RC(L)$ , but

on the other hand does not appear. It remains to determine a closed form fermionic expres-
sion in this case.

6. $X^{\ell}=M^{\ell}$

The fermionic formula for the level-restricted $X^{\ell}=M^{\ell}$ theorem has a similar structure to the
unrestricted fermionic formula. Instead of modifying the lower bounds for the rigged configura-
tions, the upper bounds are adapted.

6.1. Level-restricted rigged configurations. A partition $\lambda=(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n})$ is restricted of
level $\ell$ if $\lambda_{1}-\lambda_{n}\leq\ell$ . Here $\lambda$ has at most $n$ parts, some of which may be zero. Fix a shape $\lambda$

that is restricted of level $\ell$ and let $L$ be a multiplicity array such that $4^{a)}=0$ if $ i>\ell$ . Call such a
multiplicity array level $-\ell$ restricted. Define $\tilde{\ell}=\ell-(\lambda_{1}-\lambda_{n})$ , which is nonnegative by assumption.

Set $\lambda’=$ $(\lambda_{1}-\lambda_{n}, \ldots , \lambda_{n-1}-\lambda_{n})^{t}$ and denote the set of all column-strict tableaux of shape
$\lambda’$ over the alphabet $\{1, 2, \ldots, \lambda_{1}-\lambda_{n}\}$ by CST $(\lambda’)$ . Define a table ofmodified vacancy numbers
depending on $\nu\in C(L, \lambda)$ and $ t\in$ CST $(\lambda’)$ by

(6.1) $p_{i}^{(k)}(t)=p_{i}^{(k)}-\sum_{j=1}^{\lambda_{k}-\lambda_{n}}\chi(i\geq\tilde{\ell}+t_{j,k})+\sum_{j=1}^{\lambda_{k+1}-\lambda_{n}}\chi(i\geq\tilde{\ell}+t_{j,k+1})$

for all $i,$ $k\geq 1$ and $t_{j,k}$ is the $(j, k)$ -th entry of $t$ . Finally let $x_{i}^{(k)}$ be the largest part ofthe partition
$J^{(k,i)}$ ; if $J^{(k,i)}$ is empty set $x_{i}^{(k)}=0.$

Definition 6.1. Say that $(v, J)\in\overline{RC}(L, \lambda)$ is restricted of level $\ell$ provided that

(1) $\nu_{1}^{(k)}\leq\ell$ for all $k.$

(2) There exists a tableau $ t\in$ CST $(\lambda’)$ , such that for every $i,$ $k\geq 1,$

$x_{i}^{(k)}\leq p_{i}^{(k)}(t)$ .

Let $C^{\ell}(L, \lambda)$ be the set of all $\nu\in\overline{C}(L, \lambda)$ such that the first condition holds, and denote by
$RC\ell_{(L,\lambda)}$ the set of $(\nu, J)\in\overline{RC}(L, \lambda)$ that are restricted oflevel $\ell.$
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Note in particular that the second condition requires that $d$ $(t)\geq 0$ for all $i,$ $k\geq 1.$

Example 6.2. Let us consider Definition 6.1 for two classes of shapes $\lambda$ more closely:

(1) Vacuum case: Let $\lambda=(a^{n})$ be rectangular with $n$ rows. Then $\lambda’=\emptyset$ and $p_{i}^{(k)}(\emptyset)=p_{i}^{(k)}$

for all $i,$ $k\geq 1$ so that the modified vacancy numbers are equal to the vacancy numbers.
(2) Two-comer case: Let $\lambda=(a^{\alpha}, b^{\beta})$ with $\alpha+\beta=n$ and $a>b$ . Then $\lambda’=(\alpha^{a-b})$ and

there is only one tableau $t$ in CST $(\lambda’)$ , namely the Yamanouchi tableau ofshape $\lambda^{l}$ . Since
$t_{j,k}=j$ for $ 1\leq k\leq\alpha$ we find that

$p_{i}^{(k)}(t)=p_{i}^{(k)}-\delta_{k,\alpha}\max\{i-\tilde{\ell,}0\}$

for $ 1\leq i\leq\ell$ and $1\leq k<n.$

We define the level-restricted rigged configuration generating function as

(6.2)
$M^{\ell}(L, \lambda;q)=\sum_{(\nu,J)\in RC^{p}(L,\lambda)}q^{cc(\nu,J)}.$

The $X^{\ell}=M^{\ell}$ conjecture was proven in [37].

Theorem 6.3. [37, Theorem 5.7] For a $ level-\ell$ restrictedpartition $\lambda$ and a level- $\ell$ restricted multi-
plicity array $L$ we have $X^{\ell}(B, \lambda;q)=M^{p}(L, \lambda;q)$ .

Example 6.4. Consider $n=3,$ $\ell=2,$ $\lambda=(3,2,1),$ $L_{1}^{(1)}=4,$ $L_{2}^{(1)}=1$ and all other $L_{i}^{(a)}=0.$

Then

(6.3)

are in $C^{\ell}(L, \lambda)$ where again the vacancy numbers are indicated to the left of each part. The set
CST $(\lambda’)$ consists ofthe two elements

$\overline{\fbox{ }} \overline{*_{2}^{12}}.$

Since $\tilde{\ell}=0$ the three rigged configurations

are restricted of leve12 with charges 2, 3, 4, respectively. The riggings are given on the right of
each part. Hence $M^{\ell}(L, \lambda;q)=q^{2}+q^{3}+q^{4}.$

In contrast to this, the rigged configuration generating function $\overline{M}(L, \lambda;q)$ is obtained by sum-
ming over both configurations in (6.3) with all possible riggings below the vacancy numbers. This
amounts to $\overline{M}(L, \lambda;q)=q^{2}+2q^{3}+2q^{4}+2q^{5}+q^{6}.$

6.2. Level-restricted fermionic formula. Similarly to the unrestricted case of section 5.3, one
can rewrite the expression ofthe level-restricted rigged configuration generating function of (6.2)

in fermionic form. It was shown in [37, Lemma6.1] that $p_{i}^{(k)}(t)=0$ for all $i\geq\ell.$

Let SCST $(\lambda’)$ be the set of all nonempty subsets of CST $(\lambda’)$ . Furthermore set $p_{i}^{(k)}(S)=$

$\min\{p_{i}^{(k)}(t)|t\in S\}$ for $ S\in$ SCST $(\lambda’)$ . Then by inclusion-exclusion the set ofallowed rigging for

a given configuration $\nu\in C^{\ell}(L, \lambda)$ is given by

$\sum_{S\in SCST(\lambda’)}(-1)^{|S|+1}\{J|x_{i}^{(k)}\leq p_{i}^{(k)}(S)\}.$
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Since the $q$-binomial $\left\{\begin{array}{l}m+p\\m\end{array}\right\}$ is the generating function of partitions with at most $m$ parts each not

exceeding $p$ and since $p_{\ell}^{(k)}(S)=0$ by [37, Lemma 6.1] the level-f restricted fermionic formula has
the following form.

Theorem 6.5. [37, Theorem 6.2]

$M^{\ell}(L, \lambda;q)=\sum_{s\in SCST(\lambda^{l})}(-1)^{|S|+1}\sum_{\nu\in C^{p}(L,\lambda)}q^{cc(\nu)}\prod_{i=1}^{\ell-1n}\prod_{k=1}^{-1}\left\{\begin{array}{l}p_{i}^{(k)}(S)m_{i}^{(k)}+\\m_{i}^{(k)}\end{array}\right\}.$

6.3. Open Problems.
$\bullet$ In [37, Conjecture 8.3] it was conjectured that the bijection $\overline{\Phi}$ is also well-behaved with

respect to fixing certain subtableaux in the set of Littlewood-Richardson tableaux. In the
crystal language let $\rho\subset\lambda$ be a partition and $b_{\rho}=b_{k}\otimes\cdots\otimes b_{1}\in B_{\rho}=B^{\rho_{k}^{t},1}\otimes\cdots\otimes B^{\rho_{1}^{t},1}$

where $b_{i}$ is the column tableau ofheight $d_{\iota}$ with row $(b_{i})=\rho_{1}^{t}\ldots 21$ . Denote the set of all
paths in $\mathcal{P}^{\ell}(B\otimes B_{\rho}, \lambda)$ with fixed subpath $b_{\rho}$ by $\mathcal{P}^{\ell}(B, \lambda,\rho)$ . Set $\rho’=(\rho_{1}-\rho_{n},$ $\ldots,p_{n-1}-$

$\rho_{n})^{t}$ and

$M_{i}^{(k)}(t)=\sum_{j=1}^{\rho_{k}-\rho_{n}}\chi(i\leq\rho_{1}-\rho_{n}-t_{j,k})-\sum_{j=1}^{\rho_{k+1}-\rho_{n}}\chi(i\leq\rho_{1}-\rho_{n}-t_{j,k+1})$

for all $ t\in$ CST $(\rho’)$ . Then define $RC^{\ell}(L, \lambda, \rho)$ to be the set ofall $(\nu, J)\in RC^{\ell}(L\cup L_{\rho}, \lambda)$

such that there exists a $ t\in$ CST $(d)$ such that $M_{i}^{(k)}(t)\leq x$ for $(i,x)\in(\nu, J)^{(k)}$ and
$M_{i}^{(k)}(t)\leq p_{i}^{(k)}$ for all $i,$ $k\geq 1$ . Here $L_{\rho}$ is the multiplicity array of $B_{\rho}$ . Note that the

second condition is obsolete if $i$ occurs as a part in $d^{k)}$ since by definition $ M_{i}^{(k)}(t)\leq$

$x\leq p_{i}^{(k)}$ for all $(i,x)\in(v, J)^{(k)}$ . Conjecture 8.3 of [37] asserts that $\mathcal{P}(B, \lambda,\rho)$ and
$RC\ell(L, \lambda,\rho)$ correspond under $\overline{\Phi}.$

$\bullet$ lt is still an open problem to provide a combinatorial formula for the fusion coefficients of
the Verlinde algebra [43, 44]. The fennionic formulas of this section only provide such a
formula for rectangular tensor factors.
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