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ABSTRACT. This note is devoted to the combinatorics of tableaux for the root systems $B_{n},$ $C_{n},$ $D_{n}$

and $G_{2}$ defined from Kashiwara’s crystal graph theory. We review the definition of tableaux for types
$B_{n},$ $C_{n},$ $D_{n}$ and $G_{2}$ and describe the corresponding bumping and sliding algorithms. We also derive in
each case a Robinson-Schensted type correspondence.

1. INTRODUCTION

The Schensted bumping algorithm yields a bijection between words $w$ of length $l$ on the ordered
alphabet $A_{\eta}=\{1<2<\cdots<n\}$ and pairs $(P(w), Q(w))$ of tableaux of the same shape containing
$l$ boxes, where $P(w)$ is a semi-standard Young tableau on $\mathcal{A}_{n}$ and $Q(w)$ is a standard tableau. This
bijection is called the Robinson-Schensted correspondence (see e.g.[5]). Note that the tableau $P(w)$

may also be constructed from $w$ by using the Sch\"utzenberger sliding algorithm (Jeu de Taquin).
We can define a relation $\sim$ on the free monoid $A_{m}^{*}$ by:

$w_{1}\sim w_{2}\Leftrightarrow P(w_{1})=P(w_{2})$ .
Then the quotient $Pl(A_{n})$ $:=\mathcal{A}_{n}^{*}/\sim$ can be described as the quotient of $A_{\eta}^{*}$ by Knuth relations:

$zxy=xzy$ and $yzx=yxz$ if $x<y<z,$

$xyx=xxy$ and $xyy=yxy$ if $x<y.$

Hence $Pl(A_{n})$ , which may be identified with the set of semi-standard Young tableaux, becomes a
monoid in a natural way. This monoid is called the “plactic monoid” and has been introduced by
Lascoux and Sch\"utzenberger in order to give an illuminating proof of the Littlewood-Richardson rule
for decomposing tensor products of irreducible $gl_{n}$-modules [13].
There have been attempts to find a Robinson-Schensted type correspondence and plactic relations
for the other Lie algebras. In [2], Berele has explained a bumping algorithm for $sp_{2n}$ and in [20]
Sundaram gives $an$ insertion scheme for $so_{2n+1}$ but it seems dfficult to obtain plactic relations from
these schemes. More recently Littelmann has used his path model to introduce a plactic algebra for
any simple Lie algebra [17]. Sheats [19] has also described a symplectic Jeu de Taquin analogous to
Sch\"utzenberger’s sliding algorithm and has conjectured its compatibility with some plactic relations.

The Robinson-Schensted correspondence has a natural interpretation in terms of Kashiwara’s theory
of crystal bases [4], [9], [12]. Let $V_{n}$ denote the vector representation of $gl_{n}$ . By considering each vertex
of the crystal graph of $\bigoplus_{l\geq 0}V_{n}^{\otimes l}$ as a word on $\mathcal{A}_{n}$ , we have for any words $w_{1}$ and $w_{2}$ :

$\circ P(w_{1})=P(w_{2})$ if and only if $w_{1}$ and $w_{2}$ occur at the same place in two isomorphic connected
components of this graph.. $Q(w_{1})=Q(w_{2})$ if and only if $w_{1}$ and $w_{2}$ occur in the same connected component of this graph.

Thanks to crystal basis theory, Kashiwara and Nakashima [8] have obtained a generalization of semi-
standard tableaux to types $B_{n},$ $C_{n}$ and $D_{n}.$ $A$ notion of tableaux for type $G_{2}$ has been introduced by
Kang and Misra [7]. In [18] Littelmann has also described a labelling of crystal graphs by “defined
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chains” for any simple Lie algebra. In particular this description implies that the combinatorics of
crystal graphs of finite dimensional irreducible $U_{q}(\mathfrak{g})$-modules is strongly connected to that of the
Bruhat order on the Weyl group of $\mathfrak{g}$ . This explains why the combinatorial description of the crystal
graphs associated to the root systems of type $E_{6},E_{7},E_{8}$ and $F_{4}$ by planar objects like Young tableaux
is $stm$ an open problem.
This note is concemed with a detailed investigation of the insertion schemes and Robinson-Schensted
correspondences for the root systems $A_{n},$ $B_{n},C_{n},$ $D_{n}$ and $G_{2}$ . In Section 2 we first introduce the
results on semi-standard tableaux we want to generalize. In section 3 we recall some basics on crystal
graphs. Section 4 is devoted to the combinatorial descriptions of Kashiwara-Nakashima and Kang-
Misra tableaux. These descriptions are related to Littelmann’s presentation of tableaux for types
$B_{n},$ $C_{n}$ and $D_{n}$ by “defined chains”. In section 5 we introduce the plactic monoids for types $B_{n},$ $C_{n},$ $D_{n}$

and $G_{2}$ obtained in [14], [15] and [17]. The plactic relations are then interpreted in terms of crystal
graph isomorphisms. In section 6 we use theses plactic relations to obtain insertion schemes for
tableaux of types $B_{n},$ $C_{n},$ $D_{n}$ and $G_{2}$ . Note that our insertion scheme for the tableaux of type $C_{n}$

coincides with that described by Baker in [1]. By generalizing the notion of oscillating tableaux due to
Sundaram [20], we give in Section 7 a Robinson-Schensted type correspondence for types $B_{n},$ $C_{n},$ $D_{n}$

and $G_{2}$ compatible with the plactic relations. Section 8 is devoted to the description of the reverse
bumping algorithms for tableaux of classical types. Finally in section 9 we introduce Jeux de Taquin
for skew tableaux of types $B_{n}$ and $C_{n}$ from Sheats’ sliding algorithm and sketch their compatibility
with the corresponding plactic relations.

Notation: In the sequel we frequently define similar objects for the root systems $B_{n}C_{n},$ $D_{n}$ and $G_{2}.$

When they are related to type $B_{n}$ $(resp. C_{n}, D_{n}, G_{2})$ , we attach to them the label $B$ (resp. the labels
$C,$ $D,G)$ . To avoid cumbersome repetitions, we sometimes omit the labels $B,$ $C,$ $D$ and $G$ when our
definitions or statements are identical for the four root systems.

2. COMBINATORICS OF CRYSTALS FOR THE ROOT SYSTEM $A_{n}$

2.1. Column bumping algorithm on semi-standard tableau. To each partition $\lambda=(\lambda_{1}, \ldots, \lambda_{n})$

we associate the Young diagram $Y(\lambda)$ whose i-th row is of length $\lambda_{i}.$ $A$ semi-standard tableau of shape
$\lambda$ is a filling $T$ of $Y(\lambda)$ by positive integers between 1 and $n$ considered as the letters of the totally
ordered alphabet

$\mathcal{A}_{n}=\{1<\cdots<n\}$

such that the columns of $T$ strictly increase from top to bottom and the row of $T$ weakly increase
from left to right.

$1$ $2$ $2$

$3$ $3$

$4$

Example 2.1.1. $T=$ is a semi-standard tableaux of shape $\lambda=(3,2,1,0)$ .

Given any letter $x\in \mathcal{A}_{m}$ and any semi-standard tableau $T$, we denote by $x\rightarrow T$, the semi-standard
tableau obtained by applying the followings rules.. If $ T=\emptyset$ then $x\rightarrow T=$ .. If $T=C$ has only one column then

where $y$ is the minimal letter in $C$ such that $x\leq y$ and $C’=C-\{y\}+\{x\}.$
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If $T=C_{1}C_{2}\cdots C_{r}$ has $r\geq 2$ columns then

The above algorithm is called “column insertion algorithm for semi-standard tableaux”.

Example 2.1.2.

$ 3\rightarrow$

$1$ $2$

$2$ $3$

$4$ $4$

$5$ $6$

2.2. Robinson-Schensted correspondence. To any word $ w=x_{1}\cdots x\downarrow$ of $A^{*}$ the set of words on
$\mathcal{A}_{m}$ , one associates the tableau $P(w)$ defined recursively by

$\left\{\begin{array}{l}P(x_{1})=\underline{\prod x_{1}}\\P(x_{1}\cdots x_{k+1})=x_{k+1}\rightarrow P(x_{1}\cdots x_{k})\end{array}\right.$

Simultaneously, one computes the standard tableau $Q(w)$ which is a semi-standard tableau containing
exactly all the letters 1, $\cdots$ , $l$ by putting for any $k=1,$

$\ldots,$

$l$ , the integer $k$ in the box which is added
in the k-th step of the computation of $P(w)$ . With $w=232143$ , we obtain the following sequences of
tableaux:

$2$ $2$ $1$ $2$ $2$

$3$ $3$

$4$

$=P(w)$

and

$1$ $3$ $4$

$2$

$5$

$1$ $3$ $4$

$2$ $6$

$5$

1, $\Xi_{222}^{1\overline{13}\overline{134}}$ $=Q(w)$ .
$1$ $3$

$2$

$1$ $3$ $4$

$2$

Theorem 2.2.1. (see [5]) The map $w\mapsto(P(w), Q(w))$ is $a$ one to one correspondence between
the set $\mathcal{A}_{n,l}^{*}$ of words of length $l$ on $\mathcal{A}_{m}$ to the set of pairs $(P, Q)$ where $P$ and $Q$ are respectively
semi-standard and standard tableaux containing $l$ boxes and having the same shape.



14
C\’EDRIC LECOUVEY

Example 2.2.2. Suppose $l=3$ and $n=3$ . We give below the 27 words of $\mathcal{A}_{3,3}^{*}$ together with their
corresponding pair $(P, Q)$ .

223 $\overline{*_{3}^{22}}$ , $\overline{H_{3}^{12}}$

313 $F_{3}^{13}$ $,\overline{*_{3}^{12}}$

323 $\overline{*_{3}^{23}}$ $,\overline{*_{3}^{12}}$

133 $\overline{H_{3}^{13}}$ $,\overline{*_{2}^{13}}$

233 $\frac{23}{\overline{\bigsqcup 3}}$ $,\overline{*_{2}^{13}}$

Remark: There also exists a Robinson-Schensted correspondence based on the bumping procedure
and defined on biwords. It associates to each biwords a pair $(P,Q)$ where $P$ and $Q$ are semistandard
tableaux with the same shape (see [5]). This general correspondence cannot be extended to types
$B_{n},$ $C_{n},$ $D_{n}$ or $G_{2}$ . So we restrict ourselves in the sequel to correspondences defined on words.

2.3. The plactic monoid. The plactic monoid $Pl(A_{n})$ is the quotient set of the free monoid $\mathcal{A}_{n}^{*}$ by
Knuth’s relations

$zxy\equiv xzy$ and $yzx\equiv yxz$ if $x<y<z,$
$xyx\equiv xxy$ and $xyy\equiv yxy$ if $x<y.$

Theorem 2.3.1. $(Lascoux-Sch\ddot{u}tzenbergef\{13])$ . Given two words $w_{1}$ and $w_{2}$ of $\mathcal{A}_{n}^{*}$ , we have

$w_{1}\equiv w_{2}\Leftrightarrow P(w_{1})=P(w_{2})$ .

We write $w(T)$ for the Japanese reading of the tableau $T$ that is for the word obtained by reading the
columns of $T$ from right to left and top to bottom.

2.4. Schensted correspondence and Kashiwara’s crystal graphs. The crystal graph of the
vector representation $V(\Lambda_{1})$ of $U_{q}(sl_{n})$ is

$1\rightarrow 12\cdots\cdot\rightarrow n-1^{n-1}\rightarrow n.$



15

COMBINATORICS OF CRYSTAL GRAPHS FOR THE ROOT SYSTEMS OF TYPES $A_{n},$ $B_{n},$ $C_{\mathfrak{n}},$ $D_{n}$ AND $G_{2}$

In the sequel we will identify each vertex $u_{1}\otimes u_{2}\otimes\cdots\otimes u_{l}$ of the crystal graph $B(\Lambda_{1})^{\otimes l}$ with the word
$w=u_{1}u_{2}\cdots u_{l}$ of $A_{\eta}^{*}.$

Consider $w_{1}$ and $w_{2}$ two words on $A^{*}$ . We write. $w_{1}\sim w_{2}$ when $w_{1}$ and $w_{2}$ occur at the same place in two isomorphic connected components.. $w_{1}\ovalbox{\tt\small REJECT} w_{2}$ when $w_{1}$ and $w_{2}$ belong to the same connected component.

Theorem 2.4.1. (Kashiwara [9]). $w_{1}\sim w_{2}\Leftrightarrow P(w_{1})=P(w_{2})\Leftrightarrow w_{1}\equiv w_{2}.$. $w_{1}\ovalbox{\tt\small REJECT} w_{2}\Leftrightarrow Q(w_{1})=Q(w_{2})$ .

The aim of this note is to introduce analogue of Theorems 2.2.1, 2.3.1 and 2.4.1 for the root systems
$B_{n},$ $C_{n},$ $D_{n}$ and $G_{2}.$

3. BASICS ON CRYSTALS FOR TYPES $B_{n},$ $C_{n},$ $D_{n}$ AND $G_{2}$

3.1. Crystals and tensor product of crystals. The Dynkin diagrams for the root systems of types
$B_{n},$ $C_{n},$ $D_{n}$ and $G_{2}$ are respectively

$0-0-0\cdot\cdot\overline{o}-\overline{o}123.n2n1\Rightarrow no, 0-0-0\cdot\cdot\overline{o}-\overline{o}123.n2n1\Leftarrow n\circ,$

$ n\circ$

$0-0-0\cdots\overline{o}-123n3n_{O}2/$

and $\circ 1\Leftarrow 02.$

$\backslash $

$ n-1\circ$

Let $\mathfrak{g}$ be a simple Lie algebra of type $B_{n},$ $C_{n},$ $D_{n}$ or $G_{2}$ . Set $I=\{1, \ldots, n\}$ where $n$ is the rank of $\mathfrak{g}$ . Let
$\alpha_{i},$ $i\in I$ be the simple roots associated to $\mathfrak{g}$ . For any dominant weight $\lambda$ we denote by $V(\lambda)$ the
finite dimensional irreducible $U_{q}(\mathfrak{g})$-module of highest weight $\lambda$ . Recall that the crystal graphs of the
$U_{q}(\mathfrak{g})$-modules are oriented colored graphs with colors $i\in I$ . An arrow $a\rightarrow ib$ means that $\tilde{f_{i}}(a)=b$

and $\tilde{e}_{i}(b)=a$ where $\tilde{e}_{t}$ and $\tilde{f_{i}}$ are the crystal graph operators (for a review of crystal bases and crystal
graphs see [9] $)$ . Let $V,$ $V’$ be two $U_{q}(\mathfrak{g})$-modules and $B,$ $B’$ their crystal graphs. $A$ vertex $v^{0}\in B$

satisfying $\tilde{e}_{i}(v^{0})=0$ for any $i\in I$ is called a highest weight vertex. The decomposition of $V$ into its
irreducible components is reflected by the decomposition of $B$ into its connected components. Each
connected component of $B$ contains a unique highest weight vertex. We write $B(v)$ for the connected
component containing the highest weight vertex $v$ . The crystal graphs of two isomorphic irreducible
components are isomorphic as oriented colored graphs. We will say that two vertices $b_{1}$ and $b_{2}$ of
$B$ occur at the same place in two isomorphic connected components $\Gamma_{1}$ and $\Gamma_{2}$ of $B$ if there exist
$i_{1},$

$\ldots,$
$i_{r}\in I$ such that $w_{1}=\tilde{h}.$ $\cdots\tilde{f_{i_{r}}}(w_{1}^{0})$ and $w_{2}=\tilde{f_{i}}.$ $\cdots\tilde{f_{i_{r}}}(w_{2}^{0})$ , where $w_{1}^{0}$ and $w_{2}^{0}$ are respectively

the highest weight vertices of $\Gamma_{1}$ and $\Gamma_{2}.$

The action of $\tilde{e}_{\iota}$ and $\tilde{f_{t}}$ on $B\otimes B’=\{b\otimes b’;b\in B, b’\in B’\}$ is given by:

(1) $\tilde{f_{i}}(u\otimes v)=\left\{\begin{array}{l}\tilde{f_{i}}(u)\otimes v if \varphi_{i}(u)>\epsilon_{i}(v)\\u\otimes\tilde{f_{i}}(v) if \varphi_{i}(u)\leq\epsilon_{i}(v)\end{array}\right.$

and

(2) $\tilde{e_{i}}(u\otimes v)=\left\{\begin{array}{l}u\otimes\tilde{e_{i}}(v) if \varphi_{i}(u)<\epsilon_{i}(v)\\\tilde{e_{i}}(u)\otimes v if \varphi_{i}(u)\geq\epsilon_{i}(v)\end{array}\right.$



16
C\’EDRIC LECOUVEY

where $e_{i}(u)=\max\{k;\tilde{e}_{i}^{k}(u)\neq 0\}$ and $\varphi_{i}(u)=\max\{k;f_{i}^{\tilde{k}}(u)\neq 0\}.$

3.2. Crystal of the vector representations. We denote by $\Lambda_{1}^{B},$

$\ldots,$

$\Lambda_{\eta}^{B},$ $\Lambda_{1}^{C},$ $\ldots,\Lambda_{n}^{C},$ $\Lambda_{1}^{D}\ldots,\Lambda_{n}^{D}$ and
$\Lambda_{1}^{G},\Lambda_{2}^{G}$ the fundamental weights associated to the root systems $B_{n},$ $C_{n},D_{n}$ and $G_{2}$ . The crystal graphs
of the fundamental representations of highest weight $\Lambda_{1}^{B},$ $\Lambda_{1}^{C},\Lambda_{1}^{D}$ and $\Lambda_{1}^{G}$ are respectively

$B(\Lambda_{1}^{B}):1\rightarrow 12\cdots\rightarrow n-1^{n-1}\rightarrow n\rightarrow n0\rightarrow n\overline{n}n\rightarrow-1\overline{n-1}\rightarrow n-2\ldots\rightarrow\overline{2}\rightarrow 1\overline{1}$

$B(\Lambda_{1}^{C}):1\rightarrow 12\cdots\rightarrow n-1^{n-1}\rightarrow n\rightarrow n\overline{n}^{n-1n-2}\rightarrow\overline{n-1}\rightarrow\cdots\rightarrow\overline{2}\rightarrow 1\overline{1}$

$\overline{n}$

$B(\Lambda_{1}^{D}):1\rightarrow 12\rightarrow 2\ldots n\rightarrow-2n-\nearrow\grave{n-}11n n-1\nearrow^{\overline{n-1}}n\backslash n\rightarrow-2\ldots\rightarrow 2\overline{2}\rightarrow 1\overline{1}$

$n$

and

(3) $B(\Lambda_{1}^{G}):1\rightarrow 12\rightarrow 23\rightarrow 10\rightarrow 15\rightarrow 2\overline{2}\rightarrow 1\overline{1}.$

In the sequel we will call the corresponding $U_{q}(\mathfrak{g})$-modules “vector representations”. Every vertex
$ u_{I}\otimes u_{2}\otimes\cdots\otimes u\iota$ of the crystal graphs $B(\Lambda_{1}^{B})^{\otimes l},$ $B(\Lambda_{1}^{C})^{\otimes\iota},$ $B(\Lambda_{1}^{D})^{\otimes\iota}$ and $B(\Lambda_{1}^{G})^{\otimes l}$ will be identified
with the word $u_{1}u_{2}\cdots u_{l}$ respectively on the ordered alphabets

$\mathcal{B}_{n}=\{1<\cdots<n-1<n<0<\overline{n}<\overline{n-1}<\cdots<\overline{1}\},$

$C_{n}=\{1<\cdots<n-1<n<\overline{n}<\overline{n-1}<\cdots<\overline{1}\},$

$\mathcal{D}_{n}=\{1<\cdots<n-1<\frac{n}{n}<\overline{n-1}<\cdots<\overline{1}\}$

and $\mathcal{G}=\{1<2<3<0<\overline{3}<\overline{2}<\overline{1}\}.$

Note that $\mathcal{D}_{n}$ is only partially ordered. For any $x\in \mathcal{B}_{n},C_{n},$ $\mathcal{D}_{n}$ or $\mathcal{G}$ , we set $|x|=x$ if $x$ is unbarred
and $|x|=\overline{x}$ otherwise (with the convention $\overline{\overline{x}}=x$).

Example 3.2.1.
The crystal $B(\Lambda_{1}^{B})^{\Theta 2}$ for type $B_{3}$

11
$\rightarrow 1$ 21

$\rightarrow 2$

31
$\rightarrow 3$

01
$\rightarrow 3$

$\overline{3}1$

$\rightarrow 2$

$\overline{2}1$

$\rightarrow 1$ 1-1
$ 1\downarrow$ $ 1\downarrow$ $ 1\downarrow$ $ 1\downarrow$ $ 1\downarrow$

$l\downarrow 12 22\rightarrow 2 \epsilon\downarrow 32 \rightarrow 3 \ell\downarrow 02\rightarrow 3 \overline{S}2\rightarrow 2 t\downarrow\overline{2}2 \ell\downarrow 1^{-}2$

13
$\rightarrow 1$

23 $33\rightarrow 3$ $03\rightarrow 3$
$\overline{3}3$

$\overline{2}3\rightarrow 1$ i3
$s\downarrow s\downarrow$ $ s\downarrow$ $ s\downarrow$ $ s\downarrow$

10
$\rightarrow 1$ 20 a 30

$\rightarrow 3$ 00 $\overline{3}0\rightarrow 2$
$\overline{2}0$

$\rightarrow 1$

$\overline{1}0$

$ s\downarrow s\downarrow s\downarrow s\downarrow$ $ s\downarrow$ $ s\downarrow$

$1\overline{3}\rightarrow 1 2\overline{3}\rightarrow 2 3\overline{3} 0\overline{3} \overline{3}\overline{3}\rightarrow 2 \overline{2}\overline{3}\rightarrow 1 1^{-}\overline{3}$

$\ell\downarrow$ $ t\downarrow$ $ t\downarrow$ $ t\downarrow$ $\ell\downarrow$

$12 \rightarrow 1 2\overline{2} S\overline{2}\rightarrow 3 0\overline{2}\rightarrow 3 \overline{3}\overline{2} \overline{2}\overline{2}\rightarrow 1 1^{-}\ell^{-}$

$ 1\downarrow$ $ 1\downarrow$ $ 1\downarrow$ $ 1\downarrow$ $ 1\downarrow$

$11^{-} 2\overline{1}\rightarrow 2 31^{-}\rightarrow 3 0\overline{1}\rightarrow 3 \overline{3}1^{-}\rightarrow 2 \overline{2}1^{-} 1^{-}1^{-}$

yields the decomposition $V(\Lambda_{1}^{B})^{\Phi 2}\simeq V(2\Lambda_{1}^{B})\oplus V(\Lambda_{2}^{B})\oplus V(0)$ .
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The crystal $B(\Lambda_{1}^{G})^{\otimes 2}$ for type $G_{2}$

$11 \rightarrow 1 21 \rightarrow 2 31 \rightarrow 1 01 \rightarrow 1 \overline{3}1 \rightarrow 2 \overline{2}1 \rightarrow 1 1^{-}l$

$t\downarrow$ $ 1\downarrow$ $ 1\downarrow$

$12 22 \rightarrow 2 32 \rightarrow 1 02 \overline{3}2 \rightarrow 2 \overline{2}2 1^{-}2$

$ l\downarrow$ $ l\downarrow$ $ t\downarrow$
$\ovalbox{\tt\small REJECT}\downarrow$ $ 2\downarrow$

$13 \rightarrow 1 23 33\rightarrow 1 03\rightarrow 1 \overline{3}3 \overline{2}S\rightarrow 1 1^{-}3$

$ r\downarrow$ $z\downarrow$ $ r\downarrow$

(4) $10 20\rightarrow 2 30\rightarrow 1 00 \overline{3}0\rightarrow 2 \overline{2}0 1^{-}0$

$ 1\downarrow$ $J\downarrow$ $ 1\downarrow$ $ 1\downarrow$ $ 1\downarrow$ $ r\downarrow$

$1\overline{3} 2\overline{3}\rightarrow 2 3\overline{3} 0\overline{3} \overline{S}\overline{3}\rightarrow 2 \overline{2}\overline{3} 1^{-}\overline{S}$

$ l\downarrow$ $\epsilon\downarrow$ $ z\downarrow$ $ l\downarrow$ $ z\downarrow$

$1\overline{2}\rightarrow 1 2\overline{2} 3\overline{2}\rightarrow 1 0\overline{2}\rightarrow 1 \overline{S}\overline{2} \mathscr{R}\rightarrow 1 1^{-}\overline{2}$

$ 1\downarrow$ $ 1\downarrow$ $z\downarrow$

$11^{-} 2\overline{1}\rightarrow 2 31^{-}\rightarrow 1 01^{-} \overline{3}1^{-}\rightarrow 2 \overline{2}1^{-} 1^{-}1^{-}$

yields the decomposition $V(\Lambda_{1}^{G})^{\otimes 2}\simeq V(2\Lambda_{1}^{G})\oplus V(\Lambda_{2}^{G})\oplus V(\Lambda_{1}^{G})\oplus V(0)$ .

3.3. The weights $\omega_{i}$ . Set $G_{B}=\oplus_{l\geq 0}B(\Lambda_{1}^{B})^{\otimes l},$ $G_{C}=\oplus_{l\geq 0}B(\Lambda_{1}^{C})^{\otimes l},$ $G_{D}=\oplus_{\iota\geq 0}B(\Lambda_{1}^{D})^{\otimes l}$ and
$G_{G}=\oplus_{t\geq 0}B(\Lambda_{1}^{G})^{\otimes l}$ . Let $R$ be one of the classical root system $B_{n},$ $C_{n}$ or $D_{n}$ . Then the weight of any
vertex $w\in G_{R}$ is given by:

(5) $wt(w)=d_{m}\omega_{n}^{R}+\sum_{i=1}^{n-1}(d_{i}-d_{i+1})\omega_{i}^{R}.$

where $d_{i}=\#\{i\in w\}-\#\{\overline{i}\in w\}$ and

$\left\{\begin{array}{l}\omega_{n}^{B}=2\Lambda_{n}^{B},\\\omega_{i}^{B}=\Lambda_{i}^{B} for i=1, \ldots,n-1,\end{array}\right.$

$\omega_{i}^{C}=\Lambda_{i}^{C}$ for $i=1,$
$\ldots,$

$n,$

$\left\{\begin{array}{l}\omega_{n}^{D}=2\Lambda_{n}^{D},\\\overline{\omega}_{n}^{D}=2\Lambda_{n-1}^{D},\\\omega_{n-1}^{D}=\Lambda_{n}^{D}+\Lambda_{n-1}^{D},\\\omega_{i}^{D}=\Lambda_{i}^{D} for i=1, \ldots,n-2.\end{array}\right.$

Similarly the weight of any vertex $w\in Gc$ is given by

wt $(w)=(d_{1}-d_{2}+2d_{3})\Lambda_{1}+(d_{2}-d_{3})\Lambda_{2}$

and to make our notation homogeneous we set $\omega_{i}^{G}=\Lambda_{i}^{G}$ for $i=1,2.$

It follows from (5) that there is no connected component of $G_{B}$ isomorphic to $B(\Lambda_{v}^{B})$ and no connected
component of $G_{D}$ isomorphic to $B(\Lambda_{n}^{D})$ or $B(\Lambda_{n-1}^{D})$ . So we recover the well known fact that the
corresponding fundamental representations can not be obtained as an irreducible component of a
tensor power of the vector representation for the orthogonal root systems. Denote by $\Omega_{+}^{B},$ $\Omega_{+}^{C},$ $\Omega_{+}^{D}$ and
$\Omega_{+}^{G}$ the sets of dominant weights which can be written as non-negative linear combinations respectively

of the weights $\omega_{i}^{B},$ $\omega_{i}^{C},$ $\omega_{i}^{D},\overline{\omega}_{n}^{D}$ , and $\omega_{i}^{G}i\in I$ . Then for any dominant weight $\lambda,$ $V(\lambda)$ is an irreducible
component of a tensor power of the vector representation if and only if $\lambda\in\Omega+\cdot$

In this note we have chosen to describe the Robinson-Schensted correspondence and the related combi-
natorics only for the irreducible representations of highest weight $\lambda\in\Omega+\cdot$ It is also possible to obtain
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such correspondences by taking into account the spin representations $V(\Lambda_{m}^{B}),$ $V(\Lambda_{n}^{D})$ and $V(\Lambda_{n-1}^{D})$

([15], [16]) but their description requires a large amount of combinatorial technical material [16].

3.4. The coplactic relation. For $w_{1}$ and $w_{2}\in B_{n}^{*}$ write $w_{1}w_{2}\underline{B}$ if and only if $w_{1}$ and $w_{2}$ belong to

the same connected component of $G_{B}$ . The coplactic relations $w_{1}w_{2},$
$w_{1}w_{2}\underline{C}\underline{D}$ and $w_{1}w_{2}\underline{G}$

are defined similarly. For any word $w$ , we write $l(w)$ for the length of $w$ , that is the number of letters
it $\infty ntains$ . We have the useful lemma:

Lemma 3.4.1. If $w_{1}=u_{1}v_{1}$ and $w_{2}=u_{2}v_{2}$ with $l(u_{1})=l(u_{2})$ and $l(v_{1})=l(v_{2})$ , then

$w_{1}\ovalbox{\tt\small REJECT} w_{2}\Rightarrow\left\{\begin{array}{l}u_{1} u_{2}\\v_{1} v_{2}\end{array}\right.$

Proof. We have $w_{1}\ovalbox{\tt\small REJECT} w_{2}$ if and only if $w_{2}=$ Et $(w_{1})$ where $\tilde{H}$ is a product of Kashiwara’s operators.
The Lemma then follows immediately from (1) and (2). $\square $

4. TABLEAUX FOR TYPES $B_{n},$ $C_{n},$ $D_{n}$ AND $G_{2}$

$\left\{\begin{array}{l}C_{-} is filled by strictly increasing barred letters\\c_{+} is filled by strictly increasing unbarred letters\\C_{0} is filled by letters 0\\D_{-} is filled by strictly increasing letters \geq\overline{n-1}\\D_{+} is filled by strictly increasing letters \leq n-1\\D is filled by letters fi or n different in two adjacent boxes\end{array}\right.$

(recall that the reading order is from top to bottom). The height $h(C)$ of the column $C$ is the number
of boxes it contains. The reading of $C$ is the word $w(C)$ obtained by reading successively from top to
bottom the letters of $C.$

A column $C$ of type $G_{2}$ is a Young diagram of column shape and height 1 or 2 filled by letters of $\mathcal{G}$

and such that

$C=$ $a$ with $a\in \mathcal{G}$ or $C=ba$ with $a<b\in \mathcal{G}$ or $C=_{0}^{0}B$

Consider a column $C$ . For any letter $z\leq n$ , set

$N(z)=\#\{x\in C, |x|\leq z\}.$

The column $C$ is said admissible if and only if the following conditions are satisfied:
(i): $C$ does not contain any letter $z\leq n$ such that $N(z)>z$ (remind that $0>n$ !).
(ii) : if $C$ is of type $B_{n}$ and $0\in C$ then $h(C)\leq n.$

(iii) : if $C=H_{b}^{a}$ is of type $G_{2}$ and height 2 then $\left\{\begin{array}{l}dist (a, b)\leq 2 if a=1 or 0\\where dist (a,b) is the\\dist (a,b)\leq 3 otherwise\end{array}\right.$

number of arrows between the vertices $a$ and $b$ in the crystal (3).

Example 4.1.1.
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. The admissible columns of type $G_{2}$ are exactly those whose readings are in $B(12)$ in the crystal
graph (4).

4.2. Combinatorial description of $B(\omega_{k})$ . For $k=1,$
$\ldots,$

$n$ we set $v_{\omega_{k}}^{B}=v_{\omega}^{C}k=v_{\omega_{k}}^{D}=1\cdots k$ and
$v\frac{D}{\omega}n=1\cdots(n-1)\overline{n}$ . Similarly write $v_{\omega_{1}}^{G}=1$ and $v_{\omega}^{G}2=12$ . All these vertices are highest weight vertices.
Moreover $B(v_{\omega_{k}}^{B}),$ $B(v_{\omega_{k}}^{C}),$ $B(v_{\omega_{k}}^{D}),$ $B(v_{\omega_{k}}^{G})$ are respectively isomorphic to $B(\omega_{k}^{B}),$ $B(\omega_{k}^{C}),$ $B(\omega_{k}^{D}),$ $B(\omega_{k}^{G})$

and $B(v\frac{D}{\omega}n)$ is isomorphic to $B(\overline{\omega}_{n}^{D})$ .

Proposition 4.2.1. (Kashiwara-Nakashima [8] and Kang-Misra [7]). The vertices of $B(v_{\omega_{k}}^{B}),$ $B(v_{\omega_{k}}^{C})$ and $B(v_{\omega_{k}}^{G})$ with $k\in I$ are the readings of the admissible
columns of types $B_{n},$ $C_{n}$ and $G_{2}$ with length $k.$. The vertices of $B(v_{\omega_{k}}^{D})$ with $k<n$ are the readings of the admissible columns of type $D_{n}$ with
length $k.$. The vertices of $B(v_{\omega_{n}}^{D})$ are the readings of the admissible columns $C$ of type $D_{n}$ such that
$w(C)=x_{1}\cdots x_{n}$ and $x_{k}=n$ (resp. $x_{k}=n$) implies $n-k$ is even (resp. odd).. The vertices of $B(v\frac{D}{\omega}n)$ are the readings of the admissible columns $C$ of type $D_{n}$ such that
$w(C)=x_{1}\cdots x_{n}$ and $x_{k}=\overline{n}$ (resp. $x_{k}=n$) implies $n-k$ is even (resp. odd).

4.3. Duplication of an admissible column of classical type. We say that a column $C$ contains
the pair $(z,\overline{z})$ when $z=0$ and $0\in C$ or when $z\neq 0$ is unbarred and $C$ contains the two letters
$z,\overline{z}$ . Note that a letter $0$ counts for a pair $(0, \overline{0})$ . For each admissible column $C$ of classical type, we
compute a pair of columns $(lC, rC)$ without pair $(z, \overline{z})$ .
Denote by $I_{C}=\{z_{1}=0, \ldots, z_{r}=0>z_{r+1}>\cdots>z_{s}\}$ the set of letters $z\leq 0$ such that the pair $(z,\overline{z})$

occurs in $C$ . The column $C$ of type $B_{n}$ or $C_{n}$ can be split when there exists a set of $s$ unbarred letters
$J_{C}=\{t_{1}>\cdots>t_{s}\}\subset \mathcal{B}_{n}$ such that:

: $t_{1}$ is the greatest letter of $\mathcal{B}_{n}$ satisfying $t_{1}<z_{1},$ $t_{1}\not\in C$ and $\overline{t_{1}}\not\in C,$

: for $i=2,$
$\ldots,$

$s,$ $t_{i}$ is the greatest letter of $\mathcal{B}_{n}$ satisfying $t_{i}<\min(t_{i-1},z_{i}),$ $t_{i}\not\in C$ and $\overline{t_{i}}\not\in C.$

In this case we write:. $rC$ for the column obtained first by changing in $C\overline{z}_{i}$ into $\overline{t}_{i}$ for each letter $z_{i}\in I_{C}$ , next by
reordering if necessary,

$\bullet$ $lC$ for the column obtained first by changing in $Cz_{\iota}$ into $t_{i}$ for each letter $z_{i}\in I_{C}$ , next by
reordering if necessary.

Let $C$ be a column of type $D_{n}$ . Denote by $\hat{C}$ the column of type $B_{n}$ obtained by turning in $C$ each
factor $\overline{n}n$ into 00. We will say that $C$ can be split when $\hat{C}$ can be split. In this case we write $lC=l\hat{C}$

and $rC=r\hat{C}.$

Example 4.3.1. Suppose $n=9$ and consider the column $C$ of type $B_{n}$ such that $w(C)=458900\overline{8}\overline{5}\overline{4}.$

We have
$w(lC)=123679\overline{8}\overline{5}\overline{4}$ and $w(rC)=4589\overline{7}\overline{6}\overline{3}\overline{2}\overline{1}.$

The duplication of columns is an application of the notion of “dilatation” of crystals introduced by
Kashiwara [10]. The sub-crystal of $B(m\lambda)$ generated from $v_{m\lambda}$ and the operators $\tilde{f_{i}}^{m\prime}s$ is isomorphic
to $B(\lambda)$ . When $m=2$ and $\lambda=\omega_{k}$ this isomorphism is simply described by the splitting operation.
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Example 4.3.2. The dilatation of the crystal $B(12)$ for type $B_{2}$ and $m=2.$

$12\rightarrow 210\rightarrow 21\overline{2}\rightarrow 12\overline{2}\rightarrow 12i$

$\downarrow 1 \downarrow 2$

$20\rightarrow 200\rightarrow 20\overline{2}\rightarrow 1$ Oi $\rightarrow 2\overline{2}\overline{1}$

(12) $\otimes(12)\rightarrow(1\overline{2})\otimes(12)2^{2}\rightarrow(1\overline{2})\otimes(1\overline{2})2^{2}\rightarrow(2\overline{1})\otimes(1\overline{2})1^{2}\rightarrow(2\overline{1})\otimes(2\overline{1})1^{2}$

$\downarrow 1^{2} \downarrow 2^{2}$
$(2\overline{1})\otimes(12)\rightarrow 2^{2}(\overline{2}\overline{1})\otimes(12)\rightarrow 2^{2}(\overline{2}i)\otimes(1\overline{2})\rightarrow 1^{2}(\overline{2}i)\otimes(2i)\rightarrow 2^{2}(\overline{2}i)\otimes(\overline{2}\overline{1})$

Proposition 4.3.3. $A$ column $C$ is admissible if and only if it can be split.

4.4. “Young diagrams” associated to a weight $\lambda$ . In the sequel we will need to attach to each
dominant weight $\lambda\in\Omega+a$ combinatorial object $Y(\lambda)$ . For types $B_{n},$ $C_{n}$ and $G_{2}$ it suffices to set
$Y(\lambda)=Y_{\lambda}$ where $Y_{\lambda}$ is the Young diagram containing exactly $\tilde{\lambda}_{k}$ columns of height $k$ where for any
$k,$

$\tilde{\lambda}_{k}$ is the k-th coordinate of $\lambda$ on the basis $\omega_{1},$
$i\in I.$

For type $D_{n},$ $\lambda$ has a unique decomposition of the form

$(*)$ : $\lambda=\sum_{:=1}^{n}\tilde{\lambda}_{i}\omega_{i}^{D}$ or $(**):\lambda=\tilde{\lambda}_{n}\overline{\omega}_{n}^{D}+\sum_{:=1}^{n-1}\tilde{\lambda}_{i}\omega_{i}^{D}$ with $\tilde{\lambda}_{n}\neq 0,$

where $(\tilde{\lambda}_{1}, \ldots,\tilde{\lambda}_{n})\in N^{n}$ . This leads us to set:

(i) : $Y(\lambda)=(Y_{\lambda}, +)$ in case $(*)$ with $\tilde{\lambda}_{n}\neq 0,$

(ii) : $Y(\lambda)=(Y_{\lambda}, 0)$ in case $(*)$ with $\tilde{\lambda}_{n}=0,$

(iii) : $Y(\lambda)=(Y_{\lambda}, -)$ in case $(**)$ .

Note that $Y(\lambda)$ suffices to characterize $\lambda\in\Omega+$ but not $Y_{\lambda}$ for type $D_{n}$ since for this root system $Y_{\lambda}$

is a column diagram of height $n$ for $\lambda=\omega_{n}$ or $\lambda=\overline{\omega}_{n}.$

4.5. thbleaux of types $B_{n},$ $C_{n},$ $D_{n}$ and $G_{2}$ . Set

$\left\{\begin{array}{l}v_{\lambda}^{B}=(v_{\omega_{1}^{B}})^{\otimes\tilde{\lambda}_{1}}\otimes\cdots\otimes(v_{\omega_{n}^{B)^{\otimes\tilde{\lambda}_{n}}}},\\v_{\lambda}^{C}=(v_{\omega_{1}^{C}})^{\otimes\tilde{\lambda}_{1}}\otimes\cdots\otimes(v_{\omega_{n}^{C}})^{\otimes\tilde{\lambda}_{n}},\\v_{\lambda}^{G}=(v_{\omega_{1}^{G}})^{\otimes\tilde{\lambda}_{1}}\otimes(v_{\omega_{2}^{G}})^{\otimes\tilde{\lambda}_{2}},\\v_{\lambda}^{D}=(v_{\omega_{1}^{D}})^{\otimes\tilde{\lambda}_{1}}\otimes\cdots\otimes(v_{\omega_{\mathfrak{n}}^{D}})^{\otimes\tilde{\lambda}_{n}} in case(i),\\v_{\lambda}^{D}=(v_{\omega_{1}^{D}})^{\otimes\tilde{\lambda}_{1}}\otimes\cdots\otimes(v_{\omega_{n-1}^{D}})^{\otimes\tilde{\lambda}_{n-1}} in case (ii),\\v_{\lambda}^{D}=(v_{\omega_{1}^{D}})^{\otimes\tilde{\lambda}_{1}}\otimes\cdots\otimes(v_{\overline{\omega}_{n}^{D}})^{\otimes\tilde{\lambda}_{n}} in case (iii).\end{array}\right.$

Then $v_{\lambda}$ is in each case a highest weight vertex of $G$ of weight $\lambda$ . Thus $B(v_{\lambda})$ is isomorphic to $B(\lambda)$

and we can identify these two crystals.
Consider $C_{1},$ $\ldots,C_{r}$ columns with the same type. The reading of the juxtaposition of columns $T=$

$C_{1}\cdots C_{r}$ is the word $w(T)=w(C_{r})\cdots w(C_{1})$ obtained by reading sucessively the columns of $T$ from

right to left and top to bottom.

Definition 4.5.1. $A$ tableau $T$ of shape $Y(\lambda)$ is a juxtaposition of columns such that $w(T)\in B(v_{\lambda})$ .

Consider $\tau=C_{1}C_{2}\cdots C_{r}$ , ajuxtaposition of admissible columns of type $B_{n},$ $C_{n}$ or $D_{n}$ . The split form
of $\tau$ is obtained by splitting each column of $\tau$ . We write spl $(\tau)=(lC_{1}rC_{1})(lC_{2}rC_{2})\cdots(lC_{r}rC_{r})$ .
Since the operation of duplication of a tableau describes the dilatation of $B(v_{\lambda})$ in $B(v_{2\lambda})$ we have
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Lemma 4.5.2. $\tau$ is a tableau if and only if spl $(\tau)$ is a tableau.

In order to obtain a complete combinatorial description of the tableaux of type $D_{n}$ we need the
following definition.

Definition 4.5.3. Consider $C_{1}$ and $C_{2}$ , two columns of type $D_{n}$ such that $h(C_{1})\geq h(C_{2})$ . Then we
say that $C_{1}C_{2}$ contains an a-odd-configuration $(with a\not\in \{ft, n\})$. $a=x_{p},\overline{n}=x_{r}$ are letters of $C_{1}$ and $\overline{a}=y_{s},n=y_{q}$ letters of $C_{2}$ such that $r-q+1$ is odd

$or$ . $a=x_{p},$ $n=x_{r}$ are letters of $C_{1}$ and $\overline{a}=y_{\epsilon},\overline{n}=y_{q}$ letters of $C_{2}$ such that $r-q+1$ is odd,
where the integers $p,$ $q,$ $r,$ $s$ are such that $p\leq q<r\leq s.$

We say that $C_{1}C_{2}$ contains an a-even-configumtion $(with a\not\in\{\overline{n}, n\})$ when:. $a=x_{p},$ $n=x_{r}$ are letters of $C_{1}$ and $\overline{a}=y_{s},$ $n=y_{q}$ letters of $C_{2}$ such that $r-q+1$ is even
$or$ . $a=x_{p},\overline{n}=x_{r}$ are letters of $C_{1}$ and $\overline{a}=y_{s},\overline{n}=y_{q}$ letters of $C_{2}$ such that $r-q+1$ is even,

where the integers $p,$ $q,$ $r,$ $s$ are such that $p\leq q<r\leq s.$

Then we denote by $\mu(a)$ the positive integer defined by

$\mu(a)=s-p.$

Kashiwara-Nakashima’s combinatorial description of a tableau $T$ of type $B_{n},$ $C_{n}$ or $D_{n}$ is based on
the enumeration of configurations that should not occur in two adjacent columns of $T$ . Considering
its split form spl $(T)$ , this description becomes simpler because the columns of spl $(T)$ does not contain
any pair $(z,\overline{z})$ .

Theorem 4.5.4. (Kashiwara-Nakashima [8] and Kang-Misra [7])
(i) The tableaux of types $B_{n}$ and $C_{n}$ are the juxtaposition of admissible columns of types $B_{n}$ and $C_{n}$

whose duphcated forms are semi-standard for the orders on $\mathcal{B}_{n}$ and $C_{n}.$

(ii) The tableaux of type $D_{n}$ are the juxtaposition of admissible columns of type $D_{n}$ whose dupli-
cated forms are semi-standard for the order on $D_{n}$ and such that $rC_{i}lC_{\iota+1}$ does not contain an a-
configuration (even or odd) with $\mu(a)=n-a.$

(iii) The tableaux of type $G_{2}$ are the juxtapositions $C_{1}\cdots C_{r}$ of admissible columns of type $G_{2}$ such
that for any $i=1,$

$\ldots,$
$r-1,$ $C_{i}C_{i+1}$ satisfies one of the following asserUons:

$\left\{\begin{array}{l}(i) C_{i}C_{i+1}Bab with a\leq b and (a, b)\neq(O, 0) ,\\\overline{ac}\\(ii) C_{\iota}C_{i+1}= with a\leq c and (a, c)\neq(0,0) ,\\b\\(iii) C_{i}C_{i+1}=\frac{ac}{}\frac{bd}{}- with \{b\leq dand(b,d)\neq(0,0)a\leq cand(a,c)\neq(0,0) and \end{array}\right.$

$a$ $c$

$b$

is not a tableau of type $D_{3}$ because it contains a 3-even configuration with $\mu(3)=1.$
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4.6. Littelmann’s version of tableaux for the classical types. The Weyl group $W$ acts on
the vertices of $B(v_{\omega})$ . The orbit of $v_{\omega}$ is the readings of the corresponding columns which do not
contain a pair $(z,\overline{z})$ . Thus there is a one to one correspondence between these columns and the cosets
$W/W_{\omega}$ where $W_{\omega}$ is the stabilizer of the weight $\omega$ under the action of $W$ . Moreover if $C_{1},$ $C_{2}$ are two
columns without pair $(z,\overline{z})$

$C_{1}C_{2}$ is a tableau $\Leftrightarrow\tau_{C_{1}}<p^{\mathcal{T}}C_{2},$

where $‘‘<_{p}$ denotes the projection of the Bruhat order on $W/W_{\omega}$ . So $B(v_{\omega})$ is labelled by pairs
$(\eta_{C},\tau_{rC})\in W\prime W_{\omega}\times W\prime W_{\omega}satis\Phi ing\eta_{C}<_{p}\tau_{rC}.$

Let $(C_{1}, \ldots, C_{r})$ be $r$ admissible columns of decreasing heights such that for any $i=1\cdots r,$ $\tau_{lC_{i}}\in W/W_{\omega_{1}}$

and $\tau_{rC_{i}}\in W/W_{\omega_{1}}.$

We say there exists a defined chain for $(C_{1}, \ldots, C_{r})$ , if one can find a sequence $(\sigma_{l}^{1}, \sigma_{r}^{1},\sigma_{l}^{2},\sigma_{r}^{2}, \ldots, \sigma_{l}^{r},\sigma_{r}^{r})$

of elements in $W$ such that:
$\sigma_{l}^{1}<\sigma_{r}^{1}<\sigma_{l}^{2}<\sigma_{r}^{2}\ll\cdots<\sigma_{\iota}^{r}\ll\sigma_{r}^{r},$

$\sigma_{\iota}^{i}\equiv\tau_{lC_{*}}$ $mod W_{\omega_{*}}$ and $\sigma_{r}^{i}\equiv\tau_{rC_{i}}$ $mod W_{\omega}$. for $i=1,$ $\ldots,r,$

where $\ll$ is the Bruhat order in $W$ . From [8] and Littelmann [18] we deduce the following theorem.

Theorem 4.6.1. Let $T=C_{1}\cdots C_{r}$ be a juxtaposition of admissible columns. Then $T$ is a tableau if
and only if there enits a defined chain for $(C_{1}, \ldots, C_{r})$ .

Since the Bruhat order on the Weyl group of type $D_{n}$ can not be characterized from that of the sym-
metric group $S_{2n}$ , this explains why the combinatorial description of the tableaux is more complicated
in type $D_{n}$ than in types $B_{n}$ and $C_{n}.$

Note that Littelmann’s definition of tableaux by defined chains may be generalized to the exceptional
root systems. Except for the root system $G_{2}$ no presentation of these tableaux in terms of combinatorial
planar objects like Young tableaux is known.

5. PLACTIC MONOIDS FOR TYPES $B_{n},$ $C_{\mathfrak{n}},$ $D_{n}$ AND $G_{2}$

The generalization of the notion of plactic monoid to any simple Lie algebra was first obtained by
Littelmann [17] from his path model. In the sequel we have chosen to interpret the plactic relations
in terms of isomorphisms of Kashiwara’s crystal graphs.

5.1. Plactic relations. Let $w_{1}$ and $w_{2}$ be two words on $\mathcal{B}_{n}$
$(resp. C_{n},\mathcal{D}_{n}, \mathcal{G})$ . We write $w_{1}\sim Bw2$

$(resp. w_{1}\sim Cw_{2}, w_{1}\sim Dw_{2},w_{1}\sim Gw_{2})$ when these two words occur at the same place in two isomorphic
connected components of the crystal $G_{B}$ $(resp. G_{C}, G_{D}, G_{G})$ .
The definition of the tableaux implies that for any word $w\in \mathcal{B}_{n}^{*}$ $(resp. w\in C_{n}^{*}, \mathcal{D}_{n}^{*}, \mathcal{G}^{*})$ there exists

a unique tableau $P^{B}(w)$ $($resp. $P^{C}(w),P^{D}(w),$ $P^{G}(w))$ such that $w\sim w(P(w))$ . So the sets $\mathcal{B}_{n}^{*}/\sim B$

, $C_{n}^{*}\prime\sim,$$D_{n}^{*}/C\sim D$ and $\mathcal{G}^{*}/\sim G$ can be identified respectively with the sets of tableaux of type $B_{n},$ $C_{n},$ $D_{n}$

and $G_{2}.$

For the definitions below, recall that the word $w=x_{1}x_{2}\cdots x_{l-1}x_{l}$ has two strict factors which are the
words $x_{2}\cdots x\iota_{-1^{Xl}}$ and $x_{1^{X}2}\cdots x_{l-1}.$

Definition 5.1.1. The monoid $Pl(B_{n})$ is the quotient of the free monoid $\mathcal{B}_{n}^{*}$ by the relations:
$R_{1}^{B}$ : If $x\neq\overline{z}$ and $x<y<z$ :

$yzx\equiv Byxz$ and $xzy\equiv Bzxy.$

$R_{2}^{B}$ : If $ x\neq$ and $x<y$ :

$xyx\equiv Bxxy$ for $x\neq 0$ and $xyy\equiv Byxy$ for $y\neq 0.$
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$R_{3}^{B}$ : If $1<x\leq n$ and $ x\leq y\leq$ hi :

$y(\overline{x-1})(x-1)\equiv Byx\overline{x}$ , and $x\overline{x}y\equiv B(\overline{x-1})(x-1)y,$

$0\overline{n}n\equiv\overline{n}n0.$

$R_{4}^{B}$ : If $x\leq n$ :

$00x\equiv BOxO$ and
$0\overline{x}0\equiv B$

hiOO.
$CR^{B}$ : Let $w=w(C)$ be a non admissible column word each strict factor of which is admissible. Let
$z$ be the lowest unbarred letter of $w$ such that the pair $(z,\overline{z})$ occurs in $w$ and $N(z)>z$ , otherwise set

$z=0$ . Then
$w\equiv B\tilde{w}$

, where $\tilde{w}$ is the column word obtained by erasing the pair $(z,\overline{z})$ in $w$ if $z\leq n$ , by
erasing $0$ otherwise.

Definition 5.1.2. The monoid $Pl(C_{n})$ is the quotient of the free monoid $C_{n}^{*}$ by the relations:

$\not\in^{C}\frac{x\equiv}{x-1}\frac{\overline {}x,an}{x-1}R:yzyxzforx\leq y<zwitz\neq dxzy\equiv zxyforx<y\leq zwithz\neq\overline{x}$
;

$CR^{C}$ : let $w$ be a non admissible column word such that each strict factor of $w$ is an admissible column
word. Wnte $z$ for the lowest unbarred letter such that the pair $(z,\overline{z})$ occurs in $w$ and $N(z)>z$ . Then
$w\equiv\tilde{w}$ , where $\tilde{w}$ is the column word obtained by erasing the pair $(z,\overline{z})$ in $w.$

Definition 5.1.3. The monoid $Pl(D_{n})$ is the quotient of the free monoid $\mathcal{D}_{n}^{*}$ by the relations:
$R_{1}^{D}$ : If $x\neq\overline{z},$

$yzx\equiv Dyxz$ for $x\leq y<z$ and $xzy\equiv Dzxy$ for $x<y\leq z.$

$R_{q}^{D}$ : If $1<x<n$ and $x\leq y\leq\overline{x},$

$y(\overline{x-1})(x-1)\equiv Dyx\overline{x}$ and $x\overline{x}y\equiv D(\overline{x-1})(x-1)y.$

$R_{3}^{D}$ : If $x\leq n-1,$

$\{$

$\overline{n}\overline{x}n^{D}\equiv\overline{x}\overline{n}n$

and $\left\{\begin{array}{l}\overline{n}nx\equiv\overline{n}xnD\\n\overline{n}x\equiv Dnx\overline{n}\end{array}\right.$

$n\overline{x}\overline{n}^{D}\equiv\overline{x}n\overline{n}$

$R_{4}^{D}$ :

$\left\{\begin{array}{l}\overline{n}(\overline{n-1})(n-1)\equiv\overline{n}\overline{n}nD\\n(\overline{n-1})(n-1)\equiv Dnn\overline{n}\end{array}\right.$

$n\overline{n}\overline{n}^{D}\equiv\overline{(n-1)}(n-1)\overline{n}$

and $\{$

$\overline{n}nn^{D}\equiv\overline{(n-1)}(n-1)n$

$CR^{D}$ : Consider $w$ a non admissible column word each strict factor of which is admissible. Let $z$ be

the lowest unbarred letter such that the pair $(z,\overline{z})$ occurs in $w$ and $N(z)>z$ . Then $w\equiv D\tilde{w}$ , where
$\tilde{w}$ is the column word obtained by erasing the pair $(z,\overline{z})$ in $w$ if $z<n$ , by erasing a pair $(n,\overline{n})$ of
consecutive letters otherwise.

Set
$S=\{21,31,01,\overline{3}1,\overline{3}2,\overline{2}1,\overline{2}2,\overline{1}1,\overline{1}2,\overline{2}3,\overline{1}3,\overline{1}0,\overline{1}\overline{3},\overline{1}\overline{2}\}.$

To describe the plactic relations for type $G_{2}$ we need the bijection $\Theta$ from $S$ to $B^{G}(12)$ defined by

(6)
$w$ $21$ $31$ $01$ $\overline{3}1$ $\overline{3}2$ $\overline{2}1$ $\overline{2}2$ il $\overline{1}2$ $\overline{2}3$ $\overline{1}3$ $\overline{1}0$ $\overline{1}\overline{3}$ $i\overline{2}$

$\Theta(w)$ $12$ $13$ $23$ $20$ $2\overline{3}$ $30$ $3\overline{3}$ $00$ $0\overline{3}$ $3\overline{2}$ $0\overline{2}$ $\overline{3}\overline{2}$ $\overline{3}\overline{1}$ $\overline{2}i$
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Deflnition 5.1.4. The monoid $Pl(G_{2})$ is the quotient of the ffee monoid $\mathcal{G}^{*}$ by the relations:

$(R_{1}^{G})$ $10\equiv 1,1\overline{3}\equiv 2,1\overline{2}\equiv 3,2\overline{2}\equiv 0,0\overline{1}\equiv\overline{1},3\overline{1}\equiv\overline{2},2\overline{1}\equiv 5.$

(oe) $1\overline{1}\equiv\emptyset.$

$(R_{3}^{G})$ $abc\equiv\left\{\begin{array}{l}ae(bc) if bc\in S\\with ab\in B(12) and bc\in B(11) .\\\Theta^{-1}(ab)c othenvise\end{array}\right.$

$(R_{4}^{G})$ $xyz\equiv\Theta^{-1}(xy)z$ with $xy\in B(\Lambda_{2})$ and $yz\in B(\Lambda_{2})$ .

5.2. Interpretation in terms of crystal isomorphisms.

5.2.1. for classical types $B_{n},$ $C_{n}$ and $D_{n}$ . For any word $w$ of length 3 appearing in the left hand side
of a relation $R$ above, write $\xi(w)$ for the word appearing in the right hand side of this relation.
Similarly for any $w$ of length $p+1$ appearing in the left hand side of a contraction relation $CR$ above,

write $\xi_{p}(w)$ for the word appearing in the right hand side of this relation.

Proposition 5.2.1.

(1) The map $w\mapsto\xi(w)$ is the crystal isomorp hism from $B(121)$ to $B(112)$ .
(2) The map $w\mapsto\xi_{p}(w)\iota s$ the crystal $isomorph\iota sm$ from $B(12\cdots\overline{w})\simeq B(12\cdots p-1)$ when

$p<n$ and the crystal graph isomorphisms

$\left\{\begin{array}{l}\\B^{C}(12\cdots n\overline{n})\simeq B^{C}(12\cdots n-1)\\\end{array}\right.$

when $p=n.$
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The crystals $B^{B}(121)$ and $B^{B}(112)$ in $G_{B}$

5.2.2. for type $G_{2}$ . For any word $w$ occurring in the left hand side of a relation $R_{i}^{G},$ $i=1,$ $\ldots,4$ we
write $\xi_{i}(w)$ , the word occurring in the right hand side of this relation.

Proposition 5.2.2. The maps $\xi_{1}^{G},\xi_{2}^{G},$ $\xi_{3}^{G}$ and $\xi_{4}^{G}$ are respectively the crystal graph isomorphisms

(i): $B(10)\rightarrow\sim B(1)$ , (ii): $B(1\overline{1})\rightarrow\sim B(\emptyset)$ , (iii): $B(121)\rightarrow\sim B(112)$ and (iv): $B(123)\rightarrow\sim B(110)$ .

Remark: Write $(\xi_{1}^{G})’$ for the crystal graph isomorphism $B(110)\rightarrow\sim B(11)$ , then $(\xi_{4}^{G})’=(\xi_{1}^{G})’\xi_{4}^{G}$ is

the crystal isomorphism $B(123)\rightarrow\sim B(11)$ .
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The two isomorphic crystals $B^{G}(123)$ and $B^{G}(110)$

5.3. Congruent words and crystal graphs. By Propositions 5.2.1 and 5.2.2 the plactic relations
above are compatible with Kashiwara’s operators, that is, for any words $w_{1}$ and $w_{2}$ such that $w_{1}\equiv w_{2}$

one has:

(9) $\left\{\begin{array}{l}\tilde{e}_{i}(w_{1})\equiv\tilde{e}_{i}(w_{2}) and \epsilon_{i}(w_{1})=\epsilon_{i}(w_{2}) ,\\\tilde{f_{i}}(w_{1})\equiv\tilde{f_{1}}(w_{2}) and \varphi_{i}(w_{1})=\varphi_{i}(w_{2}) .\end{array}\right.$

So we obtain:

(10) $w_{1}\equiv w_{2}\Rightarrow w_{1}\sim w_{2}.$

To prove the converse we need the two following lemmas:

Lemma 5.3.1. For any words $v_{1}$ and $v_{2}$ , the word $v_{1}v_{2}$ is a highest weight vertex if and only if.$\cdot$

$\bullet$

$v_{1}$ is a highest weight vertex
$\bullet$ for any $i=1,$ $\ldots,n,$

$\epsilon_{1}(v_{2})\leq\varphi_{i}(v_{1})$ .

Proof. The proof follows immediately from (1) and (2). $\square $
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Lemma 5.3.2. Let $w$ be a highest weight vertex. Then $w(P(w))\equiv w.$

Proof. For classical types, the proof follows by induction on $l(w)$ . When $l(w)=$ l, w$(P(w))=w$ . By
writing $w=vx$ , one shows that $w(P(w))$ may be obtained from the word $w(P(v))x$ by applying only
Knuth relations and contraction relations of type $12\cdots r\overline{p}\equiv 12\cdots\hat{p}\cdots r$ with $p\leq r\leq n$ (the hat
means removal of the letter $p$). The proof is similar up to minor modifications for type $G_{2}.$ $\square $

Theorem 5.3.3. For any words $w_{1}$ and $w_{2}$

$w_{1}\equiv w_{2}\Leftrightarrow w_{1}\sim w_{2}.$

Proof. IFYom Lemma 5.3.2, we obtain that two highest weight vertices $w_{1}^{0}$ and $w_{2}^{0}$ with the same weight
$\lambda$ satisfy $w_{1}^{0}\equiv w_{2}^{0}$ . Indeed, since there is only one tableau whose reading is a highest weight vertex of
weight $\lambda$ , we must have $P(w_{1}^{0})=P(w_{2}^{0})$ . Now suppose that $w_{1}\sim w_{2}$ and denote by $w_{1}^{0}$ and $w_{2}^{0}$ the
highest weight vertices of $B(w_{1})$ and $B(w_{2})$ . We have $w_{1}^{0}\equiv w_{2}^{0}$ . Set $w_{1}=\tilde{F}w_{1}^{0}$ where $\tilde{F}$ is a product
of Kashiwara’s operators $\tilde{f_{i}},$ $i\in I$ . Then $w_{2}=\tilde{F}w_{2}^{0}$ because $w_{1}\sim w_{2}$ . So by (9) we obtain

$w_{1}^{0}\equiv w_{2}^{0}\Rightarrow\tilde{F}w_{1}^{0}\equiv\tilde{F}w_{2}^{0}\Rightarrow w_{1}\equiv w_{2}.$

Then the theorem follows from (10). $\square $

6. BUMPING ALGORITHMS FOR TYPES $B_{n},$ $C_{n},$ $D_{n}$ AND $G_{2}$

For any dominant weight $\lambda\in\Omega+$ , write

$B(\lambda)\otimes B(\Lambda_{1})\simeq\bigoplus_{\nu\in\Omega_{+}}B(v)$
.

This decomposition is multiplicity free. Given any letter $x\in B(\Lambda_{1})$ and any tableau $S$ such that
$w(S)\in B(\lambda)$ we want to compute the unique tableau $T$ such that $w(T)\equiv w(S)x$ . We will set
$T=x\rightarrow S$ and call this combinatorial operation “insertion of the letter $x$ in the tableau $S$”.

6.1. Bumping algorithm on an admissible column of type $B_{n},$ $C_{n}$ or $D_{n}$ . Consider a word
$w=w(C)x$ , where $x$ and $C$ are respectively a letter and an admissible column of height $p$ . Denote by
$w^{0}=u^{0}x^{0}$ the highest weight vertex of $B(w)$ . Only three situations can happen:

(1) $w^{0}=v_{\omega_{p+1}}$ with $h(C)=p+1$ : then there is nothing to do and $P(w)=_{X}^{C}H$ is an admissible

column,
$C$

(2) $w^{0}=v_{\omega_{p}}\overline{p}$ : then
$x$

is a non admissible column of height $p+1$ and $P(w)=\tilde{C}$ obtained by

applying a contraction relation to $w(C)x.$

(3) $w^{0}=v_{\omega_{p}}1$ (or $w^{0}=v_{\overline{\omega}_{n}}1$ for type $D_{n}$ ): then $P(w)$ must be a tableau of two columns of heights
$p$ and 1 since $B(v_{\omega_{p}}1)\simeq B(1v_{\omega_{p}})$ .

can be written

$ x\rightarrow H_{b}^{a}=\frac{\prod a}{|x|b|}=\overline{\frac{|a’|x’|}{\underline{|b’|}}}\cdot$
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In case 3 above the insertion in an admissible column $C$ of arbitrary height can then be depicted by

$a_{1}$

$a_{k-2}$

$a_{k-1}$

$ak$

$a_{1}$

$ak-2$

$a_{k-1}$

$x$ $a_{k}$

$a_{1}$

$a_{k-2}$

$d_{k-1}$ $y$

$d_{k}$

(11) $x\rightarrow = = =\cdots=$

$d_{1}$ $z$

$k-1$

$d_{k}$

that is, one elementary transformation is applied at each step.

Example 6.1.1. Suppose $n=7.$

6.2. Bumping algorithm on an admissible column of type $G_{2}$ . When $h(C)=1$ and $C=$
we have

(12) $x\rightarrow C=\left\{\begin{array}{l}(i) : \frac{ax}{}- if ax\in B(11) ,\\(ii) : H_{x}^{a} if ax\in B(12) ,\\(iii) : a with a’=\xi_{1}(ax) if ax\in B(10) ,\\(iv) : \emptyset if ax=1\overline{1}.\end{array}\right.$

Indeed in each case (i) to (iv), $x\rightarrow C$ is the unique tableau of type $G_{2}$ such that $w(x\rightarrow C)\equiv w(C)x.$
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When $h(C)=2$ and $C\#_{b}^{a}$ we have

$\left\{\begin{array}{l}\overline{a’x’}\\(v) : b with x’a’b’=\xi_{3}^{G}(abx) if bx is not a column word,\end{array}\right.$$x\rightarrow C=$

(vi) : rmwith $a’x’=\xi_{1}^{G}\xi_{4}^{G}(abx)$ if $bx$ is an admissible column word,

(vii) : $x$ with $x’=\xi_{1}^{G}(a\xi_{1}^{G}(bx))$ if $bx$ is a non admissible column word.

$a’$ $x’$

$b$

Indeed in cases (v) and (vi), $x\rightarrow C$ is a tableau of type $G_{2}$ such that $w(x\rightarrow C)\equiv w(C)x$ by
Proposition 5.2.2. In case (vii), we obtain by (2) that the highest weight vertex of $B(abx)$ may be
written $12u$ with $u$ a letter such that $\epsilon_{1}(u)=0$ and $\epsilon_{2}(u)\leq 1$ . So $u\in\{1,3,\overline{2}\}$ . We have $u=\overline{2},$

otherwise $B(abx)=B(121)$ and $x\leq b$ , or $B(abx)=B(123)$ and $bx$ is an admissible column word.
Hence $B(abx)=B(12\overline{2})$ . We have

$B(12\overline{2}):12\overline{2}\rightarrow 112\overline{1}\rightarrow 213\overline{1}\rightarrow 123\overline{1}\rightarrow 120\overline{1}\rightarrow 230\overline{1}\rightarrow 100\overline{1}$

and it is easy to verify that $\xi_{1}^{G}(a\xi_{1}^{G}(bx))$ is the image of $abx$ by the crystal isomorphism $B(12\overline{2})\rightarrow\sim B(1)$ .
In cases (iii), (iv), (vi) and (vii) we have $l(x\rightarrow C)<l(w(C)x)$ . Then the insertion procedure causes a
contraction. Note that if the words $w(C_{1})x_{1}$ and $w(C_{2})x_{2}$ (where $C_{1},$ $C_{2}$ are admissible columns and
$x_{1},$ $x_{2}$ are letters) belong to the same connected component, the insertions $x_{1}\rightarrow C_{1}$ and $x_{2}\rightarrow C_{2}$ are
of the same type (i) to (vii).

6.3. The $P$-symbol $P(w)$ . Set $T=C_{1}\cdots C_{r}$ where $C_{i},$ $i=1,$
$\ldots,$

$r$ are the admissible colu- ns of $T.$

(1) $When_{X}H^{c_{1}}$ is not a column, write $x\rightarrow C=\frac{C_{1}y}{}$, where C\’i is an admissible column

of height $h(C_{1})$ and $y$ a letter. Then $x\rightarrow T=C_{1}’(y\rightarrow C_{2}\cdots C_{r})$ that is, $x\rightarrow T$ is the

juxtaposition of C\’i with the tableau $\hat{T}$ obtained by inserting $y$ in the tableau $C_{2}\cdots C_{r}.$

(2) $When_{X}H^{c_{1}}$ is an admissible column, $x\rightarrow T$ is the tableau obtained by adding a box containing

$x$ on bottom of $C_{1}.$

(3) $When_{X}H^{c_{1}}$ is a column which is not admissible, write $x\rightarrow C_{1}=\overline{C_{1}}$ and set $w(\overline{C_{1}})=y_{1}\cdots y_{s}.$

Then $x\rightarrow T=-y_{s}\rightarrow(y_{s-1}\rightarrow(\cdots y_{1}\rightarrow\hat{T}))$ that is $x\rightarrow T$ is obtained by inserting successively

the letters of $C_{1}$ into the tableau $\hat{T}=C_{2}\cdots C_{r}.$

Finally for any vertex $w$

$\left\{\begin{array}{l}P(w)=w if w is a letter,\\P(w)=x\rightarrow P(u) if w=ux with u a word and x a letter.\end{array}\right.$

Example 6.3.1.
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Remark: All the insertion schemes described in this note are column insertion algorithms. For
semi-standard tableaux of type $A_{n}$ , there also exists a row insertion algorithm compatible with Knuth
relations. Moreover the row and column readings of a semi-standard tableau belong to the same

7. ROBINSON-SCHENSTED TYPE CORRESPONDENCES

7.1. Oscillating tableaux. An oscillating tableau $Q$ of type $B_{n}$ and length $l$ is a sequence of Young
diagrams $(Q_{1}, \ldots, Q_{l})$ whose columns have height $\leq n$ and such that any two consecutive diagrams are
equal or differ by exactly one box $(i.e. Q_{k+1}=Q_{k}, Q_{k+1}/Q_{k}=($ .
An oscillating tableau $Q$ of type $C_{n}$ and length $l$ is a sequence of Young diagrams $(Q_{1}, \ldots, Q_{\iota})$ whose
columns have height $\leq n$ and such that any two consecutive diagrams differ by exactly one box (i.e.
$Q_{k+1}/Q_{k}=($ or $Q_{k}/Q_{k+1}=($ .
An oscillating tableau $Q$ of type $D_{n}$ and length $l$ is a sequence $(Q_{1}, \ldots, Q_{l})$ of pairs $Q_{k}=(O_{k},\epsilon_{k})$ where
$O_{k}$ is a Young diagram whose columns have height $\leq n$ and $e_{k}\in\{-,0, +\}$ , satisfying for $k=1,$

$\ldots,$

$l,$. $O_{k+1}\prime O_{k}=($ or $0_{k}/0_{k+1}=($ ,. $\epsilon_{k+1}\neq 0$ and $\epsilon_{k}\neq 0$ imply $\epsilon_{k+1}=\epsilon_{k}.$. $\epsilon_{k}=0$ if and only if $O_{k}$ has no columns of height $n.$

An oscillating tableau $Q$ of type $G_{2}$ and length $l$ is a sequence $(Q_{1}, \ldots, Q_{t})$ of Young diagrams whose
columns have height 1 or 2 satisfying for $k=1,$

$\ldots,$

$l$ one of the following assertions:. $Q_{k+1}$ is obtained by adding one box to $Q_{k}.$

$\bullet$ $Q_{k+1}$ is obtained by deleting one box in $Q_{k}.$. $Q_{k+1}=Q_{k}.$

$\bullet$ $Q_{k+1}$ is obtained from $Q_{k}$ by moving one box from height 2 to height 1.
$\bullet$ $Q_{k+1}$ is obtained from $Q_{k}$ by moving one box from height 1 to height 2.
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7.2. The $Q$-symbol $Q(w)$ . Let $w=x_{1}\cdots x_{l}$ be a word. The construction of $P(w)$ involves the
construction of the $l$ tableaux defined by $P_{i}=P(x_{1}\cdots x_{i})$ . For $w\in \mathcal{B}_{n}^{*}$ $(resp. w\in C_{n}^{*}, w\in \mathcal{D}_{n}^{*}, w\in \mathcal{G}^{*})$

we denote by $Q_{B}(w)$ $($resp. $Q_{C}(w),$ $Q_{D}(w),$ $Q_{G}(w))$ the sequence of shapes of the tableaux $P_{1},$
$\ldots,$

$P_{l}.$

Proposition 7.2.1. QB $(w),$ $Q_{C}(w)$ , QD $(w)$ and $Q_{G}(w)$ are respectively oscillating tableaux of type
$B_{n},$ $C_{n},$ $D_{n}$ and $G_{2}.$

Proof. We give the proof for the orthogonal types. The arguments are essentially the same for types
$C_{n}$ and $G_{2}.$

Each $Q_{i}$ is the shape of an orthogonal tableau so it suffices to prove that for any letter $x$ and any
orthogonal tableau $T$ , the shape of $x\rightarrow T$ differs from the shape of $T$ by at most one box according
to the above definition of oscillating tableaux of types $B_{n}$ and $D_{n}.$

The highest weight vertex of the connected component containing $w(T)x$ may be written $w(T^{0})x^{0}$

where $T^{0}$ is an orthogonal tableau. It follows from Lemma 3.4.1 that $w(T)\ovalbox{\tt\small REJECT} w(T^{0})$ . So wt $(w(T^{0}))$

is given by the shape of $T$ . Then the shape of $x\rightarrow T$ is given by the coordinates of wt $(w(T^{0})x^{0})$ on
the basis $(\omega_{1}^{B}, \ldots,\omega_{n}^{B})$ for type $B_{n}$ , on the base $(\omega_{1}^{D}, \ldots,\omega_{n}^{D})$ or $(\omega_{1}^{D}, \ldots,\omega_{n-1}^{D},\overline{\omega}_{n}^{D})$ for type $D_{n}.$

Suppose that $x\in \mathcal{B}_{n}^{*}$ and $T$ is orthogonal of type $B_{n}$ . Let $(\lambda_{1}, \ldots, \lambda_{n})$ be the coordinates of wt $(\mathcal{I}^{0})$

on the basis of the $\omega$ $s$ . If $x^{0}=\overline{i}>0$ then $wt(x^{0})=\omega_{i-1}^{B}-\omega_{i}^{B}$ . So $\lambda_{i}>0$ and $wt(w(T^{0})x^{0})=$

$(\lambda_{1}, \ldots, \lambda_{i-1}+1, \lambda_{i}-1, \ldots, \lambda_{n-1})$ . Hence during the insertion of the letter $x$ in $T$ , a column of height $i$

(corresponding to the weight $\omega_{i}$ ) is tumed into a column of height $i-1$ (corresponding to the weight
$\omega_{i-1})$ . So the shape of $x\rightarrow T$ is obtained by erasing one box in the shape of $T$ . If $x^{0}=i<0$ , then we
can prove by similar arguments that the shape of $x\rightarrow T$ is obtained by adding one box to the shape
of $T$ . When $x^{0}=0$ , wt $(x^{0})=0$ , so wt $(w(T^{0})x^{0})=$ wt $(w(T^{0}))$ . Hence the shapes of $T$ and $x\rightarrow T$ are
the same.

Suppose $x\in \mathcal{D}_{n}^{*}$ and $T$ orthogonal of type $D_{n}$ . When $|x^{0}|\neq n$ , the proof is the same as above. If
$x^{0}=n$ , wt $(x^{0})=\Lambda_{n}-\Lambda_{n-1}=\omega_{n}-\omega_{n-1}=\omega_{n-1}-\overline{\omega}_{n}$ . We have to consider three cases, (i): $\epsilon_{T}=-,$

(ii): $\epsilon_{T}=0$ and (iii): $\epsilon_{T}=+$ . Denote by $(\lambda_{1}, \ldots, \lambda_{n})$ the positive decomposition of wt $(w(T^{0}))$ on the
basis $(\omega_{1}^{D}, \ldots,\omega_{n}^{D})$ or on the basis $(\omega_{1}^{D}, \ldots,\overline{\omega}_{n}^{D})$ .
In the first case, $\lambda_{n}>0$ and the positive decomposition of wt $(x^{0}w(T^{0}))$ on the basis $(\omega_{1}^{D}, \ldots,\overline{\omega}_{n}^{D})$ is
$(\lambda_{1}, \ldots, \lambda_{n-2}, \lambda_{n-1}+1, \lambda_{n}-1)$ . It means that during the insertion of $x$ in $T$ a column of height $n$

(corresponding to $\overline{\omega}_{n}$ ) is turned into a column of height $n-1$ (corresponding to $\omega_{n-1}$ ). Moreover
$\epsilon_{x\rightarrow T}=\epsilon\tau$ if $\lambda_{n}>1$ and $\epsilon_{x\rightarrow T}=0$ otherwise.
In the second case, $\lambda_{n-1}>0,$ $\lambda_{n}=0$ and the positive decomposition of wt $(x^{0}w(T^{0}))$ on the base
$(\omega_{1}^{D}, \ldots,\omega_{n}^{D})$ is $(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n-1}-1,1)$ . It means that during the insertion of $x$ in $T$ a column of height
$n-1$ (corresponding to $\omega_{n-1}$ ) is tumed into a column of height $n$ (corresponding to $\omega_{n}$ ). Moreover
$\epsilon_{x\rightarrow}\tau=+.$

In the last case, $\lambda_{n-1}>0,$ $\lambda_{n}>0$ and the positive decomposition of wt $(x^{0}w(T^{0}))$ on $(\omega_{1}^{D}, \ldots,\omega_{n}^{D})$

is $(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n-1}-1, \lambda_{n}+1)$ . It means that during the insertion of $x$ in $T$ a column of height
$n-1$ (corresponding to $\omega_{n-1}$ ) is tumed into a column of height $n$ (corresponding to $\omega_{n}$ ). Moreover
$\epsilon_{x\rightarrow}\tau=\epsilon_{T}.$

When $x^{0}=\overline{n}$ , the proof is similar. $\square $

Remark: The above proposition implies in particular that there should be at most one contraction
during the insertion procedure $x\rightarrow T.$

Theorem 7.2.2. For any vertices $w_{1}$ and $w_{2}$

$w_{1}\ovalbox{\tt\small REJECT} w_{2}\Leftrightarrow Q(w_{1})=Q(w_{2})$ .

Proof. We proceed by induction on the length $l$ of the words $w_{1}$ and $w_{2}$ . If $l=1$ the result is
immediate. If $w_{1}$ and $w_{2}$ have length $l>1$ , we can write $w_{1}=u_{1}x_{1}$ and $w_{2}=u_{2}x_{2}$ with $x_{1},$ $x_{2}$ letters
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and $u_{1},u_{2}$ words of length $l-1$ . Let $w_{1}^{0}=u_{1}^{0}x_{1}^{0}$ and $w_{2}^{0}=u_{2}^{0}x_{2}^{0}$ be the highest weight vertices of $B(w_{1})$

and $B(w_{2})$ . Write $Q_{1}$ and $Q_{2}$ for the shapes of $P(w_{1})$ and $P(w_{2})$ (that is those of $P(w_{1}^{0})$ and $P(w_{2}^{0})$ ).

We suppose the Proposition is true for the words of length $l-1$ . First we have:

$w_{1}\ovalbox{\tt\small REJECT} w_{2}\Leftrightarrow\left\{\begin{array}{l}u_{1} u_{2},\\Q_{1}=Q_{2}.\end{array}\right.$

Indeed if $w_{1}\ovalbox{\tt\small REJECT} w_{2}$ then $u_{1}\ovalbox{\tt\small REJECT} u_{2}$ follows from Lemma 3.4.1 and we obtain $Q_{1}=Q_{2}$ because the

readings of $P(w_{1})$ and $P(w_{2})$ are in the same connected component. Conversely, $u_{1}\ovalbox{\tt\small REJECT} u_{2}$ implies

that $u_{1}^{0}=u_{2}^{0}$ and it follows from the equality $Q_{1}=Q_{2}$ that wt $(w_{1}^{0})=wt(w_{2}^{0})$ (because the shape

of $P(w_{i}^{0})i=1,2$ coincides with the weight wt $(w_{i}^{0}))$ . So $x_{1}^{0}=x_{2}^{0}$ . This means that $w_{1}^{0}=w_{2}^{0}$ i.e.
$w_{1}\ovalbox{\tt\small REJECT} w_{2}$ . Finally we obtain by induction:

$w_{1}\ovalbox{\tt\small REJECT} w_{2}\Leftrightarrow\left\{\begin{array}{l}Q(u_{1})=Q(u_{2})\\\Leftrightarrow Q(w_{1})=Q(w_{2}) .\\Q_{1}=Q_{2}\end{array}\right.$

$\square $

Write respectively $\mathcal{O}_{\iota}^{B},$ $O_{\iota}^{C},$ $O_{\iota}^{D}$ and $O_{\iota}^{G}$ for the sets of pairs $(P, Q)$ where $P$ is a tableau and $Q$ an
oscillating tableau respectively of type $B_{n},$ $C_{n},$ $D_{n}$ and $G_{2}$ and length $l$ such that $P$ has shape $Q_{l}(Q_{l}$

is the last shape of $Q$ ). Let $\mathcal{B}_{n}^{*},{}_{t}C_{n,l}^{*},\mathcal{D}_{n,l}^{*}$ and $\mathcal{G}_{\iota}^{*}$ be the subsets of words of length $l$ respectively in
$\mathcal{B}_{n}^{*},C_{n}^{*},D_{n}^{*}$ and $\mathcal{G}^{*}.$

Corollary 7.2.3. The maps:

$\Psi^{B}:B_{nl}^{*}\rightarrow \mathcal{O}_{\iota}^{B}$ $\Psi^{C}:C_{n,\iota}^{*}\rightarrow O_{\iota}^{C}$
$\Psi^{D}:D_{n1}^{*}\rightarrow \mathcal{O}_{\iota}^{D}$

and
$\Psi^{G}:\mathcal{G}_{l}^{*}\rightarrow O_{l}^{G}$

$w\mapsto(P^{B}(w),Q^{B}(w))$ ’ $w\mapsto(P^{C}(w),Q^{C}(w))$ $w\mapsto(P^{b}(w),Q^{D}(w))$ $w\mapsto(P^{G}(w),Q^{G}(w))$

are bijections.

Proof. Type $C_{n}$ : by Theorems 5.3.3 and 7.2.2, we obtain that $\Psi$ is injective. Consider an oscillating

tableau $Q$ of length $l$ . Set $x_{1}=1$ and for $i=2,$
$\ldots,$

$l,$ $x_{i}=k$ if $Q_{i}$ differs from $Q_{i-1}$ by adding a box in

row $k$ and $x_{i}=\overline{k}$ if $Q_{i}$ differs from $Q_{i-1}$ by removing a box in row $k$ . Consider $wQ=x\iota\cdots x_{2}1$ . Then
$Q(wQ)=Q$ . By Theorem 4.5.4, the image of $B(w_{Q})$ by $\Psi$ is the pair $(P, Q)$ where $P$ is a symplectic

tableau of shape $Q_{l}$ . We deduce immediately that $\Psi$ is surjective.
The proof is similar for types $B_{n},$ $D_{n}$ and $G_{2}.$

$\square $

8. REVERSE BUMPING ALGORITHM FOR THE CLASSICAL TYPES

For any dominant weight $\lambda\in\Omega_{+}$ , recall the decomposition

$B(\lambda)\otimes B(\Lambda_{1})\simeq\bigoplus_{\nu\in\Omega+}B(\nu)$
.

Since this decomposition is multiplicity free, it must be possible, starting from $T$ with $w(T)\in B(v)$

and $\lambda$ , to determine the unique pair $(x, S)$ where $x$ is a letter and $w(S)\in B(\lambda)$ such that $x\rightarrow S=T.$

This procedure is called “reverse bumping algorithm”. To describe the reverse bumping steps, it
suffices to interpret each plactic relation on words, read from right hand side to left hand side, as a
combinatorial operation. We give below a complete description of these operations on the tableaux of
classical types. The reverse bumping algorithm for type $G_{2}$ can be obtained similarly from the plactic
relations of Definition 5.1.4.



33

COMBINATORICS OF CRYSTAL GRAPHS FOR THE ROOT SYSTEMS OF TYPES $A_{n},$ $B_{n},$ $C_{n},$ $D_{n}$ AND $G_{2}$

consider the pair $(x_{3}, C_{3})$ where $x_{3}$ is the bottom letter of $D$ and $C_{3}=D-\{x_{3}\}+\{0\}.$

Example $S$ .1.1. Suppose $n=6.$

8.2. Fundamental reverse bumping step. Consider $T=Ux$ a tableau of type $B_{n},$ $C_{n}$ or $D_{n}$

with two columns such that $h(D)=p$ and $x$ contains only the letter $x$ . Then by applying procedure
(11) from right to left, that is, applying to $xw(D)$ plactic relations of length 3 read from right to left,
we can obtain the unique pair $(x, C)$ where $x$ is a letter and $C$ an admissible column of height $p$ such
that $x\rightarrow C=fflx$
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$4$

$5$

$6$

$5$

$4$ $5$

$5$

$6$

$5$

$4$

$5$ $5$

$6$

$6$

$5$

$4$

$6$

$6$

$5$

$4$

$6$

$5$ $5$

$5$

Example 8.2.1. Fbom $T=$ we obtain $=$ $=$ $=$ $=$

$4$

8.3. Reverse bumping algorithm on a tableau.

8.3.1. type $C_{n}$ . Consider $T=C_{1}\cdots C_{p}$ a tableau and $Y$ a “Young diagram” such that the shape $Y(T)$

of $T$ and $Y$ differ by exactly one box. We look for the letter $x$ and the tableau $S$ such that $x\rightarrow S=T.$

Suppose first that $Y$ has one box less than $Y(T)$ . Let $C_{k}$ be the column of $T$ corresponding to this
box and $y$ the letter it contains. If $k=1$ we find $(x, S)$ immediately, otherwise we apply the reverse

Now suppose that $Y$ has one box more than $Y(T)$ . Denote by $Y’$ the Young diagram obtained by
deleting the first column of $Y$ . Since $Y$ has one box more than $Y(T)$ , a contraction happens during
the insertion $x\rightarrow S=T$ . This is case 3 of the insertion procedure described in section 6.3. The
tableau $S$ can certainly be written in the form $S=D_{1}S’$ where $D_{1}$ is the leftmost column of $S$ and

$S’=S-D_{1}$ . Then $D\#_{X}^{D_{1}}$ is a non admissible column. Denote by $\tilde{D}$ the column obtained by

contracting $D$ and set $s=h(\tilde{D})$ . During the insertion $x\rightarrow S=T,$ $D$ is contracted and next the letters
of $\tilde{D}$ are inserted in the tableau $S’$ . This forces $Y’$ , the shape of $S’$ , to be contained in $Y(T)$ . More
precisely $Y(T)-Y’$ contains $s$ boxes corresponding to the insertion of the letters of $\tilde{D}$ . Since the
insertion of the letters of the column $\tilde{D}$ does not induce new contractions, the $s$ boxes of $Y(T)-Y’$
belong to different rows of $Y(T)$ . This is verified easily by a detailed analysis of the highest weight
vertices implied in the previous combinatorial operations on tableaux.
This gives a procedure to compute $S$ . Indeed, it suffices to consider the letters of $T$ which do not belong
to $Y’$ . These letters appear on different rows of $T$. One then applies the previous reverse bumping
algorithm to these $s$ letters starting from the letter appearing in the lowest row until terminating with
the letter appearing in the highest row. One can prove that this computation is always possible. The
letters then obtained form the reading of an admissible column (namely the reading of $\tilde{D}$ with the
previous notation). Moreover the resulting tableau is the tableau $S’$ . Finally we obtain $D$ from $\tilde{D}$ as
in section 8.1. Then $S=DS’$ is the juxtaposition of $D$ and $S’.$
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8.3.2. $71/peB_{n}$ . We proceed similarly. The only difference is when $Y(T)=Y(S)$ . $ThenH_{x}^{o}$ is the

column obtained by adding a letter $0$ in $C_{1}$ , the first column of $T.$

8.3.3. Type $D_{n}$ . Write $Y(T)=(Y_{T}, \epsilon_{T})$ and $Y(S)=(Y_{S}, \epsilon_{S})$ where $Y_{T},$ $Y_{S}$ are Young diagrams and
$\epsilon s,$ $\epsilon\tau$ belong to $\{-, 0, +\}$ (see section 4.4). When $Y_{T}$ has one box more than $Y_{S}$ , we proceed as for type
$C_{n}$ . When $Y_{T}$ has one box less than $Y_{S}$ , the reverse algorithm is the same except for the computation

$ofH_{X}^{c}$ from $D$ when $h(D)=n-1$ , that is, when $\epsilon s\neq 0$ . Indeed we have seen that there are two

possibilities for $H_{x}^{C}$ in this case. If $\epsilon=+$ , we choose $xC$ such that $w(C)\in B(\omega_{n}^{B})$ , otherwise we

choose it to have $w(C)\in B(\overline{\omega}_{n}^{B})$ .

9. SLIDING ALGORITHM FOR TYPES $B_{n}$ AND $C_{n}$

This section is concemed with a symplectic Jeu de Taquin (or sliding algorithm) introduced by $J.$

T. Sheats [19] in order to obtain an explicit bijection between King’s and De Concini’s symplectic
tableaux.
Recall that the Sch\"utzenberger sliding algorithm is a procedure which yields a semistandard tableau
starting from a given skew semistandard tableau $T$ by a sequence of successive horizontal and vertical
slides. The reading $w(T)$ of $T$ is obtained by reading the columns of $T$ from right to left and top to
bottom. One can prove that the readings of the skew semistandard tableaux successively obtained
from $T$ by a sequence of slides all belongs to the plactic congruence class of $w(T)$ . This implies that
the sliding algorithm is confluent, that is the resulting semistandard tableau does not depend on the
order in which the inner comers of $T$ are evacuated (see [5]).
An analogous property has been conjectured in [19] and proved in [15]. This yields an altemative way
to compute $P_{C}(w)$ for any word $w$ . By considering the splitting form of the admissible columns of
type $B_{n}$ , it is also possible to obtain a sliding algorithm for type $B_{n}$ . In the sequel we only summarize
the main definitions and results conceming these Jeux de Taquin and refer the reader to [15] and [16]
for the proofs.

9.1. Sheats sliding algorithm.

9.1.1. Skew admissible tableaux. Let $\lambda=\sum_{i=1}^{n}\tilde{\lambda}_{i}\Lambda_{i}^{C}$ and $\mu=\sum_{i=1}^{n}\tilde{\mu}_{i}\Lambda_{i}^{C}$ be two dominant weights such

that $\tilde{\mu}_{\dot{\eta}}\leq\tilde{\lambda}_{i}$ for $i=1,$
$\ldots,$

$n.$ $A$ skew tableau of shape $\lambda/\mu$ over $C_{n}$ is a filling of letters of $C_{n}$ in the
skew Young diagram $Y_{\lambda}/Y_{\mu}$ making columns strictly increasing from top to bottom.
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Deflnition 9.1.1. $A$ skew tableau over $C_{n}$ is admissible if its columns are admissible and the rows of
its split $fom$ $(obtained by tuming each column C into its split form (lC,rC)$) are weakly increasing

from left to right.

Remark: One can prove that the set of readings of the admissible skew tableaux of shape $\lambda/\mu$ is a
sub-crystal of $G_{n}^{C}$ , that is, a disjoint union of connected components of $G_{n}^{C}.$

We denote by $\mathcal{T}_{(\lambda,\mu)}$ the set of admissible skew tableaux of shape $(\lambda\prime\mu)$ and by $\mathcal{U}_{(\lambda/\mu)}$ the set of
readings of these skew tableaux.
Consider an admissible skew tableau of shape $\lambda/\mu$ . An inner comer is a box of $Y_{\mu}$ such that the boxes
down and to the right are not in $Y_{\mu}$ . An outside comer is a box of $Y_{\lambda}$ such that the boxes down and
to the right are not in $Y_{\lambda}.$

A skew tableau is said to be punctured if one of its box contains the $symbol*$ called the puncture.
A punctured column $C$ is admissible if the column $C’$ obtained by ignoring the puncture is admissible.
Then the punctured columns $rC$ and $lC$ are respectively obtained by replacing the letters of $C$ (except

the puncture) by the letters of $rC’$ and $lC’$ . The split form of $C$ is $lCrC.$

A punctured skew tableau is admissible if its columns are admissible and the rows of its split form
(obtained by splitting its columns) are weakly increasing (ignoring the puncture).

9.1.2. Coadmissible columns. $A$ column $C$ of type $C_{n}$ is called coadmissible if for each pair $(z,\overline{z})$ in
$C$ , the number $N^{*}(z)$ of letters $x$ in $C$ such that $x\geq z$ and $x\leq\overline{z}$ satisfies

(13) $N^{*}(z)\leq n-z+1.$

Let $C$ be an admissible column of type $C_{n}$ . Denote by $C^{*}$ the column obtained by filling the shape
of $C$ (from top to bottom) with the unbarred letters of $lC$ in increasing order followed by the barred
letters of $rC$ in increasing order. Then it is easy to prove that $C^{*}$ is coadmissible. More precisely the
map:

(14) $\Phi:C\rightarrow C^{*}$

is a bijection between the sets of admissible and coadmissible columns of the same height. Starting
from a coadmissible column $C^{*}$ we can compute the pair $(lC,rC)$ associated to the umique admissible
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column $C$ such that $C^{*}=\Phi(C)$ by reversing the duplication algorithm in section 4.3. Then $C$ is the
column containing the unbarred letters of $rC$ and the barred letters of $lC.$

9.1.3. Elementary step of the sliding algorithm. Let us consider an admissible punctured skew tableau
$T$ containing two columns $C_{1}$ and $C_{2}$ with the puncture in $C_{1}$ . To apply an elementary step of the
sliding algorithm to $T$ we first have to consider the split form of $T$ . In this split form we have a

(1) If $a’\leq b$ or the double box $bb’$ is empty, then the double boxes $a$ $a’and**$ are permuted.
(2) If $a’>b$ or the double box $a$

$a’$ is empty then:
(i): when $b$ is a barred letter, $b$ slides into $rC_{1}$ to the box $containing*$ and $D_{1}=\Phi(C_{1})-$

$\{*\}+\{b\}$ is a coadmissible column (see (14)). Simultaneously the $symbol*$ slides into $lC_{2}$ to
the box containing $b$ and $C_{2}’=C_{2}-\{b\}+\{*\}$ is a punctured admissible column. Then we
obtain a new punctured skew tableau $C_{1}’C_{2}’$ by setting $C_{1}’=\Phi^{-1}(D_{1})$ .

(ii): when $b$ is an unbarred letter, $b$ slides into $rC_{1}$ to the box $containing*$ and give a new
column $C_{1}’=C_{1}-\{*\}+\{b\}$ . Simultaneously the $symbol*$ slides into $lC_{2}$ to the box containing
$b$ and $D_{2}=\Phi(C_{2})-\{b\}+\{*\}$ is a punctured coadmissible column. Then we obtain a new
punctured skew tableau $C_{1}’C_{2}’$ by setting $C_{2}’=\Phi^{-1}(D_{2})$ .

Remark: In case 2 (i) the coadmissibility of $D_{1}$ is not immediate and in case 2 (ii) the column $C_{1}’$

may be not admissible.

Lemma 9.1.5. We can always apply an elementary step of the SJDT to an admissible punctured skew
tableau ( $i.e.$ $D_{1}$ is a coadmissible column in case 2 $(i)$ ).

Example 9.1.6.

$24 2234$
$4 5 4 4 5 5$

For $T_{1}=*$ $4spl(T_{1})=*$ $*$ 4 3 We are in case 2 (i) and $C_{1}’C_{2}’=$

$2$ $4$

$4$ $5$

$*$ $4$

$3$ $1$

$1$

$2$ $2$ $3$ $4$

$4$ $4$ $5$ $5$

$*$ $*$ $4$ $3$

$3$ $3$ $1$ $1$

$1$ $1$

$2$ $4$

$5$ $5$

$5$ $*$

$1$

$1$

$1$ $*$ $1$

$5$ $1$

For $T_{2}=$ we obtain $f\overline{fl_{51}^{11}}$ as in case 2 (ii).
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$4$ $*$ $4$

For $T_{3}=$ we obtain
$4$ $4$ $*$

The punctured skew tableau obtained by computing a step of the SJDT on an admissible punctured
skew tableau is not always admissible. In the second example above the second column of the resulting
tableau is not admissible. In the third the first row of the split form after sliding is not increasing (we

will see that this last problem does not occur in the complete SJDT algorithm).

9.1.4. Complete symplectic $Jeu$ de Taquin (SJDT). Let $T$ be an admissible skew tableau and $c$ an inner
comer in $T$. In order to apply the complete sliding algorithm let us puncture the comer $c$ . We obtain
an admissible punctured skew tableau. To see what happens when we apply successively elementary
steps of SJDT to this skew tableau, we need to compute the split form for each intermediate punctured
tableau. We have seen that a horizontal move of an unbarred letter may give a new non admissible
column C\’i such that all the strict factors of w(C\’i) are admissible. So it is impossible to compute its
split form using letters of $C_{n}$ . To overcome this problem, we embed the alphabet $C_{n}$ into

$C_{n+1}’=\{a_{1}<1<\cdots<n<\overline{n}<\cdots<\overline{1}<\overline{a_{1}}\}.$

To compute the split form of a non admissible column $C$ such that all the strict subwords of $w(C)$ are
admissible, we extend the duplication algorithm of section 4.3 by using the new letter $a_{1}$ . For example

$2$

$3$

$4$

$1$

$\overline{a_{1}}$

in $C_{n+1}’.$

So all the columns that may be obtained when we apply an elementary step of SJDT to an admissible
skew tableau (defined on $C_{n}$ ) can be split in $C_{n+1}’$ . We say that a skew punctured tableau is $a_{1^{-}}$

admissible if all its columns can be split in $C_{n+1}’$ and the rows of the obtained split form are weakly
increasing.

Theorem 9.1.7. (Sheats [19]). Elementary steps of SJDT can be apphed to $T$ until the $puncture*becomes$ an outside comer.. All the skew punctured tableaux obtained as steps in the algorithm are $a_{1}$ -admissible. Moreover
$\overline{a_{1}}$ and $a_{1}$ only appear simultaneously in the spht form of the column containing the inner
comer $c$ of $T$ at which the shde started.

$*$ $2$

$2$ $3$

$3$ $3$ $4$

$5$ $4$ $1$

$1$

$*$ $*$ $2$ $2$

$2$ $2$ $3$ $3$

$2$ $3$ $3$ $3$ $4$ $4$

$\overline{5}$ $\overline{5}$ $Z$ $4$ $\overline{1}$ $\overline{1}$

$3$ $\overline{2}$ $\overline{1}$ $\overline{1}$

Example 9.1. $S$ . Suppose $T=$ , $spl(T)=$ We compute successively

the split form of the $a_{1}-adm\iota ssible$ punctured skew tableaux:

$2$ $2$ $2$ $2$

$*$ $*$ $3$ $3$

$2$ $3$ $3$ $3$ $4$ $4$

$S$ @ $Z$ I
$3$ $2$ I

$2$ $2$ $2$ $2$

$3$ $3$ $3$ $3$

$2$ $3$ $*$ $*$ $4$ $4$

$4$ I I
$S$ I $\overline{1}$

$a_{1}$
$2$ $2$ $2$

$2$ $3$ $3$ $3$

$2$ $3$ $3$ $4$ $*$ $*$

$5$ $S$ $E$ I
$3$ $2$ I Of
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$a_{1}$
$2$ $2$ $2$

$2$ $3$ $3$ $3$

$2$ $3$ $3$ $4$ $\overline{1}$ $1$

$\overline{5}$

$5$ $4$ $1$ $*$ $*$

$3$ $2$ $1$ $\overline{a_{1}}$

Then we obtain the $a_{1}$ -admissible skew tableau;

$2$ $2$

$3$ $3$

$3$ $4$ $1$

$5$

$3$ $1$

9.2. Sliding algorithm on $C_{n}$ . Let $T$ be an admissible skew tableau and $c$ be an inner comer. If
we denote by $T’$ the skew tableau obtained by applying the complete SJDT to $T$ , then $\mathcal{I}^{v}$ may be
only $a_{1}$-admissible (see Theorem 9.1.7). Suppose that, in the split form, $\overline{a_{\underline{1}}}$and $a_{1}$ occur in the k-th

split column $lC_{k}’rC_{k}’$ of $T’$ . Then the column $C_{k}’$ is not admissible. Write $w(C_{k}’)$ for the column word
obtained by applying a contraction relation to $w(C_{k}’)$ . In order to obtain an admissible skew tableau,

we are led to consider the skew tableau $\tilde{T}’$ obtained by erasing the top and bottom boxes of $C_{k}’$ and

filling this new column with the letters of the word $w(C_{k}’)$ . We denote this new column by $\tilde{C}_{k}.$

Example 9.2.1. Continuing the previous example we obtain:

By using the notations introduced above, we have:

Proposition 9.2.2. $\tilde{T}’$ is an admissible skew tableau and $w(T’)\equiv w(\tilde{T}’)$ .

Given an admissible skew tableau $T$ and an inside comer $c$ in $T$ , we can apply elementary steps of
SJDT to obtain a skew tableau $T’$ . We set:

SJDT $(T, c)=\left\{\begin{array}{l}T’ if T’ is admissible,\\\tilde{T} if T’ is only a_{1}- admissible.\end{array}\right.$

During the algorithm an inner comer is filled or SJDT $(T, c)$ has two boxes less than $T$ . By choosing a
new inner comer at each step, we can iterate the procedure $ T\rightarrow$ SJDT $(T, c)$ to construct a symplectic
tableau from any admissible skew tableau. In [14] we have proved that each elementary sliding
operation can,be interpreted in terms of crystal isomorphisms, thus it is compatible with the plactic
relations of Definition 5.1.2. So we obtain the following theorem:

Theorem 9.2.3. Let $T$ be an admissible skew tableau. Then by applying the SJDT successively to
the inner comers of $T$ , we obtain a symplectic tableau independent of the order in which these inner
comers are filled. Moreover $th\iota s$ tableau coincides with $P^{C}(w(T))$ .

9.3. Jeu de Taquin for type $B_{n}$ . Consider $C_{n}=\{1<\cdots<n<\overline{n}<\cdots<\overline{1}\}\subset \mathcal{B}_{n}$ . The tableaux
of type $C_{n}$ can be regarded as tableaux of type $B_{n}$ on the alphabet $C_{n}$ instead of $\mathcal{B}_{n}$ . Moreover for
two words $w_{1}$ and $w_{2}$ of $C_{n}^{*}$ , we have:

$w_{1}\equiv Cw_{2}\Rightarrow w_{1}\equiv Bw_{2}.$

A skew tableau of type $B_{n}$ is a skew Young diagram filled by letters of $\mathcal{B}_{n}$ whose columns are admissible
of type $B_{n}$ and the rows of its split form (obtained by splitting its columns) are weakly increasing
from left to right.

Example 9.3.1. For $n=3,$
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The relation $\varpi n\equiv\overline{n}n0$ has no natural interpretation in terms of horizontal or vertical slidings in skew
orthogonal tableaux. To overcome this problem we are going to work on the split form of the skew
tableaux instead of the skew tableaux themselves, that is, we are going to obtain a Jeu de Taquin for
type $B_{n}$ by applying the symplectic Jeu de Taquin on the split form of the skew orthogonal tableaux
of type $B_{n}.$

Lemma 9.3.2. Let $T$ and $T’$ be two skew orthogonal tableaux of type $B_{n}$ . Then:

$w(T)^{B}\equiv w(T’)\Leftrightarrow w[sp1(T)]\equiv w[sp1(T’)]B.$

If $T$ is a skew orthogonal tableau of type $B_{n}$ with $r$ columns, then spl $(T)$ is a symplectic skew tableau
with $2r$ columns. We can apply the symplectic Jeu de Taquin to spl $(T)$ to obtain a symplectic tableau

spl $(T)’$ . We will have $w[sp1(T)’]\equiv Cw[spl(T)]$ so $w[sp1(T)’]\equiv Bw[spl(T)].$

Proposition 9.3.3. spl $(T)’$ is the spht form of the orthogonal tableau $P^{B}(T)$ .

The columns of the split form of a skew orthogonal tableau $T$ of type $B_{n}$ contain no letters $0$ and no
pairs of letters $(x,\overline{x})$ with $x\leq n$ . In this particular case most of the elementary steps of the symplectic
Jeu de Taquin applied on $T$ are simple slidings identical to those of the original Jeu de Taquin of
Lascoux and Sch\"utzenberger (complexity of the symplectic Jeu de Taquin are not needed in these
slidings).

$1$ $1$ $1$ $2$

$2$
$\overline{3}$ $\overline{3}$ $\overline{3}$

$\overline{3}$ $2$ $2$
$\overline{1}$

, we compute successively:

$*$ $1$ $1$ $1$ $1$ $2$

$1$ $2$ $*$
$\overline{3}$ $\overline{3}$ $\overline{3}$

$3$ $3$
$\overline{3}$

$2$ $\overline{2}$

$1$

$*$ $1$ $1$ $1$ $1$ $2$

$1$ $2$
$\overline{3}$ $\overline{3}$ $S$ $\overline{3}$

$3$ $3$ $2$ $*$
$2$ $\overline{1}$

$*$ $1$ $1$ $1$ $1$ $2$

$1$ $2$
$\overline{3}$ $\overline{3}$ $\overline{3}$ $\overline{3}$

$3$ $3$ $\overline{2}$ $\overline{2}$

$*$
$\overline{1}$

$*$ $1$ $1$ $1$ $2$ $2$

$1$ $2$ $S$ $\overline{3}$ $3$ $3$

$3$ $3$
$\overline{2}$ $2$ $2$ $*$

$1$ $1$ $1$ $1$ $2$ $2$

$2$ $*$
$\overline{3}$ $\overline{3}$ $\overline{3}$ $\overline{3}$

$3$ $3$
$\overline{2}$ $\overline{2}$

$*$

$1$ $1$ $1$ $1$ $2$ $2$

$2$ $3$ $5$ $\overline{3}$ $\overline{3}$ $\overline{3}$

$3$ $2$ $*$
$\overline{2}$ $2$ $*$

$,$

, ,

$1$ $1$ $1$ $1$ $2$ $2$

$2$ $3$ $3$ $5$ $3$ $5$

$3$ $2$ $2$ $*$
$2$ $*$

$1$ $1$ $1$ $1$

$2$ $3$ $3$ $5$

$3$ $2$

Note that the sliding applied in the fourth duplicated tableau above is the unique shding which is not
identical to the original $Jeu$ de Taquin step.

The split form of a skew orthogonal tableau of type $D_{n}$ (defined in the same way as for type $B_{n}$ )

is still a symplectic skew tableau. But

$w_{1}\equiv wC2\Leftrightarrow w_{1}\equiv w_{2}D,$
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so we can not use the same idea to obtain a Jeu de Taquin for type $D_{n}$ . Moreover one verifies for
$n=3$ that

23
$P^{D}(3\overline{21}1\overline{3})=3$ 2 and $P^{D}(\overline{3}\overline{21}1\overline{3})=3$ 2
23

By interpreting the words $3\overline{21}1\overline{3}$ and $\overline{3}\overline{2}$il $\overline{3}$ as readings of skew tableaux, we obtain:

$13 23 13 33$
$3 2\equiv 3 2and3 2\equiv 3$

$* 1 2 * \overline{1} 3$

This shows that it is not enough to know what letter $x$ slides from the second column $C_{2}$ to the first
$C_{1}$ to be able to compute a horizontal sliding. Indeed the result depends $on$ the whole column $C_{2}.$

Thus, to give a combinatorial description of a sliding algorithm for type $D_{n}$ would probably be very
complicated.

$2$ $3$

$3$ $2$

$2$

$3$ $2$

$3$

$1$ $3$

$3$ $2$

$*$ $1$

$2$ $3$

$3$ $2$

$2$

$1$ $3$

$3$ $2$

$*$
$\overline{1}$

$3$ $3$

$3$

$3$
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