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3. Quasi-isometries.

In this section we will define the notion of a “quasi-isometry”
– one of the fundamental notions in geometric group theory. First,

though, we need to describe some more general terminology, and
make a few technical observations. Many of the technical details
mentioned below can be forgotten about in the main cases of interest
to us, where the statements will be apparent. However, we might as
well state them in general.

3.1. Metric Spaces.

Let $(M, d)$ be a metric space.

Notation. Given $x\in M$ and $r\geq 0$ , write $N(x, r)=\{y\in M|$

$d(x, y)\leq r\}$ for the closed $r$-neighbourhood of $x$ in $M$ . If $Q\subseteq M,$

write $N(Q, r)=\bigcup_{x\in Q}N(x, r)$ . We say that $Q$ is $r$-dense in $M$ if
$M=N(Q, r)$ . We say that $Q$ is cobounded if it is $r$-dense for some
$r\geq 0$ . Write diam$(Q)=\sup\{d(x, y)|x, y\in Q\}$ for the diameter
of $Q$ . We say that $Q$ is bounded if diam$(Q)<\infty$ . Note that any
compact set is bounded.

Definition : Let $I\subseteq R$ be an interval. $A$ (unit speed) geodesic is a
path $\gamma$ : $I\rightarrow M$ such that $d(\gamma(t), \gamma(u))=|t-u|$ for all $t,$ $u\in I.$

(Sometimes, we may talk about a constant speed geodesic, where
$d(\gamma(t), \gamma(u))=\lambda|t-u|$ for some constant $u_{Speed’}\lambda\geq 0.$ )

Note that a geodesic is an arc, i.e. injective (unless it has zero
speed).

Warning: This terminology $d^{s}1ffers$ slightly from that commonly used
in riemannian geometry. There a “geodesic” is a path satisfying the
geodesic equation. This is equivalent to being locally geodesic of
eonsant speed in our sense.
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Suppose $\gamma$ : $[a, b]\rightarrow M$ is any path. We can define its length as

$\sup\{\sum_{i=1}^{n}d(\gamma(t_{i-1}), \gamma(t_{i}))|a=t_{0}<t_{1}<\cdots<t_{n}=b\}.$

$If-\infty<a\leq b<\infty$ , we say that $\gamma$ is rectifiable if its length is finite.
In general we say that a path is rectifiable if its restriction to any
finite subinterval is rectifiable. There certainly exist non-rectifiable
paths e.g. the “snowflake” curve. However, all the paths we deal with
in this course will be sufficiently nice that this will not be an issue.

$A$ (slightly technical) exercise shows that length $(\gamma)$ is equal to
$d(\gamma(a), \gamma(b))$ if and only if $d(\gamma(a), \gamma(b))=d(\gamma(a), \gamma(t))+d(\gamma(t), \gamma(b))$

for all $t\in[a, b]$ . If $\gamma$ is also injective (i.e. an arc), then we can
reparametrise $\gamma$ as follows. Define $s$ : $[a, b]\rightarrow[O, d(a, b)]$ by $s(t)=$

$d(\gamma(a), \gamma(t))$ . Thus $s$ is a homeomorphism. Now, $\gamma’=\gamma\circ s^{-1}$ :
$[0, d(a, b)]\rightarrow M$ is a geodesic. Indeed this gives us another descrip-
tion of a geodesic up to parameterisation, namely as an arc whose
length equals the distance between its endpoints.

Exercise: If $\gamma$ : $I\rightarrow M$ is any rectifiable path then we can find a
paramerisation so that $\gamma$ has unit speed, i.e. for all $t<u\in I$ , the
length of the subpath $\gamma|[t, u]$ between $t$ and $u$ has length $u-t$ . (This
time our map $s$ might not be injective if $\gamma$ stops for a while.)

In any case, the above observation should be clear in eases where we
actually need it.

We will sometimes abuse notation and write $\gamma\subseteq M$ for the image
of $\gamma$ in $M$ – even if $\gamma$ is not injective.

Definition : $A$ metric space $(M, d)$ is a geodesic space (sometimes

called a length space) if every pair of points are connected by a
geodesic.

Such a geodesic need not in general be unique.

Examples.

(1) Graphs with unit edge lcngths. (Essentially from the definition
of the metric.)
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(2) $R^{n}$ with the euclidean metric: $d(\underline{x},\underline{y})=\sqrt{\sum_{i=1}^{n}|x_{i}-y_{i}|^{2}}$ , and

(3) Any convex subset of $R^{n}.$

(4) Hyperbolic space, $H^{n}$ , and any convex subset thereof (see later).

(5) In fact, any complete riemannian manifold (from the definition of
the metric and the Hopf-Rinow theorem). We won’t be needing this
formally in this course.

Non examples.

(1) Any non-connected space.

(2) $R^{2}\backslash \{(0,0)\}$ : there is no geodesic eonnecting $\underline{x}to-\underline{x}.$

Indeed any non-convex subset of $R^{n}$ with the euclidean metric.

(3) Define a distance on the real line, $R$, by setting $d(x, y)=|x-y|^{p}$

for some constant $p$ . This is a metrie if $0<p\leq 1$ , but $(R, d)$ is a
geodesic space only if $p=1$ (exercise).

(4) If we allow different edge lengths on a locally infinite graph, the
result might not be a geodesic space. For example, eonnect two ver-
tices $x,$ $y$ by infinitely many edges $(e_{n})$ where $n$ varies over $N$ , and
assign $e_{n}$ a length $1+\frac{1}{n}$ . Thus $d(x, y)=1$ , but there is no geodesic
connecting $x$ to $y.$

Definition : $A$ metric space $(M, d)$ is proper if it is complete and
locally eompact.

Proposition 3.1 : If $(M, d)$ is a proper geodesic space then $N(x, r)$

is compact for $dlr\geq 0.$

One way to see this is to fix $x$ , and consider the set

$A=$ {$r\in[O,$ $\infty)|N(x, r)$ is compact}.

If $A\neq[0, \infty)$ one can derive a contradiction by considering $\sup(A)$ .
We leave the details for the reader.

In praetice, the conclusion of Proposition 3.1 will be clear in all
the cases of interest to us here: euclidean space, locally finite graphs
etc., so the technical details need not worry us.

Suppose that $M$ is proper and that $Q\subseteq M$ is closed. Given
$x,$ $y\in Q$ , let $d_{Q}(x, y)$ be the miminum of the lengths of rectifiable
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paths in $Q$ connecting $x$ to $y$ . This is $\infty$ if there is no such path. An-
other technical exercise, using Proposition 3.1, shows that the mini-
mum is attained. Again, this is apparent in the cases of interest to

us.
If $d_{Q}$ is always finite, then $(Q, d_{Q})$ is a geodesic metric space. We

refer to $d_{Q}$ as the induced path metric. Clearly $d(x, y)\leq d_{Q}(x, y)$ .
In cases of interest $(Q, d_{Q})$ will have the same topology as $(Q, d)$ ,
though one can concoct examples where its topology is strictly finer.

3.2. Isometries.

Let ($X$ , d) and $(X\prime, d’)$ be metric spaces. $A$ map $\phi$ : $X\rightarrow X’$

is an isometric embedding if $d’(\phi(x), \phi(y))=d(x, y)$ for all $x,$ $y\in X.$

It is an isometry if it is also surjective. Two spaces are isometric if
there is an isometry between them.

The set of self-isometries of a metric space, $X$ , forms a group
under composition – the isometry group of $X$ , denoted Isom(X).

For example, the isometries of euclidean space $R^{n}$ are precisely

the maps of the form $\llcorner x\mapsto A\underline{x}+\lrcorner b$ , where $A\in O(n)$ and $\underline{b}\in R^{n}.$

Let $X$ be a proper length space. Suppose that $\Gamma$ acts on $X$ by

isometry. Given $x\in X$ , we write $\Gamma x=\{gx|g\in\Gamma\}$ for the orbit
of $x$ under $\Gamma$ , and stab$(x)=\{g\in\Gamma gx=x\}$ for its stabihser.

The action is free if the stabiliser of every point is trivial. (This has
nothing to do with $hee$” in the sense of “free groups” or of “free

abelian groups”!)

Definition : We say that the action on $X$ is properly discontinuous
if for all $r\geq 0$ and all $x\in X$ , the set $\{g\in\Gamma|d(x, gx)\leq r\}$ is finite.

Using Proposition 3.1, we can express this without explicit mention of

the metric: it is equivalent to the statement that $\{g\in\Gamma|gK\cap K\neq\emptyset\}$

is finite for all compact $K\subseteq X.$

If the action is properly discontinuous, then the quotient, $ X/\Gamma$ , is

hausdorff (and complete and locally compact). Indeed we can define

a metric, $d’$ on $ X/\Gamma$ by sctting $d’(\Gamma x, \Gamma y)=\min\{d(p, q)|p\in\Gamma x,$ $ q\in$

$\Gamma y\}=\min\{d(x, gy)|g\in\Gamma\}.$
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Exercise: this is a metric, and it induces the quotient topoloy on
$X/\Gamma.$

Definition: $A$ properly discontinuous action is cocompact if $ X/\Gamma$ is
compact.

Exercise: The following are equivalent:

(1) The action is cocompact,

(2) Some orbit is cobounded,

(3) Every orbit is cobounded.

We will frequently abbreviate “properly discontinuous” to p.d., and
“properly discontinuous and cocompact” to p.d. $c.$

Examples.

(1) The standard action of $Z$ on $R$ by translation $(n.x=n+x)$ is
p.d. $c$ . The quotient, $R/Z$ , is a circle.

(2) The action of $Z$ on $R^{2}$ by horizontal translation $(n.(x, y)=(n+$

$x,$ $y))$ is p.d. but not cocompact. The quotient is a bi-infinite cylinder.

(3) The standard action of $Z^{2}$ on $R^{2}$ $(namely (m, n).(x, y)=(m+$

$x,$ $n+y))$ is p.d. $c$ . The quotient is a torus.

(4) If $S$ is a finite generating set of a group $\Gamma$ , then the action of $\Gamma$

on the Cayley graph $\Delta(\Gamma, S)$ is p.d.c. (Note that example (1) is a
special case of this.)

In fact, all the actions described above are free.

3.3. Definition of quasi-isometries.

Let $X,$ $X’$ be metric spaces. We will normally assume them to be
geodesic spaees, though this is not formally required for the following
definitions.
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Definition : $A$ map $\phi$ : $X\rightarrow X’$ is quasi-isometric if there are
constants, $k_{1}>0,$ $k_{2},$ $k_{3},$ $k_{4}\geq 0$ such that for all $x,$ $y\in X,$

$k_{1}d(x, y)-k_{2}\backslash \leq d’(\phi(x), \phi(y))\leq k_{3}d(x, y)+k_{4}.$

A quasi-isometric map, $\phi$ , is a quasi-isometry if, in addition, there is
a constant, $k_{5}\geq 0$ , such that

$(\forall y\in X’)(\exists x\in X)(d(y, \phi(x))\leq k_{5}.$

Thus, a quasi-isometry preserves distances to within fixed linear

bounds and its image is cobounded.

Notes: (1) We do not assume that $\phi$ is continuous. In defining a
quasi-isometry, we are trying to capture the “large scale” geometry
of our spaces. It cannot therefore be expected to respect small scale
structure such as topology. Indeed, certain basic observations below
would fail if we were to impose such a constraint.

(2) $A$ fairly simple observation is that if two maps $\phi,$ $\psi$ agree up to

bounded distance (in other words, there is a constant $k\geq 0$ such
that $d’(\phi(x), \psi(x))\leq k$ for all $x\in X$ ) then $\phi$ is a quasi-isometry
if and only if $\psi$ is. This is an example of a more general principle.
In coarse geometry we are usually only interested in things up to
bounded distance. Indeed, we will frequenly only specify maps up to
a bounded distance.

(3) We will be giving various constructions that construct new quasi-
isometries from old. (Moving points a bounded distance, as above,

might be considered one example.) Usually, in such cases, the new
constants of quasi-isometry (the $k_{i}$ ) will depend only on the old ones
and any other constants involved in the construction. In principle,
one can keep track of this dependence through various arguments,
though we do not usually bother to do this explicitly.

bom now on we will assume that our spaces are length spaces.
The following are the basic properties of quasi-isometries. We leave
the proofs as an exercise.
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Proposition 3.2: (1) If $\phi$ : $X\rightarrow Y$ and $\psi$ : $Y\rightarrow Z$ are
quasi-isometries, then so is $\psi\circ\phi$ : $X\rightarrow Z.$

(2) If $\phi$ : $X\rightarrow Y$ is a quasi-isometry, then there is a quasi-isometry
$\psi$ : $Y\rightarrow X$ with $\psi 0\phi$ and $\phi\circ\psi$ a bounded distance from the identity
maps.

For (2), given $y\in Y$ , choose any $x\in X$ with $\phi(x)$ a bounded distance
from $y$ and set $\psi(y)=x$ . We refer to such a map $\psi$ as a quasi-
inverse of $\phi$ . Note that a quasi-inverse cannot necessarily be made
continuous, even if $\phi$ happens to be continuous. $A$ quasi-inverse is
unique up to bounded distance - which is the best one can hope for
in this context. Note that a quasi-isometric map is a quasi-isometry
if and only if it has a quasi-inverse.

Definition : Two length spaces, $X$ and $Y$ , are said to be quasi-
isometric if there is a quasi-isometry between them.

In this case, we write $X\sim Y.$

Note that, by Proposition 3.2, $X\sim X,$ $X\sim Y\Rightarrow Y\sim X$ and
$X\sim Y\sim Z\Rightarrow X\sim Z.$

Examples:

(1) Any non-empty bounded space is quasi-isometric to a point.

(2) $R\times[O, 1]\sim R$ : Projection to the first coordinate is a quasi-
isometry.

(3) By a similar construction, the Cayley graph of $Z$ with resepct to
$\{a, a^{2}\}$ is quasi-isometric to R. Recall that is $R$ is also the Cayley
graph of $Z$ with respect to $\{a\}.$

(4) Similarly $\Delta(Z;\{a^{2}, a^{3}\})\sim R.$

(5) The Cayley graph of $Z^{2}$ with respect to the standard generators
$\{a, b\}$ is quasi-isometric to the plane, $R^{2}$ . Recall that we can identify
this Cayley graph with the 1-skeleton of a square tessellation of the
plane, and its inclusion into $R^{2}$ is a quasi-isometry.

Any quasi-inverse of a quasi-isometry will be discontinuous. For ex-
ample, puncture each square tile at the centre and retract by radial
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projection to the boundary (Figure $3a$). We can send the centre to
any boundary point of the tile.

Figure $3a.$

(6) By a similar argument, the Cayley graph of $Z^{n}$ with the standard
generators is quasi-isometric to $R^{n}-$ it is the 1-skeleton of a regular
tessellation of $R^{n}$ by unit cubes.

(7) Let $T_{n}$ be the $n$-regular tree. We claim that $T_{3}\sim T_{4}$ . To see this,
colour the edges of $T_{3}$ with three colours so that all three colours
meet at each vertex. Now collapse each edge of one colour to a point
so as to obtain the tree $T_{4}$ . (In Figure $3b$ , the edges of one colour
are highlighted in bold.) The quotient map from $T_{3}$ to $T_{4}$ is a quasi-
isometry: clearly it is distance non-increasing, and arc of length at
most $2k+1$ in $T_{3}$ can get mapped to an arc of length $k$ in $T_{4}.$

Exercise: For all $m,$ $n\geq 3,$ $T_{m}\sim T_{n}$ . Indeed if $T$ is any tree such that
the valence of each vertex is at least 3 and at most some constant $k,$

then $T\sim T_{3}.$

On the other hand, finding quasi-isometry invariants to show

that spaces are not quasi-isometric can be more triCky. $A$ significant
part of geometric group theory centres around the search for such
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Figure $3b.$

invariants. Here are a few relatively simple eases.

Non-examples.

(0) The empty set is quasi-isometric only to itself.

(1) Boundedness is a quasi-isometry invariant. Thus, for example,
$R\oint[0,1].$

(2) $[0, \infty)\oint$ R. To see this, one can argue as follows. Suppose that
$\phi$ : $R\rightarrow[O, \infty)$ were a quasi-isometry. Then as $t\rightarrow\infty,$ $\phi(t)\rightarrow\infty$

and $\phi(-t)\rightarrow\infty$ . Also, $|\phi(n)-\phi(n+1)|$ is bounded. Choose some
$a$ much larger than $\phi(0)$ , as described shortly. Now the sequence
$(\phi(n))_{n\in N}$ must eventually pass within a bounded distance of $a$ . In
other words, there is some $p\in N$ with $|a-\phi(p)|$ bounded. (Let
$p=\max\{n\in N|\phi(n)<a\}.)$ Similarly, we can find some $q<0$ with
$|a-\phi(q)|$ bounded. Thus, $|\phi(p)-\phi(q)|$ is bounded, and so $p-q$ is
bounded. Thus, $p\leq p-q$ is also bounded. But $|\phi(0)-\phi(p)|$ agrees
with $a-\phi(O)$ up to an additive constant. We are free to choose $a$ as
large as we want without affecting any of these constants, and so if
we take it large enough, we get a contradiction.

Remark: we have only used the fact that $\phi$ distorts distances by a
linearly bounded amount. Thus, in fact, there is no quasi-isometric
map from $R$ to $[0, \infty)$ .
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We have used a discrete version of the Intermediate Value Theorem.
We could not apply this theorem directly since our map, $\phi$ , was not
assumed continuous.

Exercise: write out the above argument more formally with explicit
reference to the quasi-isometric constants, $k_{1},$ $k_{2},$ $k_{3},$ $k_{4}.$

(3) $R^{2}\oint$ R. We sketch a proof using the theorem that any continuous
map of the circle to the real line must identify some pair of antipodal
points. (This theorem can be deduced from the Intermediate Value
Theorem.) By taking a sufficiently large circle we get a contradiction.
Since quasi-isometies are not assumed continuous, we will need some
kind of approximation argument. One way to formulate this is as
follows.

Let $||.||$ denote the euclidean norm on $R^{2}$ . Suppose $\phi:R^{2}\rightarrow R$

were a quasi-isometry. Choose $n\in N$ sufficienly large (as bclow)

and let $x_{0},$ $x_{1},$
$\ldots,$ $x_{2n}=x_{0}$ be $2n$ equally spaced points around the

circle $S$ of radius $n$ centred at the origin. Thus $x_{i+n}=-x_{i}$ and
$||x_{i}-x_{i+1}||\leq\pi$ . It follows that $|\phi(x_{i})-\phi(x_{i+1})|$ is bounded. We
can now dcfine a continuous map $f$ : $S\rightarrow R$ by setting $f(x_{i})=$

$\phi(x_{i})$ and sending the arc of $S$ between $x_{i}$ and $x_{i+1}$ onto the interval
between $\phi(x_{i})$ and $\phi(x_{i+1})$ in R. As observed above, this interval
has bounded length. From the above theorem, there is some $x\in S$

with $f(x)=f(-x)$ . Choose some $x_{i}$ nearest $x$ in $S$ . Thus $||x-x_{i}||=$

$||(-x)-(-x_{i})||<\pi$ and so $|f(x_{i})-f(x)|$ and $|f(-x_{i})-f(-x)|$

are both bounded, and so $|\phi(x_{i})-\phi(-x_{i})|=|f(x_{i})-f(-x_{i})|$ is
bounded. Thus $||x_{i}-(-x_{i})||=2||x_{i}||=2a$ is bounded. But we
could have chosen $a$ arbitrarily large giving a contradiction.

Indeed we have shown that there is no quasi-isometric map from
$R^{2}$ into R. We therefore see also that $R^{2}\not\simeq[0, \infty)$ .
Remark: The Borsuk-Ulam Theorem says that any continuous map
from the $n$-sphere $S^{n}$ to $R^{n}$ must identify some pair of antipodal
points. Using this one can deduce that if there is a quasi-isometric
map from $R^{m}$ to $R^{n}$ , then $m\leq n$ . One then sees that if $R^{m}\sim R^{n}$

then $m=n$ . Thus the question of quasi-isometric equivalence is
completely resolved for euclidean spaces.

(4) The 3-regular tree, $T_{3}$ is not quasi-isometric to $R$ . (Exercise).
We thus also have a complete classification for regular trees.
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Exercise. Suppose that $f$ : $R^{n}\rightarrow R^{n}$ is a proper continuous map.
(Proper” means that $f^{-1}K$ is compact for all compact $K.$ ) Suppose
there is some $k\geq 0$ such that for all $x\in R^{n}$ , diam$(f^{-1}(x))\leq k$ . Then
$f$ is surjective.

The idea of the proof is to extend $f$ to a continuous map between
the one-point compactifications $f$ : $R^{n}\cup\{\infty\}\rightarrow R^{n}\cup\{\infty\}$ , and
using appropriate identifications of $R^{n}\cup\{\infty\}$ with the sphere, $S^{n},$

we can apply the Borsuk-Ulam theorem to get a contradiction.
As a corollary one can get the following.

Any quasi-isometric map from $R^{n}$ to itself is a quasi-isometry.

This of course ealls for some approximation construction, as in the
examples above.

Further quasi-isometry invariants arise from the notion of (Gro-
mov) hyperbolicity that we will encounter later. Indeed some of the
above examples ean be seen in these terms.

3.4. Cayley graphs again.

Let $S,$ $S’$ be finite generating sets for some group, $\Gamma$ , and let
$\Delta=\Delta(\Gamma;S)$ and $\Delta’=\Delta(\Gamma;S’)$ be the corresponding Cayley graphs.
We write $d,$ $d’$ for the geodesic metrics on these graphs. Now $V(\Delta)=$

$ V(\Delta’)=\Gamma$ , and we can extend the identity map, $V(\Delta)\rightarrow V(\Delta’)$ to
a map $\phi$ : $\Delta\rightarrow\Delta’$ by sending an edge of $\Delta$ linearly to a geodesic in
$\Delta’$ with the same endpoints. By choosing these geodesics appropri-
ately, we can arrange that the map $\phi$ is equivariant, that is, $g\phi(x)=$

$\phi(gx)$ for all $ x\in\Delta$ and all $ g\in\Gamma$ . Let $r=m\propto\{d’(1, a)|a\in S\}.$

Then each edge of $\Delta$ gets mapped to a path of length at most $r$ in
$\Delta’$ . We see that $d’(\phi(x), \phi(y))\leq rd(x, y)$ for all $x,$ $y\in\Delta.$

Now we can apply the above construction in the reverse direction
to give us an equivariant map $\psi$ : $\Delta’\rightarrow\Delta$ . One can now easily
check that these are quasi-inverse quasi-isometric maps, and henee
quasi-isometries. We have shown:

Theorem 3.3: Suppose that $S$ and $S’$ are finite generating scts for
a group $\Gamma$ . Then there is an equivariant quasi-isometry from $\Delta(\Gamma;S)$



3.5. $A$ useful construction. 33

to $\Delta(\Gamma;S’)$ . $\Diamond$

In particular, the Cayley graph of a finitely generated group
is well-defined up to quasi-isometry. If we are only intercsted in
its quasi-isometry class, we can simply denote it by $\Delta(\Gamma)$ without
specifying a generating set. This leads us to the following definitions.

Definition: If $\Gamma$ and $\Gamma’$ are f.g. groups, we say that $\Gamma$ is quasi-

isometric to $\Gamma’$ if $\Delta(\Gamma)\sim\Delta(\Gamma’)$ .
We write $\Gamma\sim\Gamma’.$

Examples.

(1) All finite groups are q.i. to each other – their Cayley graphs are
bounded.

(2) If $p,$ $q\geq 2$ , then $F_{p}\sim F_{q}$ : Note that with respect to free generating
sets, the Cayley graphs are the regular trees $T_{2p}$ and $T_{2q}.$

(3) If $p\geq 2$ , then $F_{p}\not\simeq Z.$

(4) $Z\sim Z\times Z_{2}$ : Exercise: constuct a Cayley graph for $Z\times Z_{2}.$

Definition : $A$ finitely generated group, $\Gamma$ is quasi-isometric to a
geodesic space, $X$ , if $\Delta(\Gamma)\sim X.$

We write $\Gamma\sim X.$

Examples.

(1) $Z\sim R.$

(2) $Z^{2}\sim R^{2}.$

Note that from the above it follows that $Z\oint Z^{2}$ . Indeed, from
the earlier remark, we know that $Z^{m}\sim Z^{n}\Rightarrow m=n.$

We thus have complete q.i. classifications of both f.g. free groups
and f.g. free abelian groups. Indeed it will follow from results later
in the course that if $F_{m}\sim Z^{n}$ then $m=n=1$ , so we can, in fact,

classify the union of these two classes by q.i. type. (See Section 6.)
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3.5. $A$ useful construction.

Suppose a group $\Gamma$ acts p.d. $c$ . on a proper geodesic space, $X.$

Fix any $a\in X$ . Thus $\Gamma a$ is $r$-dense in $X$ for some $r\geq 0$ . Let
$k=2r+1$ . Construct a graph, $\Delta$ , with vertex set $ V(\Delta)=\Gamma$ by
connecting $g,$

$ h\in\Gamma$ by and $c\Lambda ge$ if $d(ga, ha)\leq k$ . Since the action is
p.d., $\Delta$ is locally finite. Also:

Lemma 3.4 : $\Delta$ is connected.

Proof : Given any $g,$
$ h\in\Gamma$ , let $\alpha\subseteq X$ be a geodesic connecting $ga$

to $ha$ . Choose a sequence of points, $ga=x_{0},$ $x_{1},$
$\ldots,$

$x_{n}=ha$ along
$\alpha$ , sueh that $d(x_{i}, x_{i+1})\leq 1$ for all $i$ . For each $i$ choose $ g_{i}\in\Gamma$ so that
$d(x_{i}, g_{i}a)\leq r$ . We can take $g_{0}=g$ and $g_{n}=h$ (Figure $3c$). Note
that $d(g_{i}a, g_{i+1}a)\leq k$ for all $i$ , and so $g_{i}$ is adjacent to $g_{i+1}$ in $\Delta.$

Thus the path $g_{0}g_{1}\cdots g_{n}$ connects $g$ to $h$ in $\Delta.$ $\Diamond$

Figure $3c.$

Now let $A=\{g\in\Gamma\backslash \{1\}|d(a, ga)\leq k\}$ . Thus $A$ is finite and
symmetric, and $g,$

$ h\in\Delta$ are adjacent if and only if $g^{-1}h\in A$ . We see
that $\Delta$ is, in fact, the Cayley graph of $\Gamma$ for the generating set $A$ (at
least after identifying any double edge $\infty rresponding$ to an order-2
element). From the discussion in Section 1, we see that $A$ generates
$\Gamma$ . Thus:
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Theorem 3.5: If $\Gamma$ acts p.d.c. on a proper geodesic space, $X$ , then
$\Gamma$ is finitely generated. $\Diamond$

In fact, we can refine our useful construction to get more in-
formation. First note that we have a map $f$ : $\Delta\rightarrow X$ obtained by
setting $f(g)=ga$ and sending the edge between two adjacent $g,$

$ h\in\Gamma$

linearly to a geodesic from $ga$ to $h,a$ in X. (Again by taking suitable
geodesics, we can arrange that $f$ is equivariant.)

Suppose $g,$
$ h\in\Gamma$ . We can choose the points $x_{i}$ , as in the proof of

Lemma 3.4, evenly spaced so that $n\leq d(ga, ha)+1=d(f(g), f(h))+$
$1$ , where $n$ is the length of the path constructed from $g$ to $h$ in $\Delta.$

Conversely, if $d_{\Delta}(g, h)\leq n$ , then $d(f(g), f(h))\leq rn$ . Now $\Gamma=V(\Delta)$

is cobolmdcd in $\Delta$ , and $f(V(\Delta))=\Gamma a$ is cobounded in $X$ . It now
follows easily that $f$ is a quasi-isometry from $\Delta$ to $X$ . Since $\triangle$ is a
Cayley graph for $\Gamma$ we see:

Theorem 3.6 : If $\Gamma$ acts properly discontinuously $\omega compactly$ on
a proper length space $X$ , then $\Gamma\sim X.$ $\Diamond$

This tells us once more some things we already knew, for example
that $Z^{n}\sim R^{n}$ . We can also get new information.

Proposition 3.7: Suppose that $\Gamma$ is finitely generated and $ G\leq\Gamma$

is finite index. Then $\Gamma$ is finitely generated and $G\sim\Gamma.$

Proof: Let $\Delta$ be any Cayley graph of $\Gamma$ . We restrict the action of $\Gamma$

on $\Delta$ to an action of $G$ . This is also p.d. $c$ . We now apply Theorems
3.5 and 3.6. $\Diamond$

Note that the vertices of $\Gamma/G$ correspond to the cosets of $G$ in
$\Gamma.$

3.6. Quasi-isometry and commensurability.

Definition: Two groups $\Gamma$ and $\Gamma’$ are commensumble if there exist
finite indcx subgroups $ G\leq\Gamma$ and $G’\subseteq\Gamma’$ with $G\cong G’$ . We write
$\Gamma\approx\Gamma’.$
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Note that from Theorem 3.5 and an earlier exercise in Section 1, we

$Ako:seethat$
if $\Gamma\approx\Gamma’$ then $\Gamma$ is finitely generated if and only if $\Gamma’$ is.

Exercise: The relation $\approx$ is transitive.

We can thus talk about commensurability classes of (f.g.) groups.
Applying Propostion 3.7, we see:

Proposition 3.8: $ If\Gamma$ and $\Gamma’$ are $f.g.$ , then $\Gamma\approx\Gamma’\Rightarrow\Gamma\sim\Gamma’.$ $\Diamond$

Definition : $A$ group $\Gamma$ is torsion-free if for any $ g\in\Gamma$ and $n\in N,$

then $g^{n}=1$ implies $g=1.$

Definition: If $P$” is any property, we say that a group is virtually
$P$ if it has a fimite index subgroup that is $P.$

For example, we have “virually abelian”, “virtually free”, “vir-
tually torsion-free” etc. Note that all finite groups are ’‘virtually
trivial”

Theorem 3.9 : Suppose that $\Gamma$ is a $f.g$. group quasi-isometric to
Z. The $\Gamma$ is virtually $Z.$

Proof: This is quite subtle, and we only give the outline.
First, let us suppose that we have found an infinite order element

$ g\in\Gamma$ . Let $ G=\langle g\rangle\equiv$ Z. We claim that $[\Gamma : G]<\infty$ . To see this,
let $\Delta$ be any Cayley graph of $\Gamma$ , so that $ V(\Delta)\equiv\Gamma$ . Note that
$d(g^{m},g^{n})=d(1, g^{m-n})$ and that $ d(1, g^{n})\rightarrow\infty$ as $ n\rightarrow\pm\infty$ . Let
$\phi$ : $\Delta\rightarrow R$ be a quasi-isometry. Define a map, $f$ : $Z\rightarrow R$ by
$f(n)=\phi(g^{n})$ . From the above we see that

(1) For all $n,$ $|(f(n)-f(n+1)|$ is bounded, and

(2) $(\forall r\geq 0)(\exists p\in N)$ su& that if $|f(n)-f(m)|\leq r$ then $|m-n|\leq p.$

Now it is an exercise to show that the image of any map from $Z$

to $R$ satisfying the above is cobounded in R. It then follows that
$G\subseteq V(\Delta)$ is cobolmdcd in $\Delta$ . Thus, $\Delta/G$ is a finite graph, $G$

has finite index in $\Gamma$ as claimed. (Note that the vertices of $\Delta/G$
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correspond to cosets of $G$ in $\Gamma.$ ) We have thus proven the theorem in

this case.
We still need to find an infinite order element, $g$ . The idea is

fairly simple, but the details take a while to write out. We just

give the general idea. We shall find some $ g\in\Gamma$ and some subset
$A\subseteq\Gamma=V(\Delta)$ , such that $gA$ is properly contained in $A$ . It then
follows easily that $g$ must have infinite order.

Suppose $A=V(\Delta)\cap\phi^{-1}[0, \infty)$ where $\phi$ : $\triangle\rightarrow R$ is our quasi-
isometry. Now any.$ q\in\Gamma$ acts by isometry on $\triangle$ , and so determines
(via $\phi$) a quasi-isometry $\psi$ from $R$ to itself. It is an exercise to show

that $\psi([0, \infty))$ is a bounded distance from $[\psi(0), \infty)$ (i.e., each point
of one set is a bounded distance from some point of the other) or
else is a bounded distance from $(-\infty, \psi(0)]$ . Now if the former is the
case, and if $\psi(0)$ is much greater than $0$ , it then follows that $gA$ is
properly contained in $A$ , and so we are done.

To find such a $g$ , we take two elements $h,$ $ k\in\Gamma$ , so that 1, $h,$ $k$

arc all very far apart in $\triangle$ . Thus, $\phi(1),$ $\phi(h),$ $\phi(k)$ are all far apart

in R. One can now apply the argument of the previous paragraph,
considering the images of $[0, \infty)$ . At least two of the sets $A,$ $hA,$ $kA$

are nested (one properly contained in the other). We can then take
$g$ to be one of the elements $h,$ $h^{-1},$ $k,$ $k^{-1},$ $hk^{-1}$ or $kh^{-1}.$ $\Diamond$

We remark that this result is a weak version of a result of Hopf
from around 1940 that a f.g. group with “two ends” is virtually $Z.$

Prompted by Theorem 3.9, one can ask the following:

General question: When does $\Gamma\sim\Gamma’$ imply $\Gamma\approx\Gamma’$?

In general this is very difficult to answer.

Some positive examples.

(1) This is true if one of the groups is finite: then they are both finite.

(2) True if one of the groups is (virtually) $Z$ , by Proposition 3.9.

(3) True if both groups are virtually abelian. We can argue as follows.
Let $G$ be a finite index subgroup of $\Gamma$ . Then by Proposition 3.7, $G$

is finitely gcncrated. In fact, wc can assume that $G$ is also torsion
free, since we could write $G\cong G’\times T$ , were $G’$ is torsion free, and
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$T$ is finite, and then replace $G$ by $G’$ . Now any finitely generated
torsion-free abelian group is isomorphic to $Z^{n}$ for some $n$ (from the
classification of f.g. abclian groups). In othcr words, $\Gamma$ is virtually $Z^{n}.$

Similarly $\Gamma’$ is virtually $Z^{m}$ for some $m$ . Thus $Z^{n}\sim\Gamma\sim\Gamma’\sim Z^{m}$

and so $m=n$ . Thus $\Gamma\approx\Gamma’.$

(4) In fact this remains true if we only assume that one of these
groups is virtually abelian. In other words any f.g. group q.i. to a
virtually abelian group (or equivalently a euclidean plane) is itself
virtually abelian. This is however a much deeper theorem. The first
proof of this used the result of Gromov: “Any group of polynomial
growth is virtually nilpotent” (in turn using another deep result of
Montgomery and Zippin characterising Lie groups) and then using
some q.i. invariants of nilpotent groups. $A$ more direct, though still
difficult, proof has since been given by Shalom, by very different
arguments.

(5) If both groups are (virtually) free, the statement is true. Given
that $F_{n}\sim Z$ only if $n=1$ , by the above results, it remains to show
that if $m,$ $n\geq 2$ , then $F_{m}$ and $F_{n}$ have an isomorphic finite index
subgroup. We will discuss this again later (Section 4.3).

(6) In fact, the above holds if only one group is assumed virtually
free: any group q.i. to $a$ (virtually) free group is virtually free. This
again uses some sophisticated machinery. It follows from a result of
Dunwoody on $\alpha accessibility$

” together with work of Stallings on group
splittings.

(7) Other examples relating to surfaces will be disussed in the context
of hyperbolic geometry in Section 5.5.

Some negative results.

There are certainly (many) examples where the statement fails:
non-commensurable groups that are q.i. However, $I$ don’t know of
a simple example that one can easily verify. $A$ standard example
comes $fr$ $3$-manifold theory. There are compact hyperbolic 3-
manifolds, $M$ and $N$ , which do not have any common finite cover.
Then $\pi_{1}(M)\not\simeq\pi_{1}(N)$ but both groups are q.i. to hyperbolic 3-space.
We discuss this again in Section 5.
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3.7. Quasi-isometry invariants.

Properties of groups that are invariant under quasi-isometry
are often termed “geometric” There are many geometric invariants
which we won’t have time to look at seriously. Here are a few exam-
ples:

(1) Finite presentability: If $\Gamma\sim\Gamma’$ then $\Gamma$ is f.p. if and only if $\Gamma’$ is
$f.p.$

(2) The word problem. Suppose $\Gamma$ is f.p. $A$ word in the generators

and their inverses represents some element of the group. Is there an
algorithm to decide if this is the identity element? If so then the
group is said to have solvable word problem. For finitely presented
groups this turns out to be a geometric property, and follows from
work of Alonso and Shapiro (see the discussion at the end of Section
6 $)$ . For f.g. groups it appears to be open whether having solvable
word problem is geometric.

(3) As alluded to earlier, by the result of Gromov, the property of
being virtually nilpotent is geometric.

There are many other results and open problems. One issue arises
from recognising torsion from the geometry of a group. We saw, for
example, that it was somewhat complicated to show that a group q.i.
to $Z$ contained an infinite order element. To further illustrate this, it
appears to be open as to whether a torsion free group can be q.i. to
a torsion group, i.e. a group in which every element has finite order.
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