COMBINATORICS OF CRYSTAL GRAPHS FOR THE ROOT SYSTEMS OF
TYPES A,,B,,Cn,D, AND G,

CEDRIC LECOUVEY

ABSTRACT. This note is devoted to the combinatorics of tableaux for the root systems Bn,Cn,Dn
and G2 defined from Kashiwara’s crystal graph theory. We review the definition of tableaux for types
Bn,Cn, Dn and G2 and describe the corresponding bumping and sliding algorithms. We also derive in
each case a Robinson-Schensted type correspondence.

1. INTRODUCTION

The Schensted bumping algorithm yields a bijection between words w of length ! on the ordered
alphabet A, = {1 <2 < ... < n} and pairs (P(w),Q(w)) of tableaux of the same shape containing
| boxes, where P(w) is a semi-standard Young tableau on A, and Q(w) is a standard tableau. This
bijection is called the Robinson-Schensted correspondence (see e.g.[5]). Note that the tableau P(w)
may also be constructed from w by using the Schiitzenberger sliding algorithm (Jeu de Taquin).

We can define a relation ~ on the free monoid .4}, by:

wy ~ wp <= P(w;) = P(ws).
Then the quotient Pl(A,) := A}/ ~ can be described as the quotient of A% by Knuth relations:
zzy=z2y and yzz=yrzifr<y<z,
zyr =zzy and zyy=yzryifz<y.

Hence PI(Ay), which may be identified with the set of semi-standard Young tableaux, becomes a
monoid in a natural way. This monoid is called the “plactic monoid” and has been introduced by
Lascoux and Schiitzenberger in order to give an illuminating proof of the Littlewood-Richardson rule
for decomposing tensor products of irreducible gl,-modules [13].
There have been attempts to find a Robinson-Schensted type correspondence and plactic relations
for the other Lie algebras. In [2], Berele has explained a bumping algorithm for spy, and in [20]
Sundaram gives an insertion scheme for sosn,+1 but it seems difficult to obtain plactic relations from
these schemes. More recently Littelmann has used his path model to introduce a plactic algebra for
any simple Lie algebra [17]. Sheats [19] has also described a symplectic Jeu de Taquin analogous to
Schiitzenberger’s sliding algorithm and has conjectured its compatibility with some plactic relations.
The Robinson-Schensted correspondence has a natural interpretation in terms of Kashiwara’s theory
of crystal bases (4], [9], [12]. Let V;, denote the vector representation of gl,. By considering each vertex

of the crystal graph of @Vn®l as a word on A,, we have for any words w; and ws:
>0

e P(w1) = P(ws) if and only if w; and ws occur at the same place in two isomorphic connected

components of this graph.

e Q(w1) = Q(ws) if and only if wi and wy occur in the same connected component of this graph.
Thanks to crystal basis theory, Kashiwara and Nakashima [8] have obtained a generalization of semi-
standard tableaux to types By,Cy and Dy. A notion of tableaux for type G2 has been introduced by
Kang and Misra (7]. In [18] Littelmann has also described a labelling of crystal graphs by “defined
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chains” for any simple Lie algebra. In particular this description implies that the combinatorics of
crystal graphs of finite dimensional irreducible U,(g)-modules is strongly connected to that of the
Bruhat order on the Weyl group of g. This explains why the combinatorial description of the crystal
graphs associated to the root systems of type Eg, E7, Eg and Fy by planar objects like Young tableaux
is still an open problem.

This note is concerned with a detailed investigation of the insertion schemes and Robinson-Schensted
correspondences for the root systems Ap,Bp,Cn,D, and G3. In Section 2 we first introduce the
results on semi-standard tableaux we want to generalize. In section 3 we recall some basics on crystal
graphs. Section 4 is devoted to the combinatorial descriptions of Kashiwara-Nakashima and Kang-
Misra tableaux. These descriptions are related to Littelmann’s presentation of tableaux for types
B,,,Cyp, and D,, by “defined chains”. In section 5 we introduce the plactic monoids for types By, Cy, Dy
and G, obtained in [14], [15] and [17]. The plactic relations are then interpreted in terms of crystal
graph isomorphisms. In section 6 we use theses plactic relations to obtain insertion schemes for
tableaux of types Bp,Cr, Dy, and G3. Note that our insertion scheme for the tableaux of type Cy,
coincides with that described by Baker in [1]. By generalizing the notion of oscillating tableaux due to
Sundaram [20], we give in Section 7 a Robinson-Schensted type correspondence for types By, Cp, Dy
and G2 compatible with the plactic relations. Section 8 is devoted to the description of the reverse
bumping algorithms for tableaux of classical types. Finally in section 9 we introduce Jeux de Taquin
for skew tableaux of types By, and C, from Sheats’ sliding algorithm and sketch their compatibility
with the corresponding plactic relations.

Notation: In the sequel we frequently define similar objects for the root systems B, Cy, D, and Gs.
When they are related to type By, (resp. Cn, Dy, G2), we attach to them the label B (resp. the labels
C,D,G). To avoid cumbersome repetitions, we sometimes omit the labels B,C, D and G when our
definitions or statements are identical for the four root systems.

2. COMBINATORICS OF CRYSTALS FOR THE ROOT SYSTEM A,

2.1. Column bumping algorithm on semi-standard tableau. To each partition A = (A1, ..., An)
we associate the Young diagram Y () whose i-th row is of length A;. A semi-standard tableau of shape
)\ is a filling T of Y()) by positive integers between 1 and n considered as the letters of the totally
ordered alphabet

A, ={1<-.-<n}
such that the columns of T strictly increase from top to bottom and the row of T weakly increase
from left to right.

[ V]

2]

is a semi-standard tableauz of shape A = (3,2,1,0).

Example 2.1.1. T =

Ihw»—-
w

Given any letter z € A, and any semi-standard tableau T, we denote by £ — T, the semi-standard
tableau obtained by applying the followings rules.

elf T=0thenz—T=[z].

e If T = C has only one column then

¢ if ¢ is a column,
z z

| C" | y | otherwise,

where y is the minimal letter in C such that £ < y and C' = C - {y} + {z}.

z—oT=
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T =C1Cy---C, has r > 2 columns then

G Cy---Crifx— C Gy ,

x T

C{(y-—*Cb--'Cr)if:L'—bCl m .

r—T=

The above algorithm is called “column insertion algorithm for semi-standard tableaux”.

Example 2.1.2.

[\
w
(=1
L

QY x| DN =
[=>1 ' "N NJL] B G
U W D) =
o x| COf DO

2.2. Robinson-Schensted correspondence. To any word w = z; - - - ; of A}, the set of words on
Ap, one associates the tableau P(w) defined recursively by

{P($1)=

P(z1 - Tk41) = Th41 — Pz1 - 28)

Simultaneously, one computes the standard tableau Q(w) which is a semi-standard tableau containing
exactly all the letters 1,...,1 by putting for any k = 1,...,1, the integer k in the box which is added
in the k-th step of the computation of P(w). With w = 232143, we obtain the following sequences of
tableaux:

11212|11{2]2
@% 272] [1]2]2] |3 | I, 1 |=P(w)
and
1/3]4]({1]3]4]
1/3][1]3]4] _
,,l ,l ,% ) § 6 —Q(UI)

Theorem 2.2.1. (see [5]) The map w — (P(w),Q(w)) is a one to one correspondence between
the set A}, of words of length | on Ay to the set of pairs (P,Q) where P and Q are respectively
semi-standard and standard tableauz containing l bozes and having the same shape.
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Example 2.2.2. Suppose | = 3 and n = 3. We give below the 27 words of A3 3 together with their
corresponding pair (P, Q).

1 (T[] {123

211 [1]1]2][1]2]3]

311 [I[1]3)(1[2]3]

21 [I[2]2}(1]2]3]

1

1 ([S}T2[8] .0 b B

331 [1]3]3)[1]2[3] ° 131

222 [2]2]2)[1]2]3]

322 [2]2T38][1T2]3]

332 [2[3[3}[1]2]3]

333 [3[3[3}[1]2[3]

o LA [ 3]

112 4 2] 2] 2] 5 212 A7)
2] 18] 171} [1]3] 3| 3]
— 131 ,

us 11 [172] 3] 2] 513 [113] [1]2]
3] '3 1]2] [1]3] HINE
—_ == 122 o+ 5 == L

012 [112] [1]2] 2] (2] 303 [213] [1]2]
B R Sy P R TSk R Fl N

o1 [112] [1]2] 3] 2] 133 1113] [1]3]
EIlNE 132 113 3] EINFI

312 131 [1]2] (2] (2] 933 1213] [1]3]
2] ’[3 2]2] [1]3] IE
— — 282 515 — —

Remark: There also exists a Robinson-Schensted correspondence based on the bumping procedure
and defined on biwords. It associates to each biwords a pair (P,Q) where P and Q are semistandard
tableaux with the same shape (see [5]). This general correspondence cannot be extended to types
B;,,Cy, Dy, or G3. So we restrict ourselves in the sequel to correspondences defined on words.

2.3. The plactic monoid. The plactic monoid Pl(A,) is the quotient set of the free monoid .A?, by
Knuth'’s relations

zzy=zzy and yzr=yrzifz<y<z,
zyr=zzy and zyy=yzyifz<y.
Theorem 2.3.1. (Lascouz-Schiitzenberger{13]). Given two words wy and wa of Aj,, we have
w) = Wy = P(wl) = P(’w2).

We write w(T') for the Japanese reading of the tableau T that is for the word obtained by reading the
columns of T from right to left and top to bottom.

24. Schensted correspondence and Kashiwara’s crystal graphs. The crystal graph of the
vector representation V(A;) of Uy(sly) is

1 -1
152.-..5n-1%n,
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In the sequel we will identify each vertex u; ® uz ® - - - ®u; of the crystal graph B(A;)® with the word
w = ujug - - - U of Ay,
Consider w; and wo two words on A}. We write

® w; ~ w2 when w; and w; occur at the same place in two isomorphic connected components.
e w; «—— wy when w; and w, belong to the same connected component.

Theorem 2.4.1. (Kashiwara [9])
o wy ~ wy <> P(w;) = P(wy) <> w; = ws.
o w; «— wy <> Q(w1) = Q(w2).

The aim of this note is to introduce analogue of Theorems 2.2.1, 2.3.1 and 2.4.1 for the root systems
B,,C,, D, and Gs.

3. BASICS ON CRYSTALS FOR TYPES By, Cn, D, AND G3

3.1. Crystals and tensor product of crystals. The Dynkin diagrams for the root systems of types
B,,,Cy, Dy, and G are respectively

1 2 3 n—-2 n-1 n 1 2 3 n-2 n-1 n
0—0—0:"+ 0 — 0 =0, 0~0—0 o — o,
n
o
1 2 3 -3 - 1 2
0o—0—o0 ot~ n02 and o & o
o
n—1

Let g be a simple Lie algebra of type By, Cp, D, or Ga. Set I = {1,...,n} where n is the rank of g. Let
a;, © € I be the simple roots associated to g. For any dominant weight A\ we denote by V()) the
finite dimensional irreducible U,(g)-module of highest weight A. Recall that the crystal graphs of the

U,(g)-modules are oriented colored graphs with colors i € I. An arrow a — b means that f;(a) = b
and &;(b) = a where &; and f; are the crystal graph operators (for a review of crystal bases and crystal
graphs see [9]) Let V,V’ be two Uy(g)-modules and B, B’ their crystal graphs. A vertex v € B
satisfying €;(v®) = 0 for any i € I is called a highest weight vertex. The decomposition of V into its
irreducible components is reflected by the decomposition of B into its connected components. Each
connected component of B contains a unique highest weight vertex. We write B(v) for the connected
component containing the highest weight vertex v. The crystal graphs of two isomorphic irreducible
components are isomorphic as oriented colored graphs. We will say that two vertices b; and by of
B occur at the same place in two_isomorphic connected components I'y and | ) of B if there exist
1,...,%r € I such that w; = fh . f,, (w?) and wep = f,, . f,, (w9), where w{ and w9 are respectively
the highest weight vertices of I'y and I';.

The action of & and f; on BQ B' ={b®¥'; b € B,V € B’} is given by:

7 o) = ﬁ(u)~® v if @i (u) > €(v)
@ filu®v) = { u® fi(v) if pi(u) < &(v)
and

_ _ [ u®&() if pi(u) < &i(v)
@ E(u®v) = { &) © v if ¢r(u) > e1(0)
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where ¢;(u) = max{k; ¥ (u) # 0} and ¢;(u) = max{k; 7 (u) # 0}.

3.2. Crystal of the vector representations. We denote by Af , o AB, Af, .y AS, AP .y AP and
A§, AS the fundamental weights associated to the root systems By, Cp, D, and G2. The crystal graphs
of the fundamental representations of highest weight AZ, A7, AP and A are respectively

BAB):14 2. wn-1S'n B0 S5a™ nT1 ... 523 4T

D) 123 omet S BT 1L
n
N
B(Af’):1—1»2_2...."_",,2 n—1 no-1 "?...2435407
N/
n—1 n
n
and
) BAS):1 523350533341

In the sequel we will call the corresponding Ug(g)-modules “vector representations”. Every vertex
u ®uz ® - - - ® u; of the crystal graphs B(AP)® B(AC)®, B(AP)® and B(A§)® will be identified
with the word ujus - - - u; respectively on the ordered alphabets

Bp={1<---<n-1<n<0<Aa<n—-1<---<1},
Ch={l< --<n-l<n<aA<n-1<-.-<1},

Do={l1<---<n-1< g <n-1<---<1}

andG={1<2<3<0<3<2<1}.

Note that Dy, is only partially ordered. For any z € Bn,Cn,Dn or G, we set |z| = z if z is unbarred
and |z| = T otherwise (with the convention Z = z).

Example 3.2.1.
The crystal B(AZ)®? for type Bs

114 21 2% 135 003 5132 514 qx

1] 1l 1l 1] 1]
12 22 2 32 3 02 3 32 2 22 i2
2| 2] 2l 2l 2l
18 L 28 99 % 03 3 39 29 L s
sl sl sl sl sl
103 2032 %03 o0 S0 % %0 L 1o
sl sl sl sl sl sl
13 5 28 % 93 08 38 % 35 L i3
2| 2| 2| 2} 2]
12 L 22 2 3% 02 3% 32 25 L 2

1] 1l 1] 1] 1]
17 of % s 3 of 3 31 2% 37 if

yields the decomposition V(AB)®2 ~ V(2AZ) DV (AZ) D V(0).
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The crystal B(AS)®? for type G2

175 21 % 1L o0 d o912 a1 L nn
1] 1] 1]

12 22 % 92 L o2 52 2% 2 i
2| 2| 2| 2| 2|
13 4 s 3 L 08 L 39 99 L 13
1] 1] 1

(4) 10 20 % %0 5 o0 50 % 2 io0
1] 1] 1l 1] 1] 1]
15 25 % 38 03 35 % 23 is
2| 2| 2| 2| 2l
12 L 29 8 5 08 L 32 22 L 12
1l 1} 1}

17 27 & 97 L of §i % a1 i1

yields the decomposition V(AS)®2 ~ V(2A8) P V(AS) D V(AF) B V(0).

3.3. The weights w;. Set Gg = @),50 B(AP)®, Go = @59 BAD)®, Gp = @50 B(AP)® and
Gg = @;>0 B(A)®. Let R be one of the classical root system By, Cy, or Dy,. Then the weight of any
vertex w € GpR is given by:

n—1
(5) wt(w) = dnwi + Z(d" — di1)wE.

i=1

where d; = #{i € w} — #{i € w} and

w,g=2A,g,

O =21y

wp1 = A7+ A,
wP=APfori=1,..,n—2.

T ]

Similarly the weight of any vertex w € Gg is given by
wt(w) = (dy —da + 2d3)A; + (dz — d3)Aq

and to make our notation homogeneous we set w® = A¥ for i = 1,2.

It follows from (5) that there is no connected component of G g isomorphic to B(A2) and no connected
component of Gp isomorphic to B(A2) or B(AD_;). So we recover the well known fact that the
corresponding fundamental representations can not be obtained as an irreducible component of a
tensor power of the vector representation for the orthogonal root systems. Denote by Qf, Qﬁ, Qf and
QS the sets of dominant weights which can be written as non-negative linear combinations respectively
of the weights w?, w€, wP,wP, and w¢ i € I. Then for any dominant weight A, V/(}) is an irreducible
component of a tensor power of the vector representation if and only if A € Q..

In this note we have chosen to describe the Robinson-Schensted correspondence and the related combi-
natorics only for the irreducible representations of highest weight A € Q.. It is also possible to obtain
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such correspondences by taking into account the spin representations V(AZ), V(AD) and V(AD_))
([15], [16]) but their description requires a large amount of combinatorial technical material [16].

3.4. The coplactic relation. For w; and w; € B;, write w; N wy if and only if w; and w; belong to

the same connected component of Gg. The coplactic relations w; <, wg, W £, wsy and w; £, Wy
are defined similarly. For any word w, we write I(w) for the length of w, that is the number of letters
it contains. We have the useful lemma:

Lemma 3.4.1. If wy = uyv1 and wo = ugvy with l(u1) = l(u2) and l(v1) = l(ve), then

U — U2

w1<-—+w2=>{
1]14——-)1)2

Proof. We have w; «—— wo if and only if wy = H (w;) where Hisa product of Kashiwara’s operators.
The Lemma then follows immediately from (1) and (2). o

4. TABLEAUX FOR TYPES By, C,, D, AND G,

4.1. Columns and admissible columns. The columns of types B,,C, and D, are respectively

C+ C D,

column diagrams of the form C = Cy ||C = C+ and C =} D |where C_,C,,Co,D_,D, and D
C_ = D_

are column shaped Young diagrams such that

C_ is filled by strictly increasing barred letters

C. is filled by strictly increasing unbarred letters

Cy is filled by letters 0

D_ is filled by strictly increasing letters > n — 1

Dy, is filled by strictly increasing letters < n — 1

D is filled by letters @ or n different in two adjacent boxes

(recall that the reading order is from top to bottom). The height A(C) of the column C is the number
of boxes it contains. The reading of C is the word w(C) obtained by reading successively from top to
bottom the letters of C.

A column C of type G2 is a Young diagram of column shape and height 1 or 2 filled by letters of G

and such that
C= withaegor0=witha<b690rC=
[e] a 0]

Consider a column C. For any letter z < n, set
N(z) =#{z € C,|z| < z}.

The column C is said admissible if and only if the following conditions are satisfied:
(i) : C does not contain any letter z < n such that N(z) > z (remind that 0 > n !).
(ii) : if C is of type By, and 0 € C then h(C) < n.

dist(a,b) <2ifa=10r0

(i) : if C = 5 is of type G2 and height 2 then dist(a, b) < 3 otherwise

number of arrows between the vertices a and b in the crystal (3).

where dist(a, b) is the

Example 4.1.1.
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3] |
and E are admissible columns respectively of type By, and Dy but E is not
(2]
admissible since N(2) = 3.
e The admissible columns of type G are ezactly those whose readings are in B(12) in the crystal

graph (4).

4.2. Combinatorial description of B(wy). For k = 1,...,n we set 'ufk = vgk = vgk =1-.-kand
vE =1---(n—1)7. Similarly write v,f,"l = 1 and v$, = 12. All these vertices are highest weight vertices.
Moreover B (vfk), B (vgk), B(vh),B (vgk) are respectively isomorphic to B(wp), B(w§), B(wP), B(wf)
and B(v2 ) is isomorphic to B(@2).

Proposition 4.2.1. (Kashiwara-Nakashima [8] and Kang-Misra [7])

o The vertices of B(v] ), B(vS,) and B(vS) with k € I are the readings of the admissible
columns of types By, Cy, and G2 with length k.

o The vertices of B(vf,)k) with k < n are the readings of the admissible columns of type D,, with
length k.

o The vertices of B(vgn) are the readings of the admissible columns C of type D, such that
w(C) =z Zn and xx = n (resp. Ty = T) implies n — k is even (resp. odd). ‘

o The vertices of B(vgn) are the readings of the admissible columns C of type Dy, such that
w(C) =21 Ty and Tx =T (Tesp. T = n) implies n — k is even (resp. odd).

4.3. Duplication of an admissible column of classical type. We say that a column C contains
the pair (2,Z) when z = 0 and 0 € C or when z # 0 is unbarred and C contains the two letters
2,Z. Note that a letter 0 counts for a pair (0,0). For each admissible column C of classical type, we
compute a pair of columns (IC, rC) without pair (z, Z).
Denote by Ic = {21 =0, ...,z- =0 > 2,41 > - - - > 2z,} the set of letters z < 0 such that the pair (z,%)
occurs in C. The column C of type By, or Cy can be split when there exists a set of s unbarred letters
Joc={t1> - >ts} C By, such that:

: 11 is the greatest letter of B, satisfying t; < 2;1,t; ¢ C and f; ¢ C,

: fori=2,...,s, t; is the greatest letter of B, satisfying t; < min(¢;-1,2), t: ¢ C and %; ¢ C.
In this case we write:

e rC for the column obtained first by changing in C Z; into #; for each letter 2z; € I, next by
reordering if necessary,

e IC for the column obtained first by changing in C z; into ¢; for each letter 2; € I¢, next by
reordering if necessary.

Let C be a column of type D,. Denote by C the column of type B, obtained by turning in C each
factor in into 00. We will say that C can be split when C' can be split. In this case we write IC = IC
and rC =rC.

Example 4.3.1. Suppose n =9 and consider the column C of type By, such that w(C) = 458900854.
We have

w(lC) = 123679854 and w(rC) = 458976321.
The duplication of columns is an application of the notion of “dilatation” of crystals introduced by
Kashiwara [10]. The sub-crystal of B(m\) generated from vm and the operators f™’s is isomorphic
to B(A). When m = 2 and A = wj, this isomorphism is simply described by the splitting operation.



20
CEDRIC LECOUVEY

Example 4.3.2. The dilatation of the crystal B(12) for type Bz and m = 2.
12510312522 521
i1 12
20300302&01321
(12)® (12) (12) ® (12) (12) ® (12) (21) ® (12) (21) ® (21)
112

@2 e® (12) (21) ® (12) (21) ® (12) (21) ® (21) (21) ® (21)
Proposition 4.3.3. A column C is admissible if and only if it can be split.

4.4. “Young diagrams” associated to a weight A. In the sequel we will need to attach to each
dominant weight A € Q; a combinatorial object Y ()). For types Bn, Cn and G it suffices to set

Y()) =Y, where Y) is the Young diagram containing exactly Ak columns of height k where for any
k, )\k is the k-th coordinate of A on the basis w;, 7 € I.
For type Dy, A has a unique decomposition of the form

n n-1
(¥) : A=Y _AwP or (xx) A =X + ) Aiw] with An #0,

i=1 i=1
where (3\1, ...,X,,) € N", This leads us to set:
(i) : Y(A) = (Y, +) in case (+) with A, #0,

(ii) : Y(A) = (Y3,0) in case (*) with A, =0,

(iii) : Y(X) = (Y, —) in case (*x).
Note that Y'()) suffices to characterize A € 4 but not Y) for type Dy, since for this root system Yy
is a column diagram of height n for A = w, or A = Wy,
4.5. Tableaux of types Bn,C,,,D and G2. Set

( = (v, B)wl ®: - ® (u,8)%™,
(’U C)@h ® - ® (v, c)@)\n

= (v, c:)®"l ® (v, c)G"“2
ﬁ = (v, D)@’)‘1 ® - ® (va)®’\" in case(i),
(va)@\1 ®: - ® (v, )8)""1 in case (ii),
\ = (v, {9)8”‘1 ® - ® ('v-o )Q’\" in case (iii).

Then v), is in each case a high&st weight vertex of G of weight A\. Thus B(v,) is isomorphic to B())
and we can identify these two crystals.

Consider Cj, ...,Cy columns with the same type. The reading of the juxtaposition of columns T' =
C: - C, is the word w(T") = w(C;) - - - w(C}) obtained by reading sucessively the columns of T' from
right to left and top to bottom.

Definition 4.5.1. A tableau T of shape Y ()\) is a juztaposition of columns such that w(T') € B(vy).

Consider 7 = C;C; - - - Cy, a juxtaposition of admissible columns of type By, Cy, or Dy,. The split form
of 7 is obtained by splitting each column of 7. We write spl(r) = (IC17C1)(IC2rCy) - - - (ICyTCy).
Since the operation of duplication of a tableau describes the dilatation of B(vy) in B(v2x) we have
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Lemma 4.5.2. 7 is a tableau if and only if spl(7) is a tableau.

In order to obtain a complete combinatorial description of the tableaux of type D, we need the
following definition.

Definition 4.5.3. Consider C; and Cs, two columns of type D, such that h(C1) > h(C2). Then we
say that C1C2 contains an a-odd-configuration (with a ¢ {m,n})
® a = zp,7 =z, are letters of C1 and @ = y,,n =y, letters of Cz such that r — q+ 1 is odd
or

® a=Ip,n==c, are letters of C; and @ = ys, 7 = y, letters of C2 such that r — g+ 1 is odd,
where the integers p,q,7,s are such thatp < g<r <s.

We say that C1Cy contains an a-even-configuration (with a ¢ {T,n}) when:

® a=Tp,n =T, are letters of C1 and @ = ys,n = y, letters of Ca such that r — g+ 1 is even
or

® a=xp, 7 =z, are letters of C1 and @ = ys, 70 = y, letters of Cz such that r — g+ 1 is even,
where the integers p,q,r,8 are such thatp < g<r <s.

'Then we denote by u(a) the positive integer defined by
pla) =s—p.

Kashiwara-Nakashima’s combinatorial description of a tableau T of type B,,C, or D, is based on
the enumeration of configurations that should not occur in two adjacent columns of 7. Considering
its split form spl(T"), this description becomes simpler because the columns of spl(T') does not contain
any pair (z,%).

Theorem 4.5.4. (Kashiwara-Nakashima (8] and Kang-Misra 7))

(i) The tableauz of types B, and Cy are the juztaposition of admissible columns of types B, and Cy
whose duplicated forms are semi-standard for the orders on By and C,.

(ii) The tableauz of type D, are the jurtaposition of admissible columns of type D, whose dupli-
cated forms are semi-standard for the order on D, and such that rC;lC;y1 does not contain an a-
configuration (even or odd) with u(a) =n — a.

(iii) The tableauz of type G2 are the juztapositions Cy - - - Cr of admissible columns of type G2 such
that for any i = 1,...,7 — 1, C;C;41 satisfies one of the following assertions:

([ (i) CiCita with a < b and (a,b) # (0,0),

(if) CiCiy1 = <] with a < ¢ and (a,c) # (0,0),

a
b
L

o~ _lale] . a<c and (a,c) #
k (iii) C;Ci+1 = 7 Ta wzth{ b<d and (b,d) #

Example 4.5.5. Suppose n =4. Then

(0,0) [ dist(a,d) >3 ifa=23,0
(0,0) dist(a,d) > 2 ifa = 3.

b

3{3|4 113|3[(3[3]|4

410 , 2|4(4(4]4 , ) 3[4
T= ol is a tableau of type By for spl(T) = 3151373 is semi-standard. But 1T

© 2]

is not a tableau of type D3 because it contains a 3-even configuration with u(3) =1.
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4.6. Littelmann’s version of tableaux for the classical types. The Weyl group W acts on
the vertices of B(u,). The orbit of v, is the readings of the corresponding columns which do not
contain a pair (2,%). Thus there is a one to one correspondence between these columns and the cosets
W/W,, where W, is the stabilizer of the weight w under the action of W. Moreover if Cy, C; are two
columns without pair (z,z)

C1C; is a tableau <= 7¢, <p 7c,,
where “ <, ” denotes the projection of the Bruhat order on W/W,,. So B(v,) is labelled by pairs
(ne,Trc) € W/W,, x W/W,, satisfying ne <p Trc.
Let (Cy, ..., Cy) be r admissible columns of decreasing heights such that for any i = 1.-.r, ¢, € W/W,,
and Trq, € W/W,,.
We say there exists a defined chain for (C, ..., Cr), if one can find a sequence (a},0},0%,02,...,07,07)
of elements in W such that:

o} <o} <ot <o« - <of <,
oil=nc, modW,, and o:=mc, modW,, fori=1,..,r,
where < is the Bruhat order in W. From [8] and Littelmann [18] we deduce the following theorem.

Theorem 4.6.1. Let T = C - - - C, be a juxtaposition of admissible columns. Then T is a tableau if
and only if there ezits a defined chain for (Ch,...,C;).

Since the Bruhat order on the Weyl group of type D,, can not be characterized from that of the sym-
metric group So;, this explains why the combinatorial description of the tableaux is more complicated
in type D, than in types B, and Cj,.

Note that Littelmann’s definition of tableaux by defined chains may be generalized to the exceptional
root systems. Except for the root system G7 no presentation of these tableaux in terms of combinatorial
planar objects like Young tableaux is known.

5. PLACTIC MONOIDS FOR TYPES B,,C,, D, AND G,

The generalization of the notion of plactic monoid to any simple Lie algebra was first obtained by
Littelmann [17] from his path model. In the sequel we have chosen to interpret the plactic relations
in terms of isomorphisms of Kashiwara’s crystal graphs.

5.1. Plactic relations. Let w; and wy be two words on B, (resp. Cn,Dp,G). We write w; B wy

(resp. w £ wa, W) 2 wa, W < wg) when these two words occur at the same place in two isomorphic
connected components of the crystal Gg (resp. G¢,Gp,Gg)-

The definition of the tableaux implies that for any word w € B}, (resp. w € C}, D}, G*) there exists
a unique tableau PB(w) (resp. PC(w), PP(w), P¢(w)) such that w ~ w(P(w)). So the sets B}/ 4
,C2/ £, D2/ R and G*/ £ can be identified respectively with the sets of tableaux of type By, Cn, Dp
and Gz.

For the definitions below, recall that the word w = x5 - - - £;—12; has two strict factors which are the
words Ty L1171 and 1T Ti-1-

Definition 5.1.1. The monoid Pl(B,) is the quotient of the free monoid B}, by the relations:
RP:Ifz#Zandz<y<z:

B B
yzr = yzxz and zzy = zzy.
RE . Ifr#TFandz<y:

B
TYT 2 zzy forx #0 and zyy = yxy for y #0.
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REB:Ifl<z<nandr<y<Z:
- B _ _ B —
y(x—1)(x - 1) = yzZ, and 2Ty = (z — 1)(z - 1)y,
0min = 7n0.
RE :Ifz <n:

00z g 00 and 070 g 700.

CRB : Let w = w(C) be a non admissible column word each strict factor of which is admissible. Let
z be the lowest unbarred letter of w such that the pair (2,Z) occurs in w and N(z) > z, otherwise set

B . ~ . . . . . .
2=0. Then w = w, where W is the column word obtained by erasing the pair (2,Z) inw if z < n, by
erasing 0 otherwise.

Definition 5.1.2. The monoid Pl(Cy) is the quotient of the free monoid C}, by the relations:
R{:yux=yrz forz <y<zwithz#7T, and 22y = zzy forz < y < z with z # T;

RS : yz—1)(z-1)=yzZ and2Ty=(z - 1)z — D)y forl<z<nandz <y <T;

CRC : let w be a non admissible column word such that each strict factor of w is an admissible column
word. Write z for the lowest unbarred letter such that the pair (2,%) occurs in w and N(z) > z. Then
w = w, where W is the column word obtained by erasing the pair (z,%) in w.

Definition 5.1.3. The monoid Pl(D,) is the quotient of the free monoid D}, by the relations:
RP:Ifz#7%,

D
yzmgyxzform$y<z and zzy = zzy forx <y < z.
R2D:If1<x<nandw$y$'a?,

y(z-1)(z-1) 2 yrZT and ITy 2 (z-1)(z - Dy.
Rf Ifzr<n-1,

—— D ___ D __

MINn=I7n d inT = nIn
D an b -
= nnr = nrn

nﬁﬁé(n—l) (n-1m and ‘ﬁ(n—l)(n——l)éﬁﬁn
'r_znng(n—l) (n—=1)n n(n—l)(n—l)gnnﬁ
CRP : Consider w a non admissible column word each strict factor of which is admissible. Let z be

D
the lowest unbarred letter such that the pair (z,%Z) occurs in w and N(z) > z. Then w = W, where
W 1is the column word obtained by erasing the pair (2,Z) in w if 2 < n, by erasing a pair (n,n) of
consecutive letters otherwise.

Set
S = {21,31,01,31,32,71,72,T1,T2,§3,T3,T0,T 3,1 5}.

To describe the plactic relations for type G2 we need the bijection © from S to B¢(12) defined by
\ w |21]a1 o 31‘32|§1 22|11 12] 23 i3|io'i§|ii|

(6)
’e(w)’12'13‘23'20‘23’30'33|oo‘of'3é|o§'3§|3i|§i
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Definition 5.1.4. The monoid Pl(G2) is the quotient of the free monoid G* by the relations:

(RS) 10=1, 13=2,12=3,22=0,01=1,31=2, 21=3.
(R§) 11=0.

G _ [ aO(bc) ifbce S .
(RS) abc = { 8-1(ab)c otherwise with ab € B(12) and bc € B(11).

(RS) zyz = O~} (xy)z with zy € B(A2) and yz € B(A2).

5.2. Interpretation in terms of crystal isomorphisms.

5.2.1. for classical types By, Cy and D,. For any word w of length 3 appearing in the left hand side
of a relation R above, write £(w) for the word appearing in the right hand side of this relation.
Similarly for any w of length p+ 1 appearing in the left hand side of a contraction relation CR above,
write &p(w) for the word appearing in the right hand side of this relation.

Proposition 5.2.1.

(1) The map w — &(w) is the crystal isomorphism from B(121) to B(112).
(2) The map w — &y(w) is the crystal isomorphism from B(12..-pp) ~ B(12---p — 1) when
p < n and the crystal graph isomorphisms

BB(12..-.nm)~ BB(12---n-1)
{ BB(12..-n0) ~ BB(12---n)

BC(12.-.-nA) ~ B€(12---n-1)

BP(12..-nm)~ BP(12-.-n-1)
{ BP(12...7:n) ~ BP(12---n)

when p=n.
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121 : 112
1 2 1 2
7 N 7 N
122 101 212 110
2 2 2 2
7 il N 7 il N
102 201 121 012 210 112
1 1
2] s 1l 2} 7 2l o
122 202 001 221 212 220 010 212
1 1 1 1
2l N\ 2l /2l 1l 2l N\ o2l /ol 1l
120 222 002 021 211 210 112 020 012 222
1 2 1 2
2l N\l 2} 1 /o 2l Nz 2l /ol
122 220 022 011 212 212 110 220 022 221
2 1 2 1
o 2] 2l N2 Y 2l al N2l
222 210 020 211 012 112 120 200 222 021
1 1 1 1
1 2l /o2l N2l 1 2l /ol N2l
212 010 022 212 122 100 202 221
1 1
1 2l 2} i 2l 2l _
1 012 210 121 102 201
2 2 2
N 4 N 4
011 212 101 221
2 1 2 1
N/ N/
211 121

The crystals B2(121) and B2(112) in Gp

5.2.2. for type G2. For any word w occurring in the left hand side of a relation R?, i=1,..,4 we
write &;(w), the word occurring in the right hand side of this relation.

Proposition 5.2.2. The maps Elc,f.f ,§§" and £4G are respectively the crystal graph isomorphisms

(i) : B(10) > BQ), (i) : BUT) > B®), (iii) : B(121) = B(112) and (iv): B(123) = B(110).

Remark: Write (¢F) for the crystal graph isomorphism B(110) = B(11), then (£§)' = (¢8)¢§ is
the crystal isomorphism B(123) — B(11).
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122 5 120 & 130 & 230 5 200 3 300 & o000

1l 1l 1l

123 3 133 4 233 203 % 303 003

2] 2} 2| 2|

132 4 232 4 202 302 4 002

. 1} 1l

(7) 233 2% 333 032

1 1 1
231 5 331 031

2] 2]

321 L 021

1

321

1m0 % 210 2 310 L o010 & 310 3 310 & 110
1l 1l 1

213 % 313 4 013 313 2 213 113

2] 2] 2] 2]

312 & 012 A 312 212 L 112

1l 1l

(8) 322 2 392 122
1l 1l 1)

321 2 391 121

2] 2]

231 L 131

1

011

The two isomorphic crystals B¢(123) and B¢(110)

5.3. Congruent words and crystal graphs. By Propositions 5.2.1 and 5.2.2 the plactic relations
above are compatible with Kashiwara’s operators, that is, for any words w; and wy such that w; = wp
one has:

©) { %(wl) = ’e'_i(wg) and g;(w;) = &;(w2),
fi(wn) = fi(wz) and p;(w1) = pi(w2).
So we obtain:

(10) w) = wy => W) ~ Ws.
To prove the converse we need the two following lemmas:
Lemma 5.3.1. For any words vy and vs, the word viva s a highest weight vertex if and only if:

® v; is a highest weight vertex
o for anyi=1,...,n, &(v2) < wi(n1).

Proof. The proof follows immediately from (1) and (2). O
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Lemma 5.3.2. Let w be a highest weight vertex. Then w(P(w)) = w.

Proof. For classical types, the proof follows by induction on {(w). When {(w) = 1, w(P(w)) = w. By
writing w = vz, one shows that w(P(w)) may be obtained from the word w(P(v))z by applying only
Knuth relations and contraction relations of type 12 .- rp = 12-.-p- - r with p < r < n (the hat
means removal of the letter p). The proof is similar up to minor modifications for type Ga. a

Theorem 5.3.3. For any words wy and ws
W = Wy <= Wy ~ We.

Proof. From Lemma 5.3.2, we obtain that two highest weight vertices w{ and w3 with the same weight
A satisfy w§ = w). Indeed, since there is only one tableau whose reading is a highest weight vertex of
weight A\, we must have P(w?) = P(w3). Now suppose that w; ~ wo and denote by w? and w) the
highest weight vertices of B(w;) and B(ws). We have w? = wd. Set w; = Fw where F is a product
of Kashiwara’s operators ﬁ-, 1 € I. Then wg = F’wg because w; ~ wy. So by (9) we obtain

—=o

il

w) = Fu? = Fwd = w; = ws.

10). ]

w

Then the theorem follows from

—_~

6. BUMPING ALGORITHMS FOR TYPES B,,Cy, D, AND G2
For any dominant weight A € Q, write

B(\)® B(A1) ~ €D B().
veQly

This decomposition is multiplicity free. Given any letter z € B(A;) and any tableau S such that
w(S) € B()\) we want to compute the unique tableau T such that w(T) = w(S)z. We will set
T =z — S and call this combinatorial operation “insertion of the letter z in the tableau S”.

6.1. Bumping algorithm on an admissible column of type B,,C, or D,. Consider a word

w = w(C)z, where z and C are respectively a letter and an admissible column of height p. Denote by
0

w® = u%z° the highest weight vertex of B(w). Only three situations can happen:
(1) w® = v,,,, with A(C) = p+1: then there is nothing to do and P(w) S is an admissible
column,
(2) w® = v,,p: then f is a non admissible column of height p + 1 and P(w) = C obtained by

applying a contraction relation to w(C)z.
(3) w® =y, (or w® = vz, 1 for type Dy,): then P(w) must be a tableau of two columns of heights
p and 1 since B(v,,1) ~ B(lv,,).

The relations of length 3 of the plactic monoids are precisely those which are needed to describe the

insertion z — C of a letter z in an admissible column C = %' such that | b |is not a column. This

n
' T ’_. —_ ! ,I
|x b b’ .

can be written
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In case 3 above the insertion in an admissible column C of arbitrary height can then be depicted by

a1 a ai dy z ]
(11) T Q-2 |= k-2 | = Qg2 |=---=
k-1 ak-1| [de-1| ¥ dx_1
Qj [ T ai di dr

that is, one elementary transformation is applied at each step.

Example 6.1.1. Supposen =1T7.

o @ 3)
— | 6 4

- e E 5]

o 3—>z=—§— and3—+ IndeedT is not admissible and 5 is the lowest letter z of
= [£ T
=] E 5|

C such that 2z € C dN(z))z T
(4] 4] (4] 4] E‘ 4]5]
6] 6 6] (6] [5]5] [5

e 4—[86|= B |= 6|=[6]6|=|6 =[6]
i3 HEEH % [
pjio F B
6] [6] [6] [6 6 6] [5[5]
_;_ 7] 7] 7 I___7 [6]6] [6

7 7 T17]_[7 (7 ]

7 | 7] [7]7 7 | 7|
LAt ia i O 2 O 2

6.2. Bumping algorithm on an admissible column of type G2. When h(C) =1 and C =|E
we have

( (i) : if ax € B(11),

(ii) : 2 if az € B(12),
a2) raCe i 1a.:c

(iii) : [a”] with o' = £1(az) if az € B(10),

L (iv) : 0 if az = 11.

Indeed in each case (i) to (iv), £ — C is the unique tableau of type G2 such that w(z — C) = w(C)z.
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When h(C) =2 and C =§ we have

al

/
(v): 7 z | with z'a’t’ = £ (abz) if bz is not a column word,

2o C= (i) : [@' [/ ] with o'z’ = £F € (abz) if bz is an admissible column word,

(vii) : with 2’ = £F(agf (bz)) if br is a non admissible column word.

Indeed in cases (v) and (vi), £ — C is a tableau of type Gz such that w(z — C) = w(C)z by
Proposition 5.2.2. In case (vii), we obtain by (2) that the highest weight vertex of B(abr) may be
written 12u with u a letter such that &;(u) = 0 and e2(u) < 1. So u € {1,3,2}. We have u = 2,
otherwise B(abz) = B(121) and = < b, or B(abzr) = B(123) and bz is an admissible column word.
Hence B(abr) = B(122). We have

B(122) : 122 % 12T 2 1317 4 237 5 201 2 301 2 001

and it is easy to verify that £F (a&€ (bx)) is the image of abz by the crystal isomorphism B(122) = B(1).
In cases (iii), (iv), (vi) and (vii) we have l(z — C) < l(w(C)z). Then the insertion procedure causes a
contraction. Note that if the words w(Ci)z; and w(Cz)z2 (where Ci, C; are admissible columns and
z1, T2 are letters) belong to the same connected component, the insertions £; — C; and z3 — C; are
of the same type (i) to (vii).

6.3. The P-symbol P(w). Set T = C} - - - C, where Cj, i = 1, ...,r are the admissible columns of T

%]
(1) When .

of height hA(C)) and y a letter. Then z — T = Cj(y — C2 - - C;) that is, z — T is the
juxtaposition of C] with the tableau T' obtained by inserting y in the tableau C3 - - - C.

is not a column, write 2 — C = [ C} |y where C] is an admissible column

(2) When fl is an admissible column, z — T is the tableau obtained by adding a box containing
z on bottom of Cj.
(3) When Sl is a column which is not admissible, write £ — C; = C; and set w(a) =Y Ys-

Thenz > T =y, = (ys-1 = (-y1 — T)) that is z — T is obtained by inserting successively
the letters of 01 into the tableau T = C, - - - C;.

Finally for any vertex w

P(w) =[w]if w is a letter,
P(w) = z — P(u) if w = uz with v a word and z a letter.

Example 6.3.1.
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g

13
e LetT=[3[3]2 of type C3 and x = 1. The column Sl is not admissible and
211
~ - ~ 3 —
C = E So we have to insert 3 next 2 in the tableau T =3 . The insertion of 3 gives
1
3k} — AR
the tableau|3 | 2 | then by inserting 2 we obtainT - T =3 | 2 | .
1 21
2]3 2[3]3[7] 2] [2]
eT={0[3][2 of type Bs. Then2 - T =03 |2 since2—=[0]=0].
01 7|1 0| [Z]
2[0]3] L s 5 [2]o]3] 5 [0]3]
o T= 0 5T of type G2. Then the insertion2 - T =2 — o3I =3 (3—> 3111 =
3 2
3

- E0-) -+ BEP-Be-E) -

Remark: All the insertion schemes described in this note are column insertion algorithms. For
semi-standard tableaux of type A, there also exists a row insertion algorithm compatible with Knuth
relations. Moreover the row and column readings of a semi-standard tableau belong to the same
plactic class. This is not true for the tableaux of types B,,Cy,, D,, and G2. For example in type Cs,

the row reading of T = ; g:lis the word w = 3223, but PC(w) ! ? # T. This explains why the

3|1
relevant insertion schemes for Kashiwara-Nakashima tableaux are column insertion algorithms.

7. ROBINSON-SCHENSTED TYPE CORRESPONDENCES

7.1. Oscillating tableaux. An oscillating tableau @ of type B, and length [ is a sequence of Young
diagrams (@1, ..., @) whose columns have height < n and such that any two consecutive diagrams are
equal or differ by exactly one box (i.e. Qk+1 = Qk» Qk+1/Qk = ([ ]) or Qi/Qi+1 = ([]))-
An oscillating tableau Q of type C,, and length [ is a sequence of Young diagrams (Q;, ..., @;) whose
columns have height < n and such that any two consecutive diagrams differ by exactly one box (i.e.
Qu+1/Qr = ([]) or Qk/Qk+1 = ([]))-
An oscillating tableau Q of type D, and length [ is a'sequence (Qy, ..., Q;) of pairs Qx = (Ok, ex) where
Ok is a Young diagram whose columns have height < n and ¢ € {—,0,+}, satisfying for k =1, ...,1,

® Ok+1/0k = ([]) or Ox/Ok41 = ([])s

e £r+1 # 0 and g # 0 imply ex41 = k-

o ¢ = 0 if and only if Oy has no columns of height n.
An oscillating tableau Q of type G, and length [ is a sequence (Q1, ..., Q:) of Young diagrams whose
columns have height 1 or 2 satisfying for k = 1, ..., one of the following assertions:

® Qi1 is obtained by adding one box to Q.

® Q41 is obtained by deleting one box in Q.

® Qr+1 = Qk.

® Qx+1 is obtained from @, by moving one box from height 2 to height 1.

® Q41 is obtained from @) by moving one box from height 1 to height 2.
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7.2. The Q-symbol Q(w). Let w = z; - - - ; be a word. The construction of P(w) involves the
construction of the ! tableaux defined by P; = P(z;---z;). For w € B}, (resp. w € C};,w € D}, w € G*)
we denote by Qp(w) (resp. Qc(w), @p(w), Qe(w)) the sequence of shapes of the tableaux Py, ..., P,.

Proposition 7.2.1. Qp(w),Qc(w),@p(w) and Qg(w) are respectively oscillating tableauz of type
By, Cp, Dy, and Gs.

Proof. We give the proof for the orthogonal types. The arguments are essentially the same for types
Cn and Gs.

Each Q; is the shape of an orthogonal tableau so it suffices to prove that for any letter z and any
orthogonal tableau T', the shape of x — T differs from the shape of T by at most one box according
to the above definition of oscillating tableaux of types B, and D,,.

The highest weight vertex of the connected component containing w(7T")z may be written w(7T°)z°
where T is an orthogonal tableau. It follows from Lemma 3.4.1 that w(T') «— w(T°). So wt(w(T?))
is given by the shape of T. Then the shape of £ — T is given by the coordinates of wt(w(7)z°) on
the basis (w?, ..., w?) for type By, on the base (wP,...,wD) or (WP, ...,wP_|,®P) for type Dy.

Suppose that x € B;, and T is orthogonal of type By,. Let ()1, ..., An) be the coordinates of wt(79)
on the basis of the wB’s If 20 = 7 > 0 then wt(z?) = wZ, - wf. So A; > 0 and wt(w(T)z%) =
(Al ey Aim1 + 1,05 — 1 .»An—1). Hence during the insertion of the letter z in T', a column of height i
(correspondmg to the welght w;) is turned into a column of height ¢ — 1 (corresponding to the weight
wi—1). So the shape of z — T is obtained by erasing one box in the shape of T. If 2% = i < 0, then we
can prove by similar arguments that the shape of z — T is obtained by adding one box to the shape
of T. When z° = 0, wt(z%) = 0, so wt(w(70)z%) = wt(w(TP)). Hence the shapes of T and z — T are
the same.

Suppose z € D;, and T orthogonal of type D,. When |z°| # n, the proof is the same as above. If
20 = n, wt(z%) = Ap — Ap—1 = Wp — Wn_1 = Wp—1 — Wn. We have to consider three cases, (i): ep = —
(ii): er =0 and (iii): er = +. Denote by ()\1, ., An) the positive decomposition of wt(w(TO)) on the
basis (wP,...,w?) or on the basis (WP, ...,@P).
In the ﬁrst case, Ap, > 0 and the posmve decomposition of wt(z’w(T?)) on the basis (wP,...,@2) is
(M1y.e0s An—2, An—1 + 1, A, — 1). It means that during the insertion of z in T a column of height n
(correspondmg to Wy) is turned into a column of height n — 1 (corresponding to wy—1). Moreover
€z—T = €& if A > 1 and e,_,7 = 0 otherwise.
In the second case, An—1 > 0, A\, = 0 and the positive decomposition of wt(z°w(7°)) on the base
(WP, ...,w?) is (A1, A2, ., Ap—1 — 1,1). It means that during the insertion of z in T' a column of height
n — 1 (corresponding to wy—1) is turned-into a column of height n (corresponding to wy,). Moreover
EzT = +.
In the last case, An—1 > 0, A\p > 0 and the positive decomposition of wt(z°w(T°)) on (wP,.
is (A1,A2,...;An—1 — 1,A\p + 1). It means that during the insertion of z in T a column of helght
n-—1 (correspondmg to wp_1) is turned into a column of height n (corresponding to wy). Moreover
Eg—T = ET.

When z° = 7, the proof is similar. O

wy)

Remark: The above proposition implies in particular that there should be at most one contraction
during the insertion procedure z — T.

Theorem 7.2.2. For any vertices w; and ws
wy > wa & Q(wr) = Q(wz).

Proof. We proceed by induction on the length | of the words wy and ws. If | = 1 the result is
immediate. If w; and we have length | > 1, we can write w1 = u;z; and we = uyxy with x;, x5 letters
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and u;, up words of length I — 1. Let w{ = u{z? and w3 = udzJ be the highest weight vertices of B(w;)
and B(w;). Write Q; and Q; for the shapes of P(w;) and P(ws) (that is those of P(wd) and P(w))).
We suppose the Proposition is true for the words of length ! — 1. First we have:

Uy U2,

Q1 =Q2.

Indeed if w; «—— ws then u; «— uy follows from Lemma 3.4.1 and we obtain Q; = Q2 because the
readings of P(w;) and P(ws) are in the same connected component. Conversely, u; «— uz implies
that 0 = uJ and it follows from the equality Q1 = Q2 that wt(w]) = wt(wj) (because the shape
of P(w?) i = 1,2 coincides with the weight wt(w?)). So zJ = 2. This means that w} = w} i.e.
w; «—— wy. Finally we obtain by induction:

w1«—+w24=>{

wy — Wy = { g(ul)Q—:Q(uz) <= Q(w1) = Q(wz).

1=

0O

Write respectively OF, OF, OP and OF for the sets of pairs (P,Q) where P is a tableau and Q an
oscillating tableau respectively of type By, Cyr, Dn and G2 and length I such that P has shape Q; (Q
is the last shape of Q). Let B} ;,C; |, Dy and G} be the subsets of words of length [ respectively in
B;,C:, D and G*.

Corollary 7.2.3. The maps:

v8.B:, — OB ¥e.Cp - Of vD . px, - OP and ¥e . gr - OfF
we (PP(w),QFw)) * we (PP(w),Q%w)) ww (PP(w),QP(w)) w = (P%(w), Q%(w))

are bijections.

Proof. Type Cp, : by Theorems 5.3.3 and 7.2.2, we obtain that ¥ is injective. Consider an oscillating
tableau Q of length . Set £; = 1 and for i = 2,...,1, z; = k if Q; differs from Q;_, by adding a box in
row k and z; = k if Q; differs from Q;_; by removing a box in row k. Consider wg = x; - - - z21. Then
Q(wq) = Q. By Theorem 4.5.4, the image of B(wg) by ¥ is the pair (P, Q) where P is a symplectic
tableau of shape Q;. We deduce immediately that ¥ is surjective.

The proof is similar for types By, Dy, and Ga. O

8. REVERSE BUMPING ALGORITHM FOR THE CLASSICAL TYPES

For any dominant weight A € 2, recall the decomposition

B()) ® B(A1) ~ € B(v).

vesly

Since this decomposition is multiplicity free, it must be possible, starting from T with w(T) € B(v)
and ), to determine tlie unique pair (z, S) where z is a letter and w(S) € B()) such that z = S =T.
This procedure is called “reverse bumping algorithm”. To describe the reverse bumping steps, it
suffices to interpret each plactic relation on words, read from right hand side to left hand side, as a
combinatorial operation. We give below a complete description of these operations on the tableaux of
classical types. The reverse bumping algorithm for type G2 can be obtained similarly from the plactic
relations of Definition 5.1.4.



33
COMBINATORICS OF CRYSTAL GRAPHS FOR THE ROOT SYSTEMS OF TYPES Aq, Bn,Cn, Dy AND G2

8.1. Reverse bumping on column tableaux. Given an admissible column D with h(D) < n —1,
there exist two pairs (z;,C1) and (x2,C2) such that z; — C) = z3 — Cy = D and h(C}) = h(D) — 1,
h(C2) = h(D) + 1 depending on whether a contraction happens or not in the insertion scheme. The
pair (z1,C)) is immediately computed since z; is the bottom letter of D and C; = D — {z;}. Since
C2
T2

there is a contraction during the insertion z3 — Cy = D, the column

Ce
T2
When k(D) = n — 1,. we obtain two pairs (z1,C1) and (z2,C2) as above for types B, and C,. For
type Dy, the pair (z1,C)) is determined as above but there exist two pairs (z5,C3) and (x2,C2)
with h(C3) = h(C3) = h(D) + 1 and z3 — C; = z, — C} = D. Indeed we have two isomorphisms
Cy| [Cy

B(1:--(n—1)) ~ B(1---nn) ~ B(1---7An). In this case we have z = n and the columns v Kl
2

is obtained by adding to

D the pair (2,Z) with z minimal such that N(z) > z in and C; is admissible.

are obtained by adding two boxes ) 7] in D.

When h(D) = n, only the pair (z;,C}) exists for types C, and D,. For type By, we also have to
consider the pair (z3,C3) where z3 is the bottom letter of D and C; = D — {z3} + {0}.

Example 8.1.1. Suppose n = 6.

e Consider D = . Then we have zo =1 and C»

[ e en] ]

o Consider D = . Then for type B, we have 3 =1 and C3 =

ECEEEE

e Consider D =

. Then we have for type Dy, T2 = = =2 and C;

(oA el o] ] [ o of ] o] [fef erf er] o]

[Aofolo[=[]
EEEEEE

8.2. Fundamental reverse bumping step. Consider T = D[Z] a tableau of type By,,C, or D,
with two columns such that h(D) = p and @ contains only the letter z. Then by applying procedure
(11) from right to left, that is, applying to zw(D) plactic relations of length 3 read from right to left,
we can obtain the unique pair (x, C) where z is a letter and C an admissible column of height p such
that z - C = D@ '
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4]5] 41F] 4 4 4 4]
5 5 5|5 6 6 6 |
Example 8.2.1. FromnT ={6| weobtain[6| =[6 =[6 = = |6|=4
T | (B | 6 | 8 5[5 5|
B taf s I R el

8.3. Reverse bumping algorithm on a tableau.

8.3.1. type C,,. Consider T = Cj ---C) a tableau and Y a “Young diagram” such that the shape Y (T")
of T and Y differ by exactly one box. We look for the letter = and the tableau S such that z — S = T.
Suppose first that Y has one box less than Y (T'). Let C; be the column of T corresponding to this
box and y the letter it contains. If k = 1 we find (z, S) immediately, otherwise we apply the reverse
bumping algorithm to the tableau (see section 8.2) .This gives a new column Cj}_; and
a letter y;. When Cx_; = C; we have z = y; and § = C{C; - - - C,. When k > 2, we apply the
reverse bumping algorithm to and so on until we obtain the letter yx_;. Then z = yx_;
and S =C7 -+ - C,_,Ck - Cyp.

2[2]31] |
Example 8.3.1. ConsiderT—*% g 3 and Y = . Weobtainz =y, =3,y =1 and
3] ]
3{2[3[1]
4143
§ 411
(3]

Now suppose that Y has one box more than Y (T). Denote by Y’ the Young diagram obtained by
deleting the first column of Y. Since Y has one box more than Y (T), a contraction happens during
the insertion £ — S = T. This is case 3 of the insertion procedure described in section 6.3. The
tableau S can certainly be written in the form S = D; S’ where D; is the leftmost column of S and

S§’ = S — D;. Then D f‘

is a non admissible column . Denote by D the column obtained by

contracting D and set s = h(ﬁ). During the insertion z — S = T, D is contracted and next the letters
of D are inserted in the tableau S'. This forces Y, the shape of ', to be contained in Y (T'). More
precisely Y(T') — Y’ contains s boxes corresponding to the insertion of the letters of D. Since the
insertion of the letters of the column D does not induce new contractions, the s boxes of Y (T') — Y’
belong to different rows of Y (T'). This is verified easily by a detailed analysis of the highest weight
vertices implied in the previous combinatorial operations on tableaux.

This gives a procedure to compute S. Indeed, it suffices to consider the letters of T' which do not belong
to Y’. These letters appear on different rows of T. One then applies the previous reverse bumping
algorithm to these s letters starting from the letter appearing in the lowest row until terminating with
the letter appearing in the highest row. One can prove that this computation is always possible. The
letters then obtained form the reading of an admissible column (namely the reading of D with the
previous notation). Moreover the resulting tableau is the tableau S’. Finally we obtain D from D as
in section 8.1. Then § = DS’ is the juxtaposition of D and S’.
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517 ] J

and Y = . We obtain V' = . So we

b= DOl COH

2
Example 8.3.2. Consider T =3
2

3T3]3)
have to remove the letters 1 next 2 in T. This gives T = 2 — 3 —{ 3 |2 . Thus D % and
1
3[3]3] 1[3[3]7]
S'=3[2 . We obtain D . Finallyz=1andS=3 32| .
1 211
8.3.2. Type B,. We proceed similarly. The only difference is when Y (T') = Y(S). Then g is the

column obtained by adding a letter 0 in C1, the first column of T.

8.3.3. Type Dy,. Write Y(T') = (Yr,er) and Y (S) = (Ys,e5) where Yr,Ys are Young diagrams and
es,er belong to {—,0,+} (see section 4.4). When Y7 has one box more than Ys, we proceed as for type

Crn. When Yr has one box less than Y, the reverse algorithm is the same except for the computation

of ¢ from D when h(D) = n — 1, that is, when eg # 0. Indeed we have seen that there are two

z
possibilities for S in this case. If ¢ = +, we choose S such that w(C) € B(wZ), otherwise we

choose it to have w(C) € B(@?D).

9. SLIDING ALGORITHM FOR TYPES B, AND C,

This section is concerned with a symplectic Jeu de Taquin (or sliding algorithm) introduced by J.
T. Sheats [19] in order to obtain an explicit bijection between King’s and De Concini’s symplectic
tableaux.

Recall that the Schiitzenberger sliding algorithm is a procedure which yields a semistandard tableau
starting from a given skew semistandard tableau T by a sequence of successive horizontal and vertical
slides. The reading w(T") of T is obtained by reading the columns of T from right to left and top to
bottom. One can prove that the readings of the skew semistandard tableaux successively obtained
from T by a sequence of slides all belongs to the plactic congruence class of w(T"). This implies that
the sliding algorithm is confluent, that is the resulting semistandard tableau does not depend on the
order in which the inner corners of T' are evacuated (see [5]).

An analogous property has been conjectured in [19] and proved in [15]. This yields an alternative way
to compute Pc(w) for any word w. By considering the splitting form of the admissible columns of
type By, it is also possible to obtain a sliding algorithm for type B,,. In the sequel we only summarize
the main definitions and results concerning these Jeux de Taquin and refer the reader to [15] and [16]
for the proofs.

9.1. Sheats sliding algorithm.

. n - n
9.1.1. Skew admissible tableauz. Let A = Y MAS and u = Y 7:AS be two dominant weights such
that i; < A; for i = 1,...,n. A skew tableau of shape \/u over C, is a filling of letters of C, in the
skew Young diagram Y)/Y), making columns strictly increasing from top to bottom.
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Definition 9.1.1. A skew tableau over C, is admissible if its columns are admissible and the rows of
its split form (obtained by turning each column C into its split form (IC,rC)) are weakly increasing
from left to right.

4

4
Example 9.1.2. T = I-_;-g——g 3 is an admissible skew tableau. Its split form is

4
1[3[4[3[3]3
3[3(3(2]3] '
2[2]2]1

Remark: One can prove that the set of readings of the admissible skew tableaux of shape A/u is a
sub-crystal of Gf, that is, a disjoint union of connected components of GS.

>
S
»

We denote by 7(y/,) the set of admissible skew tableaux of shape (A\/u) and by Uy, the set of
readings of these skew tableaux.

Consider an admissible skew tableau of shape A/u. An inner corner is a box of Y, such that the boxes
down and to the right are not in Y,. An outside corner is a box of Y), such that the boxes down and
to the right are not in Y.

A skew tableau is said to be punctured if one of its box contains the symbol * called the puncture.
A punctured column C is admissible if the column C’ obtained by ignoring the puncture is admissible.
Then the punctured columns rC and IC are respectively obtained by replacing the letters of C (except
the puncture) by the letters of rC’ and IC’. The split form of C is ICrC.

A punctured skew tableau is admissible if its columns are admissible and the rows of its split form
(obtained by splitting its columns) are weakly increasing (ignoring the puncture).

4|4
Example 9.1.3. T = T—g ; 3 is an admissible skew punctured tableau of split form spl(T) =
212
314144
1[3[*[*|3]3]
[37313[2]2]2 '
2[2[2]1

9.1.2. Coadmissible columns. A column C of type C, is called coadmissible if for each pair (z,%) in
C, the number N*(z) of letters z in C such that £ > z and x < Z satisfies
(13) N*(z) <n—z+1.

Let C be an admissible column of type C,,. Denote by C* the column obtained by filling the shape
of C (from top to bottom) with the unbarred letters of IC in increasing order followed by the barred
letters of 7C in increasing order. Then it is easy to prove that C* is coadmissible. More precisely the
map:

(14) :.C-C*

is a bijection between the sets of admissible and coadmissible columns of the same height. Starting
from a coadmissible column C* we can compute the pair (IC, rC) associated to the unique admissible
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column C such that C* = ®(C) by reversing the duplication algorithm in section 4.3. Then C is the
column containing the unbarred letters of rC and the barred letters of IC.

Example 9.1.4.

9.1.3. Elementary step of the sliding algorithm . Let us consider an admissible punctured skew tableau
T containing two columns C; and Cs with the puncture in C;. To apply an elementary step of the
sliding algorithm to T we first have to consider the split form of T. In this split form we have a
configuration of the type:

/
: Z, b b where the boxes containing a,a’ and b, ¥ may be empty.

An elementary step of the Symplectic Jeu de Taquin (SJDT) consists of the following transformations:

(1) If a’ < b or the double box b ¥’ is empty, then the double boxes a a’ and * * are permuted.
(2) If @’ > b or the double box a ¢’ is empty then:
(i): when b is a barred letter, b slides into 7C} to the box containing * and D, = ®(Cy) —
{*} +{b} is a coadmissible column (see (14)). Simultaneously the symbol * slides into IC to
the box containing b and Cy = C, — {b} + {*} is a punctured admissible column. Then we
obtain a new punctured skew tableau C|C} by setting C] = ®~1(D).
(ii): when b is an unbarred letter, b slides into rCj to the box containing * and give a new
column C] = Cy —{x}+ {b}. Simultaneously the symbol * slides into IC3 to the box containing
b and Dy = ®(C;) — {b} + {*} is a punctured coadmissible column. Then we obtain a new
punctured skew tableau C|C} by setting Cj = ®~1(Dy).

Remark: In case 2 (i) the coadmissibility of D; is not immediate and in case 2 (ii) the column Cj
may be not admissible.

Lemma 9.1.5. We can always apply an elementary step of the SIDT to an admissible punctured skew
tableau (i.e. Dy is a coadmissible column in case 2 (i)).

Example 9.1.6.

214 212|134 214
4|5 414(5]|5 5|56
ForTy =[x |4 |spl(Ty) =[*|*|4]|3]| Wearein case2 (i) and C;Ch =5 *
31 33|71 (31
7] T[T 7]
ForTy = % I 1 we obtain ‘1g11 as in case 2 (ii).
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ForT3=—§ Z g-we obtai'nvgt 2 ;—

The punctured skew tableau obtained by computing a step of the SJDT on an admissible punctured
skew tableau is not always admissible. In the second example above the second column of the resulting
tableau is not admissible. In the third the first row of the split form after sliding is not increasing (we
will see that this last problem does not occur in the complete SJDT algorithm).

9.1.4. Complete symplectic Jeu de Taquin (SJDT). Let T be an admissible skew tableau and c an inner
corner in T. In order to apply the complete sliding algorithm let us puncture the corner ¢. We obtain
an admissible punctured skew tableau. To see what happens when we apply successively elementary
steps of SJDT to this skew tableau, we need to compute the split form for each intermediate punctured
tableau. We have seen that a horizontal move of an unbarred letter may give a new non admissible
column Cj such that all the strict factors of w(C]) are admissible. So it is impossible to compute its
split form using letters of C,,. To overcome this problem, we embed the alphabet C,, into

Chii={m<l<---<n<A<---<I<aj}

To compute the split form of a non admissible column C such that all the strict subwords of w(C) are
admissible, we extend the duplication algorithm of section 4.3 by using the new letter a,. For example

3 |
if C =[&|(C,rC) =
4]

So all the columns that may be obtained when we apply an elementary step of SJDT to an admissible
skew tableau (defined on C,) can be split in C}_ ;. We say that a skew punctured tableau is a;-

admissible if all its columns can be split in C,,, and the rows of the obtained split form are weakly
increasing.

in c:1+1 .

=B WIS

fon
Ql [ K KRN
—

Theorem 9.1.7. (Sheats [19])

o Elementary steps of SJDT can be applied to T until the puncture x becomes an outside corner.

o All the skew punctured tableauzx obtained as steps in the algorithm are a;-admissible. Moreover
a1 and a; only appear simultaneously in the split form of the column containing the inner
corner ¢ of T at which the slide started.

*|2 x| *|2]2
2|3 2{2(3]|3
Example 9.1.8. Suppose T =|3 (3[4, spl(T)=|2[3|3|3[4]|4|. We compute successively
HEE HEEIEIHE
3|1 (3211
the split form of the a;-admissible punctured skew tableauz:
2|2(2(2 212]2]2 a1 |2 {22
* %33 313|3|3 2 /3 |33
213/13|3|4]4 2(3|*x|*x|4]4 2133 [4 |*x]|=*
BlA[3[1[T I IEE B(5[Z [T [1[1
Kik1EEE! EIKIHE 3T &
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a; |2 (2|2 2|2
2 {3 |33 313
_21__1 _§ 3 |4 [1]1]|. Then we obtain the a1-admissible skew tableau: 3(al1
51514 |1 |%]|=* 514
] =
3121 a1 31

9.2. Sliding algorithm on C,. Let T be an admissible skew tableau and c be an inner corner. It
we denote by T’ the skew tableau obtained by applying the complete SJIDT to T, then TV may be
only a;-admissible (see Theorem 9.1.7). Suppose that, in the split form, @7 and a; occur in the k-th

split column IC} rCj, of T'. Then the column Cj, is not admissible. Write w(C},) for the column word
obtained by applying a contraction relation to w(C},). In order to obtain an admissible skew tableau,

we are led to consider the skew tableau T” obtained by erasing the top and bottom boxes of Cj, and
filling this new column with the letters of the word w(C}). We denote this new column by C.

Example 9.2.1. Continuing the previous ezample we obtain:

[2]
2[3
1

M
Ii
w

[ oo

By using the notations introduced above, we have:
Proposition 9.2.2. T' is an admissible skew tableau and w(T") = w(T").

Given an admissible skew tableau T and an inside corner c in T, we can apply elementary steps of
SJDT to obtain a skew tableau T'. We set:
T’ if T' is admissible,

SJDT(T7 C) = { T if T is Only al_admissible,

During the algorithm an inner corner is filled or SIDT(T, ¢) has two boxes less than T'. By choosing a
new inner corner at each step, we can iterate the procedure T' — SIJDT(T, ¢) to construct a symplectic
tableau from any admissible skew tableau. In [14] we have proved that each elementary sliding
operation can,be interpreted in terms of crystal isomorphisms, thus it is compatible with the plactic
relations of Definition 5.1.2. So we obtain the following theorem:

Theorem 9.2.3. Let T be an admissible skew tableau. Then by applying the SIDT successively to
the inner corners of T, we obtain a symplectic tableau independent of the order in which these inner
corners are filled. Moreover this tableau coincides with PC(w(T)).

9.3. Jeu de Taquin for type B,. Consider C, = {1 <---<n<® < <1} C By. The tableaux
of type C,, can be regarded as tableaux of type B, on the alphabet C, instead of B,. Moreover for
two words w; and ws of C},, we have:

C B
w = wy = W = wWa.

A skew tableau of type B, is a skew Young diagram filled by letters of B,, whose columns are admissible
of type By, and the rows of its split form (obtained by splitting its columns) are weakly increasing
from left to right.

Example 9.3.1. Forn =3,
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(2] 22
3(0]. 2[3[3[3
T= TSI skew orthogonal tableau of type B3 because spl(T) = AKIEIVIBE RS
0 3

The relation 0fin = fin0 has no natural interpretation in terms of horizontal or vertical slidings in skew
orthogonal tableaux. To overcome this problem we are going to work on the split form of the skew
tableaux instead of the skew tableaux themselves, that is, we are going to obtain a Jeu de Taquin for

type By, by applying the symplectic Jeu de Taquin on the split form of the skew orthogonal tableaux
of type Bj,.

Lemma 9.3.2. Let T and T’ be two skew orthogonal tableauz of type By,. Then:
B B
w(T) = w(T') <= wispl(T)] = w(spl(T")].
If T is a skew orthogonal tableau of type B, with r columns, then spl(T’) is a symplectic skew tableau

with 2r columns. We can apply the symplectic Jeu de Taquin to spl(T’) to obtain a symplectic tableau
spl(T")’. We will have w{spl(T")’] < w(spl(T")] so w(spl(T)’] = wlspl(T)).

Proposition 9.3.3. spl(T')’ is the split form of the orthogonal tableau P3(T).

The columns of the split form of a skew orthogonal tableau T of type By, contain no letters 0 and no
pairs of letters (z,Z) with £ < n. In this particular case most of the elementary steps of the symplectic
Jeu de Taquin applied on T are simple slidings identical to those of the original Jeu de Taquin of

Lascoux and Schiitzenberger (complexity of the symplectic Jeu de Taquin are not needed in these
slidings).

1]2 " 1]1]1]2
Example 9.3.4. Fromspl [[1[0]3]] =[1]1]2]3]3 , we compute successively:
3(3]|2 3[3(3(2(2](1
» 11112 [=[2]1]1]1]2 1[1[1[1]2
12*33:‘5,12?"5"5"5',12:‘5335',
3l3(3(2(2|1|[3[3[2|*[2|1]|[3]3]2][2]*]1
s [A[a]al22] A a2 [2]L]1]t]2]2]
1(2(3|3[3]3L[2[*[3[3|313}[2]3[3][3[3][3}
3(3[2|2|2[*|[3(3[2[2[2|*|[3]2]*|2]|2]*
T{1]1]1]2]2|[1]t[1[1]2]2 1]1]2
2|3|3(3(3(3L[2(3(3(3[3|3|=spl{[3]3]3
3|2 2|+ |2[*|[3[212[2|*]|* 0|2

Note that the sliding applied in the fourth duplicated tableau above is the unique sliding which is not
identical to the original Jeu de Taquin step.

The split form of a skew orthogonal tableau of type D, (defined in the same way as for type By)
is still a symplectic skew tableau. But

c D
w) = wp F=> w1 = wy,
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so we can not use the same idea to obtain a Jeu de Taquin for type D,. Moreover one verifies for

n = 3 that
3 [3]3]
2 | and PP(32113) =E 2|

PP(32113) =

3
as readings of skew tableaux, we obtain:

OOIIT) w{w

By interpreting the words 32113 and 3211

1[3] [273 173] [373
312 |=/3|2|and[3[2|=[3]2}
*i:_i_ x| 1 3

This shows that it is not enough to know what letter z slides from the second column C; to the first
C; to be able to compute a horizontal sliding. Indeed the result depends on the whole column C;.
Thus, to give a combinatorial description of a sliding algorithm for type Dy, would probably be very
complicated.
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